

000 SMOOTHING SLOT ATTENTION ITERATIONS AND RE- 001 CURRENCES 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

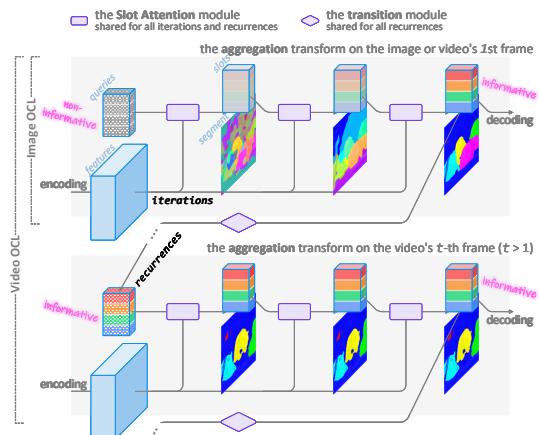
007 ABSTRACT 008 009

011 Slot Attention (SA) and its variants lie at the heart of mainstream Object-Centric
012 Learning (OCL). Objects in an image can be aggregated into corresponding slot
013 vectors, by *iteratively* refining cold-start query vectors, typically three times, via
014 SA on image features. For video, this aggregation is *recurrently* shared across
015 frames, with queries cold-started on the first frame while transitioned from the pre-
016 vious frame’s slots on non-first frames. However, cold-start queries lack sample-
017 specific cues thus hindering precise aggregation on the image or video’s first
018 frame; Also, non-first frames’ queries are already sample-specific thus requiring
019 aggregation transforms different from the first frame. We address these issues
020 for the first time with our *SmoothSA*: (1) To smooth SA iterations on the image
021 or video’s first frame, we *preheat* the cold-start queries with rich information of
022 input features, via a tiny module self-distilled inside OCL; (2) To smooth SA re-
023 currances across all video frames, we *differentiate* the homogeneous transforms on
024 the first and non-first frames, by using full and single iterations respectively. Com-
025 prehensive experiments on object discovery, recognition and downstream bench-
026 marks validate our method’s effectiveness. Further analyses illuminate how our
027 method smooths SA iterations and recurrences. Our source code and training logs
028 are provided in the supplement.

029 1 INTRODUCTION 030

031 Object-Centric Learning (OCL) (Locatello
032 et al., 2020) aims to represent objects in a vi-
033 sual scene as distinct vectors, with the back-
034 ground as another vector. Ideally, this yields a
035 structured compact representation that outper-
036 forms popular dense feature maps in advanced
037 vision tasks. In dynamics modeling, evolving
038 these object-level slots over time captures more
039 accurate object interactions (Villar-Corrales &
040 Behnke, 2025). For visual reasoning, their con-
041 cise form allows more explicit object rela-
042 tionship modeling, slashing the search space and
043 computation load (Ding et al., 2021). In vi-
044 sual prediction, disentangling objects facilitates
045 more compositional generation of future frames
(Villar-Corrales et al., 2023).

046 Powered by Slot Attention (SA) (Locatello
047 et al., 2020), modern OCL methods have sig-
048 nificantly improved and can now scale to real-
049 world complex images and videos. SA is essen-
050 tially a form of iterative cross attention, where
051 query vectors compete to aggregate their cor-
052 responding object information, discovering ob-
053 jects as segmentation masks and representing
them as slot vectors (Locatello et al., 2020).



054 Figure 1: Image Object-Centric Learning (OCL) is re-
055 alized via Slot Attention (SA) *iterations* on the image,
056 while video OCL is via SA *recurrences* across video
057 frames. In SA iterations on the image or video’s first
058 frame, the **cold-start queries** lack information for ac-
059 curate aggregation; In SA recurrences across video’s first
060 and non-first frames, the **homogeneous trans-
061 forms**, i.e., the fixed three SA iterations, cannot jointly
062 adapt to the first and non-first queries, which have a sig-
063 nificant information gap.

054 The model is trained by minimizing reconstruction loss based on the slots, requiring no external
 055 supervision. Specifically, for image, the queries are usually cold-start and sampled from multiple
 056 Gaussian distributions fitted to the entire dataset (Jia et al., 2023). Such queries contain no informa-
 057 tion about any specific sample, thus to obtain slots by refining queries using SA on image features,
 058 typically three iterations are necessary. For video, such aggregation occurs recurrently across all
 059 frames in a shared way, where queries for the first frame are the same as in the image case while
 060 queries for non-first frames are transitioned from the previous frame’s slots (Singh et al., 2022b).
 061 Unlike the first frame’s queries, non-first frames’ queries are already quite sample-specific. But the
 062 aggregation transforms are identical or homogeneous across all frames.

063 To the best of our knowledge, all works on SA and its variants confront these facts but have not
 064 acknowledged the implied issues, as shown in Figure 1: (i1) *Query cold-start* in SA iterations. For
 065 an image or video’s first frame, the cold-start queries lack scene-specific information. Although
 066 three SA iterations can gradually refine these non-informative queries into useful slots, such aggrega-
 067 tion would not work as good as that with informative queries. (i2) *Transform homogeneity* in SA
 068 recurrences. For video frames, the first frame’s queries are cold-start while non-first frames’ are
 069 much more informative. These differing conditions impose different requirements on the aggrega-
 070 tion transforms, thus such homogeneous transforms would not work as good as those adapted to
 071 informative-different queries.

072 Our solution is simple yet effective. We propose *SmoothSA*, which smooths SA iterations on the
 073 image or video’s first frame by preheating the queries, and smooths SA recurrences across video’s
 074 first and non-first frames by differentiating the transforms: (s1) A tiny module *preheats* the cold-start
 075 queries using rich information from input features. It is trained by predicting current slots through
 076 self-distillation within the OCL model. (s2) Different aggregation transforms handle video’s first
 077 and non-first frames respectively. This is realized by simply employing three SA iterations on the
 078 first frame while only one on each non-first frame.

079 Briefly, our contributions are: (c1) for the first time addressing the query cold-start issue in SA
 080 iterations on the image and video’s first frame; (c2) for the first time addressing the transform ho-
 081 mogeneity issue in SA recurrences across the first and non-first frames; (c3) new state-of-the-art
 082 on both image and video OCL benchmarks; (c4) consistent performance boosts on downstream
 083 advanced vision tasks.

085 2 RELATED WORK

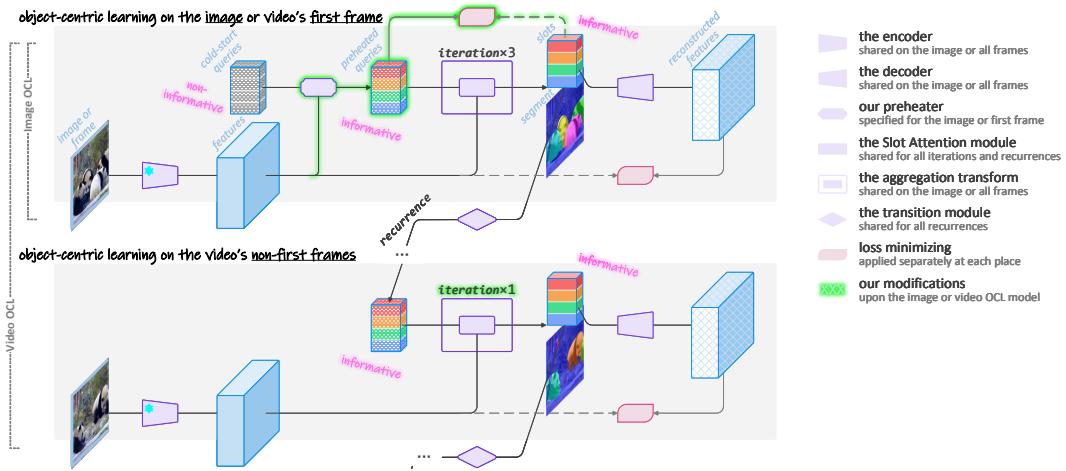
087 As SA is a kind of cross attention that depends on queries to aggregate information from visual
 088 features, we review works from perspectives of aggregation and queries.

089 **Slot Attention on images and videos.** The seminal work on the aggregation module SA (Locatello
 090 et al., 2020) proposes refining the initial randomly initialized queries into object-centric slots via
 091 typically three iterations of the same SA module on image features. Then, all image OCL methods
 092 including (Singh et al., 2022a; Seitzer et al., 2023; Wu et al., 2023b; Jiang et al., 2023; Kakogeorgiou
 093 et al., 2024; Zhao et al., 2025b;c;d;e) adopt this iterative design. The pioneering work STEVE
 094 (Singh et al., 2022b) extends SA to videos by conducting standard image OCL on each frame,
 095 using randomly initialized queries for the first frame while using recurrently predicted queries from
 096 previous slots for non-first frames. After, all video OCL methods including SAVi (Kipf et al., 2022),
 097 SAVi++ (Elsayed et al., 2022), SOLV (Aydemir et al., 2023), VideoSAUR (Zadaianchuk et al.,
 098 2024), SlotContrast (Manasyan et al., 2025), STATM (Li et al., 2025b), SlotPi (Li et al., 2025a) and
 099 RandSF.Q (Zhao et al., 2025a) adopt such recurrent design. Now that SA is the core module of
 100 mainstream OCL methods for images or videos, all methods face but never acknowledge two issues
 101 described above. Our method is the first to address these issues directly.

102 **Query initialization for Slot Attention iterations.** For images, the initial queries serve as the
 103 starting point for aggregation based on SA iterations. The principal contradiction is that no object
 104 cues are available before aggregation. SA (Locatello et al., 2020) initializes queries by drawing
 105 multiple samples from a global Gaussian distribution, which is learned on the entire dataset and
 106 embeds global cues for object discovery. BO-QSA (Jia et al., 2023) proposes learning multiple
 107 Gaussian distributions so that more distinct cues are embedded into initial queries, thus enabling
 108 better aggregation. However, the queries are still cold-start. MetaSlot (Liu et al., 2025) takes two

108 steps: firstly initializing queries from multiple Gaussians for draft aggregation iterations, and then
 109 replacing the draft slots with object embeddings from a large codebook (Van Den Oord et al., 2017)
 110 for additional aggregation iterations. This mitigates the iterative query cold-start effectively, but still
 111 relies on cold-start queries. We directly address such iterative query cold-start issue.

112 **Query prediction for Slot Attention recurrences.** For video’s first frame, the queries can be ob-
 113 tained in the same way as in the image case, or by transforming cues like object bounding boxes
 114 in SAVi (Kipf et al., 2022) and SAVi++ (Elsayed et al., 2022), albeit at the cost of extra expensive
 115 annotations. For non-first frames, the queries are predicted from the previous frame’s slots. STEVE
 116 (Singh et al., 2022b) and most other OCL methods use a Transformer encoder block for such re-
 117 current prediction. STADM (Li et al., 2025b) and SlotPi (Li et al., 2025a) employ auto-regressive
 118 Transformer encoder variants for the same purpose. The most recent work RandSFQ (Zhao et al.,
 119 2025a) incorporates the next frame’s feature for more informative query prediction, and uses random
 120 slot-feature pairs for explicit query prediction learning, significantly boosting OCL performance on
 121 videos. However, improving query prediction alone will never reach the core issue, recurrent trans-
 122 form discrepancy. We directly address this recurrent transform homogeneity issue.



139 Figure 2: The overall model and our modifications. *(upper)* For image OCL, we preheat the cold-start queries
 140 to be informative so as to smooth SA iterations on the image (or video’s first frame). Our preheater is a tiny
 141 module trained to predict vectors approximating the slots as the preheated queries from the cold-start queries
 142 and image features. *(upper + lower)* For video OCL, we differentiate the homogeneous transforms to adapt to
 143 the first and non-first queries, non-informative and informative respectively, to smooth SA recurrences across
 144 all frames. This is achieved by using three SA iterations on the first frame and one on non-first frames.

3 PROPOSED METHOD

149 Mainstream image or video OCL methods confront two issues: the query cold-start in SA iterations
 150 on the image or video’s first frame, and the transform homogeneity in SA recurrences across video’s
 151 first and non-first frames. We address these issues for the first time with our *SmoothSA*, by preheating
 152 queries to smooth SA iterations and differentiating transforms to smooth SA recurrences.

3.1 SLOT ATTENTION ITERATION AND RECURRENCE

153 Mainstream OCL methods mainly take the encoder-aggregator-decoder model design (Zhao et al.,
 154 2025d): The encoder encodes the image or video frames into features, the aggregator aggregates
 155 features into slots, and the decoder decodes slots into the reconstruction of the input in some form as
 156 the source of supervision. The aggregator, which is based on Slot Attention (SA) (Locatello et al.,
 157 2020) or its variants, is the core of OCL, so let us focus on it.

158 **SA iterations on the image or video’s first frame.** An SA-based aggregator ϕ_a takes cold-start
 159 vectors $Q_1 \in \mathbb{R}^{n \times c}$ as the query, and input features $F_1 \in \mathbb{R}^{h \times w \times c}$ as the key and value. ϕ_a is

162 applied on the query, key and value typically three times, to refine the query iteratively into object-
 163 level feature vectors $\mathbf{S}_1 \in \mathbb{R}^{n \times c}$, i.e., slots, as the sparse representation of the visual scene:

$$164 \quad \mathbf{Q}_1 = \phi_n(\mathbf{C}) \quad (1)$$

$$167 \quad \mathbf{S}_1, \mathbf{M}_1 = \Phi_a(\mathbf{Q}_1, \mathbf{F}_1) \quad (2)$$

168 where the aggregation transform Φ_a can be expanded into:

$$170 \quad \mathbf{S}_1^{(0)} := \mathbf{Q}_1 \quad (2a)$$

$$171 \quad \mathbf{S}_1^{(i)}, \mathbf{M}_1^{(i)} = \phi_a(\mathbf{S}_1^{(i-1)}, \mathbf{F}_1) \quad i = 1, 2, 3 \quad (2b)$$

$$173 \quad \mathbf{S}_1, \mathbf{M}_1 := \mathbf{S}_1^{(3)}, \mathbf{M}_1^{(3)} \quad (2c)$$

174 In Equation (1), if cues \mathbf{C} are n slots to use, then the initializer ϕ_n samples n vectors as the queries
 175 \mathbf{Q}_1 from its trainable Gaussian distribution(s) (Locatello et al., 2020; Jia et al., 2023); If cues \mathbf{C}
 176 are the bounding boxes of objects in the video’s first frame, then the initializer ϕ_n projects cues \mathbf{C}
 177 into the queries \mathbf{Q}_1 (Kipf et al., 2022; Elsayed et al., 2022). In whichever case, queries \mathbf{Q}_1 lack
 178 sample-specific information, namely, being cold-start.

179 Considering that \mathbf{F}_1 is the high-quality feature of the image or video’s first frame, typically extracted
 180 by vision foundation model DINO2 (Oquab et al., 2023), the quality of the transform Φ_a is decided
 181 by queries \mathbf{Q}_1 . Therefore, if we could preheat the cold-start queries \mathbf{Q}_1 to be more informative, the
 182 aggregation transform Φ_a on the image or video’s first frame would perform better.

183 **SA recurrences across video’s first and non-first frames.** The transform Φ_a based on SA iterations
 184 is shared across all frames recurrently. Namely, the transform Φ_a happens across both first and
 185 non-first frames, where the former is identical to the image case formulated in Equations (1) and (2).
 186 For the latter, queries \mathbf{Q}_t are recurrently transitioned from previous frame’s slots \mathbf{S}_{t-1} :

$$188 \quad \mathbf{Q}_t = \phi_r(\mathbf{S}_{t-1}) \quad t \geq 2 \quad (3)$$

$$191 \quad \mathbf{S}_t, \mathbf{M}_t = \Phi'_a(\mathbf{Q}_t, \mathbf{F}_t) \quad (4)$$

192 where the aggregation transform Φ'_a can be expanded into:

$$193 \quad \mathbf{S}_t^{(0)} := \mathbf{Q}_t \quad (4a)$$

$$195 \quad \mathbf{S}_t^{(i)}, \mathbf{M}_t^{(i)} = \phi_a(\mathbf{S}_t^{(i-1)}, \mathbf{F}_t) \quad i = 1, 2, 3 \quad (4b)$$

$$196 \quad \mathbf{S}_t, \mathbf{M}_t := \mathbf{S}_t^{(3)}, \mathbf{M}_t^{(3)} \quad (4c)$$

198 In Equation (3), the transitioner ϕ_r takes previous frame’s slots \mathbf{S}_{t-1} as input and predicts current
 199 queries \mathbf{Q}_t . Considering that \mathbf{S}_{t-1} is the information-intensive representation of the previous frame
 200 and that the transitioner ϕ_r learns knowledge of transition dynamics (Singh et al., 2022b), current
 201 queries \mathbf{Q}_t is actually informative to current frame. This is different from the first frame queries \mathbf{Q}_1 ,
 202 which is cold-start and thus non-informative.

203 The non-first frames’ transform shares exactly the same SA module from the first transform with
 204 the same number of SA iterations, i.e., $\Phi'_a \equiv \Phi_a$. On the other hand, the information gap between
 205 the first queries \mathbf{Q}_1 and non-first queries \mathbf{Q}_t imposes different requirements on these transforms.
 206 Therefore, if we could differentiate the homogeneous transforms Φ_a and Φ'_a for the first and non-
 207 first frames respectively, the aggregation across the first and non-first frames would be better.

208 3.2 PREHEATING COLD-START QUERIES

211 To overcome the query cold-start issue and smooth SA iterations on the image or video’s first frame,
 212 we preheat the cold-start queries with rich information from input features. A tiny module is trained
 213 via self-distillation inside the OCL model, to predict vectors that approximate the aggregated slots
 214 as the preheated queries, from the cold-start queries conditioned on input features.

215 Our chain-of-thought is as follows: (i) Informative slots can be aggregated by iteratively refining
 216 non-informative queries; (ii) More informative queries contribute to better slots aggregation; (iii)

216 How to preheat the queries to be more informative? (iv) Aligning the preheated queries with the
 217 aggregated slots, which are quite informative.

218 Firstly, we insert this between Equations (1) and (2):

$$220 \quad \mathbf{Q}_1^* = \phi_p(\mathbf{Q}_1, \mathbf{F}_1) \quad (5)$$

221 where the preheater ϕ_p is parameterized as a single Transformer decoder block (Vaswani et al.,
 222 2017), whose self-attention and cross-attention are switched. This is because exchanging information
 223 among non-informative queries firstly is meaningless. Please refer to Table 5 ablation studies
 224 for why not using an extra SA module as the preheater, and for why switching the self-attention and
 225 cross-attention.

226 Secondly, we replace Equation (2a) with:

$$228 \quad \mathbf{S}_1^{(0)} := \text{sg}(\mathbf{Q}_1^*) \quad (6)$$

229 where $\text{sg}(\cdot)$ is stopping gradient. Stopping gradient flow from the SA module ϕ_a to the preheated
 230 queries \mathbf{Q}_1^* disentangles the training of ϕ_a and ϕ_p . Please refer to Table 5 ablation studies for why
 231 stopping gradient flow on the preheated queries.

232 Lastly, to obtain the preheating ability, we train our preheater ϕ_p with the following objective:

$$234 \quad \arg \min_{C, \phi_n, \phi_p} \text{MSE}(\mathbf{Q}_1^*, \text{sg}(\mathbf{S}_1)) \quad (7)$$

235 where the MSE loss is combined with the original OCL loss(es). To ensure the sufficient training of
 236 ϕ_p , we can use a relatively large coefficient for it. Please refer to Table 5 ablation studies for what
 237 weight to set for such preheating loss.

238 **Comment 1.** Our preheater is trained with OCL intermediate results as the ground-truth, without
 239 any external supervision, forming rigid self-distillation. This is also bootstrap, as good slots \mathbf{S}_1
 240 leads to better preheated queries \mathbf{Q}_1^* , and in turn better \mathbf{Q}_1^* leads to better \mathbf{S}_1 .

241 **Comment 2.** Our preheater is similar to the SA module, without an heavy RNN module. Thus our
 242 preheater introduces approximately less than 1/3 more computation overhead in the aggregation,
 243 which is negligible considering the heavy computation of encoding and decoding.

244 3.3 DIFFERENTIATING HOMOGENEOUS TRANSFORMS

245 To overcome the transform homogeneity issue and smooth SA recurrences across the video's first
 246 and non-first frames, we differentiate the homogeneous transforms for the first and non-first frames
 247 respectively. For the different transform requirements due to the gap between the first cold-start
 248 queries and non-first informative queries, full and single SA iterations are used respectively.

249 Our chain-of-thought is: (i) First frame queries are non-informative, thus three SA iterations are
 250 needed to refine the queries into good slots; (ii) Non-first frame queries are already informative, thus
 251 a single SA iteration is enough.

252 As mentioned above, the first-frame transform Φ_a and non-first frame transforms Φ'_a are identical
 253 in all existing methods but should be different. There are two ways to differentiate them: (1) use
 254 separate SA parameters for Φ_a and Φ'_a ; (2) use different number of iterations for Φ_a and Φ'_a .
 255 We choose the second solution. This is because Φ_a and Φ'_a should learn the general aggregation
 256 capability in each SA iteration and sharing enforces this. Please refer to Table 5 ablation studies for
 257 what numbers of iterations for first and non-first transforms to set.

258 We simply reduce the number of SA iterations in non-first frame transforms Φ'_a to once, while
 259 always use three SA iterations in the first frame transform Φ_a . Namely, we keep Equations (2b)
 260 and (2c) unchanged, while replacing Equations (4b) and (4c) with:

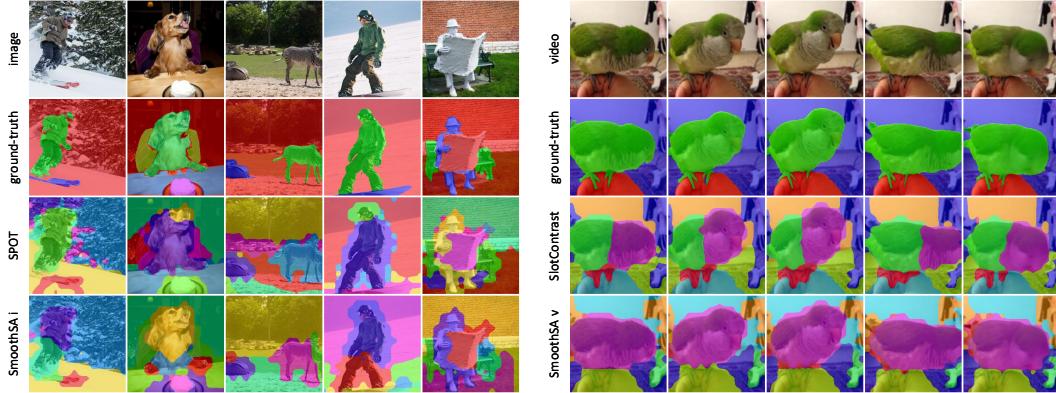
$$261 \quad \mathbf{S}_t^{(i)}, \mathbf{M}_t^{(i)} = \phi_a(\mathbf{S}_t^{(i-1)}, \mathbf{F}_t) \quad i = 1 \quad (8b)$$

$$262 \quad \mathbf{S}_t, \mathbf{M}_t := \mathbf{S}_t^{(1)}, \mathbf{M}_t^{(1)} \quad (8c)$$

263 For conditional SA like in SAVi (Kipf et al., 2022) and SAVi++ (Elsayed et al., 2022), they use
 264 homogeneous aggregation transforms, consisting of one single SA iteration for all frames. But we

270 still use three SA iterations on the first frame and one on non-first frames. They believe that objects' 271 bounding boxes as query initialization is informative enough. But in fact, they still carry little object 272 information, except the spatial information. Thus more iterations on the first frame is still necessary. 273 Their ablation study leads them to believe that one iteration is better than more just because they 274 were not aware of such recurrent transform homogeneity issue. Please refer to Table 5 ablation 275 studies for what numbers of iterations for first and non-first transforms to set.

276 **Comment 3.** Our differentiated transforms have 2/3 less computation overhead in aggregation on 277 non-first frames, which is negligible considering the heavy encoding and decoding.



293 Figure 3: Qualitative results of our SmoothSA on images (*left*) and videos (*right*), compared with SotA
294 methods SPOT and SlotContrast respectively.

297 4 EXPERIMENT

299 We conduct experiments on object discovery along with downstream tasks, object recognition and
300 visual question answering, to evaluate our slots representation quality, with three random seeds.
301

303 4.1 INSTANTIATING SMOOTHSA

305 As shown in Figure 2, our OCL model with SmoothSA is based on DIASⁱ (Zhao et al., 2025e) for
306 images and RandSF.Q (Zhao et al., 2025a) for videos, respectively. These two state-of-the-art (SotA)
307 methods share identical designs except techniques specific to image and video. For image OCL, we
308 remove slots pruning tricks from DIASⁱ, and then replace its SA variant with our SmoothSA. For
309 video OCL, we use RandSF.Q as it is, and then replace its SA with our SmoothSA. Thus we have
310 models SmoothSAⁱ and SmoothSA^v, where *i* is image and *v* is video.

311 Note that for conditional video OCL like SAVi (Kipf et al., 2022) and SAVi++ (Elsayed et al., 2022),
312 the authors always use one SA iteration on all frames. But whether it is conditional or not, we always
313 use three SA iterations on the first frame while one iteration on non-first frames.

	ClevrTex #slot=11				COCO #slot=7				VOC #slot=6			
	ARI	ARI _{fg}	mBO	mIoU	ARI	ARI _{fg}	mBO	mIoU	ARI	ARI _{fg}	mBO	mIoU
SLATE	17.4 _{±2.9}	87.4 _{±1.7}	44.5 _{±2.2}	43.3 _{±2.4}	17.5 _{±0.6}	28.8 _{±0.3}	26.8 _{±0.3}	25.4 _{±0.3}	18.6 _{±0.1}	26.2 _{±0.8}	37.2 _{±0.5}	36.1 _{±0.4}
DINOSAUR	50.7 _{±24.1}	89.4 _{±0.3}	53.3 _{±5.0}	52.8 _{±5.2}	18.2 _{±1.0}	37.0 _{±1.2}	28.3 _{±0.5}	26.9 _{±0.5}	21.5 _{±0.7}	36.2 _{±1.3}	40.6 _{±0.6}	39.7 _{±0.6}
SlotDiffusion	66.1 _{±1.3}	82.7 _{±1.6}	54.3 _{±0.5}	53.4 _{±0.8}	17.7 _{±0.5}	29.0 _{±0.1}	27.0 _{±0.4}	25.6 _{±0.4}	17.0 _{±1.2}	21.7 _{±1.8}	35.2 _{±0.9}	34.0 _{±1.0}
SPOT	25.6 _{±1.4}	77.1 _{±0.7}	48.3 _{±0.5}	46.4 _{±0.6}	20.0 _{±0.5}	40.0 _{±0.7}	30.2 _{±0.3}	28.6 _{±0.3}	20.3 _{±0.7}	33.5 _{±1.1}	40.1 _{±0.5}	38.7 _{±0.7}
DIAS ⁱ	80.9 _{±0.3}	79.1 _{±0.3}	63.3 _{±0.0}	61.9 _{±0.0}	22.0 _{±0.2}	41.4 _{±0.2}	31.1 _{±0.1}	29.7 _{±0.1}	26.6 _{±1.0}	33.7 _{±1.5}	43.3 _{±0.3}	42.4 _{±0.3}
SmoothSA ⁱ	76.8 _{±1.4}	80.8 _{±1.6}	60.0 _{±1.8}	58.1 _{±2.2}	26.2 _{±0.8}	42.1 _{±0.7}	33.2 _{±0.4}	31.7 _{±0.4}	30.6 _{±0.6}	34.3 _{±0.5}	45.3 _{±0.5}	44.1 _{±0.6}

322 Table 1: Object discovery on images. Input resolution is 224×224; DINO2 ViT-S/14 is for encoding.
323

324 4.2 OBJECT DISCOVERY
325

326 In mainstream OCL methods, attention maps of the slots are binarized as the byproduct object
327 segmentation, i.e., discovering objects. This intuitively reflects slots' representation quality.
328

329 On image datasets ClevrTex¹, COCO² and VOC³, we
330 compare our SmoothSAⁱ with baselines SLATE (Singh
331 et al., 2022a), DINOSAUR (Seitzer et al., 2023), SlotD-
332 iffusion (Wu et al., 2023b), SPOT (Kakogeorgiou et al.,
333 2024) (no distillation and finetuning tricks) and DIAS
334 (Zhao et al., 2025e) (no slot pruning). On video dataset
335 YouTube Video Instance Segmentation⁴ (YTVIS) the
336 high-quality version⁵, we compare our SmoothSA^v with
337 baselines STEVE (Singh et al., 2022b), VideoSAUR
338 (Zadaianchuk et al., 2024), SlotContrast (Manasyan
339 et al., 2025) and RandSF.Q (Zhao et al., 2025a). The
340 performance metrics are ARI⁶, ARI_{fg} (foreground),
341 mBO (Uijlings et al., 2013) and mIoU⁷. ARI score is
342 calculated with the segmentation area as the weight, thus ARI mainly reflects how well the back-
343 ground is segmented while ARI_{fg} reflects how well large objects are segmented. mBO shows how
344 objects that are best overlapped with the ground-truth are segmented. mIoU is the most strick metric.
345 **Note that, unless otherwise specified, we use image ARI, ARI_{fg}, mBO and mIoU for object discov-
346 ery on images, while using video ones for object discovery on videos. Also note that on dataset
YTVIS, we use video clip length 5 for training while 20 for evaluation.**
347

348 As shown in Table 1, on synthetic dataset ClevrTex, our SmoothSAⁱ is as competitive as the latest
349 SotA DIASⁱ and significantly better than former SotA SPOT in all metrics. On real-world dataset
350 COCO, our SmoothSAⁱ is consistently better than DIASⁱ in all metrics, 4+ points in ARI. On real-
351 world dataset VOC, our method pushes the ARI value forward by 4 points. Our method achieves
352 overall new SotA in ARI, mBO and mIoU, except relative limited performance boosts in ARI_{fg}.
353

354 As shown in Table 2, on real-world video dataset YTVIS, our SmoothSA^v defeats all baselines by a
355 large margin, even including the latest super SotA method RandSF.Q, which has already pushed the
356 older SotA performance significantly forward by up to 10 points.
357

358 4.3 OBJECT RECOGNITION
359

360 Besides the byproduct segmentation, recognizing the discovered objects' attributes like class and
361 bounding box from the slots can directly reflect the object-centric representation quality.
362

363 On real-world image dataset COCO, we compare
364 our SmoothSAⁱ with baseline SPOT (Kakogeorgiou
365 et al., 2024). On real-world video dataset YTVIS,
366 we compare our SmoothSA^v with baseline SlotCon-
367 trast (Manasyan et al., 2025). We follow the routine
368 of (Seitzer et al., 2023): firstly convert all images
369 into slots representation, with some threshold filter-
370 ing; then train a two-layer MLP model to classify and
371 regress the matched object's class label and bound-
372 ing box coordinates in a supervised way. We use top1
373

	ARI	ARI _{fg}	mBO	mIoU
YTVIS #slot=7, #step=20				
VideoSAUR	34.6 _{±0.5}	48.6 _{±0.7}	31.4 _{±0.3}	31.2 _{±0.3}
SlotContrast	38.7 _{±0.9}	48.9 _{±0.7}	35.0 _{±0.3}	34.9 _{±0.3}
DIAS ^v	33.6 _{±0.4}	49.3 _{±0.7}	36.1 _{±1.4}	35.2 _{±0.8}
RandSF.Q	42.0 _{±0.3}	59.4 _{±1.1}	39.8 _{±0.3}	39.4 _{±0.3}
SmoothSA ^v	44.1 _{±1.8}	61.5 _{±3.2}	41.1 _{±1.4}	40.6 _{±1.4}

Table 2: Object discovery on videos. Input resolution is 224×224; DINO2 ViT-S/14 is for encoding.

	class	top1↑	bbox	R2↑
COCO #slot=7				
SPOT	+	MLP	0.67 _{±0.0}	0.62 _{±0.1}
SmoothSA ⁱ	+	MLP	0.73 _{±0.0}	0.64 _{±0.1}
YTVIS #slot=7, #step=20				
SlotContrast	+	MLP	0.40 _{±0.1}	0.53 _{±0.1}
SmoothSA ^v	+	MLP	0.50 _{±0.0}	0.62 _{±0.0}

Table 3: Object recognition on image dataset COCO and video dataset YTVIS.

¹<https://www.robots.ox.ac.uk/~vgg/data/clevrte>

²<https://cocodataset.org>

³<http://host.robots.ox.ac.uk/pascal/VOC>

⁴<https://youtube-vos.org/dataset/vis>

⁵<https://github.com/SysCV/vmt?tab=readme-ov-file#hq-ytvvis-high-quality-video-instance-segmentation-dataset>

⁶https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html

⁷https://scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html

accuracy⁸ to measure the classification performance, and R2 score⁹ to measure the regression performance.

As shown in Table 3, the object recognition accuracy on both real-world complex images and videos are improved a lot by using our method as the slots representation extractor, compared with that using baseline methods. This demonstrates the high quality of our slots representation.

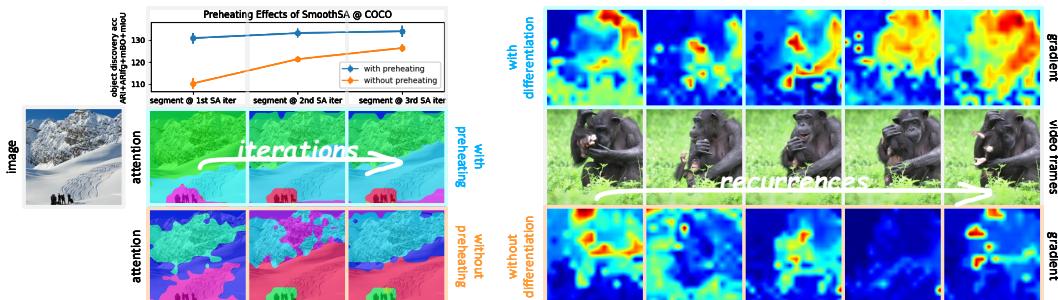
384 4.4 VISUAL QUESTION ANSWERING

386 In visual question answering (VQA) tasks, the visual modality slots are combined with language
387 modality words embeddings together, testing the representation quality and versatility further.

389 For VQA on images, we compare our
390 SmoothSAⁱ plus multi-modal reasoning model
391 Aloe (Ding et al., 2021) with baseline SPOT
392 plus Aloe on real-world complex image dataset
393 GQA¹⁰. For VQA on videos, we compare
394 our SmoothSA^v plus Aloe with baseline Slot-
395 Contrast plus Aloe on synthetic video dataset
396 CLEVRER¹¹. Please note that for the image
397 dataset, we use Aloe as it is while on the
398 video dataset we introduce temporal embed-
399 ding scheme from (Wu et al., 2023a). For
400 the upstream OCL models, we firstly pre-
401 train them on corresponding datasets and freeze
402 them to represent samples as slots. These visual input along with textual inputs representing ques-
403 tions are fed into the Aloe model together, appended with a classification token. The output is
404 obtained by projecting the transformed classification token into logits of all possible class labels,
i.e., answers.

405 As shown in table 4, using our method as the upstream model improves the image VQA performance
406 on dataset GQA by 4+ points. As for video VQA on CLEVRER, using our method as the upstream
407 boosts the performance too, whether measured by per option accuracy or per question accuracy.

408 5 DISCUSSION



422 Figure 4: (left, middle row) Using query preheating, good segmentation can be obtained at the beginning
423 of SA iterations, with even better segmentation at the end. (right, top row) Using transform differentia-
424 tion, balanced gradient signals can be obtained across SA recurrences, even showing good object contours.

425 Query preheating smooths SA iterations

427 The segmentation accuracies generally increase along with the SA iterations, so we expect that our
428 query preheating provides better initial queries and the accuracies increase faster. Please refer to Sec-

⁸https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

⁹https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html

¹⁰<https://cs.stanford.edu/people/dorarad/gqa>

¹¹<http://clevrer.csail.mit.edu>

432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1

- 486 Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-Centric Slot Diffusion. *Advances*
 487 *in Neural Information Processing Systems*, 2023.
- 488
- 489 Ioannis Kakogeorgiou, Spyros Gidaris, Konstantinos Karantzalos, and Nikos Komodakis. Spot:
 490 Self-Training with Patch-Order Permutation for Object-Centric Learning with Autoregressive
 491 Transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 492 *Recognition*, pp. 22776–22786, 2024.
- 493 Thomas Kipf, Gamaleldin Elsayed, Aravindh Mahendran, et al. Conditional Object-Centric Learn-
 494 ing from Video. *International Conference on Learning Representations*, 2022.
- 495
- 496 Jian Li, Wan Han, Ning Lin, Yu-Liang Zhan, Ruizhi Chengze, Haining Wang, Yi Zhang, Hongsheng
 497 Liu, Zidong Wang, Fan Yu, et al. SlotPi: Physics-informed Object-centric Reasoning Models.
 498 *arXiv preprint arXiv:2506.10778*, 2025a.
- 499 Jian Li, Pu Ren, Yang Liu, and Hao Sun. Reasoning-Enhanced Object-Centric Learning for Videos.
 500 In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining*
 501 V. 1, pp. 659–670, 2025b.
- 502
- 503 Hongjia Liu, Rongzhen Zhao, Haohan Chen, and Joni Pajarinen. Metaslot: Break through the fixed
 504 number of slots in object-centric learning. *arXiv preprint arXiv:2505.20772*, 2025.
- 505
- 506 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, et al. Object-Centric Learning with
 507 Slot Attention. *Advances in Neural Information Processing Systems*, 33:11525–11538, 2020.
- 508
- 509 Anna Manasyan, Maximilian Seitzer, Filip Radovic, Georg Martius, and Andrii Zadaianchuk. Tem-
 510 porally consistent object-centric learning by contrasting slots. In *Proceedings of the Computer*
Vision and Pattern Recognition Conference, pp. 5401–5411, 2025.
- 511
- 512 Maxime Oquab, Timothee Darcet, Theo Moutakanni, et al. DINOv2: Learning Robust Visual Fea-
 513 tures without Supervision. *Transactions on Machine Learning Research*, 2023.
- 514
- 515 Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu Liu, Xiang Bai, Serge Belongie, Alan Yuille,
 516 Philip HS Torr, and Song Bai. Occluded video instance segmentation: A benchmark. *Inter-
 517 national Journal of Computer Vision*, 130(8):2022–2039, 2022.
- 518
- 519 Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, et al. Bridging the Gap to Real-World Object-
 520 Centric Learning. *International Conference on Learning Representations*, 2023.
- 521
- 522 Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL-E Learns to Compose. *International*
523 Conference on Learning Representations, 2022a.
- 524
- 525 Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple Unsupervised Object-Centric Learning for
 526 Complex and Naturalistic Videos. *Advances in Neural Information Processing Systems*, 35:
 527 18181–18196, 2022b.
- 528
- 529 Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective
 530 Search for Object Recognition. *International Journal of Computer Vision*, 104:154–171, 2013.
- 531
- 532 Aaron Van Den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete Representation
 533 Learning. *Advances in Neural Information Processing Systems*, 30, 2017.
- 534
- 535 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 536 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 537 tion processing systems*, 30, 2017.
- 538
- 539 Angel Villar-Corrales and Sven Behnke. Playslot: Learning inverse latent dynamics for control-
 540 lable object-centric video prediction and planning. In *Forty-second International Conference on*
541 Machine Learning, 2025.
- 542
- 543 Angel Villar-Corrales, Ismail Wahdan, and Sven Behnke. Object-centric video prediction via de-
 544 coupling of object dynamics and interactions. In *2023 IEEE International Conference on Image*
545 Processing (ICIP), pp. 570–574. IEEE, 2023.

- 540 Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. SlotFormer: Unsupervised
 541 Visual Dynamics Simulation with Object-Centric Models. *International Conference on Learning*
 542 *Representations*, 2023a.
- 543
- 544 Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. SlotDiffusion: Object-
 545 Centric Generative Modeling with Diffusion Models. *Advances in Neural Information Processing*
 546 *Systems*, 36:50932–50958, 2023b.
- 547
- 548 Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Object-Centric Learning for Real-
 549 World Videos by Predicting Temporal Feature Similarities. *Advances in Neural Information Pro-*
 550 *cessing Systems*, 36, 2024.
- 551
- 552 Rongzhen Zhao, Jian Li, Juho Kannala, and Joni Pajarinen. Predicting video slot attention queries
 553 from random slot-feature pairs. *arXiv preprint arXiv:2508.22772*, 2025a.
- 554
- 555 Rongzhen Zhao, Vivienne Wang, Juho Kannala, and Joni Pajarinen. Grouped Discrete Representa-
 556 tion for Object-Centric Learning. In *ECML-PKDD*, 2025b.
- 557
- 558 Rongzhen Zhao, Vivienne Wang, Juho Kannala, and Joni Pajarinen. Multi-Scale Fusion for Object
 559 Representation. In *ICLR*, 2025c.
- 560
- 561 Rongzhen Zhao, Vivienne Wang, Juho Kannala, and Joni Pajarinen. Vector-Quantized Vision Foun-
 562 dation Model for Object-Centric Learning. In *ACM Multimedia*, 2025d.
- 563
- 564 Rongzhen Zhao, Yi Zhao, Juho Kannala, and Joni Pajarinen. Slot Attention with Re-Initialization
 565 and Self-Distillation. In *ACM Multimedia*, 2025e.
- 566

A APPENDIX

A.1 LLM USAGE STATEMENT

570 We used GPT-based tools solely for correcting grammar and improving the readability of the
 571 manuscript. No part of the research ideation, experimental design, analysis, or substantive writ-
 572 ing was generated by LLMs.

A.2 ABLATION STUDY

576 We conduct ablation studies as shown in Table 5.

(a) Query preheating related:

579 (a.1) Implementing our preheater as a Transformer decoder block is better than as a Slot Attention
 580 module;

581 (a.1.1) If using a Transformer decoder block as preheater, then switch the self-attention and cross-
 582 attention in it is better than not;

584 (a.2) Stopping gradient on preheated queries is better than not;

585 (a.3) Setting preheating loss weight to 100 is better than other values;

(b) Transform differentiating related:

588 (b.1) Using shared module weights on first-frame transform Φ_a and non-first-frame transforms Φ'_a
 589 is better than using separate weights;

590 (b.2) For conditioned video OCL, using iteration numbers of 3 and 1 on first and non-first frames
 591 respectively is better than other combinations;

593 (b.3) For unconditioned video OCL, using iteration numbers of 3 and 1 on first and non-first frames
 594 respectively is better than other combinations.

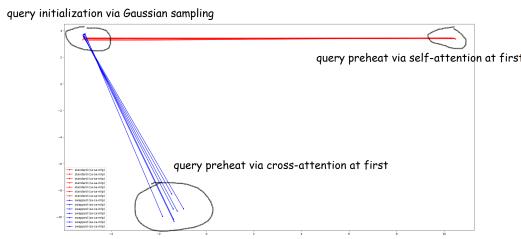
	ARI + ARI _{fg}
Preheater implementation @COCO	
a Transformer decoder block	68.3 _{±0.8}
a Slot Attention module	63.3 _{±1.4}
MLP as the preheater	47.8 _{±8.5}
no preheater and preheat loss	56.9 _{±2.5}
Switch cross-attention and self-attention in preheater @COCO	
Yes	68.3 _{±0.8}
No	49.6 _{±9.4}
Stop gradient on preheated query @COCO	
Yes	68.3 _{±0.8}
No	67.5 _{±2.9}
Preheating loss weight @COCO	
10	59.7 _{±1.0}
50	65.5 _{±0.4}
100	68.3 _{±0.8}
200	67.4 _{±1.3}
Use separate weights for first and non-first transforms @YTVIS	
separate	52.3 _{±0.7}
shared	68.3 _{±0.8}
Unconditional video OCL: first and non-first SA #iter @YTVIS	
3+1	105.6 _{±2.2}
1+1	97.4 _{±11.4}
3+3	103.4 _{±6.8}
Conditional video OCL: first and non-first SA #iter @MOVi-C	
3+1	136.3 _{±7.1}
1+1	133.9 _{±15.0}
3+3	132.7 _{±8.4}

Table 5: Ablation studies.

A.3 WHY SWAPPING SELF-ATTENTION WITH CROSS-ATTENTION?

Denote self-attention as [sa] while cross-attention as [ca]. The standard Transformer decoder block has the architecture of [sa]-[ca]-[mlp], while our swapped Transformer decoder block has the architecture of [ca]-[sa]-[mlp]. Note that short-cut connections are ignored for simplicity. We use PCA (Principle Component Analysis) to visualize the intermediate slots inside (i) the standard Transformer decoder block, i.e., queries and preheated queries after the [sa] as the first module; and (ii) the swapped Transformer decoder block, i.e., queries and the preheated queries after [ca] as the first module. The model checkpoints are reused from Table 5.

As shown, our swapped attention produces diverse points, i.e., expressive representations.



- the queries after initialization – *query initialization after Gaussian sampling*
 - (top-left): clustered together

- 648 • and the queries after the first attention
 649 – for standard transformer decoder block as the preheater, the first attention module is
 650 self attention – *query preheating after self-attention at first*
 651 * (top-right): still clustered together
 652 – for swapped transformer decoder block as the preheater, the first attention module is
 653 cross attention – *query preheating after cross-attention at first*
 654 * (bottom): become well separated
 655

656 We explain the observed performance gap and visualization as below:
 657

- 658 • The queries before preheating are sampled randomly from some learnt Gaussian distri-
 659 butions (the mainstream case), containing no specific information about current specific
 660 features.
 661 • Thus using self-attention to mix them is meaningless, as this still does not introduce any
 662 specific information about current specific visual feature.
 663 • Thus inside our preheater, we should first inject the current specific information into the
 664 queries by cross attention, then further transformation like self-attention and MLP could be
 665 meaningful.
 666

667 A.4 MATHEMATICAL ANALYSIS

668 Benefit of Preheating

669 Follow the settings and notations from Sections 3.1 and 3.2. Although ϕ_a and ϕ_p take \mathbf{F} as the
 670 second input argument, we ignore it for simplicity.

671 In practice, for any fixed \mathbf{F} , ϕ_a is usually a contraction, thus for all $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{n \times c}$,

$$672 \quad \|\phi_a^i(\mathbf{X}) - \phi_a^i(\mathbf{Y})\| \leq \alpha^i \|\mathbf{X} - \mathbf{Y}\| \quad \text{where } \alpha \in [0, 1] \quad (9)$$

673 By the Banach fixed point theorem, there is a unique fixed point $\mathbf{S}^* = \phi_a(\mathbf{S}^*)$, and for every \mathbf{X} ,

$$674 \quad \|\phi_a^i(\mathbf{X}) - \mathbf{S}^*\| \leq \alpha^i \|\mathbf{X} - \mathbf{S}^*\| \quad (10)$$

675 With our preheater, $\phi_p(\mathbf{Q})$ is closer to \mathbf{S}^* than \mathbf{Q} , then:

$$676 \quad \|\phi_p(\mathbf{Q}) - \mathbf{S}^*\| \leq q \|\mathbf{Q} - \mathbf{S}^*\| \quad \text{where } q \in [0, 1) \quad (11)$$

677 And then:

$$678 \quad \|\phi_a^3(\phi_p(\mathbf{Q})) - \mathbf{S}^*\| \leq \alpha^3 \|\phi_p(\mathbf{Q}) - \mathbf{S}^*\| \leq q \alpha^3 \|\mathbf{Q} - \mathbf{S}^*\| \quad (12)$$

679 Compared with not using preheater,

$$680 \quad \|\phi_a^3(\mathbf{Q}) - \mathbf{S}^*\| \leq \alpha^3 \|\mathbf{Q} - \mathbf{S}^*\| \quad (13)$$

681 Therefore, the preheated run is strictly closer to the fixed point after three iterations than the non-
 682 preheated run would be.

683 Benefit of Differentiating

684 Follow the settings and notations from Sections 3.1 and 3.3. Although ϕ_a takes \mathbf{F} as the second
 685 input argument, we ignore it for simplicity. We treat one frame at a time, dropping subscript t .

686 We also supplement the decoding part of OCL here, where reconstruction is utilized for supervision.
 687 Reconstruction is $\mathbf{X}' = \phi_d(\mathbf{S})$ and loss is $l = \text{MSE}(\mathbf{X}', \mathbf{X})$.

688 We follow the assumption of Equation (9).

689 According to Lipschitz Jacobian bounds,

$$690 \quad \left\| \frac{\partial \phi_a(\mathbf{S})}{\partial \mathbf{S}} \right\| \leq \alpha \quad (\text{consistent with contraction}) \quad (14)$$

$$\left\| \frac{\partial \phi_a(\mathbf{S})}{\partial \theta_a} \right\| \leq B \quad \text{for all } \mathbf{S} \text{ (bound on how strong parameters in each iteration)} \quad (15)$$

$$\left\| \frac{\partial \phi_d(\mathbf{S})}{\partial \mathbf{S}} \right\| \leq L \quad (\text{bound on the largest loss}) \quad (16)$$

Unroll the total i_1 iterations. Let $J_i := \frac{\partial \phi_a(S^{(i-1)})}{\partial S}$ and $U_i := \frac{\partial \phi_a(S^{(i-1)})}{\partial \theta_a}$, $D := \frac{\partial \phi_d(S)}{\partial S}$ and $G_X := \frac{\partial l}{\partial X}$. And the derivative of the final $S^{(i_1)}$ w.r.t θ_a is the sum of contributions from each unrolled iteration:

$$\frac{\mathcal{S}^{(i_1)}}{\partial \theta_a} = \Sigma_{i=1}^{i_1} (\Pi_{m=i+1}^{i_1} \mathbf{J}_m) \mathbf{U}_i \quad (17)$$

By chain rule, the full gradient is

$$\frac{\partial \mathcal{L}}{\partial \theta_a} = \mathbf{G}_{\mathbf{X}}^T \mathbf{D} \frac{\partial \mathbf{S}^{(i_1)}}{\partial \theta_a} = \mathbf{G}_{\mathbf{X}}^T \mathbf{D} \Sigma_{i=1}^{i_1} (\Pi_{m=i+1}^{i_1} \mathbf{J}_m) \mathbf{U}_i \quad (18)$$

For the frame with i_1 iterations,

$$\left\| \frac{\partial l}{\partial \phi_a} \right\| \leq \|G_X\| LB \Sigma_{i=0}^{i_1-1} \alpha^i = \|G_X\| LB \frac{1 - \alpha^{i_1}}{1 - \alpha} < \|G_X\| LB \frac{1}{1 - \alpha} \quad (19)$$

where on the right side, only $\|G_x\|$ depends on the number of iterations i_1 .

In practice, for the first frame $\|G_X\|$ tends to be large and more iterations reduces it, while for non-first frames $\|G_X\|$ tends to be small and less iterations are needed. And if we insist to use more iterations for non-first frames (the same number of iterations as the first frame), $\|G_X\|$ can be too small compared with that of the first frame. This causes imbalanced gradient contributions from the first and non-first frames to ϕ_a parameters.

A.5 VIDEO OCL ON YTVIS21 USING ORIGINAL VIDEO LENGTH

Here are the object discovery results on dataset YTVIS21¹². Note that the results are produced on SlotContrast official codebase¹³, namely, we adopt all the hyperparameters used by SlotContrast, especially using the original video length, instead of clipping them to constant length 20 as in Table 2. Also note that the metrics ARI_{f_o} and mBO are the video ones, rather than the image ones.

@YTVIS21	video ARIfg	video mBO
VideoSAUR (copied values)	28.9	26.3
SlotContrast (copied values)	38.0	33.7
SmoothSA (seed@42,43,44)	45.9±1.2	36.7±0.5

A.6 COMPUTATION OVERHEAD

We provide concrete numbers of the computation overhead below. Our method shows better computation efficiency in both training time and memory consumption than baselines.

V100	training time / hours	memory consumption / GB
SPOT @COCO, bs32	4.7	8.5
DIAS @COCO, bs32	4.5	9.4
SmoothSA @COCO, bs32	4.2	8.7
SlotContrast @YTVIS, bs8	7.4	6.4
RandSFQ @YTVIS, bs8	6.8	5.2
SmoothSA @YTVIS, bs8	7.1	5.2

¹²<https://youtube-yos.org/challenge/2021>

¹³ <https://github.com/martius-lab/slotcontrast>

756
757

A.7 RESULTS ON DATASET OVIS

758
759
760
761

We also evaluate our method's effectiveness on more challenging datasets. We choose OVIS¹⁴ (Qi et al., 2022), which is more occluded than YTVIS. Our method still shows some superiority over the baseline. But the performance boosts over the baseline is much smaller, compared with the results of dataset YTVIS in Table 2.

762
763
764
765

@OVIS	ARI	ARI _{fg}	mBO	mIoU
SlotContrast	37.2±1.0	44.8±1.0	20.1±0.8	17.1±0.9
SmoothSA	39.3±2.3	47.5±0.4	21.0±0.4	19.5±0.4

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

¹⁴<https://songbai.site/ovis>