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ABSTRACT

Synthetic data are frequently used to supplement a small set of real images and create a dataset with diverse
features, but this may not improve the equivariance of a computer vision model. Our work answers the following
questions: First, what metrics are useful for measuring a domain gap between real and synthetic data distribu-
tions? Second, is there an effective method for bridging an observed domain gap? We explore these questions
by presenting a pathological case where the inclusion of synthetic data did not improve model performance,
then presenting measurements of the difference between the real and synthetic distributions in the image space,
latent space, and model prediction space. We find that augmenting the dataset with pixel-level augmentation
effectively reduced the observed domain gap, and improves the model F1 score to 0.95 compared to 0.43 for
un-augmented data. We also observe that an increase in the average cross entropy of the latent space feature
vectors is positively correlated with increased model equivariance and the closing of the domain gap. The results
are explained using a framework of model regularization effects.

Keywords: synthetic data generation, domain gap, latent space features, data augmentation, latent feature
representation, synthetic training data

1. INTRODUCTION

Synthetic data are frequently used to augment a dataset with the goal of improving a model’s ability to generalize
to unseen data.! This generalization is commonly referred to as invariance and equivariance; equivariance refers
to a change model’s output correctly correlated to a change of the model’s input, and invariance is a special
case of equivariance referring to no change in the model’s output given a task-irrelevant change to the model’s
input.?* In this work, recent efforts? to establish a theoretical understanding of invariance and equivariance are
used to motivate a practical analysis of the model’s training data, with the hypothesis that a data augmentation
method that causes a model’s generalization performance to decrease can be attributed to a domain gap in the
training data distribution.> ¢

Our measurement of such a domain gap has the form of a pairwise similarity comparison
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where x is an instance of the dataset X (with n instances) possessing a domain gap, and m(z;, ;) is a similarity
measure between the i** and j* instances. The domain gap can be quantified in the input image domain, the
feature space domain, and the prediction domain as shown in Fig. 1; what then is the best choice of similarity
measure m?
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Accordingly, this work explores the following questions: First, what measures may be useful for measuring
a domain gap between real and synthetic training data distributions? Second, is there an effective method
for bridging an observed domain gap? They are explored by analyzing a previously reported® pathological
case where augmenting a small real world (RW) image dataset with synthetic image data manufactured from a
virtual world (VW) did not improve model performance; the F1 score of a transfer-learning trained YOLOvS”
model dropped 16% from 0.51 to 0.43. Five different state-of-the-art mixed sample data augmentation (MSDA)
techniques were tested to bridge the domain gap between the RW and VW data, including variations of CutMix,?
CutOut,” Mixup,'” pure noise,!! and our own contribution Mixed Feature Data Augmentation (MFDA) based
on Manifold Mixup.'? We then quantify the effectiveness of the augmentation technique at bridging the domain
gap by evaluating the average similarity of the newly augmented dataset according to Eq. 1, where different
similarity measures m are evaluated according to the criteria discussed in §4.4.

The following section, §2, presents the main results of the paper, followed by a discussion in §3 and a summary
in §5. The methods are presented in §4. The results presented in this paper are not exhaustive. Rather, they
are designed to provide intuition regarding which similarity measures may provide insight into the source and
correction of domain gaps.

g Prediction Domain

Pros: most important for
deployment, low dimensionality
Cons: low semantic meaning

.» Input Image Domain
(256, 256, 3)
Pros: easy access
Cons: high dimensionality , potentially
low correlation to semantic space

A Box
Prediction

/ Neck Head

Class
Prediction

i.» Feature Space Domain
(20, 20, 256)
Pros: high semantic meaning
Cons: high dimensionality, partially trained

Figure 1. Possible locations to measure domain gaps in a YOLOvS” style model: input image space (raw training data),
model latent space (feature vectors produced by backbones), and prediction space (classification scores).

2. RESULTS

The results presented discuss an effective method of bridging the training data domain gap in §2.1, and domain
gap measurements in §2.2.

2.1 Data Augmentation Impact on Model Generalization

The initial training dataset, validation dataset, and test dataset are small, with 869 real world (RW) and virtual
world (VW) training instances (226 images), 140 validation instances (29 images), and 69 test instances (29
images) respectively. The test dataset only includes real images. The inclusion of augmented data is meant to
ensure that test instances are within the distribution of the training data. This is visualized by extracting the
feature vectors of the dataset from the YOLOvS8 backbone, performing dimensionality reduction with Principal
Component Analysis'® (PCA) on the training dataset extended with augmented data, reducing the dimensionality
of the test data using the PCA model fit on the extended training data, then plotting the results as shown in Fig.



2. PCA maximizes the representation of the variance of the data,'® and therefore will indicate if the augmented
data is expected to add to the overall variance of the training dataset.
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Figure 2. Dimensionality reduction using PCA of the baseline training data with augmented data types: real world (RW)
patch on virtual world (VW) background (BG), noise patch on virtual world (VW) background (BG), virtual world (VW)
patch on real world (RW) background, mixed feature data augmentation (MFDA), Mixup,'® and noise.'*

The PCA results qualitatively show that the Mixup augmentation method most uniformly covers the space of
the augmented data, the baseline training dataset, and the test dataset, while the space is least well covered by
data augmented with patches. This motivates the intuition that YOLOv8 models trained with Mixup augmented
data may perform best, and models trained with CutMix and CutOut augmented data may not perform well.

This intuition is tested in Figure 3, where the results of training a YOLOv8” model with different kinds of
augmented data are presented. Each data point represents the performance of a model retrained from frozen
backbone weights using increasing numbers of augmented images, and then evaluated using the same test set of
69 test instances. The baseline F1 score from training exclusively on real world (RW) and virtual world (VW)
is shown as a dashed line.
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Figure 3. Results of transfer-learning training a YOLOv8 model with increasing amounts of differently augmented training
data. The test set used to calculate the F1 score is held constant for all models.

Of the seven different sets of augmented data, the model generalized best to the unseen test set with white
noise!! augmentation and Mixup!® augmentation; with the inclusion of error bars (not shown), we consider these
two augmentation methods to be equivalently high performing. The models trained with CutMix and CutOut
augmentation methods do not perform well, with the augmentation of synthetic virtual world (VW) images with
noise patches or real world (RW) object instance patch showing a significant decrease in performance compared
to all other methods. The models trained with increasing amounts of mixed feature data augmented (MFDA)
images show significant improvement over the baseline, but do not perform as well as the noise and Mixup
models.

This leads to our first result: Models trained with pixel-level augmentation outperformed models
trained with patch-level augmentation. This suggests that regularization methods such as Mixup which
are independent of pixel distances'* may be more effective in bridging domain gaps. This is discussed further in
§3.1.



2.2 Domain Gap Measurements

We now attempt to determine if there is a domain gap measurement on the training data which predicts the
generalization of the model to the dataset outliers in the test data. Using Eq. 1 as our framework for evaluating
the gap, the self-similarity of the dataset was determined using the measures summarized in Table 1.

Table 1. Summary of relationships m(z,y) used in Eq. 1 to determine similarity. Dy, is the KL-Divergence.®

Measure m(z,y) Equation Evaluation Space
Mean Square Error'® (MSE) LS (i —yi)? image, latent
Structural Similarity Index!® (SSIM) | luminance(x,y) -contrast(z,y) - structure(z,y) | image

Binary Cross Entropy!” (BCE) —(ylog(z) + (1 — y)log(1 — z)) image, latent
Jensen Shannon Divergence'® (JSD) | 1Dy (2|%5Y) + 2 Dkr (y|%5Y) image, latent
Fréchet Inception Distance!® (FID) (infyeruw) [ |z —ylPdy(z,y ) latent

Kernel Inception Distance?” (KID) MazimumM eanDiscrepancy(zx,y)? latent

Inception Score?! (IS) exp (Dkr (z,y)) prediction

After evaluating the metrics in various domains, the best metric for each domain is shown in Fig. 4 based
on the criteria discussed in §4.4. Each data series plotted in Fig. 4 represents the movement of the training
data distribution in the image, latent, or prediction space for increasing amounts of augmented data. This is
accomplished by plotting how the mean value and the standard deviation of the mean value for a given metric
vary; the arrows point in the direction of increasing amounts of augmented data and show which direction the
augmented data is trending.
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Figure 4. Best domain gap measurements for the image space (left) using Statistical Similarity Index, latent space (center)
using Binary Cross Entropy, and prediction space (right) using the Inception Score.

Based on the criteria for a good measure of distribution gap (described in §4.4) and out of the measures in
Table 1, SSIM'6 is the best predictor of future model performance in the image space due to its ordering of
best performing augmentation “Gaussian Noise” in the upper left corner (low mean, high standard deviation)
and worst performing augmentation method “Noise Patch, VW BG” in the lower right corner (low standard
deviation, high mean). For the latent space, the best predictor of model performance on the test set was Binary
Cross Entropy!” (BCE), with poorly performing augmentation methods moving in the direction of decreased
mean BCE value, and better performing augmentation methods moving in the direction of increased mean BCE
value. In the prediction space, the Inception Score?! (IS) was the only predictor of future model performance
examined in this work, and does not predict model performance.



This leads to our second result: A model’s future performance was best predicted in the image
space using a derived measure (SSIM), and in the latent space using a probabilistic measure
(BCE). The prediction space of the augmented training data was not found to be indicative of future model
performance. The implications of the different measures are discussed further in §3.2.

3. DISCUSSION
3.1 Data Augmentation as Regularization Technique

Data augmentation—whether through synthetic images or augmented images—is a source of invariance and stochas-
ticity in the data,?? where the randomization of domain-dependent features is known to improve generalization
to out-of-distribution instances.?? While the task of training on synthetic data and predicting on real data is
framed as a domain generalization or domain shift task,?* mixed sample data augmentation (MSDA) is typically
understood in the context of regularization.®

The type of regularization contributed by patch-level (e.g. CutMix,® CutOut?) and pixel-level methods (e.g.
Mixup,'® Gaussian Noise!!) was analyzed by Park et al.:'* pixel-level methods were found to regularize the
model Hessian and gradient without dependence on the distance from one pixel to the next, while the patch-level
methods were found vary in the strength of the regularization. For the real and synthetic data gap presented in
this work, we interpret the success of pixel-level augmentation over patch-level augmentation to indicate that all
features in the real world (RW) and virtual world (VW) images required equal regularization; that is, no RW or
VW feature required more regularization than any other feature. This suggests that the underlying domain gap
between the RW and VW distributions is intrinsic to the data, and not driven by a single feature of the dataset
(e.g., an aspect ratio present in one distribution but not the other), and explains the divergence in F1 scores
between patch-level and pixel-level augmentation methods in Fig. 3.

The improvement of the model given the pure noise augmentation is less surprising than it may appear. The
original dataset is small, and the model is therefore prone to overfitting on the single class of the dataset. The
addition of pure noise prevents the model from converging prematurely to a local minimum by adding stochasticity
to the optimization path.'':2? This directly motivates the superior performance of the noise-augmented models
in Fig. 3; in this study the addition of noise was a pixel-level augmentation (see Fig. 5), and the use of soft
labels with increasing noise effectively improved the performance of the model.

3.2 Implications of Similarity Measures

Two complimentary interpretations of each image in the training dataset exist. In the first interpretation,
each image represents a vector in a high-dimensional space, with each pixel representing a vector component.
This motivates the use of distance based measures, including MSE,'> SSIM,'6 the cosine similarity?® and the
Mahalanobis distance.? In the second interpretation, each pixel represents a sample from an unknown probability
distribution, which in turn motivates entropic and divergence measures such as the Binary Cross Entropy'”
(BCE), KL-Divergence,'® and the Jensen-Shannon Divergence.'® An equivalent way of expressing these two
interpretations is that some similarity measures for images only assume a generalized Euclidean metric, while
other similarity measures assume the information-specific Fisher metric.?”

The SSIM index!'® is a derived metric that relates the weighted mean and standard deviation of pixel values
between two images; it assumes that the image itself is the distribution to be measured. The structural aspect of
the measure comes from the application of a two-dimensional scanning window with a Gaussian kernel during the
calculation of the SSIM value.! The decrease in mean and standard deviation SSIM with increasing amounts
of augmented data suggests that on average, the images in the dataset are becoming more similar through
augmentation. The inclusion of Gaussian noise in the dataset is most effective at achieving the increased average
similarity, which is unsurprising as all images are increasingly being augmented by drawing from a third, shared
Gaussian distribution. What is surprising is that the use of Mixup and MFDA to augment the dataset caused
the measured similarity to change the least (the arrows for these two methods are shortest in Fig. 4, even though
there are nearly three times as many training instances as the noise augmented training datasets and the number
of images in the noise, MFDA, and Mixup datasets are identical). The SSIM results in Fig. 4 fail to motivate why
the pixel-level augmentation methods outperform the patch-level augmentation methods. However, the increased



predictive value of SSIM over MSE suggests that considering each pixel to be an independent vector component
is less useful than considering groups of pixels at once, even given the pixel-level augmentation techniques.

In the latent space, BCE assumes that each component of the feature vector extracted from the YOLOvS
backbone is a measure of the probability distribution learned by the model. The mean BCE increases for the
effective dataset augmentation methods Gaussian noise, Mixup, VW Patch on RW BG (CutMix), and Noise
Patch on RW BG (CutOut), all of which improve over the baseline in Fig. 3. The inclusion of MFDA data
does not affect the training data distribution in the latent space as measured by BCE. The effect of including
patch-level augmentation on virtual world synthetic images is to decrease the mean BCE value of the dataset.
These results represent the most predictive measure of model performance reported in this work, where the
increase or decrease in mean BCE directly correlates with increase or decrease in the model’s F1 score (excepting
the MFDA results). The effectiveness of the Gaussian noise can again be attributed to the inclusion of a third
distribution in the training data, which effectively increases the entropy.

The result of evaluating the augmented training data using the Jensen-Shannon Divergence!® is qualitatively
similar to the results presented for BCE in Fig. 4, but less sensitive to increasing amounts of augmented data
and fails to correctly predict the high performance of the Mixup augmented data.

There is no good result reported for the prediction space; the result for the Inception Score?! (IS) in Fig. 4
has no predictive value for the F1 scores reported in Fig. 3.

3.3 Data Augmentation Effect on Underlying Distribution

Why some data augmentation effects work for some tasks and not others is not well explained.'* The results in
this paper suggest that such an explanation might be motivated by understanding how adding the augmented
data changes the training distribution.

Although the best choice of augmentation method for a given task has been explained by the regularization
effect on the model (as discussed in §3.1), the visualizations of the data in Fig. 2 suggest that the augmentation
data effects may also be understood separately from the model, as the PCA result is independent of the YOLOvS8
model results. The four kinds of patch-level augmentation form clusters, while the MFDA and Mixup augmented
data is distributed more evenly across the PCA space. Comparing only these six types of data augmentation
would lead to the intuition that data augmentation that evenly covers the PCA space shared by the training and
test data distributions effectively closes the domain gap and will result in improved model performance. This
intuition, while not proven false by the results shown in Fig. 3, is shown to be naive by the inclusion of the PCA
result for the noise-augmented data: most of the testing data images continue to be outliers compared to the
training and augmented data distributions in this visualization.

An additional motivation for nuanced analysis of the source of the effectiveness for different augmentation
methods is found in Fig. 4. Plotting the mean against the standard deviation of the mean shows how the
first two moments of a distribution change with respect to each other. For the image space and latent space
results presented in Fig. 4, arrows which are close together suggest a shared distribution used to augment the
data because the underlying data distribution is changed in the same way: the real world (RW) background
(BG) augmented data consistently cluster together, as do the virtual world (VW) background (BG) data and
the pixel-level augmentation Mixup and MFDA data. The grouping of the arrows may indicate that different
kinds of randomness?® are present in the different augmentation techniques; this could be confirmed by analyzing
changes in the heaviness of the tails of the distributions for higher ordered moments.

4. METHODS
4.1 Baseline Dataset

The original dataset consists of a single class, ships, and was constructed after previously reported methods.’
Real world instances were sampled from the Singapore Maritime Dataset?? and internet videos of ship spotting.®
The real world instances were combined with ship data created from virtual scenes fabricated in-house.? These
images were used to create a baseline dataset containing 45 real world images and 180 virtual world images with
a 20:80 real:synthetic ratio.



4.2 Data Augmentation

Seven different kinds of augmented data were prepared for this study. The first four kinds (real world (RW)
object patches on virtual world (VW) backgrounds, VW object patches on RW backgrounds, noise patches on
VW backgrounds, noise patches on RW backgrounds) are versions of CutMix® and CutOut? respectively, and
were prepared after previously reported methods® so that each object patch had a twin noise patch on the same
background in the same location. The fifth kind of augmented data was prepared using Mixup,'® where the z;
and x; images are always chosen so that one is synthetic and the other is real. This ensures that each augmented
image is always a mix of real and synthetic pixels. Soft labels are introduced for the augmented images,'® which
directly affects the training of the classifier. The sixth kind of data begins with either a real or synthetic image,
then increasingly adds Gaussian noise with soft labels until only a noise image remains, similar to the method
presented by Zada et al.!!

MFDA

Noise

Figure 5. Augmented data using Mixup, Mixed Feature Data Augmentation (MFDA), and Noise. For MFDA and Mixup,
the farthest left image is a real world example from the Singapore Maritime Dataset,?® and the farthest right image is a
virtual world example created in-house.

The seventh kind of data is a variation of Manifold Mixup,'? where latent features are interpolated and
soft labels are used to flatten decision boundaries. Manifold Mixup occurs within the model layers.'? Here
we use a Variational Autoencoder trained on the baseline dataset of real world and virtual world images as a
surrogate latent space for the YOLOv8 model, interpolate between real world and virtual world image latent
feature vectors, then convert the interpolated feature vectors to images using the VAE decoder.?°

For Mixup, noise augmented data, and MFDA data, eight intermediate images were created for every inter-
polation between image x; and image x;, creating sequences of ten images. For the noise augmented data, this
results in 10% of augmented images being pure noise, as shown in Fig. 5.

4.3 Model and Training

The Ultralytics YOLOv8” model was trained using transfer learning, where the backbone was initialized using
the default weights trained on MSCOCO.?! Training a model with short bursts of augmented data was previously
found to be successful,% 32 and this knowledge was leveraged by training the model on the baseline and augmented
datasets for 90 epochs with all other hyperparameters left at the default. The F1 scores were calculated with a
confidence threshold of 0.5.

4.4 Domain Gap Metric Criteria

We propose that a good measure for domain gaps should meet the criteria discussed by Deng et al.,>* namely
that the measure (1) be easy to calculate (low computational complexity), (2) correlate the performance of
the model on test data with the size of the gap in the training data (directional and predictive), (3) provide
insight into the source of the gap (enhance model explainability), and (4) be sensitive to changes in the data
distributions as efforts to close the domain gap are enacted.



4.5 Calculation of Similarity Measures

The Inception Score?! is calculated in the prediction space using the PyTorch implementation.?* The Fréchet

Inception Distance!® (FID), Kernel Inception Distance?® (KID), and Jensen-Shannon Divergence'® (JSD) cal-
culations were implemented from the pytorch-fid: FID Score for PyTorch repository.>®> The FID metric was
calculated using the second max pooling features (192) due to the small number of images in the training
dataset. FID is criticized®® because the features in InceptionNet are not representative of generative model
features; feature representation mismatch could explain the failure of FID as a measure to predict the F1 scores
of YOLOvS8. KID is presented as an improvement on FID since FID has a Gaussian assumption, which KID
removes.?’ The JSD was used over KL-divergence!® because KL-divergence is undefined for values of zero, and
zeros were present in both the image space and the latent space data.

5. SUMMARY

The augmentation of training data with pixel-level augmentation (Gaussian noise and Mixup) is found to be
the most effective method for bridging a domain gap between real and synthetic images, followed by pixel-level
augmentation techniques. The domain gap between the real and synthetic images is best indicated using a
probabilistic measure (Binary Cross Entropy) in the latent space, where an increase in the mean Binary Cross
Entropy for all pairwise comparisons in a dataset is indicative of increased model equivariance. This is explained
through the regularization effects on the model, where pixel-level effects regularize all features equally, regardless
of the distance between pixels. An observed correlation between the distribution source for augmentation and
the covariance of the mean and standard deviation of the similarity measure is hypothesized to be due to different
kinds of randomness, and this can be further explored by examining higher ordered moments of the similarity
measure distribution for pairwise comparisons of an augmented dataset.
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