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ABSTRACT

Slot Attention (SA) and its variants lie at the heart of mainstream Object-Centric
Learning (OCL). Objects in an image can be aggregated into corresponding slot
vectors, by iteratively refining cold-start query vectors, typically three times, via
SA on image features. For video, this aggregation is recurrently shared across
frames, with queries cold-started on the first frame while transitioned from the pre-
vious frame’s slots on non-first frames. However, cold-start queries lack sample-
specific cues thus hindering precise aggregation on the image or video’s first
frame; Also, non-first frames’ queries are already sample-specific thus requiring
aggregation transforms different from the first frame. We address these issues
for the first time with our SmoothSA: (1) To smooth SA iterations on the image
or video’s first frame, we preheat the cold-start queries with rich information of
input features, via a tiny module self-distilled inside OCL; (2) To smooth SA re-
currences across all video frames, we differentiate the homogeneous transforms on
the first and non-first frames, by using full and single iterations respectively. Com-
prehensive experiments on object discovery, recognition and downstream bench-
marks validate our method’s effectiveness. Further analyses illuminate how our
method smooths SA iterations and recurrences. Our source code and training logs

are provided in the supplement.

1 INTRODUCTION

Object-Centric Learning (OCL) (Locatello
et al.l 2020) aims to represent objects in a vi-
sual scene as distinct vectors, with the back-
ground as another vector. Ideally, this yields a
structured compact representation that outper-
forms popular dense feature maps in advanced
vision tasks. In dynamics modeling, evolving
these object-level slots over time captures more
accurate object interactions (Villar-Corrales &
Behnke, [2025)). For visual reasoning, their con-
cise form allows more explicit object relation-
ship modeling, slashing the search space and
computation load (Ding et al., 2021). In vi-
sual prediction, disentangling objects facilitates
more compositional generation of future frames
(Villar-Corrales et al., [2023)).

Powered by Slot Attention (SA) (Locatello
et al.l 2020), modern OCL methods have sig-
nificantly improved and can now scale to real-
world complex images and videos. SA is essen-
tially a form of iterative cross attention, where
query vectors compete to aggregate their cor-
responding object information, discovering ob-
jects as segmentation masks and representing
them as slot vectors (Locatello et al., [2020).
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Figure 1: Image Object-Centric Learning (OCL) is re-
alized via Slot Attention (SA) iterations on the image,
while video OCL is via SA recurrences across video
frames. In SA iterations on the image or video’s first
frame, the cold-start queries lack information for ac-
curate aggregation; In SA recurrences across video’s
first and non-first frames, the homogeneous trans-
formes, i.e., the fixed three SA iterations, cannot jointly
adapt to the first and non-first queries, which have a sig-
nificant information gap.
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The model is trained by minimizing reconstruction loss based on the slots, requiring no external
supervision. Specifically, for image, the queries are usually cold-start and sampled from multiple
Gaussian distributions fitted to the entire dataset (Jia et al.,2023). Such queries contain no informa-
tion about any specific sample, thus to obtain slots by refining queries using SA on image features,
typically three iterations are necessary. For video, such aggregation occurs recurrently across all
frames in a shared way, where queries for the first frame are the same as in the image case while
queries for non-first frames are transitioned from the previous frame’s slots (Singh et al., [2022b).
Unlike the first frame’s queries, non-first frames’ queries are already quite sample-specific. But the
aggregation transforms are identical or homogeneous across all frames.

To the best of our knowledge, all works on SA and its variants confront these facts but have not
acknowledged the implied issues, as shown in Figure [T} (i1) Query cold-start in SA iterations. For
an image or video’s first frame, the cold-start queries lack scene-specific information. Although
three SA iterations can gradually refine these non-informative queries into useful slots, such aggre-
gation would not work as good as that with informative queries. (i2) Transform homogeneity in SA
recurrences. For video frames, the first frame’s queries are cold-start while non-first frames’ are
much more informative. These differing conditions impose different requirements on the aggrega-
tion transforms, thus such homogeneous transforms would not work as good as those adapted to
informative-different queries.

Our solution is simple yet effective. We propose SmoothSA, which smooths SA iterations on the
image or video’s first frame by preheating the queries, and smooths SA recurrences across video’s
first and non-first frames by differentiating the transforms: (s/) A tiny module preheats the cold-start
queries using rich information from input features. It is trained by predicting current slots through
self-distillation within the OCL model. (s2) Different aggregation transforms handle video’s first
and non-first frames respectively. This is realized by simply employing three SA iterations on the
first frame while only one on each non-first frame.

Briefly, our contributions are: (cI) for the first time addressing the query cold-start issue in SA
iterations on the image and video’s first frame; (c2) for the first time addressing the transform ho-
mogeneity issue in SA recurrences across the first and non-first frames; (c3) new state-of-the-art
on both image and video OCL benchmarks; (c4) consistent performance boosts on downstream
advanced vision tasks.

2 RELATED WORK

As SA is a kind of cross attention that depends on queries to aggregate information from visual
features, we review works from perspectives of aggregation and queries.

Slot Attention on images and videos. The seminal work on the aggregation module SA (Locatello
et al., [2020) proposes refining the initial randomly initialized queries into object-centric slots via
typically three iterations of the same SA module on image features. Then, all image OCL methods
including (Singh et al.}[2022a} Seitzer et al.,[2023;|Wu et al.| [ 2023b; Jiang et al.| [2023];|Kakogeorgiou
et al.l 2024} Zhao et al., 2025bjcidie) adopt this iterative design. The pioneering work STEVE
(Singh et al,, 2022b) extends SA to videos by conducting standard image OCL on each frame,
using randomly initialized queries for the first frame while using recurrently predicted queries from
previous slots for non-first frames. After, all video OCL methods including SAVi (Kipf et al.,|2022),
SAVi++ (Elsayed et al.| [2022), SOLV (Aydemir et al., [2023), VideoSAUR (Zadaianchuk et al.,
2024), SlotContrast (Manasyan et al., 2025)), STATM (Li et al., 2025b), SlotPi (L1 et al.| [2025a) and
RandSF.Q (Zhao et al., |2025a) adopt such recurrent design. Now that SA is the core module of
mainstream OCL methods for images or videos, all methods face but never acknowledge two issues
described above. Our method is the first to address these issues directly.

Query initialization for Slot Attention iterations. For images, the initial queries serve as the
starting point for aggregation based on SA iterations. The principal contradiction is that no object
cues are available before aggregation. SA (Locatello et al., |2020) initializes queries by drawing
multiple samples from a global Gaussian distribution, which is learned on the entire dataset and
embeds global cues for object discovery. BO-QSA (Jia et all 2023)) proposes learning multiple
Gaussian distributions so that more distinct cues are embedded into initial queries, thus enabling
better aggregation. However, the queries are still cold-start. MetaSlot (Liu et al., 2025) takes two
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steps: firstly initializing queries from multiple Gaussians for draft aggregation iterations, and then
replacing the draft slots with object embeddings from a large codebook (Van Den Oord et al., 2017)
for additional aggregation iterations. This mitigates the iterative query cold-start effectively, but still
relies on cold-start queries. We directly address such iterative query cold-start issue.

Query prediction for Slot Attention recurrences. For video’s first frame, the queries can be ob-
tained in the same way as in the image case, or by transforming cues like object bounding boxes
in SAVi (Kipf et al., [2022) and SAVi++ (Elsayed et al., 2022]), albeit at the cost of extra expensive
annotations. For non-first frames, the queries are predicted from the previous frame’s slots. STEVE
(Singh et al.l 2022b) and most other OCL methods use a Transformer encoder block for such re-
current prediction. STATM (Li et al.l 2025b) and SlotPi (Li et al., 2025a) employ auto-regressive
Transformer encoder variants for the same purpose. The most recent work RandSF.Q (Zhao et al.,
2025a)) incorporates the next frame’s feature for more informative query prediction, and uses random
slot-feature pairs for explicit query prediction learning, significantly boosting OCL performance on
videos. However, improving query prediction alone will never reach the core issue, recurrent trans-
form discrepancy. We directly address this recurrent transform homogeneity issue.
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Figure 2: The overall model and our modifications. (upper) For image OCL, we preheat the cold-start queries
to be informative so as to smooth SA iterations on the image (or video’s first frame). Our preheater is a tiny
module trained to predict vectors approximating the slots as the preheated queries from the cold-start queries
and image features. (upper + lower) For video OCL, we differentiate the homogeneous transforms to adapt to
the first and non-first queries, non-informative and informative respectively, to smooth SA recurrences across
all frames. This is achieved by using three SA iterations on the first frame and one on non-first frames.

3 PROPOSED METHOD

Mainstream image or video OCL methods confront two issues: the query cold-start in SA iterations
on the image or video’s first frame, and the transform homogeneity in SA recurrences across video’s
first and non-first frames. We address these issues for the first time with our SmoothSA, by preheating
queries to smooth SA iterations and differentiating transforms to smooth SA recurrences.

3.1 SLOT ATTENTION ITERATION AND RECURRENCE

Mainstream OCL methods mainly take the encoder-aggregator-decoder model design (Zhao et al.,
2025d): The encoder encodes the image or video frames into features, the aggregator aggregates
features into slots, and the decoder decodes slots into the reconstruction of the input in some form as
the source of supervision. The aggregator, which is based on Slot Attention (SA) (Locatello et al.,
2020)) or its variants, is the core of OCL, so let us focus on it.

SA iterations on the image or video’s first frame. An SA-based aggregator ¢, takes cold-start
vectors Q; € R™ ¢ as the query, and input features F, € R"*%X¢ a5 the key and value. ¢, is
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applied on the query, key and value typically three times, to refine the query iteratively into object-
level feature vectors S; € R™*€, i.e., slots, as the sparse representation of the visual scene:

Q1= ¢:(C) Q)]
S1,M; = ®.(Q1, F1) 2)
where the aggregation transform ®, can be expanded into:
s .=, (2a)
S, MY = ¢u(STV, F) i=1,2,3 (2b)
Sl, M1 = S§3>, Ml(S) (ZC)

In Equation (T)), if cues C' are n slots to use, then the initializer ¢,, samples n vectors as the queries
Q) from its trainable Gaussian distribution(s) (Locatello et al., [2020; Jia et al.l [2023); If cues C
are the bounding boxes of objects in the video’s first frame, then the initializer ¢,, projects cues C
into the queries @ (Kipf et al.| [2022; Elsayed et al., 2022)). In whichever case, queries @ lack
sample-specific information, namely, being cold-start.

Considering that F} is the high-quality feature of the image or video’s first frame, typically extracted
by vision foundation model DINO2 (Oquab et al.| |2023)), the quality of the transform ®, is decided
by queries Q1. Therefore, if we could preheat the cold-start queries (@1 to be more informative, the
aggregation transform ®, on the image or video’s first frame would perform better.

SA recurrences across video’s first and non-first frames. The transform ®, based on SA itera-
tions is shared across all frames recurrently. Namely, the transform ®, happens across both first and
non-first frames, where the former is identical to the image case formulated in Equations (T)) and (2).
For the latter, queries @ are recurrently transitioned from previous frame’s slots S;_1:

Qi = Pe(St—1) t2>2 3)
St7Mt = Qla(Qtth) (4)
where the aggregation transform ®/, can be expanded into:
5 .= Q. (4a)
S, MY = (Y, F) i=1,2,3 (4b)
S, M, := 8P, M (4c)

In Equation (3), the transitioner ¢, takes previous frame’s slots S;_; as input and predicts current
queries ;. Considering that S;_; is the information-intensive representation of the previous frame
and that the transitioner ¢, learns knowledge of transition dynamics (Singh et al., 2022b), current
queries Q) is actually informative to current frame. This is different from the first frame queries Q,
which is cold-start and thus non-informative.

The non-first frames’ transform shares exactly the same SA module from the first transform with
the same number of SA iterations, i.e., ®/, = ®,. On the other hand, the information gap between
the first queries @1 and non-first queries @; imposes different requirements on these transforms.
Therefore, if we could differentiate the homogeneous transforms ®,, and ®/, for the first and non-
first frames respectively, the aggregation across the first and non-first frames would be better.

3.2 PREHEATING COLD-START QUERIES

To overcome the query cold-start issue and smooth SA iterations on the image or video’s first frame,
we preheat the cold-start queries with rich information from input features. A tiny module is trained
via self-distillation inside the OCL model, to predict vectors that approximate the aggregated slots
as the preheated queries, from the cold-start queries conditioned on input features.

Our chain-of-thought is as follows: (i) Informative slots can be aggregated by iteratively refining
non-informative queries; (if) More informative queries contribute to better slots aggregation; (iii)
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How to preheat the queries to be more informative? (iv) Aligning the preheated queries with the
aggregated slots, which are quite informative.

Firstly, we insert this between Equations (I and (2):
Q1 = ¢p(Q1, F1) )

where the preheater ¢, is parameterized as a single Transformer decoder block (Vaswani et al.,
2017), whose self-attention and cross-attention are switched. This is because exchanging informa-
tion among non-informative queries firstly is meaningless. Please refer to Table [5] ablation studies
for why not using an extra SA module as the preheater, and for why switching the self-attention and
cross-attention.

Secondly, we replace Equation (Za) with:

S = sg(Q1) 6)

where sg(-) is stopping gradient. Stopping gradient flow from the SA module ¢, to the preheated
queries Q7 disentangles the training of ¢, and ¢, Please refer to Tublcablation studies for why
stopping gradient flow on the preheated queries.

Lastly, to obtain the preheating ability, we train our preheater ¢, with the following objective:

arg min, MSE(Q1,sg(S1)) @

where the MSE loss is combined with the original OCL loss(es). To ensure the sufficient training of
¢, we can use a relatively large coefficient for it. Please refer to Table [5|ablation studies for what
weight to set for such preheating loss.

Comment 1. Our preheater is trained with OCL intermediate results as the ground-truth, without
any external supervision, forming rigid self-distillation. This is also bootstrap, as good slots S;
leads to better preheated queries Q7, and in turn better Q7 leads to better S;.

Comment 2. Our preheater is similar to the SA module, without an heavy RNN module. Thus our
preheater introduces approximately less than 1/3 more computation overhead in the aggregation,
which is negligible considering the heavy computation of encoding and decoding.

3.3 DIFFERENTIATING HOMOGENEOUS TRANSFORMS

To overcome the transform homogeneity issue and smooth SA recurrences across the video’s first
and non-first frames, we differentiate the homogeneous transforms for the first and non-first frames
respectively. For the different transform requirements due to the gap between the first cold-start
queries and non-first informative queries, full and single SA iterations are used respectively.

Our chain-of-though is: (i) First frame queries are non-informative, thus three SA iterations are
needed to refine the queries into good slots; (if) Non-first frame queries are already informative, thus
a single SA iteration is enough.

As mentioned above, the first-frame transform ®, and non-first frame transforms ®/, are identical
in all existing methods but should be different. There are two ways to differentiate them: (1) use
separate SA parameters for @, and ®; (2) use different number of iterations for ®, and ®..
We choose the second solution. This is because ®, and ®/, should learn the general aggregation
capability in each SA iteration and sharing enforces this. Please refer to Table [5]ablation studies for
what numbers of iterations for first and non-first transforms to set.

We simply reduce the number of SA iterations in non-first frame transforms ® to once, while
always use three SA iterations in the first frame transform ®,. Namely, we keep Equations (2b)
and unchanged, while replacing Equations (4b) and (4c) with:

S MY =¢.(SETVF) i=1 (8b)
S, M, =S mH (8¢)

For conditional SA like in SAVi (Kipf et al.l 2022) and SAVi++ (Elsayed et al. 2022)), they use
homogeneous aggregation transforms, consisting of one single SA iteration for all frames. But we
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still use three SA iterations on the first frame and one on non-first frames. They believe that objects’
bounding boxes as query initialization is informative enough. But in fact, they still carry little object
information, except the spatial information. Thus more iterations on the first frame is still necessary.
Their ablation study leads them to believe that one iteration is better than more just because they
were not aware of such recurrent transform homogeneity issue. Please refer to Table [5] ablation
studies for what numbers of iterations for first and non-first transforms to set.

Comment 3. Our differentiated transforms have 2/3 less computation overhead in aggregation on
non-first frames, which is negligible considering the heavy encoding and decoding.

image
video

SPOT ground-truth
ground-truth

SlotContrast

SmoothSA i
SmoothSA v

Figure 3: Qualitative results of our SmoothSA on images (leff) and videos (right), compared with SotA
methods SPOT and SlotContrast respectively.

4 EXPERIMENT

We conduct experiments on object discovery along with downstream tasks, object recognition and
visual question answering, to evaluate our slots representation quality, with three random seeds.

4.1 INSTANTIATING SMOOTHSA

As shown in Figure [2} our OCL model with SmoothSA is based on DIAS' (Zhao et al.| 2025¢) for
images and RandSF.Q for videos, respectively. These two state-of-the-art (SotA)
methods share identical designs except techniques specific to image and video. For image OCL, we
remove slots pruning tricks from DIAS/, and then replace its SA variant with our SmoothSA. For
video OCL, we use RandSF.Q as it is, and then replace its SA with our SmoothSA. Thus we have
models SmoothSA’ and SmoothSA”, where i is image and v is video.

Note that for conditional video OCL like SAVi 2022) and SAVi++ (Elsayed et al.| 2022),

the authors always use one SA iteration on all frames. But whether it is conditional or not, we always
use three SA iterations on the first frame while one iteration on non-first frames.

ClevrTex #slot=11 COCO #slot=7 VOC #slot=6
ARI ARI; mBO mloU ARI ARl mBO mloU ARI ARl mBO mloU
SLATE 1740, 87.4u; 44.55: 43.30. 17506 28.8.05 26.8.05 254w 18.6.01 26.2.05 37.2:05 36.1u0s
DINOSAUR  50.7:2: 89.4uws 53.3s0 52.8.: 18.2.0 37.0.2 28.3uws 26.9.s 21.5.7 36.2.5 40.6.06 39.7406
SlotDiffusion 66.1.;5 82.7.s 54.3:s 53.4ws 17705 29.0:0 27.0w0s 25604 17.002 21.7.5 35200 34.0u0
SPOT 25.6.0 77.1w; 48.3.s 46.4us 20.005 40.0.07 30.2.05 28.6w05 20.3.05 33.5.0 40.1.s 38.7.07
DIAS' 80.9.05 79.1us 63.3:00 61.940 220w 41.4w: 311w 297w 26.6u0 33.7.s5 43.3.: 42.4.0
SITIOOthAi 76.8.4 80.8:.6 60.0as 5812 26.2us 42.1wr 33204 31704 30606 34305 45305 44 L

Table 1: Object discovery on images. Input resolution is 224 x 224; DINO2 ViT-S/14 is for encoding.
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4.2 OBJECT DISCOVERY

In mainstream OCL methods, attention maps of the slots are binarized as the byproduct object
segmentation, i.e., discovering objects. This intuitively reflects slots’ representation quality.

On image datasets CleviTex’| COCOP| and VO we

compare our SmoothSA’ with baselines SLATE (Singh ARI ARI; mBO mloU
et al.,|2022al), DINOSAUR (Seitzer et al.| [2023), SlotD- YTVIS #slot=7, #step=20
iffusion (Wu et al.,[2023b), SPOT (Kakogeorgiou et al., VideoSAUR 34.6.s 48.6.00 31.4ws 31.2.0s
2024) (no distillation and finetuning tricks) and DIAS  SlotContrast 38.7.0 48.9.0 35.0:0: 34.9.0
(Zhao et al|[2025¢)) (no slot pruning). On video dataset DIAS"  33.6.: 49.3.; 36.1.4 35.2.s
YouTube Video Instance Segmentatiorﬂ (YTVIS) the RandSFQ  42.0.: 59.4.. 39.8.: 39.4u;
high-quality Versiorﬂ we compare our SmoothSA” with a1 22 a1 a1
baselines STEVE (Singh et al., 2022b), VideoSAUR

(Zadaianchuk et al., 2024), SlotContrast (Manasyan| Table 2: Object discovery on videos. In-
et al.l 2025) and RandSF.Q (Zhao et all [2025a). The put resolution is 224x224; DINO2 ViT-S/14
performance metrics are AR]F_’-I, ARI;, (foreground), 1 forencoding.

mBO (Uijlings et al) |2013) and mloU’| ARI score is

calculated with the segmentation area as the weight, thus ARI mainly reflects how well the back-
ground is segmented while ARl reflects how well large objects are segmented. mBO shows how
objects that are best overlapped with the ground-truth are segmented. mloU is the most strick metric.
Note that, unless otherwise specified, we use image ARI, ARIg,, mBO and mloU for object discov-
ery on images, while using video ones for object discovery on videos. Also note that on dataset
YTVIS, we use video clip length 5 for training while 20 for evaluation.

As shown in Table |1} on synthetic dataset ClevrTex, our SmoothSA! is as competitive as the latest
SotA DIAS' and significantly better than former SotA SPOT in all metrics. On real-world dataset
COCO, our SmoothSA' is consistently better than DIAS' in all metrics, 4+ points in ARI. On real-
world dataset VOC, our method pushes the ARI value forward by 4 points. Our method achieves
overall new SotA in ARI, mBO and mloU, except relative limited performance boosts in ARI.

As shown in Table@], on real-world video dataset YTVIS, our SmoothSA"” defeats all baselines by a
large margin, even including the latest super SotA method RandSF.Q, which has already pushed the
older SotA performance significantly forward by up to 10 points.

4.3 OBJECT RECOGNITION

Besides the byproduct segmentation, recognizing the discovered objects’ attributes like class and
bounding box from the slots can directly reflect the object-centric representation quality.

On real-world image dataset COCO, we compare

our SmoothSA? with baseline SPOT (Kakogeorgiou class toplT bbox R2T
et al., 2024). On real-world video dataset YTVIS, COCO #slo=7

we compare our SmoothSAY with baseline SlotCon- SPOT + MLP  0.67. 0.62-01
trast (Manasyan et al.| [2025). We follow the routine + MLP 200 201
of (Seitzer et al., [2023): firstly convert all images YTVIS #slot=7, #step=20
into slots representation, with some threshold filter-  SlotContrast + MLP  0.40.. 0.53.01
ing; then train a two-layer MLP model to classify and + MLP 20 00

regress the matched object’s class label and bound-
ing box coordinates in a supervised way. We use topl Table 3: Object recognition on image dataset
COCO and video dataset YTVIS.

! https://www.robots.ox.ac.uk/ ~ vgg/data/clevrtex
2https://cocodatasetx)rg
3http://hosl.robotson.ac.uk/pascal/VOC
4https://youtube—vos.org/dalaset/vis
5ht[ps://github.com/SysCV/vml?lab:readme—ov—ﬁle#hq—ytvis—high—quality—video—inslance—segmentation—dataset
jhttps://scikit—learn.org/stable/modules/generated/sklearn.metrics.adjustediand,score.html

https:/scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
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accuracyﬂ to measure the classification performance,
and R2 scoreﬂ to measure the regression performance.

As shown in Table[3] the object recognition accuracy on both real-world complex images and videos
are improved a lot by using our method as the slots representation extractor, compared with that
using baseline methods. This demonstrates the high quality of our slots representation.

4.4 VISUAL QUESTION ANSWERING

In visual question answering (VQA) tasks, the visual modality slots are combined with language
modality words embeddings together, testing the representation quality and versatility further.

For VQA on images, we compare our

SmoothSA’ plus multi-modal reasoning model GQA #slo7

Aloe (Ding et al 2021) with baseline SPOT accuracy %

plus Aloe on real-world complex image dataset SPOT + Aloe 52.3.s

GQAm For VQA on videos, we compare  SmoothSA' + Aloe 56. 7.5

our SmoothSA" plus Aloe with baseline Slot- CLEVRER #slot=7
Contrast plus Aloe on synthetic video dataset per option % per question %
CLEVRERE Please note that for the image SlotContrast + Aloe  97.2.. 95.6.00
dataset, we use Aloe as it is while on the _SmoothSA™ + Aloe 98 704 96.9.06

video dataset we introduce temporal embed-

ding scheme from (Wu et al| 2023d). For Table 4: Visual question answering on image dataset
the upstream OCL models, we firstly pre- GQA and video dataset CLEVRER.

train them on corresponding datasets and freeze

them to represent samples as slots. These visual input along with textual inputs representing ques-
tions are fed into the Aloe model together, appended with a classification token. The output is
obtained by projecting the transformed classification token into logits of all possible class labels,
i.e., answers.

As shown in table[d] using our method as the upstream model improves the image VQA performance
on dataset GQA by 4+ points. As for video VQA on CLEVRER, using our method as the upstream
boosts the performance too, whether measured by per option accuracy or per question accuracy.

5 DISCUSSION

Preheating Effects of SmoothSA @ COCO
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Figure 4: (left, middle row) Using query preheating, good segmentation can be obtained at the beginning
of SA iterations, with even better segmentation at the end. (right, top row) Using transform differentiation,
balanced gradient signals can be obtained across SA recurrences, even showing good object contours.

Query preheating smooths SA iterations

The segmentation accuracies generally increase along with the SA iterations, so we expect that our
query preheating provides better initial queries and the accuracies increase faster. Please refer to Sec-

8h'rtps://scikit—learn.org/stable/modules/ generated/sklearn.metrics.accuracy_score.html
9https://scikit—learnorg/stable/modules/ ‘generated/sklearn.metrics.r2_score.html
! Ohttps:// cs.stanford.edu/people/dorarad/gqa

1 http://clevrer.csail. mit.edu



Under review as a conference paper at ICLR 2026

tion|A.4|for our mathematical analysis. To statistically analyze this, we training our SmoothSA' with
and without query preheating on COCO, and count their respective object discovery/segmentation
accuracy at each of the three SA iterations. In practice, those four metrics mentioned above, i.e.,
ARI, ARIs,, mBO and mloU, mostly show cluttered tendencies in iterations, thus we sum them
together as a more readable metric.

As shown in Figure [d] (left) the top row, on the whole dataset, segmentation accuracies with or with-
out query preheating at three SA iterations increase steadily. But using query preheating obviously
speeds it up and leads to better final accuracy than not. As shown in Figure [4| (left) the lower two
rows, using preheating obtains good segmentation at the very beginning SA iteration, while not
using preheating struggles with it in the first two SA iterations. Thus our query preheating really
smooths SA iterations on the image. And it should be the same on the video’s first frame.

Transform differentiation smooths SA recurrences

The non-informative and informative queries of the first and non-first video frames generally require
different transform capabilities through the SA recurrences, so we expect our transform differenti-
ation provides better gradient signals during training. Please refer to Section for mathematical
analysis. To statistically analyze this, we should count the per-frame gradients of the SA module,
contributed by per-frame decoding. But in practice, such gradients are always merged together by
mainstream deep learning libraries like PyTorch. Thus we take the per-frame gradients of per-frame
input features as an indirect reflection. The gradient map is calculated by averaging the per-frame
gradients’ absolute along the channel dimension, leaving the spatial dimensions for visualization.

As shown in Figure [4| (right), we visualize the gradient maps with and without our transform dif-
ferentiation given a video sample. The input features of both first and non-first frames receive more
balanced gradient signals if using transform differentiation than not. Specifically, the gradient maps
show better object contours and overall amplitudes with transform differentiation, while showing
very unclear object contours and fluctuated amplitudes without it.

6 CONCLUSION

In this work, we propose a novel method SmoothSA, which addresses the query cold-start issue
in SA iterations on the image or video’s first frame, and transform homogeneity issue in SA re-
currences across video’s first and non-first frames. We introduce two techniques, query preheating
and transform differentiating, to address these two issues. With our SmoothSA, OCL models on
image and videos achieve new state-of-the-art performance on object discovery, which also benefits
downstream tasks including object recognition and visual question answering.

Limitations and future works. Although not observed yet, intuitively our method has two possible
limitations. For query preheating, if the aggregated slots are bad then the preheated queries are bad
and in turn the slots can be even worse; For transform differentiating, we empirically use three and
one iterations, instead of automatically, which may not fit all cases. Determining when these two
limitations are prominent and how to overcome them are left for future works.

REFERENCES

Gorkay Aydemir, Weidi Xie, and Fatma Guney. Self-supervised object-centric learning for videos.
Advances in Neural Information Processing Systems, 36:32879-32899, 2023.

David Ding, Felix Hill, Adam Santoro, Malcolm Reynolds, and Matt Botvinick. Attention over
Learned Object Embeddings Enables Complex Visual Reasoning. Advances in neural information
processing systems, 34:9112-9124, 2021.

Gamaleldin Elsayed, Aravindh Mahendran, Sjoerd Van Steenkiste, et al. SAVi++: Towards End-to-
End Object-Centric Learning from Real-World Videos. Advances in Neural Information Process-
ing Systems, 35:28940-28954, 2022.

Baoxiong Jia, Yu Liu, and Siyuan Huang. Improving Object-centric Learning with Query Optimiza-
tion. In The Eleventh International Conference on Learning Representations, 2023.



Under review as a conference paper at ICLR 2026

Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-Centric Slot Diffusion. Advances
in Neural Information Processing Systems, 2023.

Ioannis Kakogeorgiou, Spyros Gidaris, Konstantinos Karantzalos, and Nikos Komodakis. Spot:
Self-Training with Patch-Order Permutation for Object-Centric Learning with Autoregressive
Transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 22776-22786, 2024.

Thomas Kipf, Gamaleldin Elsayed, Aravindh Mahendran, et al. Conditional Object-Centric Learn-
ing from Video. International Conference on Learning Representations, 2022.

Jian Li, Wan Han, Ning Lin, Yu-Liang Zhan, Ruizhi Chengze, Haining Wang, Yi Zhang, Hongsheng
Liu, Zidong Wang, Fan Yu, et al. SlotPi: Physics-informed Object-centric Reasoning Models.
arXiv preprint arXiv:2506.10778, 2025a.

Jian Li, Pu Ren, Yang Liu, and Hao Sun. Reasoning-Enhanced Object-Centric Learning for Videos.
In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
V. 1, pp. 659-670, 2025b.

Hongjia Liu, Rongzhen Zhao, Haohan Chen, and Joni Pajarinen. Metaslot: Break through the fixed
number of slots in object-centric learning. arXiv preprint arXiv:2505.20772, 2025.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, et al. Object-Centric Learning with
Slot Attention. Advances in Neural Information Processing Systems, 33:11525-11538, 2020.

Anna Manasyan, Maximilian Seitzer, Filip Radovic, Georg Martius, and Andrii Zadaianchuk. Tem-
porally consistent object-centric learning by contrasting slots. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 5401-5411, 2025.

Maxime Oquab, Timothee Darcet, Theo Moutakanni, et al. DINOv2: Learning Robust Visual Fea-
tures without Supervision. Transactions on Machine Learning Research, 2023.

Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu Liu, Xiang Bai, Serge Belongie, Alan Yuille,
Philip HS Torr, and Song Bai. Occluded video instance segmentation: A benchmark. Interna-
tional Journal of Computer Vision, 130(8):2022-2039, 2022.

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, et al. Bridging the Gap to Real-World Object-
Centric Learning. International Conference on Learning Representations, 2023.

Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALL-E Learns to Compose. International
Conference on Learning Representations, 2022a.

Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple Unsupervised Object-Centric Learning for
Complex and Naturalistic Videos. Advances in Neural Information Processing Systems, 35:
18181-18196, 2022b.

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective
Search for Object Recognition. International Journal of Computer Vision, 104:154-171, 2013.

Aaron Van Den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete Representation
Learning. Advances in Neural Information Processing Systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Angel Villar-Corrales and Sven Behnke. Playslot: Learning inverse latent dynamics for control-
lable object-centric video prediction and planning. In Forty-second International Conference on
Machine Learning, 2025.

Angel Villar-Corrales, Ismail Wahdan, and Sven Behnke. Object-centric video prediction via de-
coupling of object dynamics and interactions. In 2023 IEEE International Conference on Image
Processing (ICIP), pp. 570-574. IEEE, 2023.

10



Under review as a conference paper at ICLR 2026

Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. SlotFormer: Unsupervised
Visual Dynamics Simulation with Object-Centric Models. International Conference on Learning
Representations, 2023a.

Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. SlotDiffusion: Object-
Centric Generative Modeling with Diffusion Models. Advances in Neural Information Processing
Systems, 36:50932-50958, 2023b.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Object-Centric Learning for Real-
World Videos by Predicting Temporal Feature Similarities. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Rongzhen Zhao, Jian Li, Juho Kannala, and Joni Pajarinen. Predicting video slot attention queries
from random slot-feature pairs. arXiv preprint arXiv:2508.22772, 2025a.

Rongzhen Zhao, Vivienne Wang, Juho Kannala, and Joni Pajarinen. Grouped Discrete Representa-
tion for Object-Centric Learning. In ECML-PKDD, 2025b.

Rongzhen Zhao, Vivienne Wang, Juho Kannala, and Joni Pajarinen. Multi-Scale Fusion for Object
Representation. In ICLR, 2025c.

Rongzhen Zhao, Vivienne Wang, Juho Kannala, and Joni Pajarinen. Vector-Quantized Vision Foun-
dation Model for Object-Centric Learning. In ACM Multimedia, 2025d.

Rongzhen Zhao, Yi Zhao, Juho Kannala, and Joni Pajarinen. Slot Attention with Re-Initialization
and Self-Distillation. In ACM Multimedia, 2025¢.

A APPENDIX

A.1 LLM USAGE STATEMENT

We used GPT-based tools solely for correcting grammar and improving the readability of the
manuscript. No part of the research ideation, experimental design, analysis, or substantive writ-
ing was generated by LLMs.

A.2 ABLATION STUDY

We conduct ablation studies as shown in Table 3]
(a) Query preheating related:

(a.1) Implementing our preheater as a Transformer decoder block is better than as a Slot Attention
module;

(a.1.1) If using a Transformer decoder block as preheater, then switch the self-attention and cross-
attention in it is better than not;

(a.2) Stopping gradient on preheated queries is better than not;
(a.3) Setting preheating loss weight to 100 is better than other values;
(b) Transform differentiating related:

(b.1) Using shared module weights on first-frame transform ®, and non-first-frame transforms ®/,
is better than using separate weights;

(b.2) For conditioned video OCL, using iteration numbers of 3 and 1 on first and non-first frames
respectively is better than other combinations;

(b.3) For unconditioned video OCL, using iteration numbers of 3 and 1 on first and non-first frames
respectively is better than other combinations.
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ARI + ARl
Preheater implementation @ COCO
a Transformer decoder block 68.3.0s
a Slot Attention module 63.3..
MLP as the preheater 47 8us
no preheater and preheat loss 56.9..5

Switch cross-attention and self-attention in preheater @ COCO

Yes 683m8
No 49.619.4
Stop gradient on preheated query @ COCO
YGS 68.3&.8
No 67.5529
Preheating loss weight @ COCO
10 59.7.10
50 65.5:04
100 68.3.05
200 67.4.5
Use separate weights for first and non-first transforms @ YTVIS
separate 52.3us
shared 68.3.05
Unconditional video OCL.: first and non-first SA #iter @ YTVIS
3+1 105.6-:
1+1 97 4.a
3+3 103.4.:
Conditional video OCL.: first and non-first SA #iter @ MOVi-C
3+1 136.3..
1+1 133.9.:50
3+3 132.7:54

Table 5: Ablation studies.

A.3 WHY SWAPPING SELF-ATTENTION WITH CROSS-ATTENTION?

Denote self-attention as [sa] while cross-attention as [ca]. The standard Transformer decoder block
has the architecture of [sa]-[ca]-[mlp], while our swapped Transformer decoder block has the archi-
tecture of [ca]-[sa]-[mlp]. Note that short-cut connections are ignored for simplicity. We use PCA
(Principle Component Analysis) to visualize the intermediate slots inside (7) the standard Trans-
former decoder block, i.e., queries and preheated queries after the [sa] as the first module; and (ii)
the swapped Transformer decoder block, i.e., queries and the preheated queries after [ca] as the first
module. The model checkpoints are reused from Table 3}

As shown, our swapped attention produces diverse points, i.e., expressive representations.

query initialization via Gaussian sampling

A Pt

query preheat via self-attention at first

query preheat via cross-attention at first

* the queries after initialization — query initialization after Gaussian sampling

— (top-left): clustered together
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¢ and the queries after the first attention

— for standard transformer decoder block as the preheater, the first attention module is
self attention — query preheating after self-attention at first

% (top-right): still clustered together

— for swapped transformer decoder block as the preheater, the first attention module is
cross attention — query preheating after cross-attention at first
+ (bottom): become well separated

We explain the observed performance gap and visualization as below:

e The queries before preheating are sampled randomly from some learnt Gaussian distri-
butions (the mainstream case), containing no specific information about current specific
features.

e Thus using self-attention to mix them is meaningless, as this still does not introduce any
specific information about current specific visual feature.

e Thus inside our preheater, we should first inject the current specific information into the
queries by cross attention, then further transformation like self-attention and MLP could be
meaningful.

A.4 MATHEMATICAL ANALYSIS

Benefit of Preheating

Follow the settings and notations from Sections [3.1] and Although ¢, and ¢, take F as the
second input argument, we ignore it for simplicity.

In practice, for any fixed F', ¢, is usually a contraction, thus for all X, Y € R"*¢,
¢4 (X) — L (Y)|| < || X = Y|| where o € [0, 1) ©))

By the Banach fixed point theorem, there is a unique fixed point S* = ¢,(S*), and for every X,
164(X) = 87| < '] X — 87 (10)

With our preheater, ¢,(Q) is closer to S* than Q, then:

l¢p(Q) — 57| < ¢||lQ — §7|| where g € [0,1) (11)
And then:
162(6p(Q)) = S7I| < o”[|6p(Q) — S7|| < qa’[|Q — 57| (12)
Compared with not using preheater,
102(Q) — ™I < *||Q — 5] (13)

Therefore, the preheated run is strictly closer to the fixed point after three iterations than the non-
preheated run would be.

Benefit of Differentiating

Follow the settings and notations from Sections [3.1] and Although ¢, takes F' as the second
input argument, we ignore it for simplicity. We treat one frame at a time, dropping subscript ¢.

We also supplement the decoding part of OCL here, where reconstruction is utilized for supervision.
Reconstruction is X’ = ¢q(S) and loss is | = MSE(X"’, X).

We follow the assumption of Equation (9).

According to Lipschitz Jacobian bounds,

H&qﬁgi‘gS')H < a (consistent with contraction) (14)
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0¢a(S
||% || < B forall S (bound on how strong parameters in each iteration) (15)
004 (S
H%)H < L (bound on the largest loss) (16)
Unroll the total ¢y iterations. Let J; := %;71)) and U; = %XU), D = &%‘7&({9) and
Gx = %. And the derivative of the final S(“) w.r.t 6, is the sum of contributions from each
unrolled iteration:
s i i
96 = Zilzl(HnlL:i+1Jm)Ui (17)

By chain rule, the full gradient is

ol 28 (i) P
50 = G§(DW =GxDYL (I}, Jn)U; (18)

For the frame with ¢, iterations,

ol
d¢a

where on the right side, only ||G x || depends on the number of iterations ;.

i1 1—ah 1
oI < [IGxILBS ' = [|Gx||ILB——— < [|Gx||ILBy— (19)

(67

In practice, for the first frame ||G x || tends to be large and more iterations reduces it, while for
non-first frames ||G x || tends to be small and less iterations are needed. And if we insist to use more
iterations for non-first frames (the same number of iterations as the first frame), ||Gx || can be too
small compared with that of the first frame. This causes imbalanced gradient contributions from the
first and non-first frames to ¢, parameters.

A.5 VIDEO OCL OoN YTVIS21 USING ORIGINAL VIDEO LENGTH

Here are the object discovery results on dataset YTVIS21|El Note that the results are produced on
SlotContrast official codebaseEL namely, we adopt all the hyperparameters used by SlotContrast, es-
pecially using the original video length, instead of clipping them to constant length 20 as in Table[2}
Also note that the metrics ARI;, and mBO are the video ones, rather than the image ones.

@YTVIS21 video ARIfg | video mBO
VideoSAUR (copied values) 28.9 26.3
SlotContrast (copied values) 38.0 33.7
SmoothSA (seed@42,43,44) 459+1.2 36.7+0.5

A.6 COMPUTATION OVERHEAD

We provide concrete numbers of the computation overhead below. Our method shows better com-
putation efficiency in both training time and memory consumption than baselines.

V100 training time / hours | memory consumption / GB
SPOT @COCO, bs32 4.7 8.5
DIAS @COCO, bs32 4.5 9.4
SmoothSA @COCO, bs32 42 8.7
SlotContrast @ YTVIS, bs8 7.4 6.4
RandSEF.Q @YTVIS, bs8 6.8 5.2
SmoothSA @YTVIS, bs8 7.1 5.2

! 2https://youtube—vos.org/challenge/ZOZ1
! 3https:// github.com/martius-lab/slotcontrast
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A.7 RESULTS ON DATASET OVIS

We also evaluate our method’s effectiveness on more challenging datasets. We choose OVIﬂ
[2022), which is more occluded than YTVIS. Our method still shows some superiority over the
baseline. But the performance boosts over the baseline is much smaller, compared with the results
of dataset YTVIS in Table[2]

@OVIS ARI ARIfg mBO mloU
SlotContrast | 37.2+1.0 | 44.8+1.0 | 20.1+x0.8 | 17.1+0.9
SmoothSA | 39.3x2.3 | 47.5+0.4 | 21.0+0.4 | 19.5+0.4

14https://songbai.site/ovis
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