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Abstract

Long-tailed learning is one of the most challeng-
ing problems in visual recognition. There are
some studies aiming to solve long-tailed classi-
fication from the perspective of feature learning.
Recent work proposes to learn the balanced repre-
sentation by fixing the linear classifier as Equian-
gular Tight Frame (ETF), since they argue what
matters in classification is the structure of the fea-
ture, instead of their directions. Holding a differ-
ent view, in this paper, we show that features with
fixed directions may be harmful to the generaliza-
tion of models, even if it is completely symmetric.
To avoid this issue, we propose Representation-
Balanced Learning Framework (RBL), which in-
troduces orthogonal matrices to learn directions
while maintaining the geometric structure of ETF.
Theoretically, our contributions are two-fold: 1).
we point out that the feature learning of RBL
is insensitive toward training set label distribu-
tion, it always learns a balanced representation
space. 2). we provide a generalization analysis of
proposed RBL through training stability. To ana-
lyze the stability of the parameter with orthogonal
constraint, we propose a novel training stability
analysis paradigm, Two-Parameter Model Stabil-
ity. Practically, our method is extremely simple
in implementation but shows great superiority on
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several benchmark datasets.

1. Introduction
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(a) The training and validation accuracies.

(b) Features visualization on training set at epoch 30. Left: initial-
ization A. Right: initialization B.

Figure 1: Two toy experiments to illustrate feature learning and
generalization of Fixed. A two-layer deep model and a linear
classifier are trained to solve a long-tailed classification problem
with 2-dimensional feature and 3 classes. In (b), points and lines
indicate sample feature and model weight respectively.

Generally, real-world visual classification tasks suffer from
long-tailed distribution data, where a few categories (head
class) contribute to major observations of datasets, while
other classes (tail class) only contain a few samples. For
example, iNaturalist2018 (Van Horn et al., 2018) is a large-
scale dataset, which contains more than 8K categories. In
this dataset, the head class has several thousand images,
whereas the tail class may only have no more than one
hundred images. In this setting, training a well-performed
model is very hard, because the model will be overwhelmed
by head classes and underfit the tail classes.

Most previous methods solve the long-tailed problem
through data-resampling based and loss-reweighing based
methods, which may lead to a performance trade-off be-
tween head class and tail class (Kang et al., 2019). Re-
cently, Neural Collapse (NeurCol) (Papyan et al., 2020)
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iteration = 0, CE = 1.112 iteration = 20, CE = 0.991 iteration = 40, CE = 0.580 iteration = 60, CE = 0.228 iteration = 100, CE = 0.086 iteration = 300, CE = 0.052

(a) The NeurCol phenomenon. There are 30 samples for each class.

iteration = 0, CE = 1.401 iteration = 20, CE = 0.811 iteration = 30, CE = 0.551 iteration = 50, CE = 0.261 iteration = 60, CE = 0.199 iteration = 300, CE = 0.102

(b) The feature learning of our framework. Each class has 100, 10, 1 samples respectively.

Figure 2: Two numerical simulation experiments to illustrate the feature learning of classification. In experiments, a linear classifier was
trained to solve a classification problem with 2-dimensional feature and 3 categories. To simulate the model with infinite fitting ability, we
directly update the features in R2. The pictures from left to right record the location of the model weight and sample feature in R2 during
the optimization process. In each picture, points and lines indicate sample feature and model weight respectively. implementation details
of experiments in this figure could be found in Appendices.

phenomenon has raised increasing attention in deep learn-
ing community. It can provide a different perspective for
long-tailed learning. NeurCol phenomenon happens on clas-
sifiers trained over a label-balanced dataset: after the cross
entropy loss reaches its minimum, features of the classifier
(last layer activations of the deep model) would learn a com-
pletely symmetric structures. Specifically, sample features
within the same class and the corresponding weight vector
of linear classifiers would collapse to its class center, and
centers of every class would form the structure of Equian-
gular Tight Frame (ETF). As the last picture of Fig.2 (a)
illustrated, after the training converges, every class is highly
symmetric for others in the feature space.

Due to ETF’s elegant property, an existing work Fixed (Yang
et al., 2022b) proposes to learn from ETF directly. They ar-
gue that the deep model can learn features with any direction,
hence learning directly fixed ETF can achieve satisfactory
performances. We take a different view on this. Fig.1 shows
two results of Fixed with different initialization of ETF. We
see the first generalizes better than the second, even though
both of them lead to NeurCol and learn ETF features. Based
on this observation, we argue the bad initialization of ETF
is harmful to the generalization of the deep model. Since
it only requires the model push samples in the randomly
generated direction, rather than making it learn. To over-
come this problem, we propose a Rrepresentation-Balanced
Learning Framework (RBL). The feature learning of our
framework can be divided into two steps: 1) generate the
balanced features space and 2) use a learnable orthogonal

matrix to register the sample features and balanced features.

First Step Before training, we generate the balanced feature
space. Directly generating ETF is the best option. Unfortu-
nately, ETF exists only for sparse combinations of a number
of class C and feature dimension d (Sustik et al., 2007).
We argue that the equiangular property is the key point to
solving long-tailed problems, so we turn to the second best.
We generate the max(C, d)-dimensional trivial ETF (trivial
ETF always exists), then construct an equiangular structure
from it.

Second Step According to NeurCol phenomenon, we know
the classifier weight of each category would collapse to its
class center. In recognition of this point, we fix the linear
classifier to be the balanced feature that we generate in
advance so that the deep model could learn directly from the
ETF. To avoid fixed features damaging the learning of the
deep model, we introduce rotation operation. As shown in
Fig.2 (b), during training, we keep ETF being a rigid body
and only perform rotation on it. Then we use substitution
techniques (Lezcano-Casado & Martınez-Rubio, 2019) to
perform optimization with orthogonal constraint.

In theory, we analyze our method from the perspectives of
feature learning and generalization. We prove our frame-
work could achieve balanced feature space, Regular Simplex,
regardless of whether the dataset is balanced or not. Mean-
while, we use training stability to analyze generalization
performances of our method. The stability analysis of our
framework is difficult since our framework contains two
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parts of parameters, one is parameterized orthogonal matri-
ces and the another is the weight of deep model. During
training, they follow different rules to be updated. To this
end, we propose a novel training stability analysis paradigm,
Two-Parameter Model Stability, which divides the model
parameter into two parts to derive model stabilities (Lei &
Ying, 2020).

To sum up, our contributions are as follows:

• We propose Representation-Balanced Learning Frame-
work, which can lead to NeurCol phenomenon even in
long-tailed scenarios.

• We propose Two-Parameter Model Stability, and
present a generalization analysis for our framework.

• A series of empirical studies demonstrate the effective-
ness of our method.

2. Representation Learning in Classification
In this section, we start from Neural Collapse phenomenon
to give the definition of Equiangular Tight Frame (ETF).
Then, we discuss how to generate balanced representation
for classification problems.

2.1. Neural Collapse and Equiangular Tight Frame

The study of (Papyan et al., 2020) has found Neural Col-
lapse phenomenon in the training for deep classifier. Here,
for a classification problem with d-dimensional feature and
C classes, a classifier is defined as ŷ = argmaxi(Mf(x))i,
where M ∈ RC×d is the linear classifier, x is a data point
and f(·) ∈ Rd is the deep feature extractor with d dimen-
sions. They found as the cross entropy loss (over a label
balanced dataset) converging to the minimum, the last-layer
activations of model, i.e., f(x) show amazing simplicity
geometrically. At the end phrase of training, features of all
samples belonging to the same class and classifier weight of
corresponding category collapse to their class-means. Be-
sides, the angle of any two of class-means is getting larger
and larger until they converges to the maximum angle (see
Fig.2 (a) for intuitive impression). Through the study of
NeurCol, we have a deeper understanding for classifier’s
training. During training, the classifier has only two learning
goals:

G1 Cluster samples from the same category together in the
feature space.

G2 Separate samples from different categories to the great-
est extent.

After the classifier completely achieves these two objectives,
the feature of every class would form an geometrical struc-

ture, Grassmannian Frame. Here, we give Grassmannian
Frame’s definition (Strohmer & Heath Jr, 2003).

Definition 2.1 (Grassmannian Frame). In Euclidean space
Rd, a sequence of vectors {ζi}Ci=1 is said to be a tight frame
if the matrix ζ = [ζ1, . . . ζC ] satisfies ∃α ∈ R, ζζT = αI,
where I is identity matrix. If the norm of every vector in
frame is equal to 1, we call it unit norm frame. Given a unit
norm frame {ζi}Ci=1, define the maximal frame correlation
M({ζi}Ci=1) as

M({ζi}Ci=1) = max
i,j,i ̸=j

{|⟨ζi, ζj⟩|} (1)

A frame {ζi}Ci=1 is called Grassmannian frame if it is the so-
lution of min{M({ζi}Ci=1)}, where the minimum is taken
over all unit norm frames in Rd.

Intuitively, the minimization ofM({ζi}Ci=1) is consistent
with G2. To achieve optimal linearly separable for every
class, the linear classifier M shall minimize the maximal
correlation between class features. According to the mar-
gin theory, the model could enjoy the best generalization
performance since the margin between all classes is maxi-
mized. In addition to maximized margin, what we are more
concerned about is if the margin between any two classes is
equal. We expect correlation between any two classes to be
minimized equally since that means each category has the
same authority in the feature space. Reflected in geometry,
this means equiangular property. We say a unit norm frame
{ζi}Ci=1 is c-equiangular if there exists c ∈ R

|⟨ζi, ζj⟩| = c for all i, j with i ̸= j (c-equiangular)

The equiangular property means that every vector is equally
”far” from every other. When the class feature satisfies
equiangular property, we could say the model treats all
categories without bias. However, the symmetric structure
does not always exist for different Rd and C. For example,
in R3, there are no frames with 5 vectors that can satisfy
equiangular property. The following theorem (Welch, 1974)
tells how a frame {ζi}Ci=1 can reach equiangular property
by minimizing theM({ζi}Ci=1).

Theorem 2.2 (Welch Bound). Given any unit norm frame
{ζi}Ci=1 in Rd, then we have

M({ζi}Ci=1) ≥

√
C − d

d(C − 1)
(2)

the inequality in (2) can hold only if C ≤ d(d+1)
2 . Further-

more,M({ζi}Ci=1) reach the right hand side of (2) if and
only if {ζi}Ci=1 is a Equiangular Tight Frame.

Remark 2.3. This theorem indicates two points. The first is
related to the ultimate capacity of feature space: for classifi-
cation tasks, a d-dimensional feature space could represent
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up to d(d+1)
2 categories. Another tells how a frame can be

equiangular: a frame {ζi}Ci=1 can achieve equiangular con-
dition if and only if the minimum ofM({ζi}Ci=1) reach the
right side of (2).

2.2. Generation of Balanced Feature

Actually, the existence of Equiangular Tight Frame is very
sparse. According to (Lemmens & Seidel, 1991), ETF could
be explicitly constructed from the conference matrix only
if C = dα + 1, where α is an odd prime number, which
greatly limits the applications. There are also methods based
on numerical optimization (Dhillon et al., 2008). Even if
it could find approximate solution through iterating Alter-
native Projection, it is difficult to satisfy the equiangular
condition.

In fact, there is no need to generate ETF for all C and
d. As we discussed in last subsection, the most important
property of ETF is equiangular. A sets of feature that meets
c-equiangular with large c is enough for feature learning.
Therefore, an ETF with redundancy of 1 (redundancy is
defined as d/C) is fairly enough, which we called trivial
ETF. Note that for any d, there always exists d-dimensional
trivial ETF, since it is constructed from the orthonormal
basis of Rd by the following formula

M⋆ =

√
m

m− 1

(
I − 1

m
IIT
)

where I is the identity matrix and I is the ones vector.
In classification problems, if the number of classes C is
smaller than feature dimension d, we select C vectors in d-
dimensional trivial ETF as the best feature. It is reasonable
because the subset of ETF still meets equiangular condition.
In another case that C > d, we directly generate trivial ETF
in RC . When performing feature learning, we use linear
transformation to transform the feature dimension d into
C. In this way, we obtain features that satisfy equiangular
property for any number of classes and feature dimension.

3. Methodology
In this section, we propose Representation-Balanced Learn-
ing Framework, which aims to learn a balanced representa-
tion space in long-tailed scenarios.

3.1. Representation-Balanced Learning

Notations We define symbols first. Denote the sample
space as X × Y , where X is the data space and Y is the
label space. We assume Y = {1, . . . , C}, where C is the
number of classes. Let the long-tailed training set be S =
{(xi, yi)}Ni=1, where xi ∈ X is the data point and yi ∈ Y
is the label. Denote f(·;w) the deep model, where w is
the model parameter. Assume the feature f(x;w) is a d-

dimensional vector.

Framework Remember in Neural Collapse phenomenon,
the class feature will coincide with the classifier weight of
the corresponding category. To make f(·;w) learn bal-
anced feature space M∗, the plain idea is minw CE ◦
Softmax(M⋆f(x;w)) (Yang et al., 2022b). However, this
approach may harm the feature learning of the model, since
f(x;w) is expected to learn a completely fixed matrix. To
avoid this issue, we introduce a learnable orthogonal matrix
R (refer to next subsection for optimization in SO(n)) to
register M∗ and f(x;w).

min
w,R

L(w, R, S) := − 1

N

N∑
i=1

log
exp([logit(x)]yi

)∑C
y=1 exp([logit(x)]y)

s.t. logit(xi) = M⋆Rf(xi;w)
(3)

where M⋆ is the feature we calculate in advance and R is the
orthogonal matrix. According to the number of categories
C and feature dimension d, the sizes of M⋆ and R are
designed specifically. If C ≤ d, M⋆ is a C × d matrix and
R is d × d orthogonal matrix, where every row of M⋆ is
the vector in d-dimensional trivial ETF. When C > d, we
generate C-dimensional trivial ETF as M⋆ and let R be the
C × d orthogonal projection matrix. The orthogonal matrix
R is for preservation of equiangular of M∗. In this way,
f(x;w) is no longer only learning from M∗, but learning
from M∗’s rotation.

Post-Hoc Logit Adjustment In the analysis of the next
section, we would prove that optimization framework (3)
could lead to NeurCol even if in the long-tailed scenar-
ios. However, feature learning of our framework can only
learn balanced features, and it still requires proper decision-
making for full play to its abilities (Kang et al., 2019). To
this end, we perform Logit Adjustment when the model
performs classification.

argmax
i∈Y

[M⋆Rf(x;w)−margin]i (4)

Logit Adjustment (Menon et al., 2020) is a simple but ef-
fective method for long-tailed learning. It adds margins
before Softmax to make the loss function Fisher Consis-
tent, which means the model trained by Logit Adjustment
over a long-tailed dataset could minimize balanced error
consistently. Since margins in loss function will influence
the feature learning, we use post-hoc Logit Adjustment,
which is subtracting margins when performing classification.
Here, we follow the configuration of Balanced Softmax (Ren
et al., 2020), set margin as [log(N1/N), . . . , log(NC/N)]T ,
where Ni is the number of samples in category i of training
set.
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3.2. Optimization in Lie Group

So far, we have proposed Representation-Balanced Learn-
ing Framework. In our framework, we use rotation parame-
terized by an orthogonal matrix to preserve the equiangular
property of M⋆. In the specific implementation, we can
use a block of orthogonal matrices to represent orthogonal
projection matrix. Therefore, the question becomes how to
optimize an orthogonal matrix. Suppose we need a matrix
that lies in SO(d) to represent rotation. SO(d) is the special
orthogonal group, i.e., Lie Group

SO(d) = {A ∈ Rd×d|ATA = I, detA = 1}

Note that the standard SGD can not assure that R always
be in SO(d) during training. We address this issue in an
algebra way (Lezcano-Casado & Martınez-Rubio, 2019).
Consider the Lie Algebra so(d) formed by skew-matrices

so(d) = {A ∈ Rd×d|A+AT = 0}

In the theory of Lie Group, there exists a well-known con-
clusion between the structure of the SO(d) and so(d), i.e.,
exponential mapping on matrix exp{·} : so(d) → SO(d)
is a homomorphism of Lie Group SO(d). The mapping
exponential of matrix exp(·) is defined as

exp(A) = I +A+
A2

2
+ . . .

Therefore, the optimization in SO(d) could be transformed
into optimization in so(d):

min
A∈SO(d)

loss(A)
A=exp{B}⇐⇒ min

B∈so(d)
loss(exp{B}) (5)

Note that both sides of (5) have the same minimum. Since
exp(·) is a surjective mapping, once one obtains the solution
of right, the other side could be found by the mapping A =
exp(B). Furthermore, the Lie Algebra so(d) is isomorphic
to a linear space. The isomorphism mapping is given by
ϕ(A) : A 7→ A − AT . Consequently, the constraint of
SO(d) could be eliminated.

min
A∈SO(d)

loss(A)
A=exp(B−BT )⇐⇒ min

B∈Rd×d
loss(exp(B −BT ))

(6)

In the above formulation, the optimization with orthogonal
constraint is transformed into the optimization in Rd×d. For
the right side of (6), we could use standard optimization
techniques such as SGD and Adam.

4. Theoretical Analysis
In this section, we analyze our framework from feature
learning and generalization. All proofs in this section could
be found in Appendices.

4.1. Feature Learning

Before studying the feature learning of RBL, we have to
mention the work of (Graf et al., 2021). Different from the
experimental observations (NeurCol and ETF feature) of
(Papyan et al., 2020), the optimal feature obtained by them
through inequalities is also symmetrical, yet it is not ETF,
but Regular Simplex. The relationship between ETF and
Regular Simplex in algebra is very complex (Fickus et al.,
2018). However, to the best of our knowledge, no works
study their relationship in feature learning. The following
lemma can fill this void:
Lemma 4.1 (Regular Simplex). Consider a c-equiangular
ETF {ζi}Ci=1 in Rd. Define its means as ζ̄ = 1

C

∑C
i=1 ζi.

Then the frame {ζi− ζ̄}Ci=1 forms a Regular Simplex, which
means

(S1).
C∑
i=1

(ζi − ζ̄) = 0 (zero mean)

(S2).∥ζi − ζ̄∥ =
√
N (C, c),∀i (equalnorm)

(S3).⟨ζi − ζ̄, ζj − ζ̄⟩ = A(C, c),∀i ̸= j (equiangular)

where

A(C, c) = c− 1 + (C − c)

C
and

N (C, c) = 1− 1 + (C − c)

C
.

Lem. 4.1 tells how to construct Regular Simplex from ETF
geometrically. Based on this conclusion, we give the follow-
ing theorem:
Theorem 4.2 (Feature Learning of Framework (3)). As-
sume the feature f(·; ·) has d dimension and maximum norm
is ρ. M⋆ = [mT

1 , · · · ,mT
C ]

T is a C × d matrix, where each
row vector mi comes from a c-equiangular Equiangular
Tight Frame. Consider the training set S = {(xi, yi)}Ni=1

with C categories,

L(w, R, S) ≥ log

(
1 + (C − 1) exp

[
− CρN (C, c)

C − 1

])
holds. The equality holds if and only if for any (xi, yi) ∈ S,
such that

Rf(xi;w) = ρ
mT

yi
− M̄⋆√
N (C, c)

Remark 4.3. During training, the features gradually are
pushed against the spherical surface with radius ρ, and an-
gles between any two classes get larger and larger. Finally,
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once the features in every class achieve the equiangular
property, i.e., collapse to the corresponding class vector in
Regular Simplex, the loss function would reach the above
lower bound.

Based on the above theorem, we know our framework can
learn the balanced feature space, i.e., Regular Simplex, and
lead to NeurCol phenomenon in long-tailed learning.

4.2. Two-Parameter Model Stability

Then, we turn to explore generalization of our framework by
stability (Hardt et al., 2016; Lei & Ying, 2020). Recall that
a part of weights of RBL is parameterized as an orthogonal
matrix by substitution techniques. Therefore, the standard
analysis of model stability can not be applied to RBL. To this
end, we extend the previous analysis paradigm (Lei & Ying,
2020) to propose Two-Parameter Model Stability, which
analyzes model stability by splitting the model parameter
into two parts. During optimization, two parts of parameters
are performed with different update rules.

First, we consider the common case, i.e., both parameters
are updated without any constraints. Define the loss function
g(x;w;T ), where x is a sample and w, T are the model
parameters. Given a dataset S = {xi}Ni=1, the SGD update
rule of minw,T Êx∈Sg(x;w;T ) is given by

Definition 4.4 (Update Rule of Two-Parameter Model).

wt+1 ← wt − ηwt ∂wt
g(xit ;wt;Mt)

Tt+1 ← Tt − ηTt ∂Tt
g(xit ;wt;Tt)

In the t-th iteration, the it-th data in S are sampled uniformly
to perform optimization. The learning rates of w and T
are ηwt and ηTt respectively. And ∂wt

g(xit ;wt;Mt) and
∂Tt

g(xit ;wt;Tt) are the sub-gradients of g(xit ;wt;Tt)
w.r.t w and T .

To obtain the model stabilities of w and T , introduce an-
other dataset S(i) = S \{xi}

⋃
{x̃i}, which only differs

i-th sample from S and follows from the same distribu-
tion with S. We denote S̃ = {x̃i}Ni . Then for random
algorithm Def. 4.4, we use empirical risks GS(w;T ) =
1
N

∑N
i=1 g(xi;w;T ) to bound its stabilities.

Theorem 4.5 (Two-Parameter ℓ1 Model Stability). Con-
sider the two groups of parameters (wt, Tt) and (w

(i)
t , T

(i)
t )

trained on S and S(i) from the same starting point by the
update rule Def. 4.4, assume

• g(x;w;T ) is nonnegative for any x, w and T ;

• T 7→ g(x;w;T ) is LT -smooth for any w and x;

• w 7→ ∂wg(x;w;T ) is ℓw-lipschitz for any T and x;

• w 7→ g(x;w;T ) is Lw-smooth for any T and x;

• T 7→ ∂T g(x;w;T ) is ℓT -lipschitz for any w and x.

We denote v = [ηTt
√
2LT , η

w
t

√
2Lw]

T and

F =

[
1 + N−1

N ηTt LT
N−1
N ηTt ℓw

N−1
N ηwt ℓT 1 + N−1

N ηwt Lw

]
Then, if ηTt /η

w
t = ℓT /ℓw holds, the ℓ1 model stabilities of

w and T is given by ES,S̃,A

[
1
N

∑N
i=1 ∥Tt+1 − T

(i)
t+1∥

]
ES,S̃,A

[
1
N

∑N
i=1 ∥wt+1 −w

(i)
t+1∥

]  ≤
2

N

t∑
j=1

(
λt−j
1 p1p

T
1 v + λt−j

2 p2p
T
2 v
)
ES,A

[√
GS(wj ;Tj)

]
where λ1, λ2 and p1,p2 are eigen values and eigen vectors
of F respectively.

Then we consider the Two-Parameter Model Stability with
the one constrained parameter. In our framework, the lin-
ear classifier R is restricted as orthogonal matrices. Sup-
pose we parameterize R ∈ SO(d) (whether R is a square
matrix does not affect the analysis) by the mapping R =
exp

(
B −BT

)
, where B ∈ Rd×d, the SGD update rule of

RBL is given by

Definition 4.6 (Update Rule of Framework (3)).

wt+1 ← wt − ηwt ∂wt
f(xit ;wt;Rt)

Bt+1 ← Bt − ηTt ∂Bt
f(xit ;wt;Rt)

Tt+1 ← Bt+1 −BT
t+1

Rt+1 ← exp(Tt+1)

Here, f(x;w;R) indicates the loss function, and
we use FS(w, R) to represent the empirical risk
1
N

∑N
i=1 f(xi;w;R) over S. The update rule of R is not

standard due to the parameterization, while B performs
the standard SGD update. Then ℓ1 model stability of our
framework is as follows.

Theorem 4.7 (Two-Parameter ℓ1 Model Stability of
Framework (3)). Consider the two groups of parameters
(wt, Tt) and (w

(i)
t , T

(i)
t ) trained on S and S(i) from the

same starting point by the update rule Def. 4.6. Then let

w → f(x;w; eT ), T → f(x;w; eT )

of Def.4.6 be

w → g(x;w;T ), T → g(x;w;T )

of Def.4.4. Assume Tt lies in a bounded space Ω ⊂
so(d) for all t (see Assumption.D.2 of Appendices for
more details) all assumptions in Thm.4.5 holds. Denote
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λk−j
1 p1p

T
1 v + λk−j

2 p2p
T
2 v as p(k, j). Then the ℓ1 model

stability of parameter R is given by

E
S,S̃,A

[
1

N

N∑
i=1

∥Rt+1 −R
(i)
t+1∥

]
≤

2H(Ω)Lϕ

N

t∑
j=1

(
h1(j) + h2(j)

)
ES,A

[√
FS(wj , Rj)

]
where h1(j) = (N − 1)

∑t−j+1
k=1 Nk−t−1p(k, j)1 and

h2(j) =
√
2LTN

j−tηj .
Remark 4.8. According to Thm.2 (a) of (Lei & Ying, 2020),
once the first order gradient of f(·;w;R) is bounded, one
can obtain the generalization error, which is proportional
to the ℓ1 model stabilities. Thus, if the training set is large
enough, our method can reach a reasonable generalization
result.

5. Experiments
To illustrate our method’s effectiveness empirically, we con-
duct a series of experiments.

5.1. Dataset

We use several benchmark datasets in our experiments, in-
cluding CIFAR10/CIFAR100 (Krizhevsky et al., 2009) and
long-tailed ImageNet (Liu et al., 2019). We use the im-
balanced ratio to represent how imbalanced a dataset is.
Imbalanced ratio is the ratio of the samples between the
most-frequent class and the rarest class in the dataset.

Long-Tailed CIFAR CIFAR10/CIFAR100 both contain
60000 images of size 32 × 32, where 10000 of them are
for testing and 50000 for training. Note that the labels
in the original CIFAR10/CIFAR100 dataset are uniformly
distributed, so we generate long-tailed versions from the
original data. Refer to experiments of other studies, we
use exponential decay (Cui et al., 2019) to generate long-
tailed training set with 50, 100, 200 imbalance ratios for
both datasets, and keep the test sets unchanged.

Long-Tailed ImageNet ImageNet-LT is the long-tailed ver-
sion of ImageNet-1K (Russakovsky et al., 2015). ImageNet-
LT has 1K categories and 115.8K images for training, where
the imbalance ratio is 256. Besides, the valid set and test set
of ImageNet-LT have 20 and 50 images for each category
respectively.

5.2. Experimental Setups

Competitors We devide competitors into two technical
routes: 1). Class Balanced Learning inlcuding Class-
Balanced loss (Cui et al., 2019), Calibrated (Xu et al., 2021),
Decoupling-LWS, Decoupling-cRT (Kang et al., 2019), see-
saw (Wang et al., 2021a), BalancedSoftmax (Ren et al.,
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Figure 3: Generalization analysis on CIFAR100. The two
rows show the accuracies of Fixed and our method on train-
ing set and validation set in every epoch respectively.
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Figure 4: Generalization analysis on CIFAR100. The two
rows show the cross entropy loss of Fixed and our method
on training set and validation set in every epoch respectively.

2020), MARC (Wang et al., 2021c), LADE (Hong et al.,
2021); 2). Contrastive Learning inlcuding TSC (Li et al.,
2022), HCL (Wang et al., 2021b), KCL (Kang et al., 2020).
Besides, we also compare Fixed (Yang et al., 2022b) as
baseline. In this method, the classifier is fixed as ETF. We
implement it with our framework, where the orthogonal
matrix is fixed during training. The other implementation
details are the same as ours.

Implementation details All experiments of our framework
are conducted in Pytorch (code implementation could be
found in Appendices). In our methods, dimensions of
the feature is important. To obtain feature with differ-
ent dimensions, a linear layer that transforms feature di-
mensions is added after backbone. Following previous
work, for CIFAR10/100-LT, we use ResNet-32 with 256
feature dimensions as the backbone; for ImageNet-LT, we
use ResNext-50 with 512 feature dimensions as the back-
bone. We utilize SGD optimization for all experiments. For
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Table 1: Test accuracies on CIFAR10/100-LT. The best and sec-
ond best results are marked as bold and underline.

Method CIFAR-10 CIFAR-100
50 100 200 50 100 200

CB 79.3 74.6 68.9 45.3 39.6 36.2
LADE - - - 50.5 45.4 -

Calibrated 84.3 82.8 78.5 51.1 45.5 42.1
cRT - 82.0 76.6 - 50.0 44.5
LWS - 83.7 78.1 - 50.5 45.3
BS - 83.1 79.0 - 50.3 45.9

MARC - 85.3 81.1 - 50.8 47.4

HCL 85.4 81.4 - 51.9 46.7 -
TSC 82.9 79.7 - 47.4 43.8 -

Fixed 87.1 84.0 80.2 56.2 52.3 47.2
RBL 87.6 84.7 81.2 57.2 53.1 48.9

Table 2: Test accuracies on ImageNet-LT. The best and second
best results are marked as bold and underline.

Method Many Medium Few All

Calibrated - - - 48.4
cRT - - - 49.5
LWS - - - 49.9

Seesaw 67.1 45.2 21.4 50.4
BS 63.6 48.4 32.9 52.1

MARC 60.4 50.3 36.6 52.3
LADE 65.1 48.9 33.4 53.0

HCL 61.8 49.4 30.9 51.5
TSC 63.5 49.7 30.4 52.4

Fixed 64.3 47.6 27.2 51.2
RBL 64.8 49.6 34.2 53.3

CIFAR10/100-LT, the model is trained for 600 epochs with
batch size 256. Besides, the learning rate linearly warm up
from 0.05 to 0.1 within the first 8 epochs, and then decays to
zero in cosine decay scheme. For ImageNet-LT, we train the
model for 200 epochs with batch size 64. The learning rate
is set as 0.25 and decays to zeros by cosine decay during
training. For all datasets, the weight decay and momentum
are set as 0.0005 and 0.9. As for data augmentation, for
CIFAR10/100-LT, we perform AutoAugment (Cubuk et al.,
2019); and for ImageNet-LT, we perform several common
augmentation methods including RandomCrop, Random-
Flip, and ColorJitter.

5.3. Evaluation protocols

We use balanced accuracy as the evaluation metric. Since
the test dataset in experiments have the same number of
samples for each class, the standard accuracy calculated on
them is balanced. In addition, we also provide accuracies
over three different subsets of test set: Many-shot, Medium-
shot, and Few-shot. Many-shot subset only consists of the
classes that have more than 100 samples in training set,

while Medium-shot and Few-shot consist of the class that
has 20 ∼ 100 samples and less than 20 samples respectively.
Since CIFAR10/100 datasets have no valid set, we report
the highest accuracy on test set. And for ImageNet-LT, we
keep the model with the best performance on valid set, and
report its accuracy metric over test set.

5.4. Experimental Results

The performance comparisons are shown in Tab.1 and 2.
Except that Fixed is our implementation, all results of other
methods come from the original paper. We have three ob-
servations from the results: 1). Ours generally outperforms
previous methods, which validates the effectiveness of our
method. 2). In Tab.2, Our results on Many, Medium, and
Few shot are not outstanding but still have a high rank com-
pared with other methods. As a result, it has the highest
accuracy on all test set. This shows that our method is bal-
anced for head classes and tail classes, could achieve good
trade-off between them. 3). In CIFAR10/100, both Fixed
and Ours can achieve SOTA level, whereas in the larger
scale dataset, ImageNet-LT, Fixed is completely inferior to
Ours. This phenomenon shows that the fixed feature space
is far from enough for long-tailed feature learning.

5.5. Generalization Analysis

To study the generalization of our method, we report the
accuracies of RBL and Fixed on CIFAR100 in every epoch.
As shown in Fig.3 and 4, we observe after both methods
converge, their accuracies on training set are almost the
same. Yet, RBL always has higher accuracy on validation
set (CE loss is the same). This indicates that our RBL can
generalize better on unseen data. We hold the opinion that
the generalization of the model may be harmed by the fixed
feature, especially when the model size is limited. Fixed
requires a more powerful feature extractor to compensate
for the fixed feature, since the random generated ETF can
hardly be the best.

6. Conclusion
In this paper, we argue that in classification problems, both
the structure and direction of features are import. The
Equiangular Tight Frame with fixed directions is totally in-
adequate. In order to learn ETF with arbitrary directions, we
introduce Representation-Balanced Learning Framework,
which can register the angle between ETF and model fea-
tures through learnable orthogonal matrices. Our idea could
be devided into two steps: First, according to different cases
of class number and feature dimension number, we generate
ETF with redundancy of 1 as the balanced feature to be
learned. Next, to avoid fixed features weakening the learn-
ing ability, we introduce orthogonal matrices to learn both
the structure and direction of ETF. Theoretically, without
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assuming that the training set is uniform, we prove that
our framework could achieve same effect to NeurCol phe-
nomenon. To analyze the generalization performance of
our framework, we propose Two-Parameter Model Stabil-
ity. It provides a new perspective to analyze the stability
of parameters with constraint. Finally, we conduct a series
experiments to demonstrate advantages of our method.
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A. Related Work
We give a brief overview of long-tail learning from three perspectives: class-balanced methods, supervised contrastive
learning, and feature learning. More comprehensive overviews of long-tailed learning could be found in (Zhang et al., 2021;
Yang et al., 2022a).

Class-Balanced Methods The sampling-based approach is the most intuitive (Mahajan et al., 2018; Kang et al., 2019;
Wang et al., 2020). The common sampling strategies include instance-balanced sampling and class-balanced sampling.
Instance-balanced sampling samples every instance in datassets with equal probability, while in class-balanced sampling,
every class has an equal probability to be sampled. On the basis of instance-balanced sampling, (Mahajan et al., 2018)
proposes to use the square root of the number of samples as the sampling probability. These methods make training set more
balanced by different sampling schemes, which could improve accuracy of tail classes. However, it is found that there exists
a performance trade-off between head class and tail class for sampling-based methods (Kang et al., 2019). Another idea for
solving the long-tailed problem is to balance the cost of different classes by designing a balanced loss function (Tan et al.,
2020; Cui et al., 2019; Cao et al., 2019; Ren et al., 2020; Menon et al., 2020). From the perspective of data overlay, (Cui
et al., 2019) proposes to measure the volume of datasets by effective number. Effective number is defined as a function of
the number of samples. Then they use effective number to re-weigh the losses of different classes. Further, (Cao et al., 2019)
proposed LDAM loss. It achieves the lower bound of margin-based generalization bound by adding a set of well-designed
margins. Then, (Ren et al., 2020; Menon et al., 2020) point out that existing methods based on loss weighting and margin
modification can not achieve Fisher consistency. Inspired by this, they propose Balanced Softmax and Logit Adjustment
that could minimize balanced error consistently.

Supervised Contrastive Learning Contrastive Learning is an implementation way of Unsupervised Learning, which aims
to learn features by narrowing the distance between similar samples and enlarging the distance between different samples.
SCL (Khosla et al., 2020) pioneered the use of contrastive learning in supervised classification problems. Later, a group
of methods based on Supervised Contrastive Loss were proposed (Cui et al., 2021; Kang et al., 2020; Li et al., 2022; Zhu
et al., 2022; Jiang et al., 2021). The above approaches target to learn balanced feature space to improve the performance
in long-tailed scenes. KCL (Kang et al., 2020) fixes the number of positive samples in each batch to learn the balanced
representation. Paco (Cui et al., 2021) is a contrastive learning framework based on Maco (He et al., 2020). They introduce
parametric class-wise learnable centers, which could enhance the learning for hard examples and imbalanced data. Similarly,
(Li et al., 2022; Zhu et al., 2022) are motivated by (Papyan et al., 2020)’research of features, introduces the concept of
category center in contrastive loss as well. TSC (Li et al., 2022) generates features uniformly distributed on the sphere in
advance as the category center, while BCL (Zhu et al., 2022) uses the classifier weight as the category prototype.

Representation Learning (Kang et al., 2019) pioneers two-stages training in long-tailed learning. They found that only
finetuning the classifier could achieve satisfactory performance. Besides, (Papyan et al., 2020) found Neural Collapse
phenomenon in classification. Specifically, as the cross entropy converges to zeros, the feature that model learned would
form an ETF. which does not vary with dataset scales and backbones. Going a step further, (Graf et al., 2021) obtains a
similar conclusion in theory. Based on their conclusions, TSC and BCL are proposed to learn the balanced feature for
long-tailed learning. The recently proposed fixed (Yang et al., 2022b) proposes to learn ETF directly by fixing the classifier
as ETF. We argue that only ETF structure is not enough for the feature learning of classification. Therefore, we propose
RBL that can learn the ETF with any direction.

B. The proofs of Lem. 4.1 and Thm. 4.2
Before we give the proof of Thm. 4.2, we prove Lem. 4.1 first.

Restatement of Theorem 4.1. Consider a c-equiangular ETF {ζi}Ci=1 in Rd. Define its means as ζ̄ = 1
C

∑C
i=1 ζi. Then

the frame {ζi − ζ̄}Ci=1 forms a Regular Simplex, which means

(S1).
C∑
i=1

(ζi − ζ̄) = 0 (zero mean)

(S2).∥ζi − ζ̄∥ =
√
N (C, c),∀i (equalnorm)

(S3).⟨ζi − ζ̄, ζj − ζ̄⟩ = A(C, c),∀i ̸= j (equiangular)
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where

A(C, c) = c− 1 + (C − c)

C

and

N (C, c) = 1− 1 + (C − c)

C
.

Proof. (S1) is clear. We prove the equiangular property (S3) first. According to the c-equiangular property of ETF, we
know ∀i, j(i ̸= j), ⟨ζi, ζj⟩ = c. Given any i, j(i ̸= j), we have

⟨ζi − ζ̄, ζj − ζ̄⟩ = ⟨ζi, ζj⟩ − ⟨ζ̄, ζj⟩ − ⟨ζi, ζ̄⟩+ ⟨ζ̄, ζ̄⟩

= c− 1

C

C∑
k=1

⟨ζk, ζj⟩ −
1

C

C∑
k=1

⟨ζi, ζk⟩+
1

C2

C∑
k=1

C∑
v=1

⟨ζk, ζv⟩

= c− 2
1 + (C − 1)c

C
+

C(1 + (C − 1)c)

C2

= c− 1 + (C − 1)c

C

The proof of equalnorm property (S2) is similar. Consider a vector ζi − ζ̄, we have

∥ζi − ζ̄∥2 = ⟨ζi, ζi⟩ − 2⟨ζi, ζ̄⟩+ ⟨ζ̄, ζ̄⟩

= 1− 2
1 + (C − 1)c

C
+

C(1 + (C − 1)c)

C2

= 1− 1 + (C − 1)c

C

Then, we will give the proof of Thm. 4.2.

Restatement of Theorem 4.2. Assume the feature f(·; ·) has d dimension and maximum norm is ρ. M⋆ = [mT
1 , · · · ,mT

C ]
T

is a C × d matrix, where each row vector mi comes from a c-equiangular Equiangular Tight Frame. Consider the training
set S = {(xi, yi)}Ni=1 with C categories,

L(w, R, S) ≥ log

(
1 + (C − 1) exp

[
− CρN (C, c)

C − 1

])

holds. The equality holds if and only if for any (xi, yi) ∈ S, such that

Rf(xi;w) = ρ
mT

yi
− M̄⋆√
N (C, c)

Proof. Recall our optimization objective in (3) is

min
w,R

L(w, R, S) := − 1

N

N∑
i=1

log
exp([logit(x)]yi

)∑C
y=1 exp([logit(x)]y)

s.t. logit(xi) = M⋆Rf(xi;w)

where R,w is the optimization variables and R is restricted as orthogonal matrix. M⋆ is pre-computed ETF and keeps fixed
during training.
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− 1

N

N∑
i=1

log

{
exp

(
[logit(xi)]yi

)
∑C

j=1 exp
(
[logit(xi)]j

)}

=
1

N

N∑
i=1

log

(
1 +

∑
j ̸=yi,j∈[C]

exp
(
[logit(xi)]j − [logit(xi)]yi

))
C1
≥ 1

N

N∑
i=1

log

(
1 + (C − 1) exp

[ 1

C − 1

∑
j ̸=yi,j∈[C]

[logit(xi)]j − [logit(xi)]yi

])
C2
≥ log

(
1 + (C − 1) exp

[ 1

(C − 1)N

N∑
i=1

∑
j ̸=yi,j∈[C]

[logit(xi)]j − [logit(xi)]yi

])

= log

(
1 + (C − 1) exp

[ 1

(C − 1)N

N∑
i=1

∑
j∈[C]

[logit(xi)]j − [logit(xi)]yi

])

The inequalities C1 and C2 follow from Jensen’s inequality. For inequality C1, we know t→ exp(t) is a convex function,
so the equality in C1 holds when

(C1).∀i ∈ [N ],∃Mi ∈ R,∀y ∈ [C](y ̸= yi),
[
logit(xi)

]
y
= Mi

Then for inequality C2 is due to the convex function t→ log(1 + exp(t)). Therefore, the equality in C2 holds when

(C2).∃M ∈ R,∀i ∈ [N ],
∑

j ̸=yi,j∈[C]

(
[logit(xi)]yi − [logit(xi)]j

)
= M

The function t → log(1 + exp(t)) is monotonically increasing, so next we try to bound
∑N

i=1

∑
j∈[C][logit(xi)]j −

[logit(xi)]yi . To illustrate the role of ETF M⋆, we denote

logit(xi) = M⋆Rf(xi, w) =
[
m1Rf(xi, w), . . . ,mCRf(xi, w)

]T
=
[
⟨mT

1 , Rf(xi, w)⟩, . . . , ⟨mT
C , Rf(xi, w)⟩

]T
,

then

N∑
i=1

∑
j∈[C]

[logit(xi)]j − [logit(xi)]yi
=

N∑
i=1

∑
j∈[C]

⟨mT
j , Rf(xi, w)⟩ − ⟨mT

yi
, Rf(xi, w)⟩

= C

N∑
i=1

⟨(M̄⋆ −mT
yi
), Rf(xi, w)⟩

C3
≥ −C

N∑
i=1

∥(M̄⋆ −mT
yi
)∥∥Rf(xi, w)∥

C4
≥ −Cρ

N∑
i=1

∥(M̄⋆ −mT
yi
)∥

where we denote 1
C

∑C
j=1 m

T
j as M̄⋆. The inequality C3 follows from the Cauchy-Schwarz inequality, equality holds if

and only if
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(C3).∀i ∈ [N ],∃λi ∈ R+, Rf(xi, w) = λi(m
T
yi
− M̄⋆)

The inequality C4 follows from the assumption for feature extractor, with equality if and only if

(C4).∀i ∈ [N ], ∥Rf(x;w)∥ = ρ

To explore what the feature f(x) is look like when the objective function reach its minimum, we check the conditions C1 -
C4 that make the equality hold. We start from C3 and C4. Given a sample (xi, yi), we have

∥Rf(xi;w)∥ = λi∥mT
yi
− M̄⋆∥ = ρ

For the simplicity of result, we denote 1− 1+(C−1)c
C by N (C, c) and c− 1+(C−1)c

C by A(C, c). So, for any i ∈ [N ]

λi =
ρ

∥mT
yi
− M̄⋆∥

=
ρ√

1− 1+(C−1)c
C

=
ρ√
N (C, c)

Recall Lem. 4.1, we know the sequence of vector {mT
y − M̄⋆}Cy=1 is also equalnorm and equiangular. Therefore, the

learned feature of the framework is equalnorm and equiangular. Then return to the logit of sample (xi, yi), we have

if y ̸= yi,
[
logit(xi)

]
y
= ⟨mT

y , λi(m
T
yi
− M̄⋆)⟩ = λimy(m

T
yi
− M̄⋆) = λiA(C, c) = ρ

A(C, c)√
N (C, c)

if y = yi,
[
logit(xi)

]
y
= ⟨mT

yi
, λi(m

T
yi
− M̄⋆)⟩ = λimyi

(mT
yi
− M̄⋆) = λiN (C, c) = ρ

√
N (C, c)

According to the above formula, we derive the values of Mi in C1 and M in C2.

Mi = λiA(C, c) = ρ
A(C, c)√
N (C, c)

M = λi(C − 1)(A(C, c)−N (C, c)) = ρ(C − 1)(
A(C, c)√
N (C, c)

−
√
N (C, c))

C. The Proof of Thm.4.5
Lemma C.1. Assume the map w 7→ f(w) is nonnegative and L-smooth. Then for any w, we have

∥∂wf(w)∥ ≤
√
2Lf(w)

where ∂wf(w) denote the sub-gradient of w.

Restatement of Theorem 4.5. Consider the two groups of parameters (wt, Tt) and (w
(i)
t , T

(i)
t ) trained on S and S(i)

from the same starting point by the update rule

wt+1 ← wt − ηwt ∂wt
g(xit ;wt;Mt)

Tt+1 ← Tt − ηTt ∂Ttg(xit ;wt;Tt)

Assume

• The function g(x;w;T ) is nonnegative for any x, w and T ;

• The function T 7→ g(x;w;T ) is LT -smooth for any w and x;
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• The function w 7→ ∂wg(x;w;T ) is ℓw-lipschitz for any T and x;

• The function w 7→ g(x;w;T ) is Lw-smooth for any T and x;

• The function T 7→ ∂T g(x;w;T ) is ℓT -lipschitz for any w and x.

We denote

v =

[
ηTt
√
2LT

ηwt
√
2Lw

]
, F =

[
1 + N−1

N ηTt LT
N−1
N ηTt ℓw

N−1
N ηwt ℓT 1 + N−1

N ηwt Lw

]
, GS(w;T ) =

1

N

N∑
i=1

g(xi;w;T )

Then, if ηTt /η
w
t = ℓT /ℓw holds, the ℓ1 model stabilities of w and T are given by ES,S̃,A

[
1
N

∑N
i=1 ∥Tt+1 − T

(i)
t+1∥

]
ES,S̃,A

[
1
N

∑N
i=1 ∥wt+1 −w

(i)
t+1∥

]  ≤ 2

N

t∑
j=1

(
λt−j
1 p1p

T
1 v + λt−j

2 p2p
T
2 v
)
ES,A

[√
GS(wj ;Tj)

]

where λ1, λ2 and p1,p2 are eigen values and eigen vectors of F respectively.

Proof. First, we analyze ∥Tt+1 − T
(i)
t+1∥ and ∥wt+1 −w

(i)
t+1∥ separately. Consider ∥Tt+1 − T

(i)
t+1∥. If it = i, we have

∥Tt+1 − T
(i)
t+1∥ ≤∥Tt − T

(i)
t ∥+ ηTt ∥∂T t

g(xi;wt;Tt)− ∂
T

(i)
t
g(x̃i;w

(i)
t ;T

(i)
t )∥

≤∥Tt − T
(i)
t ∥+ ηTt ∥∂T t

g(xi;wt;Tt)∥+ ηTt ∥∂T (i)
t
g(x̃i;w

(i)
t ;T

(i)
t )∥

≤∥Tt − T
(i)
t ∥+

√
2LT η

T
t

(√
g(xi;wt;Tt) +

√
g(x̃i;w

(i)
t ;T

(i)
t )

)

where the last inequality follows from Lem.C.1. If it ̸= i, we have

∥Tt+1 − T
(i)
t+1∥ ≤∥Tt − T

(i)
t ∥+ ηTt ∥∂T tg(xit ;wt;Tt)− ∂

T
(i)
t
g(xit ;w

(i)
t ;T

(i)
t )∥

≤∥Tt − T
(i)
t ∥+ ηTt ∥∂T tg(xit ;wt;Tt)− ∂T tg(xit ;wt;T

(i)
t )∥+

ηTt ∥∂T tg(xit ;wt;T
(i)
t )− ∂

T
(i)
t
g(xit ;w

(i)
t ;T

(i)
t )∥

≤∥Tt − T
(i)
t ∥+ ηTt LT ∥Tt − T

(i)
t ∥+ ηTt ℓw∥wt −w

(i)
t ∥

=(1 + ηTt LT )∥Tt − T
(i)
t ∥+ ηTt ℓw∥wt −w

(i)
t ∥

Recall the update rule 4.4 uniformly samples a data from S and S(i) for every iteration. The probability of selecting the i-th
data is 1

N . Combining two cases with expectations, we have

ES,S(i),A

[
∥Tt+1 − T

(i)
t+1∥

]
≤ (1 +

N − 1

N
ηTt LT )ES,S(i),A∥Tt − T

(i)
t ∥+

N − 1

N
ηTt ℓwES,S(i),A∥wt −w

(i)
t ∥

+
1

N

√
2LT η

T
t ES,S(i),A

(√
g(xi;wt;Tt) +

√
g(x̃i;w

(i)
t ;T

(i)
t )

) (7)

Note that S and S(i) follow from the same distribution, So

ES,S(i),A

[
∥Tt+1 − T

(i)
t+1∥

]
≤ (1 +

N − 1

N
ηTt LT )ES,S(i),A∥Tt − T

(i)
t ∥+

N − 1

N
ηTt ℓwES,S(i),A∥wt −w

(i)
t ∥

+
2

N

√
2LT η

T
t ES,S(i),A

√
g(xi;wt;Tt)

(8)

According to the symmetry of two arguments, we know
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ES,S(i),A

[
∥wt+1 −w

(i)
t+1∥

]
≤ (1 +

N − 1

N
ηwt Lw)ES,S(i),A∥wt −w

(i)
t ∥+

N − 1

N
ηwt ℓTES,S(i),A∥Tt − T

(i)
t ∥

+
2

N

√
2Lwη

w
t ES,S(i),A

√
g(xi;wt;Tt)

(9)

We combine (8) and (9) to derive

[
ES,S(i),A∥Tt+1 − T

(i)
t+1∥

ES,S(i),A∥wt+1 −w
(i)
t+1∥

]

≤

F︷ ︸︸ ︷[
1 + N−1

N ηTt LT
N−1
N ηTt ℓw

N−1
N ηwt ℓT 1 + N−1

N ηwt Lw

][
ES,S(i),A∥Tt − T

(i)
t ∥

ES,S(i),A∥wt −w
(i)
t ∥

]
+

v︷ ︸︸ ︷[
ηTt
√
2LT

ηwt
√
2Lw

]
2

N
ES,S(i),A

[√
g(xi;wt;Tt)

]
(10)

Recall that Tt and T
(i)
t is equal when t = 1, solve the recursion to obtain

[
ES,S(i),A∥Tt+1 − T

(i)
t+1∥

ES,S(i),A∥wt+1 −w
(i)
t+1∥

]
≤ 2

N

t∑
j=1

F t−jvES,S(i),A

[√
g(xi;wj ;Tj)

]
(11)

To make F a symmetric matrix, let ηTt /η
w
t = ℓT /ℓw. Then for F , we have the following unitary decomposition

[
1 + N−1

N ηTt LT
N−1
N ηTt ℓw

N−1
N ηwt ℓT 1 + N−1

N ηwt Lw

]
= [p1,p2]

[
λ1 0
0 λ2

] [
pT
1

pT
2

]
(12)

where λ1, λ2 and p1,p2 are eigen values and eigen vectors of F respectively. Then We bring (12) into (11) to yield

[
ES,S(i),A∥Tt+1 − T

(i)
t+1∥

ES,S(i),A∥wt+1 −w
(i)
t+1∥

]
≤ 2

N

t∑
j=1

F t−jvES,S(i),A

[√
g(xi;wj ;Tj)

]

=
2

N

t∑
j=1

[p1,p2]

[
λt−j
1 0

0 λt−j
2

] [
pT
1 v

pT
2 v

]
ES,S(i),A

[√
g(xi;wj ;Tj)

]

=
2

N

t∑
j=1

(
λt−j
1 p1p

T
1 v + λt−j

2 p2p
T
2 v
)
ES,S(i),A

[√
g(xi;wj ;Tj)

]
The final conclusion follows from the sum of i = 1, . . . , N and the Jensen inequality.

D. The Proof of Thm.4.7
Lemma D.1. For any two square matrix X and Y with the same dimension, we have

∥eX+Y − eX∥ ≤ ∥Y ∥e∥Y ∥e∥X∥

where ∥ · ∥ indicates any matrix norm.

Before we begin the proof of theorem, we make a necessary assumption as follow.
Assumption D.2. Consider the optimization of Def.4.6, assume Tt ∈ Ω for any t, where Ω ⊂ so(n) is the auxiliary
parameter space. Suppose Ω is a bounded set, satisfying

max

 max
Tt∈Ω

Bt∈{Bt∈Rn×n|T=Bt−BT
t }

ϕ(∥∂Bt
f(xit ;wt;Rt)− ∂Bt

(f(xit ;wt;Rt))
T ∥)

∥∂Btf(xit ;wt;Rt)− ∂Bt(f(xit ;wt;Rt))T ∥
, max

Tt∈Ω

T
(i)
t ∈Ω

ϕ(∥Tt − T
(i)
t ∥)

∥Tt − T
(i)
t ∥

 = Lϕ,
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for any xit and wt, where ϕ(a) is the mapping a 7→ aea. And we denote maxT∈Ω e∥T∥ asH(Ω).

Then, formally, we propose our stability analysis for Representation-Balanced Learning.

Lemma D.3. Consider the two groups of parameters (wt, Rt) and (w
(i)
t , R

(i)
t ) trained on S and S(i) from the same starting

point by the update rule
wt+1 ← wt − ηwt ∂wt

f(xit ;wt;Rt)

Bt+1 ← Bt − ηTt ∂Bt
f(xit ;wt;Rt)

Tt+1 ← Bt+1 −BT
t+1

Rt+1 ← exp(Tt+1)

Assume

• Assumption D.2 holds.

• The function T 7→ f(x;w; eT ) is nonnegative and LT -smooth for any x and w.

We have

E
S,S̃,A

[
1

N

N∑
i=1

∥Rt+1 −R
(i)
t+1∥

]
≤H(Ω)Lϕ(N − 1)

t∑
j=1

N j−t−1 E
S,S̃,A

[ 1
N

N∑
i=1

∥Tj+1 − T
(i)
j+1∥

]
+

2
√
2LTH(Ω)Lϕ

t∑
j=1

N j−t−1ηTj E
S,A

[√√√√ 1

N

N∑
i=1

f(x̃i;wj ;Rj)
]

Proof. First, we consider ∥Rt+1 −R
(i)
t+1∥. When it = i, we have

∥Rt+1 −R
(i)
t+1∥ = ∥Rt+1 −Rt +Rt −R

(i)
t +R

(i)
t −R

(i)
t+1∥

≤ ∥Rt −R
(i)
t ∥+ ∥Rt+1 −Rt∥+ ∥R(i)

t −R
(i)
t+1∥

Then we turn to ∥Rt+1 −Rt∥,

∥Rt+1 −Rt∥ = ∥eTt+1 − eTt∥

= ∥ exp
(
Bt −BT

t − ηTt ∂Bt
f(xi;wt;Rt) + ηTt (∂Bt

f(xi;wt;Rt))
T
)
− eBt−BT

t ∥
≤ ∥ηTt (∂Bt

f(xi;wt;Rt))− ηTt (∂Bt
f(xi;wt;Rt))

T ∥
exp

[
∥ηTt (∂Btf(xi;wt;Rt))− ηTt (∂Btf(xi;wt;Rt))

T ∥
]
exp

[
∥Bt −BT

t ∥
]

where the inequality is due to Lem.D.1. Then, we denote maxT∈Ω e∥T∥ asH(Ω) and ϕ(a) as the map a→ ae2a

∥Rt+1 −Rt∥2 ≤ ϕ
(
ηTt ∥∂Btf(xi;wt;Rt)− (∂Btf(xi;wt;Rt))

T ∥
)
H(Ω) ≤ H(Ω)Lϕη

T
t ∥∂Ttf(xi;wt;Rt)∥

The above inequality follows from the bounded parameter space Ω in Assumption.D.2:

max
Bt∈{Bt∈Rd×d|T=Bt−BT

t }

ϕ(∥∂Bt
f(xi;wt;Rt)− ∂Bt

(f(xi;wt;Rt))
T ∥)

∥∂Btf(xi;wt;Rt)− ∂Bt(f(xi;wt;Rt))T ∥
≤ Lϕ, for any Tt ∈ Ω

And ∥R(i)
t −R

(i)
t+1∥ is similar, we have

∥R(i)
t+1 −R

(i)
t ∥ ≤ H(Ω)Lϕη

T
t ∥∂T (i)

t
f(x̃i;w

(i)
t ;R

(i)
t )∥
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Next, we consider the case that it ̸= i, we have

∥Rt+1 −R
(i)
t+1∥ = ∥ exp(Tt+1)− exp(T

(i)
t+1)∥

= ∥ exp(Tt+1 − T
(i)
t+1 + T

(i)
t+1)− exp(T

(i)
t+1)∥

≤ ∥Tt+1 − T
(i)
t+1∥ exp

[
∥Tt+1 − T

(i)
t+1

]
exp

[
∥T (i)

t+1∥
]

≤ ϕ
(
∥Tt+1 − T

(i)
t+1∥

)
H(Ω)

≤ H(Ω)Lϕ∥Tt+1 − T
(i)
t+1∥

(13)

where the last inequality is due to the assumption that max
Tt,T

(i)
t ∈Ω

ϕ(∥Tt−T
(i)
t ∥)

∥Tt−T
(i)
t ∥

≤ Lϕ. We combine two cases with

expectations,

E
S,S(i),A

[
∥Rt+1 −R

(i)
t+1∥

]
≤ 1

N
E

S,S(i),A

[
∥Rt −R

(i)
t ∥
]
+

N − 1

N
H(Ω)Lϕ E

S,S(i),A

[
∥Tt+1 − T

(i)
t+1∥

]
+

H(Ω)Lϕη
T
t

N
E

S,S(i),A

[
∥∂Tt

f(x̃i;wt;Rt)∥+ ∥∂T (i)
t

f(x̃i;w
(i)
t ;R

(i)
t )∥

]
=

1

N
E

S,S(i),A

[
∥Rt −R

(i)
t ∥
]
+

N − 1

N
H(Ω)Lϕ E

S,S(i),A

[
∥Tt+1 − T

(i)
t+1∥

]
+

2H(Ω)Lϕη
T
t

N
E

S,S(i),A

[
∥∂Ttf(x̃i;wt;Rt)∥

]
≤ 1

N
E

S,S(i),A

[
∥Rt −R

(i)
t ∥
]
+

N − 1

N
H(Ω)Lϕ E

S,S(i),A

[
∥Tt+1 − T

(i)
t+1∥

]
+

2
√
2LTH(Ω)Lϕη

T
t

N
E

S,S(i),A

[√
f(x̃i;wt;Rt)

]

where the last inequality follows from Lem.C.1. To solve the recursion, we multily N t+1 on both sides

N t+1 E
S,S(i),A

[
∥Rt+1 −R

(i)
t+1∥

]
≤N t E

S,S(i),A

[
∥Rt −R

(i)
t ∥
]
+N t(N − 1)H(Ω)Lϕ E

S,S(i),A

[
∥Tt+1 − T

(i)
t+1∥

]
+

N t2
√
2LTH(Ω)Lϕη

T
t E
S,S(i),A

[√
f(x̃i;wt;Rt)

]

And then, take a summation for t from 1 to t,

E
S,S(i),A

[
∥Rt+1 −R

(i)
t+1∥

]
≤H(Ω)Lϕ(N − 1)

t∑
j=1

N j−t−1 E
S,S(i),A

[
∥Tj+1 − T

(i)
j+1∥

]
+

2
√
2LTH(Ω)Lϕ

t∑
j=1

N j−t−1ηTj E
S,S(i),A

[√
f(x̃i;wj ;Rj)

]

Then we take a summation for i = 1, . . . , N to derive the on-average model stability,
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E
S,S̃,A

[
1

N

N∑
i=1

∥Rt+1 −R
(i)
t+1∥

]
≤H(Ω)Lϕ(N − 1)

t∑
j=1

N j−t−1 E
S,S̃,A

[ 1
N

N∑
i=1

∥Tj+1 − T
(i)
j+1∥

]
+

2
√

2LTH(Ω)Lϕ

t∑
j=1

N j−t−1ηTj E
S,S̃,A

[ 1
N

N∑
i=1

√
f(x̃i;wj ;Rj)

]

≤H(Ω)Lϕ(N − 1)

t∑
j=1

N j−t−1 E
S,S̃,A

[ 1
N

N∑
i=1

∥Tj+1 − T
(i)
j+1∥

]
+

2
√

2LTH(Ω)Lϕ

t∑
j=1

N j−t−1ηTj E
S,S̃,A

[√√√√ 1

N

N∑
i=1

f(x̃i;wj ;Rj)
]

(14)

The last inequality follows from Jensen inequality.

Through the Lem.D.3, we give the model stability of orthogonal matrix R in our framework.

Restatement of Theorem 4.7. Consider the two groups of parameters (wt, Rt) and (w
(i)
t , R

(i)
t ) trained on S and S(i)

from the same starting point by update rule

wt+1 ← wt − ηwt ∂wt
f(xit ;wt;Rt)

Bt+1 ← Bt − ηTt ∂Bt
f(xit ;wt;Rt)

Tt+1 ← Bt+1 −BT
t+1

Rt+1 ← exp(Tt+1)

Then let w → f(x;w; eT ) and T → f(x;w; eT ) in Lem.D.3 be w → g(x;w;T ) and T → g(x;w;T ) in Thm.4.5.
Assume Assumption.D.2 and all assumptions in Thm.4.5 hold. Denote p(k, j) = λk−j

1 p1p
T
1 v + λk−j

2 p2p
T
2 v. Then the ℓ1

model stability of parameter R is given by

E
S,S̃,A

[
1

N

N∑
i=1

∥Rt+1 −R
(i)
t+1∥

]
≤ 2H(Ω)Lϕ

N

t∑
j=1

(
h1(j) + h2(j)

)
ES,A

[√
FS(wj , Rj)

]

where h1(j) = (N − 1)
∑t−j+1

k=1 Nk−t−1p(k, j)1 and h2(j) =
√
2LTN

j−tηj .

Proof. The main idea of this theorem is to plug Thm.4.5 into Lem.D.3. Consider the unbounded EA,S,S̃

[
∥Tj+1 − T

(i)
j+1∥

]
,

accoring to the Thm.4.5, we know,

t∑
j=1

N j−t−1 E
S,S̃,A

[ 1
N

N∑
i=1

∥Tj+1 − T
(i)
j+1∥

]

≤2
t∑

j=1

N j−t−2

j∑
k=1

[
λj−k
1 p1p

T
1 v + λj−k

2 p2p
T
2 v
]
1
ES,A


√√√√ 1

N

N∑
i=1

f(xi;wk;Rk)

 (15)

Combine the conclusion of Thm.D.3 with (15) to derive the result.
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E
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1
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N∑
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∥Rt+1 −R
(i)
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]
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√
2LTH(Ω)Lϕ

t∑
j=1

N j−t−1ηj E
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[√√√√ 1

N

N∑
i=1

f(x̃i;wj ;Rj)
]
+

2H(Ω)Lϕ(N − 1)

t∑
j=1

N j−t−2

j∑
k=1

[
λj−k
1 p1p

T
1 v + λj−k

2 p2p
T
2 v
]
1
ES,A


√√√√ 1

N

N∑
i=1

f(xi;wk;Rk)


=2
√
2LTH(Ω)Lϕ

t∑
j=1

N j−t−1ηj E
S,A

[√√√√ 1

N

N∑
i=1

f(x̃i;wj ;Rj)
]
+

2H(Ω)Lϕ(N − 1)

t∑
j=1

t−j+1∑
k=1

Nk−t−2
[
λk−j
1 p1p

T
1 v + λk−j

2 p2p
T
2 v
]
1
ES,A


√√√√ 1

N

N∑
i=1

f(xi;wj ;Rj)


We label h1(j) = (N − 1)

∑t−j+1
k=1 Nk−t−1p(k, j)1 and h2(j) =

√
2LTN

j−tηj . By merging coefficient, we derive.

E
S,S̃,A

[
1

N

N∑
i=1

∥Rt+1 −R
(i)
t+1∥

]
≤ 2H(Ω)Lϕ

N

t∑
j=1

(
h1(j) + h2(j)

)
ES,A

[√
FS(wj , Rj)

]

Clearly, λ1 and λ2 is learger than 1. We know for any j ∈ [t],

p(1, j)1 < p(2, j)1 < · · · < p(t− j + 1, j)1

Then, we have

h1(j) < p(t− j + 1, j)1(N − 1)

t−j+1∑
k=1

Nk−t−1

= p(t− j + 1, j)1(N − 1)
N−t(1−N t−j+1)

1−N

= p(t− j + 1, j)1N
−t(N t−j+1 − 1)

= p(t− j + 1, j)1(N
−j+1 −N−t)

E
S,S̃,A

[
1

N

N∑
i=1

∥Rt+1 −R
(i)
t+1∥

]
≤ 2H(Ω)Lϕ

N

t∑
j=1

(
p(t− j + 1, j)1(N

−j+1 −N−t) +
√
2LTN

j−tηj

)
ES,A

[√
FS(wj , Rj)

]

E. Sensitivity Analysis
To study sensitivity of our framework to feature dimension, we conduct extensive experiments on CIFAR10/100. The feature
dimension is set in [8, 16, 32, 64, 128]. According to the results shown in Fig.5, we find that on CIFAR10, performances are
very stable, whereas on CIFAR100, performances drop sharply when feature dimension decreases from 16 to 8. Following
the Thm.2.2, all chosen feature dimension could represent 10 categories. This is consistent with our experiments on
CIFAR10. As for CIFAR100, things get different. The number of feature dimension that could represent up to 100 classes
lies in between 16 to 8. Once feature dimension decreases below this point, the performance are no longer satisfactory. We
conclude that it is necessary to match the feature dimension with the category number. Note that this conclusion is not only
applicable to our method, but also other methods.
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Figure 5: Sensitive analysis for feature dimension on six datasets. The horizontal and vertical axis represent the number of
feature dimension and the corresponding validation accuracies respectively. The length of each box shows the variation of
the each feature dimension.

F. PyTorch implementation of Our Method
To show all details of our method, we release the source code of our framework implemented by Pytorch. Our approach is
very simple in implementation, only need more than 20 lines code. Here, we provide two versions of implementation, as
shown in Code.1 and 2. The first is implemented by the geotorch library (Lezcano-Casado, 2019), which could perform
optimization on manifolds easily. Another version is implemented without using other third-party libraries. Both versions
are valid to reproduce experimental results. We recommend using the first since the former is more concise.

G. Details of Fig.2
In Fig.2, we design a toy experiment to simulate feature learning in classification, where the classification problem contains
3 categories. In the experiment of NeurCol Phenomenon, we set every class to have 30 samples. And in the experiment of
our framework, we set three classes has 100, 10, 1 samples respectively. Both experiments follow the common paradigm of
classification, using cross entropy loss and SGD optimization. To simulate the deep feature extractor, we let every sample
also could be optimized. Besides, when performing optimization updates, we projection the sample feature and classifier’s
weight into a sphere to constrain their maximum norm. This constraint for tne maximal norm is needed, which makes
NeurCol phenomenon more obvious. As shown in Fig.6 (a), if we eliminate this constraint, the feature may not achieve
complete NeurCol phenomenon. Before it reach the symmetry structrues, the excessively large norm makes the loss fast
converge, and feature learning stops due to the vanishing gradient. Besides, one can find that in Fig.6 (b), our framework
still could learn relatively balanced features. We attribute this to the fixed norm of classifier weights in our framework. In
the situation that the norm of classifier weights is fixed, our framework needs to reduce losses through ”pushing” sample
features as far as possible in the direction of corresponding classifier weight.
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class RBL(nn.Module):
r"""
Args:

backbone (nn.Module) : deep model for feature
feature_num (int) : backbone's feature dimension
class_num (int) : the number of classes
_cls_num_list (list) : numbers of sample in each class

Examples:
>>> import torchvision.models as models
>>> feature_dim = 512
>>> class_dim = 1000
>>> resnet18 = models.resnet18(num_classes=feature_dim).cuda()
>>> model = RBL(resnet18, feature_dim, class_dim, torch.arange(class_dim, 0, -1)).cuda()
>>> pred = model(torch.randn(1, 3, 224, 224).cuda())
>>> print(pred.shape)
torch.Size([1, 1000])

"""
def __init__(self, backbone, feature_num, class_num, _cls_num_list):

super(RBL, self).__init__()
self.feature_num = feature_num
self.class_num = class_num
self.backbone = backbone
self.margin = torch.log(torch.Tensor(_cls_num_list) / sum(_cls_num_list)).cuda()

if feature_num < class_num:
self.rotate = nn.Linear(class_num, feature_num, bias=False)
self.register_buffer("ETF", self.generate_ETF(dim=class_num))

else:
self.rotate = nn.Linear(feature_num, feature_num, bias=False)
self.register_buffer("ETF", \

self.generate_ETF(dim=feature_num)[:, :self.class_num])
geotorch.orthogonal(self.rotate, "weight")

def generate_ETF(self, dim):
return torch.eye(dim, dim) - torch.ones(dim, dim) / dim

def forward(self, x):
logit = self.backbone(x) @ self.rotate.weight @ self.ETF
return logit if self.training else logit - self.margin

Code 1: PyTorch implementation of our framework using geotorch library (Lezcano-Casado, 2019).

class PLPostHocModel(nn.Module):
def __init__(self, backbone, triv, feature_num, class_num, _cls_num_list):

super(PLPostHocModel, self).__init__()
self.feature_num = feature_num
self.class_num = class_num
self.backbone = backbone
_cls_num_list = torch.Tensor(_cls_num_list)
self.margin = torch.log(_cls_num_list / torch.sum(_cls_num_list)).cuda()

if feature_num < class_num:
self.register_buffer("ETF", self.generate_ETF(dim=class_num))
self.rotate = nn.Linear(class_num, class_num, bias=False)

else:
self.register_buffer("ETF", self.generate_ETF(dim=feature_num)\

[:, :self.class_num])
self.rotate = nn.Linear(feature_num, feature_num, bias=False)

def generate_ETF(self, dim):
return torch.eye(dim, dim) - torch.ones(dim, dim) / dim

def encode_rotate(self):
if self.feature_num < self.class_num:

return torch.linalg.matrix_exp(self.rotate.weight - self.rotate.weight.T)\
[:self.feature_num, :]

return torch.linalg.matrix_exp(self.rotate.weight - self.rotate.weight.T)

def forward(self, x):
logit = self.backbone(x) @ self.encode_rotate() @ self.ETF
return logit if self.training else logit - self.margin

def forward_feature(self, x):
return self.backbone(x)

Code 2: PyTorch implementation of our framework without third-party libraries.
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iteration = 0, CE = 1.122 iteration = 30, CE = 0.995 iteration = 60, CE = 0.814 iteration = 100, CE = 0.470 iteration = 200, CE = 0.020 iteration = 300, CE = 0.006

(a) The NeurCol phenomenon. There are 30 samples for each class.

iteration = 0, CE = 1.281 iteration = 30, CE = 0.874 iteration = 60, CE = 0.528 iteration = 100, CE = 0.300 iteration = 200, CE = 0.134 iteration = 300, CE = 0.086

(b) The feature learning of our framework. Each class has 100, 10, 1 samples respectively.

Figure 6: Experiments without constraint of maximal norm.


