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ABSTRACT

We study macro motion analysis, where macro motion refers to the collection of
all visually observable motions in a dynamic scene. Traditional filtering-based
methods on motion analysis typically focus only on local and tiny motions, yet
fail to represent large motions or 3D scenes. Recent dynamic neural representa-
tions can faithfully represent motions using correspondences, but they cannot be
directly used for motion analysis. In this work, we propose Phase-based neural
polynomial Gabor fields (Phase-PGF), which learns to represent scene dynamics
with low-dimensional time-varying phases. We theoretically show that Phase-
PGF has several properties suitable for macro motion analysis. In our experi-
ments, we collect diverse 2D and 3D dynamic scenes and show that Phase-PGF
enables dynamic scene analysis and editing tasks including motion loop detection,
motion factorization, motion smoothing, and motion magnification. Project page:
https://chen-geng.com/phasepgf

1 INTRODUCTION

The physical world is dynamic and full of different motions: from waving trees to walking peo-
ple, motions are present in different spatial regions, have diverse magnitudes, and manifest various
frequency characteristics. We refer to the collection of all visually observable motions in a scene
as the macro motion. Factorizing and analyzing macro motions is essential in understanding and
interpreting the dynamic world. We argue that analyzing macro motions requires a dynamic scene
representation that bear three key properties: It should be able to represent macro motions faithfully;
it should enable decomposing macro motions in both spatial domain and frequency domain; and it
should allow representing 3D scenes.

While modeling motions have been a constant topic of interest in computer vision, graphics, and
machine learning, existing methods do not meet the three properties simultaneously. Traditional mo-
tion processing and magnification methods allow analyzing motions by filtering input videos in fre-
quency domain and editing the frequency components’ magnitudes (Wu et al., 2012) or phases (Wad-
hwa et al., 2013). However, they only focus on micro motions (i.e., local and tiny motions) and they
do not handle 3D scenes. Recent methods (Li et al., 2021; 2022a; Fridovich-Keil et al., 2023) exploit
neural radiance fields (Mildenhall et al., 2021) to represent dynamic 3D scenes using deformation
fields (Pumarola et al., 2021) or flow fields (Du et al., 2021). For example, D-NeRF (Pumarola
et al., 2021) defines a template neural radiance field in the canonical space and builds correspon-
dences between the observation space and the canonical space using a displacement field. Although
3D correspondences explicitly represent scene motions, they cannot be directly used for the motion
analysis due to the lack of modeling underlying motion components.

In this work, we propose the Phase-based neural polynomial Gabor fields (Phase-PGF) that simulta-
neously meets all the three key properties for macro motion analysis. In particular, Phase-PGF rep-
resents a dynamic scene as a composition of wavelet-based neural fields, and the wavelet basis are
modulated by a set of temporally-varying phases. Therefore, macro motions in dynamic scenes
are captured by the phases. We show that under appropriate assumptions, Phase-PGF has theoret-
ical properties that allow various macro motion analysis tasks, such as motion separation, motion
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smoothing, and motion intensity adjustment. We then instantiate Phase-PGF with a novel neural
architecture and a training scheme for higher-quality dynamic scene representation and editing.

In our experiments, we collect examples of both 2D videos and 3D dynamic scenes (represented
by multi-view videos). We show that Phase-PGF allows macro motion analysis on both 2D and
3D dynamic scenes, allowing several macro motion analysis applications including motion loop
detection, motion separation, motion smoothing, and motion magnification.

In summary, our contributions are threefold: Firstly, we propose and formulate the problem of macro
motion analysis. Secondly, we introduce Phase-based neural polynomial Gabor fields (Phase-PGF)
for macro motion analysis. Lastly, our experiments show that Phase-PGF allows a series of dynamic
scene editing tasks on both 2D and 3D scenes.

2 RELATED WORK

Dynamic neural representations. Using neural representations (Mildenhall et al., 2021; Sitz-
mann et al., 2020) to represent dynamic signals has emerged as a popular research topic in re-
cent years. It has been widely used in representing 4D (3D space and 1D time) dynamic volumet-
ric videos with advantages including high-fidelity rendering and low storage requirements. Some
methods build explicit correspondences between frames by extracting dense flow or deformation
(Pumarola et al., 2021; Du et al., 2021; Li et al., 2021; 2023b; Park et al., 2021a;b). However, such
representation for motion is dense and is hard to analyze. Other approaches use inductive bias on
scenes to assist the reconstruction of dynamic scenes(Peng et al., 2021; 2023; Weng et al., 2022),
yet cannot be applied to general dynamic scenes. Recently some approaches propose to use hybrid
representations (Fridovich-Keil et al., 2023; Shao et al., 2023) to implicitly represent dynamic 3D
scenes, lacking interpretability on motion information. Beyond 3D dynamic scenes, there are also
works focusing on using neural representations for 2D videos(Li et al., 2022b; Chen et al., 2021;
Zhang et al., 2021b; Rho et al., 2022). However, most of them use implicit motion representation
which cannot be easily analyzed or edited.

Motion analysis and editing. Motion analysis and editing in dynamic content is an important task
in computer vision. Phase information is widely used in the field of motion analysis (Gautama &
Van Hulle, 2002; Meyer et al., 2018; Mai & Liu, 2022). For motion editing, early work solves this
problem with a Lagrangian perspective(Liu et al., 2005), yet renders artifacts with large motions. Wu
et al. (2012) proposes to understand this task with an Eulerian perspective and Wadhwa et al. (2013)
further proposes a phase-based method to perform motion magnification. Some other works (Davis
et al., 2015b;a; Davis, 2016) use physical modal analysis to manipulate local motions. Despite being
successful for tiny motions, they cannot make good editing on large and macro motions studied in
this paper.

Interpretable and editable neural scene representations. With the development of neural rep-
resentations (Mildenhall et al., 2021; Sitzmann et al., 2020), the interpretability of such methods has
become an important research area. Several works on this topic focus on the frequency domain or the
coarse-to-fine decomposition of the input signal (Lindell et al., 2022; Yang et al., 2022; Martel et al.,
2021). Other works target at spatial decomposition of the input content (Shuai et al., 2022; Zhang
et al., 2021a; Lu et al., 2020), allowing modifying the scene contents at an instance level. These prior
works primarily solve static scenes, yet our work focuses on dynamic content. Moreover, our work
focuses on the interpretability from the macro motion perspective of the representation, differing
from prior works.

Concurrent works. Recently there have been some concurrent works on tiny motion analysis and
editing. Feng et al. (2023) proposes a method to magnify local and tiny 3D motion, yet their method
has challenges in manipulating macro motion discussed in this work. Li et al. (2023a) gives an
approach to manipulate local motion, but their focus is also tiny motions.

3 APPROACH

In this section, we first formulate the problem of macro motion analysis. Then, we show an ab-
stract formulation and theoretical properties of the proposed Phase-based neural polynomial Gabor
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fields (Phase-PGF). Next, we introduce how we instantiate the formulation with neural networks to
represent 2-D and 3-D dynamic signals. Finally, we present a training scheme for our approach.

3.1 MACRO MOTION ANALYSIS

We define the macro motion as follows:

Definition 3.1 (Macro Motion). We assume a dynamic scene can be decomposed into k components
{s1, s2, · · · , sk}, each with rigid motion yi(t). The dynamic scene is represented using the following
implicit function:

s(x, t) =

k∑
i

si(x+ yi(t)) = s1(x+ y1(t)) + s2(x+ y2(t)) + · · ·+ sk(x+ yk(t)), (1)

where we assume si(x) is differentiable and non-constant over its domain. The macro motion is
defined as Y = {y1(t),y2(t), · · · ,yk(t)}.

Note that this definition does not imply that a cognitive object is only represented using only one
component si. Rather, an object can be represented using several components with several rigid
motions, making it possible to model complex scenes without loss of generality.

We are interested in analyzing macro motion. Specifically, we aim to find a low-dimensional repre-
sentation that represents Y and can be factorized in both the spatial domain and frequency domain.

3.2 PHASE-PGF: PHASE-BASED NEURAL POLYNOMIAL GABOR FIELDS

We propose Phase-based neural polynomial Gabor fields (Phase-PGF). In particular, to inherently
allow factorization of the represented signals in both spatial and frequency domains, we adopt poly-
nomial neural fields (Yang et al., 2022) with Gabor basis functions (Feichtinger & Strohmer, 2012)
as the basic building block. To represent motions in a low-dimensional space, we leverage the phases
of the Gabor basis functions. The formal definition is given by:

Definition 3.2 (Phase-PGF). Let B = {g1, g2, · · · , gm} to be a shift-orthogonal1 set of Gabor func-
tions gi(x; γi, µi, ωi, ϕi) = exp(−γi

2 ||x−µi||2) sin(ωix+ϕi). Let H = {h1(t), h2(t), · · · , hm(t)}
be a set of phase functions where hi(t) : R1 → R1. A Phase-based neural polynomial Gabor fields
(Phase-PGF) is a neural network f(x, t) = pL ◦pL−1 ◦ · · · ◦p1 ◦Ψ(x, t), where ∀i, pi are finite de-
gree multivariate polynomials, and Ψ(x, t) = {g1(x+h1(t)), g2(x+h2(t)), · · · , gm(x+hm(t))}
is m-dimensional feature encoding using basis B and phase functions H.

Intuitively, the time-varying phase information allows our model to represent the macro motions
using a low-dimensional vector. Therefore, the macro motions can be analyzed and manipulated by
controlling the phase information.

We then theoretically discover the properties of the proposed representation. First, we show that the
phases can be used to analyze the periodic components of the macro motion in the scene.

Theorem 3.1 (Periodicity Correlation). For a Phase-PGF with phase functions H already trained
to represent a dynamic scene s(x, t), if there exists T > 0 such that some motion yi(t+T ) = yi(t),
then ∃hj ∈ H, hj(t+ T ) = hj(t).

We include the proofs of all theorems in appendix A. This theorem indicates that periodic motion
components can correspond to components of the phase information.

If a scene has complicated composed motions, e.g., a scene with multiple dynamic objects, Phase-
PGF allows unsupervisedly factorizing different motion components into different components in
the phases. Specifically, we have the following property:

Theorem 3.2 (Motion Separation). Assume that a scene has several objects with motion yi(t) as-
sociated with each object i. For each component, the implicit functions representing object i lies in

1⟨gi(x+ α), gj(x+ β)⟩ = δij , where δ is the Kronecker delta function.
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Figure 1: Overview of Phase-PGF. A phase generator yields time-varying phases to modulate the
Gabor basis in Phase-PGF, which produces a latent feature field for volume rendering. Please refer
to the text in Sec. 3.3 for more descriptions.

the span of Bi. Then, a Phase-PGF f(x, t) can be decomposed into several Phase-PGFs:

f(x, t) =

N∑
i

fi(x, t), (2)

where fi(x, t) is a Phase-PGF with basis Bi.

This theorem indicates that it is possible to disentangle the scene macro motion based on the
phases. For example, if the macro motion can be separated into high-frequency components and
low-frequency components, or if the macro motion contains motion components present at different
spatial regions, then by filtering out the desired phase components, we can manipulate the scene
motion in a factorized manner.

We have now shown that the extracted phase information from the Phase-PGF can be used to observe
the properties of the macro motion. We then show that this representation can be edited to manipulate
the scene motion.

Theorem 3.3 (Motion Smoothing). Assume that the a dynamic scene is represented by a trained
Phase-PGF with phases H. If we apply a low-pass filter on some hj that corresponds to some
motion yi, then the motion would be smoother, i.e., | ddtyi(t)| is attenuated.

Intuitively, motion smoothing corresponds to attenuating high-frequency motion components. Be-
sides motion filtering, it is also possible to perform the manipulation in the dimension of motion
intensity/magnitude:

Theorem 3.4 (Motion Intensity Adjustment). Assume that a scene component motion takes the
form yi(t) = eit and the scene is represented using a Phase-PGF with a phase hj(t) corresponds
to yi(t). If we multiply the phase by a coefficient A, then the scene motion would be manipulated to
yi(t) = Aeit.

We include the proofs of all the theorems in appendix A.

3.3 INSTANTIATION OF PHASE-PGF

In the previous section, we have introduced the abstract definition of Phase-PGF and its properties.
In this section, we further illustrate how we empirically instantiate Phase-PGF to represent 2D and
3D dynamic scenes. We show an overview in Figure 1, where we have a phase generator (on
the left of Figure 5) that generates the m time-varying phases H = {h1(t), h2(t), · · · , hm(t)} for
modulating the Gabor basis B = {g1, g2, · · · , gm}. The Phase-PGF f(x, t) = pL ◦ pL−1 ◦ · · · ◦ p1 ◦
Ψ(x, t) generates a latent feature map and a neural latent decoder (detailed below) renders an image
from the feature map.
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Phase Generator for H. Since the phases are central to our model, the phase generator architecture
should ideally be expressive and structured. To this end, we instantiate each hi with a Polynomial
Neural Field (PNF) (Yang et al., 2022), which allows decomposing the phases into frequency sub-
bands. The frequency decomposition of phases allows easy manipulation over the phases, thus over
the macro motions.

Neural Latent Decoder. While Phase-PGF takes the form of f(x, t) = pL ◦pL−1 ◦· · ·◦p1 ◦Ψ(x, t)
where p denotes a polynomial, we empirically find that it consumes a large amount of GPU memory
if we directly use f(x, t) to represent raw pixels in complex and high-resolution scenes. Therefore,
we propose to couple Phase-PGF with a neural latent decoder. That is, Phase-PGF represents a low-
resolution latent feature field of the dynamic scenes, and the neural latent decoder decodes the latent
features into high-resolution results, similar to the feature fields in prior works (Niemeyer & Geiger,
2021).

More specifically, for representing 2D videos, we first use Phase-PGF f(x, t) to render a 2D feature
map m. Then, we use a 2D CNN decoder to render the final image Î = D(m). For 3D dynamic
scenes, to render a frame from a viewpoint, we adopt the volume rendering (Mildenhall et al., 2021)
formation. That is, we do ray marching to get a set of sampled points on the rays of the frame, and
then we use volume rendering to aggregate the sampled features to form the feature map. We also
use a 2D CNN to decode the feature map into a final RGB image.

The neural latent decoder D is designed in a pyramid manner. We first decode the feature into a
low-resolution RGB image IL = DL(m). Then, we use another decoder DH to obtain the final
high-resolution output Î = DH(IL).

We refer the readers to appendix C.1 and appendix C.2 for more details on the neural network
implementation and the phase space.

3.4 TRAINING PHASE-PGF TO REPRESENT DYNAMIC SCENES

Multi-stage Training. We train Phase-PGF in a multi-stage manner. In the first stage, we supervise
both the learning of Phase-PGF F and decoder DL with reconstruction loss L1 = ||ÎL − IL||2,
where IL is the ground-truth low-resolution image.

In the second stage, we further improve the high-resolution detail of the rendered image with patch-
based sampling and perceptual loss (Johnson et al., 2016), during each training step, we randomly
sample a patch from the high-resolution image, and the loss L2 is defined as L2 = ||Î − I||2 +

||mvgg(Î)−mvgg(I)||2, where I is the patch from the ground-truth high-resolution image and mvgg
is a feature map extracted by a pre-trained VGG network (Johnson et al., 2016).

Adversarial Training. The multi-stage training enables high-fidelity reconstruction of the input
scenes. However, extrapolating macro motions (e.g., for motion magnification) requires further
regularization on the neural latent decoder. Therefore, we propose to further use adversarial training
after the two stages. In particular, given the generated phases H, we perform simple magnification
to it and apply these augmented phases to the decoders. We want the decoder to generate plausible
images even when the input phases are extrapolated. Specifically, for a given phase sequence h(t) ∈
H, the augmented h′(t|λ, bl, bh) is defined as follows:

h′(t|λ, bl, bh) = h(t) + (λ− 1) · y(t|bl, bh), (3)

y(t|bl, bh) = F−1(T (F(h(t)), bl, bh)), (4)

where λ is intensity manipulation coefficient, bl and bh are subband limits for specific component of
the signal, F and F−1 are fourier transform and its inversion, and T (f) is a band-limit filter defined
as follows:

T (f) =

{
1, if f1 ≤ f ≤ f2,

0, otherwise.
(5)

We additionally construct a discriminator D to judge whether the image decoded from the extrapo-
lated phase sequence is similar to the input sequence. The adversarial loss is defined as follows:

Ladv = Ex,t[logD(f(x, t)] + Ex,t,λ[log(1−D(Tf,λ(x, t)], (6)
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Figure 2: On the interpretability of motion representations of Phase-PGF and Phase-NIVR.
(a) Given the 2D videos in (b), we compare the representative phases generated by our method and
Phase-NIVR. (b) We zoom in on the phase generated by our model and visualize some keyframes
to illustrate the correspondence between the macro motion and the generated phase.

Sequence Name Prefer Ours

Clock 76.5%
Pendulum 81.4%
Balls 90.2%
Kid 71.6%
Bouncing 76.5%
Average 79.2%

Table 1: Human preference study
on the interpretability of generated
phases. The phases from ours are more
interpretable than the baseline.

Ours Phase-NIVR (Mai & Liu, 2022)

Damping 0.999 0.015
Projectile (X) 0.998 0.793
Projectile (Y) 0.859 0.066

Table 2: Quantitative comparison using normal-
ized cross-correlation score on phases in synthetic
datasets. Projectile(X) and Projectile(Y) mean motion
in two different spatial dimensions.

where Tf,λ denotes a functional that augment the phase generated by f with a motion intensity
adjustment coefficient λ, as defined above. For more details on training, please refer to appendix C.4.

4 EXPERIMENTS

To evaluate our approach on the task of macro motion analysis, we collect several examples in-
cluding both 2D and 3D dynamic scenes. We show that our Phase-PGF learns interpretable motion
representations to allow macro motion analysis, which is demonstrated by motion loop detection and
motion separation. Afterward we show that Phase-PGF allows macro motion editing tasks including
motion intensity adjustment and motion smoothing.

4.1 EXAMPLES

We collect several dynamic scene examples including both 2D and 3D scenes.

Synthetic 2D videos. We render several different videos with varying motion complexities with
ground truth motion to quantitatively evaluate the proposed method. Please refer to appendix D.1.
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Figure 3: Loop detection using extracted phase information. Given the (a) input video, we first
learn the (d) phase to represent the macro motion. We then perform (e) FFT on the phase to get the
frequency domain on the phase and get the periodicity information. Then the phase was segmented
based on the period which is shown as different colors in (d). The seamless video (c) can be then
made according to this information and we show the corresponding Y-T plots in (b) and (c).

(a) 3D Dynamic 
        Scene

(c) Original Y-T Plot 
      for the Red Ball

(e) Original Y-T Plot 
      for the Blue Ball

(d) Manipulated Y-T Plot 
      for the Red Ball

(f) Manipulated Y-T Plot 
      for the Blue Ball

t

y

t

y

t

y

t

y

(b) Phase Generated

Red Ball
Blue Ball

Figure 4: Motion separation. This 3D scene contains two balls with different motions. Our method
is able to decompose their motion using different phases, as shown in (b). We attempt to show that
we are able to keep the red ball’s motion unchanged while modifying the motion of the blue ball.
(c) and (d) show that the motion of the red ball remains unchanged after modifying. (e) and (f) show
that we successfully attenuate the motion of the blue ball.

Real 2D videos. We also collect several real videos from the Internet and from our own capture to
show the generalizability and applicability of the proposed Phase-PGF. We take some videos from
Mai & Liu (2022) and other Internet sources to form a dataset of real 2D videos.

3D Dynamic Scene. Our Phase-PGF can also be used to model 3D dynamic scenes with neural
rendering. To demonstrate this, we render a synthetic 3D dynamic scenes with two different balls
bouncing on a table top.

4.2 MACRO MOTION ANALYSIS: LOOP DETECTION AND MOTION SEPARATION

For macro motion analysis, a preliminary requirement is that the motion representation is inter-
pretable, i.e., the components of the factorized motion representation should be able to establish
correspondences to scene motion components. To do this, we compare the phase generated by our
Phase-PGF against a previous method Phase-NIVR (Mai & Liu, 2022). Phase-NIVR also aims to
generate phases for input motion, yet it does not allow representing 3D scenes. We show a compar-
ison of phases by both methods in Figure 2 (a), and show keyframes corresponding to our generated
phases in Figure 2 (b).

From Figure 2, we observe that our Phase-PGF generates a phase sequence that aligns with the
motion more coherently. A possible reason is that Phase-NIVR uses the SIREN network (Sitzmann
et al., 2020) as the scene representation which does not support decomposing different components
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Figure 5: Comparison of the result of motion intensity adjustment between different baselines
and the proposed method. In the first column, we show the different X-T plots generated by
concatenating the strips indicated by the blue line in the input video. In the following three columns,
we visualize the rendered results in different keyframes of the input motion.

of the dynamic scene. Please check out the supplementary website at https://chen-geng.
com/phasepgf for video results.

To quantitatively evaluate the motion representuation interpretability, we conduct a human prefer-
ence study. We show several videos and the generated phases by both methods, and ask the partic-
ipants to pick one that they believe better explains the motions in the videos. We use a research-
oriented cloud source platform2. We show the human study results in Table 1. From Table 1, we see
that the phases generated by Phase-PGF are believed to better explain the motions.

We additionally evaluate the normalized cross-correlation of phases generated by our method and
the baseline on datasets with ground-truth motion trajectory. The results are shown in Table 2. Please
refer to appendix D.2 for more details on this.

To discover more complex motion patterns, we synthesize and collect several videos with varying
motion complexities and evaluate them in appendix D.1.

We further show two macro motion analysis applications: motion loop detection and motion sepa-
ration.

Motion loop detection. In Figure 3, we show an example of motion loop detection on the input
video. To do this, we identify the periodicity of the input video, and then we perform phase fus-
ing (Mai & Liu, 2022) to generate an infinitely looping video.

Motion separation. In Figure 4, we show motion separation on a synthetic 3D scene, where two
balls bounce at different speeds. Phase-PGF is able to decompose the macro motion using a fre-
quency filter. Specifically, we use band-limit filters on the generated phase sequence, and then we
isolate the motion of interest (the motion of the blue ball) according to the frequency. In this way,
we can manipulate (mollify) the motion of the blue ball without affecting the motion of the red ball.

4.3 MACRO MOTION EDITING: INTENSITY ADJUSTMENT AND SMOOTHING

Besides analysis, our Phase-PGF also allows editing macro motions. Specifically, we consider
two motion editing tasks: motion intensity adjustment and motion smoothing. Please refer to ap-
pendix C.3 for details on the editing operations.

2This human preference study form can be found at the appendix.
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(a) Input Video (b) Original X-T Plot (c) Smoothed X-T Plot

Figure 6: Motion smoothing. We smooth the motion in the video by removing high-frequency
components in the phase. (b) and (c) shows the X-T plot of a slice in the original and edited video.

Ours Phase-NIVR Wadhwa et al. (2013)

Motion Magnification Score 3.30 3.06 2.24
Visual Quality Score 3.14 1.76 1.88
FID 0.512 10.255 5.889

Table 3: Quantitative comparison on the result of motion intensive adjustment. For the user
study part (First two rows) We ask the user to give two scores for each video generated by the
corresponding method. The first score is asked to evaluate how large the visual motion magnification
intensity is (1 for identical and 5 for the largest). The second score is asked to evaluate the visual
quality of the rendering (1 for the worst and 5 for perfect). We additionally evaluate the FID score
for the videos generated by different methods, as shown in the third row.

Motion Intensity Adjustment. Phase-PGF allows modifying the intensity or magnitude of the
macro motion in the represented dynamic scenes. Following the method introduced in Sec. 3.4,
we show motion magnification results in Figure 5. We compare our method with a traditional mo-
tion magnification method Wadhwa et al. (2013) and Phase-NIVR. From Figure 5 we observe that
Phase-PGF allows magnification with much fewer artifacts. In comparison, Phase-NIVR generates
a temporally flickering video with ghosting artifacts, and Wadhwa et al. (2013) failed to magnify
the macro motion as it focuses on tiny motions. Our observation is further consolidated by a human
preference study, where we show the results in Table 3.

We also evaluate the Fréchet Inception Score for manipulated videos generated from different meth-
ods. The result is shown in Table 3. It can be seen that our method surpasses other baselines greatly
in terms of visual quality. Please refer to appendix D.2 for more details.

We perform ablation studies to prove the effectiveness of the introduced components. Please refer
to appendix D.3 for detailed discussion.

Motion Smoothing. We show that Phase-PGF also allows motion smoothing. In Figure 6, we show
that by removing high-frequency bands of the generated phase sequence, we can perform motion
smoothing on the macro motion. From Figure 6, we observe that the high-frequency flickering of
the paddle has been removed, leading to a smoother motion.

5 CONCLUSION

In this work, we propose and formulate the problem of macro motion analysis. We propose Phase-
based neural polynomial Gabor fields (Phase-PGF) that represents motions in dynamic scenes with
generated phase sequences. We show that Phase-PGF allows multiple macro motion analysis
and editing tasks, including loop detection, motion separation, motion magnification, and motion
smoothing.

Limitations. One limitation is that Phase-PGF shows slight artifacts in boldly magnifying large
motions. Another limitation is that Phase-PGF currently does not scale well to complex large-scale
3D dynamic scenes due to computational efficiency (we need more Gabor basis in larger scenes).
This might be addressed by spatially adaptive Gabor basis. We also discuss other failure cases at
appendix D.7.
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A DEFINITIONS AND PROOFS

In this section, we provide proofs of the theorems in the main paper. Our Phase-PGF is based on
the polynomial neural fields (Yang et al., 2022). In the following proofs, we will use some of the
properties of the polynomial neural fields. We refer the reader to Yang et al. (2022) for more context.

Proof of theorem 3.1. Let’s assume that the scene at t = 0 is represented with the implicit function
s(x), and the active content is doing rigid motion y(t). Then the dynamic scene to be represented
can be denoted as s(x+ y(t)), where both s(x) and y(t) are unknown.

Now the dynamic content is fit using a Phase-PGF f(x, t), which gives:

f(x, t) = s(x+ y(t)), ∀x, t. (7)

If we have y(t+ T ) = y(t) holds for any t, then:

f(x, t+ T ) = s(x+ y(t+ T )) (8)
= s(x+ y(t)) (9)
= f(x, t). (10)

Consider the property of Polynomial functions(Yang et al., 2022), we have:

f(x, t) =

m∑
i

ωigi(x+ hi(t)), (11)

then we can have:

m∑
i

ωi(gi(x+ hi(t+ T ))− gi(x+ hi(t))) = 0, ∀x, t. (12)

Consider doing inner-product with gj , we have:

m∑
i

ωi⟨(gi(x+ hi(t+ T ))− gi(x+ hi(t))), gj(x)⟩ (13)

=

m∑
i

ωi⟨gi(x+ hi(t+ T )), gj(x)⟩ − ⟨gi(x+ hi(t)), gj(x)⟩ (14)

= ωj⟨gj(x+ hj(t+ T ))− gj(x+ hj(t)), gj(x)⟩ (15)
= 0 (16)

Therefore, we have gj(x+ hj(t+ T )) = gj(x+ hj(t)), which implies hj(t+ T ) = hj(t).

Proof of theorem 3.2. According to the assumption, the dynamic scene can be represented using the
following implicit function:

g(x, t) =
∑
i

si(x+ yi(t)), (17)

where si is in the span of Bi. Also, we have:
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k∑
i

si(x+ yi(t)) = f(x, t). (18)

Considering the property of polynomial fields(Yang et al., 2022), the f(x, t) can be written as:

f(x, t) =

m∑
i

ωigi(x+ hi(t)), (19)

Then we have:

k∑
i

si(x+ yi(t)) =

m∑
i

ωigi(x+ hi(t)) (20)

=

k∑
i

∑
gj∈Bi

ωjgj(x+ hi(t)) (21)

Thus we can get:

si(x+ yi(t)) =
∑

gj∈Bi

ωjgj(x+ hi(t)), ∀i (22)

Let’s denote fi(x, t) =
∑

gj∈Bi
ωjgj(x, t), then we have got a decomposition of f(x, t) =∑

fi(x, t), where each fi is supported by basis Bi.

Proof of theorem 3.2. According to the assumptions, if the rigid motion is represented using y(t),
then:

s(x+ y(t)) = f(x, t), (23)

=
∑

ωigi(x+ hi(t)), ∀x, t. (24)

We have used the property of the polynomial fields(Yang et al., 2022) in the derivation above. We
first perform Fourier decomposition of implicit function s(x) and the basis gi(x), so that we can get:

s(x) =

∫
∞

G(f)ei2πfxdf (25)

gi(x) =

∫
∞

g′i(f)e
i2πfxdf (26)

By modulating the equation above, we can obtain:

s(x+ y(t)) =

∫
∞

G(f)ei2πf(x+y(t))df (27)

=
∑

ωigi(x+ hi(t)), (28)

=
∑

ωi

∫
∞

ĝi(f)e
i2πf(x+hi(t))df, ∀x, t (29)

We perform the Fourier transform of the equation above.
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G(f)ei2πfy(t) =
∑

ωiĝi(f)e
i2πfhi(t), ∀f. (30)

Then we have:

y(t) =
1

2πif
ln[

1

G(f)

∑
ωiĝi(f)e

i2πfhi(t)]. (31)

By performing low-pass filter on hi(t), we can obtain a new phase hL(t) with attenuated high-
frequency information, which has the property:

| d
dt

hL(t)| ≤ | d
dt

hi(t)| (32)

We consider the derivative of the corresponding yL(t) to evaluate the change in its smoothness.

| d
dt

yL(t)| = | d
dt

1

2πif
ln[

1

G(f)

∑
ωiĝi(f)e

i2πfhL(t)]| (33)

= | 1

2πif

d

dt
ln[

1

G(f)

∑
ωiĝi(f)e

i2πfhL(t)]| (34)

= | G(f)

2πif ·
∑

ωiĝi(f)ei2πfhL(t)

d

dt
[

1

G(f)

∑
ωiĝi(f)e

i2πfhL(t)]| (35)

= | 1

2πif ·
∑

ωiĝi(f)ei2πfhL(t)

d

dt

∑
ωiĝi(f)e

i2πfhL(t)| (36)

= | 1

2πif ·
∑

ωiĝi(f)ei2πfhL(t)

∑
ωiĝi(f)

d

dt
ei2πfhL(t)| (37)

= | 1

2πif ·
∑

ωiĝi(f)ei2πfhL(t)

∑
ωiĝi(f)e

i2πfhL(t)i2πf
d

dt
hL(t)| (38)

=
|
∑

ωiĝi(f)
d
dthL(t)|

|
∑

ωiĝi(f)|
(39)

≤
|
∑

ωiĝi(f)
d
dthi(t)|

|
∑

ωiĝi(f)|
(40)

= | d
dt

y(t)|. (41)

Therefore, we can have that the yL(t) is smoother than y(t), which finishes the proof.

Proof of theorem 3.4. According to the assumption, we have:

s(x+ eit) = f(x, t) (42)

=
∑

ωigi(x+ hi(t)) (43)

Since we assume s(x) is in the span of B, it can decomposed into:

s(x) =
∑

γigi(x) (44)

Then:
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∑
γigi(x+ eit) =

∑
ωigi(x+ hi(t)) (45)

According to the shift-orthogonality of B,

hi(t) = eit (46)

If we perform motion intensity adjustment to hi(t) with magnitude A, then we can get modified
phase h′(t) = Ahi(t), so that the scene motion can be modified to:

h′(t) = Ahi(t) (47)

= Aeit. (48)

B HUMAN PREFERENCE STUDY

We conduct user studies using the Prolific platform.

For the user study shown in Table 1, we have collected 102 effective responses. We designed our
form using Google Forms. In the form, we asked the user to compare 5 pairs of videos with plots try-
ing to explain the motion inside the video. For each pair, we asked the user the following prompt: In
which video (left or right), does the bottom plot better explain the motion in the top video? The user
will choose between two answers and we collect the data and make statistical analysis. The video
pairs can be found at our supplementary website: https://chen-geng.com/phasepgf.

For the user study shown in Table 3, we have collected 110 effective responses. In the study, we
first asked the users to watch three video pairs from three methods (each pair consists of a top video
and a bottom video). In each pair, the bottom video is trying to magnify the motion in the top video.
Then for each pair, we asked them two questions. The first question is: The bottom video tries to
magnify the motion of the white object in the top video. Do you think the bottom video successfully
magnifies the motion? Please rate on a scale of 1 to 5, where 1 means ”Not at all” and 5 means
”Very much so”. The answer to this question was used to calculate the Motion Magnification score.
The second question is: You are viewing the same video pair as before. Please evaluate the visual
quality of the bottom video. On a scale of 1 to 5, rate the quality of the bottom video. The answer
to this question was used to calculate the Visual Quality Score. The videos can be found at our
supplementary website: https://chen-geng.com/phasepgf.

C METHOD DETAILS

In this section, we provide more details on the proposed method. The code will be released upon
publication.

C.1 NETWORK ARCHITECTURE

We first elaborate on more details on the network architecture. In the following, we discuss specific
design choices related to different modules in the proposed framework.

Phase Generator. The key aspects of an ideal phase generator are expressiveness and controllabil-
ity. To achieve these two goals, we use a polynomial neural field (Yang et al., 2022) conditioned on
t to serve as the backbone. Specifically, we follow the architecture described in Yang et al. (2022),
where the basis is defined using Fourier waves.

Each polynomial neural field takes normalized timestamp t as input and outputs a one-dimension
scalar h(t) as the phase in the timestamp t. Following Yang et al. (2022), h(t) is defined as below:
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Hyper-Parameter Name Value
Output Dimension 1
Hidden Dimension 8

Number of Bandwidths 4

Table 4: Hyper-parameters used in Phase Generator.

h(t) =
∑
j

Fj(t), (49)

where Fj(t) is a sub-PNF for one subband. Fj(t) is further implemented using the following factor-
ization:

Fj(t) = tanh(

n∑
k=1

Gj(t, bk, bk)WjkZj,k(t)), (50)

Zj,1(t) = Gj(t, 0,∆1), (51)
Zj,k(t) = Gj(t, 0,∆k)WiZj,k−1(t), (52)

where Gj(t, a, b) is a subband limited in R(∞)(a, b, d(θj), δ), ∆k = bk − bk−1. Gj(t, a, b) is
expressed in the linear combination of basis sampled from the defined subband:

Gj(t, a, b) = Wkγj(t), γj ∈ R(∞)(a, b, d(θj), δ)
d,Wk ∈ Rh×d, (53)

where γj is Fourier basis.

Each polynomial neural field h(t) represents a continuous one-dimensional phase. To represent the
whole phase space of dimension K, we instantiate an individual polynomial neural field hi(t) for
each phase in the phase space. Then we ensemble them to form the whole phase.

We list the hyper-parameters used to instantiate our phase generator in Table 4.

Spatial Polynomial Gabor Fields. Previously we have discussed the design of the phase gener-
ator, which is a 1-D function taking in time input and output a dynamic phase sequence. We then
discuss the design of the polynomial Gabor field which represents the scene spatially.

The major difference between the architecture of temporal polynomial neural fields (T-PNF) and
spatial polynomial Gabor fields(S-PGF) lies in the definition of Gj . Specifically, S-PGF is also
realized as the summation of different S-PGFs representing different subbands:

F (x) =
∑
j

Fj(x), (54)

Fj(x) =

n∑
k=1

Gj(x, bk, bk)WjkZj,k(x), (55)

Zj,1(x) = Gj(x, 0,∆1), (56)
Zj,k(x) = Gj(x, 0,∆k)WiZj,k−1(x), (57)

where Gj(x, a, b) is a subband limited in R(∞)(a, b, d(θj), d(µj), d(γj), δ). It is further defined
using Gabor basis:

Gj(x, a, b) = Wkgj(x), gj ∈ R(∞)(a, b, d(θj), d(µj), d(γj), δ)
d,Wk ∈ Rh×d, (58)

where gj is Gabor basis. The hyper-parameters in this model are listed in Table 5.
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Hyper-Parameter Name Value
Output Dimension 32 (2D Video) / 33 (3D Scene)
Hidden Dimension 64

Number of Bandwidths 4

Table 5: Hyper-parameter used in Spatial Polynomial Gabor Fields.

Layer Type In Ch Out Ch Kernel Stride Pad Notes
Transposed Convolution 32 128 4 - 1 Batch Norm.
Transposed Convolution 256 128 4 - 1 Batch Norm.
Transposed Convolution 256 64 4 - 1 Batch Norm.
Transposed Convolution 128 32 4 - 1 Batch Norm.
Transposed Convolution 64 16 4 2 1 Batch Norm.
Transposed Convolution 32 32 4 2 1 Batch Norm.
Convolution 32 32 5 1 2 -
Convolution 32 3 5 1 2 RGB Output

Table 6: Feature Decoder Architecture.

Basis Modulation and Phase-PGF. To combine the T-PNF and S-PGF discussed above, we in-
troduce the procedure of basis modulation and form Phase-PGF to represent the dynamic scene.

Intuitively, the dimension of the phase space is determined by the number of subbands K in S-PGF.
For each gj ∈ R(∞)(a, b, d(θj), d(µj), d(γj), δ)

d, we assign the phase hj(t) to it. Therefore, the
subband Gj(x, a, b) is modulated to:

G′
j(x, t, a, b) = Wkgj(x+ hj(t)), gj ∈ R(∞)(a, b, d(θj), d(µj), d(γj), δ)

d,Wk ∈ Rh×d. (59)

Please refer to appendix C.2 for a more comprehensive discussion on this topic.

Neural Rendering. In the case of 3D dynamic scene, we further perform a neural render-
ing (Mildenhall et al., 2021) to render the 2D feature fields. The first 32 output dimension of Phase-
PGF is interpreted as feature f(x) and the last dimension is interpreted as density σ(x) used in neural
rendering. The 2D feature map m is rendered using the following volume rendering equation:

F (r) =

∫ tf

tn

T (t)σ(r(t))f(r(t),d) dt, (60)

where T (t) = exp
(
−
∫ t

tn
σ(r(s)) ds

)
, r is the ray being rendered, and d is the view direction.

Feature Decoding and Rendering. We then describe the network architecture that decodes a fea-
ture map into RGB rendering. The decoder is a bunch of U-Net (Ronneberger et al., 2015) like
convolution layers followed by batch normalization. It incorporates skip connections for feature
concatenation. Starting with 256 input channels, the decoder progressively reduces and then in-
creases the channel size. The final layers produce outputs suitable for RGB images, with a Tanh
activation function scaling the outputs to a specific range. The detailed architecture of it is detailed
in Table 6.

The Upsampler module employs nearest neighbor upsampling and convolution operations for fea-
ture map upscaling. It includes two stages of upsampling, each magnifying the spatial dimensions
by a factor of 2. Between these stages, convolutional layers adjust the channel dimensions. The
configuration is outlined in Table 7.

Adversarial Training. During adversarial training, a PatchGAN (Isola et al., 2017) architecture
discriminator is used.
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Operation In Ch Intermediate Ch Out Ch Notes
Upsample (x2) - - - Nearest Neighbor
Convolution 32 128 - Kernel: 3, Pad: 1
ReLU Activation - - - -
Upsample (x2) - - - Nearest Neighbor
Convolution 128 3 - Kernel: 3, Pad: 1

Table 7: Upsampler Architecture.

C.2 DISCUSSION ON THE PHASE SPACE

In this section, we further discuss the initialization and the structure of the phase space. We also
perform an experiment to help the reader intuitively understand the phase space.

As previously discussed in appendix C.1, the phase space has a dimension K, which is identical to
the number of subbands defined in S-PGF. This parameter is further determined by the human prior
knowledge of the number of motion components in the given scene. However, we argue that our
architecture allows a redundant number of phase dimensions that can be not identical to the motion
count in the given scene.

This mechanism of a redundant number of phase dimensions is similar to Slot-Attention (Locatello
et al., 2020), where there can be empty slots that do not represent an object. In our case, whether a
phase represents a part of motion information is determined by the contribution to the final rendering
of the subband corresponding to this phase. Mathematically, this is formulated as a phase score sj
defined as below:

sj = Et,x||Fj(x, t)− µj(x, t)||, (61)
µj(x, t) = ExFj(x, t) (62)

Practically this score is calculated by performing discretization.

We provide an example below to demonstrate this argument. As demonstrated in Figure 7(a), we
synthesize a video containing a ball with the motion of damping vibration. We instantiate our net-
work with 16 subbands, each associated with a phase. Although such a phase space is redundant,
the space can be analyzed using eq. (62). The result is shown in Figure 7(e), from which we can see
that phase with index 0 and 2 dominated with score distribution.

We further sample some phases in visualize them in Figure 7(d). For phases having a high score
(0 and 2), they align well with the ground truth motion shown in Figure 7(c). From the subband
visualization in Figure 7(b), it can also be seen that they spatially represent the moving ball.

For phases that have a low score (4 and 9), they have a relatively chaotic motion. In Figure 7(b), it
can be seen that they do not represent meaningful information in the input, indicating that they are
“empty phases”.

C.3 MANIPULATION OF THE PHASE SPACE

In this section, we discuss the implementation details of the two different types of phase manipula-
tions studied in this paper. The result of such manipulation is discussed in Sec. 4.3.

Phase Smoothing. The operation of phase smoothing corresponds to “motion smoothing” in
Sec. 4.3. Practically, a bandwidth upper limit B is defined to perform the editing. For a given
phase sequence h(t) ∈ H, the edited phase h′ is defined as follows:

h′(t|B) = F−1(T (F(h(t))|B)), (63)

T (f |B) =

{
1, if f ≤ B,

0, otherwise,
(64)
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(a) Frames of the Input Video (b) Di�erent Subbands of Frame 0. From left to right: 0, 2, 4, 9

(c) Ground Truth Motion Trajectory (d) Predicted Phases

(e) Bar Chart of the Score of Di�erent Phase

Figure 7: Demonstration on having redundant phase space. (a) The input video shows a ball with
a damping vibration motion. (b) Visualization of different subbands of the reconstructed model,
evaluated at t = 0. Subbands 0 and 2 (corresponding to the phase 0 and 2) have motion information,
while Subbands 4 and 9 (corresponding to the phase 4 and 9) are empty subbands. (c) The ground
truth motion trajectory of a damping vibration. (d) Some of the predicted phases in the redundant
phase space. Phases 0 and 2 were learned to represent motion information, while Phases 4 and 9 are
empty. Please see https://chen-geng.com/phasepgf#damping for the animation.

where F and F−1 are Fourier transform and its inverse transform.

Phase Intensity Adjustment. This operation corresponds to “motion intensity adjustment” in
Sec. 4.3. Practically, similar to the phase augmentation procedure described in Sec. 3.4, three pa-
rameters λ, bl, bh are defined in this procedure. Given a phase sequence h(t) ∈ H, the manipulated
phase h′ is defined as:

h′(t|λ, bl, bh) = h(t) + (λ− 1) · y(t|bl, bh), (65)

y(t|bl, bh) = F−1(T (F(h(t))|bl, bh)), (66)

where λ is intensity manipulation coefficient, bl and bh are subband limits for specific component of
the signal, F and F−1 are Fourier transform and its inversion, and T (f) is a band-limit filter defined
as follows:
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(a) Frames of the Input Video

(b) Phase Discovered

Figure 8: Results on Non-Rigid Motion. In (a), we show the sampled frames of the input video.
In (b), we show the discovered phase and associated subband. For animated video, please refer to
https://chen-geng.com/phasepgf#jelly

T (f |f1, f2) =
{
1, if f1 ≤ f ≤ f2,

0, otherwise.
(67)

C.4 TRAINING DETAILS

The models are trained on a NVIDIA A5000 GPU. The first stage of training takes around ten hours
to converge. The second stage of adversarial training takes around three days to fully converge.

D ADDITIONAL EVALUATIONS

In this section, we provide more extensive results of the proposed method to further explore the
boundary of the proposed method.

D.1 MORE MACRO MOTION COMPLEXITIES

We first demonstrate several additional motion examples to show that our method can handle varying
motion complexities.

Non-Rigid Motion We first show that the proposed pipeline can also deal with non-rigid motion
in a dynamic scene. Specifically, we run the proposed method on an Internet video dubbed Jelly.
The results can be seen in Figure 8 and https://chen-geng.com/phasepgf#jelly.

It can be seen that although the motion in this video is a complex non-rigid, non-regular motion
of a jelly, our method successfully discovered its low-dimension phase information by assigning a
subband to its moving texture feature, as shown in Figure 8(b).

Interaction Between Objects. A more complex motion pattern is when there are interactions
between different objects. To simulate this case, we synthesize a video called Collision where there
are two moving balls in the scene, and the first ball is collision with the second ball.
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(a) Frames of the Input Video

(c) Normalized Phase(b) Ground-Truth Motion

Figure 9: Results on Object Interaction. In (a), we show the sampled frames of the input video.
We show the ground-truth motion trajectory in (b). In (c), we show the discovered phases (with
normalization). For animated video, please refer to https://chen-geng.com/phasepgf#
collision

(a) Frames of the Input Video

(c) Phase Reconstructed(b) Ground-Truth Motion

Figure 10: Results on Multi Objects Motion. In (a), we show the sampled frames of the input video.
We show the ground-truth motion trajectory in (b). In (c), we show the discovered phases. For
animated video, please refer to https://chen-geng.com/phasepgf#ball3

We show the results of this case in Figure 9 and https://chen-geng.com/phasepgf#
collision. Our model can successfully decompose the phase space and discover plausible mo-
tion patterns: The first ball is moving initially and will change direction later, and the second ball is
static at first while will be moving after the collision.
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(a) Frames of the Input Video

(c) Phase Reconstructed(b) Ground-Truth Motion

Figure 11: Results on Non-Periodic Motion. In (a), we show the sampled frames of the input video.
We show the ground-truth motion trajectory in (b). In (c), we show the discovered phases. For
animated video, please refer to https://chen-geng.com/phasepgf#projectile

Multi-Object Motion. We also study the applicability of the proposed framework in the sce-
nario of a slightly more complex motion space. We synthesize a dynamic scene with three dif-
ferent moving balls (Ball3 data) with different moving frequencies and trajectories. By using
the proposed method to extract the phase information in such a scene, we can get the phase
space decomposition as shown in Figure 10. The animated results can be found at https:
//chen-geng.com/phasepgf#ball3

Non-Periodic Motion We additionally synthesize three videos, Damping, Bouncing, and Projec-
tile, containing different non-periodic motions. In Damping and Bouncing, we simulate damping
vibration and bouncing of a ball. In Projectile, we simulate a ball being projected outward, subject-
ing to gravity.

The results in Damping can be found at Figure 7. It can be seen that the low-dimensional motion
can be faithfully reconstructed by the extracted phase. Please see https://chen-geng.com/
phasepgf#damping for the animation.

The Projectile example provides another different pattern of motion. From Figure 11, it can be
observed that our phase, defined in two dimensions, can be used to decompose the given motion
into x-dim and y-dim, representing uniform linear motion and parabolic motion, respectively. The
animation can be found at https://chen-geng.com/phasepgf#projectile

D.2 QUANTITATIVE METRICS AND EVALUATION

We introduce several metrics to quantitatively evaluate the results.

Normalized Cross Correlation. This metric is a measure used to quantify the similarity between
two signals. For signal f(t) and g(t), this metric is defined as below:

r =

∣∣∣∣∣∣
∑

t(f(t)− f̄)(g(t)− ḡ)√∑
t(f(t)− f̄)2

∑
t(g(t)− ḡ)2

∣∣∣∣∣∣ , (68)
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(a) Input             (b) Ours w/o 
Feat Dec. and Adv. Training

(c) Ours w/o Adv. Training (d) Ours (Full Model)

Figure 12: Ablation Study. We study the effect of the proposed components by removing them from
the full model. In (a), we show the input video. In (b), we show the rendering from the model
without feature decoding and adversarial training. In (c), we show the rendering from the model
without adversarial training. (d) shows the rendering of our full model.

We calculate this metric between the predicted phase and the ground truth motion trajectory in two
synthetic data: Projectile and Damping. The results are shown in Table 2. Compared to the baseline,
our model extracts phases that are more aligned to the input trajectory.

Fréchet Inception Distance (FID). We calculate the FID score (Heusel et al., 2017) between
the input video and the manipulated video to evaluate the rendering quality of different methods.
We perform the evaluation on a real captured video Airpods. The video can be found at https:
//chen-geng.com/phasepgf.

The result can be found at the third row of Table 3. Our method surpasses all the baselines signifi-
cantly in terms of rendering quality.

D.3 ABLATION STUDIES

We conduct ablation studies on the proposed components to validate the effectiveness of the pro-
posed method. The results can be found at Figure 12.

The Effect of Feature Decoder It can be seen from Figure 12(b) and (c) that when we remove
the feature decoding module, the rendering quality has degraded by a large magnitude. The reason
is that only using S-PGF will produce low-resolution images. By using a feature decoder, we can
render higher-resolution images.

The Effect of Adversarial Training By comparing Figure 12(c) and (d), we can see that adding
adversarial training lets the model learn more information on the detailed texture of the object.

D.4 MORE ANIMATED RESULTS

We refer the reader to the supplementary website: https://chen-geng.com/phasepgf for
more animated results.

D.5 DISCUSSION ON THE POINT TRACKING METHODS

Another possible method to perform macro motion analysis is by doing a dense point tracking
method and figuring out some method to extract sparse motion information from the dense tracked
particle trajectory. However, it is non-trivial to perform this process. After point tracking, the ob-
tained particle trajectories are of a high dimension, which can not be easily analyzed.

We make an attempt in this section to use a State-of-the-Art point tracking method PIPs++ (Zheng
et al., 2023) together with a dimension reduction technique to get a sparse motion feature sequence.
Specifically, we sample dense tracked particles using a grid strategy following (Zheng et al., 2023)
and perform dense point tracking. This results in a high-dimensional motion trajectory. We then
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Figure 13: Two major components from the point tracking baseline. The phase generated by our
method can be found at Figure 3. See visualization of tracked particles at https://chen-geng.
com/phasepgf/tracking.html

Key Frame 1

Key Frame 2

Key Frame 3

Input Subband 1 Subband 2

Figure 14: Moving object discovery on Giraffe data. By running the proposed method on the data,
the moving object and static objects are separated into different subbands.

perform Principal Component Analysis (PCA) on the obtained dense motion to extract its dominant
dimensions to get a sparse motion trajectory. The animated result can be found at https://
chen-geng.com/phasepgf//tracking.html.

We visualize the extracted motion components in Figure 13. It can be seen that the extracted low-
dimensional motion representation is noisy and is not plausible for the motion macro motion analysis
task in this paper (Cf. the phase generated by the proposed method in Figure 3).
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(a) Input Video (b) Subband (c) Phase

Figure 15: Failure cases. Animation: https://chen-geng.com/phasepgf#failure

D.6 DISCUSSION ON MOVING OBJECT DISCOVERY

The proposed method can be potentially used for finding moving objects in a dynamic scene. In this
section, we make a preliminary attempt at this.

We capture a video called Giraffe and run our method on this video. The result can be found in
Figure 14. In this example, the moving red ball and the static giraffe toy are separated into two
different subbands. Using this decomposition, we can detect the moving objects in a dynamic scene.

D.7 FAILURE CASES

In this section, we provide some failure cases of the proposed method to help the reader better under-
stand the boundaries and limitations of the proposed method. The results can be found in Figure 15
and please refer to https://chen-geng.com/phasepgf#failure for animation in this
section.

Chaotic Motion Hair For chaotic motion such as hair blowing, there is no underlying low-
dimensional representation of the scene motion. In this case, the method can only discover a coarse
motion tendency yet cannot recover the full motion space.

Motion of Shapeless Objects Fire The proposed method assumes the objects in the scene have a
concrete shape. For data like fire where the objects are shapeless, our method can only discover the
very coarse moving part, but cannot clearly separate different motion parts.
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