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Abstract

A critical aspect of human visual perception is the ability to parse visual scenes
into individual objects and further into object parts, forming part-whole hierar-
chies. Such composite structures could induce a rich set of semantic concepts
and relations, thus playing an important role in the interpretation and organiza-
tion of visual signals as well as for the generalization of visual perception and
reasoning. However, existing visual reasoning benchmarks mostly focus on ob-
jects rather than parts. Visual reasoning based on the full part-whole hierarchy is
much more challenging than object-centric reasoning due to finer-grained concepts,
richer geometry relations, and more complex physics. Therefore, to better serve
for part-based conceptual, relational and physical reasoning, we introduce a new
large-scale diagnostic visual reasoning dataset named PTR. PTR contains around
70k RGBD synthetic images with ground truth object and part level annotations
regarding semantic instance segmentation, color attributes, spatial and geometric
relationships, and certain physical properties such as stability. These images are
paired with 700k machine-generated questions covering various types of reasoning
types, making them a good testbed for visual reasoning models. We examine
several state-of-the-art visual reasoning models on this dataset and observe that
they still make many surprising mistakes in situations where humans can easily
infer the correct answer. We believe this dataset will open up new opportunities for
part-based reasoning. PTR dataset and baseline models are publicly available °.

1 Introduction

A long-standing challenge in the field of artificial intelligence is to enable machines to reason and
answer questions about visual scenes. Several datasets [64, 16, 29, 49, 57] have been proposed to
tackle this challenge. They mostly focus on object-level features without emphasizing much on
detailed part-level understanding. However, there is strong psychological evidence that human beings
parse visual scenes into part-whole hierarchies (e.g., from a scene to the objects, from an object to its
parts), which are currently missing from existing datasets.

Inspired by Aristotle’s quote “the whole is greater than the sum of its parts”, there has been a long
history of research in psychology concerning how parts and wholes are related, beginning with the
Gestalt psychologists [47]. There have also been recent efforts on how to represent such part-whole
hierarchies using neural networks [19]. Introducing part-whole hierarchies into visual reasoning
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Q1 (Concept): How many objects with purple legs are there? Al: 2
(hint: bed&chair)

Q2 (Arithmetic):What is the sum of the number of legs in the
and number of wheels in the ?A2:7 (hint: 5+2=7)
Q3 (Physics):How many objects are stable? A3: 4

(hint: only the chair is unstable)
Q4 (Physics): Towards which direction shall the move to become
stable? A4: front
(hint: to make the contact area between the cart and the table larger)

1 (Same Attribute): Is the back of the and f of the of
the same color? Al: Yes (hint: Both are yellow)

Q2 (Geometry): What's the color of the part in the that can be

: considered a line, and is perpendicular to the purple part of the
: ? A2: blue

(hint: the blue leg bars of the chair is perpendicular to the doors)
: Q3(Analogy:): The blue part of the has certain geometric
 relation to the purple part of the . By analogy, the blue part
:of the has the same relation to a part of what color in the
chair?A3: brown

(hint: the blue leg bar and the purple doors have relation: line-plane

perpendicular)

Functional Program of Question “How many objects with purple legs are there? *

Expand Filter Part Filter Part Filter Part Count Part (.JH gory
: Ll Category Color Exist Object @ Part Color

Physics

[ Parts ( leg ) [ puple ] [ Objects B Geometry

Figure 1: Exemplar scene graphs, questions, and programs of our Part Reasoning (PTR) dataset. PTR
contains five question types: concept, relation, analogy, arithmetic and physics. Top left shows scenes
from our dataset, paired with hierarchical scene graphs in the middle. Top right presents questions,
answers and hints to the answers. A functional program of a question is shown in the bottom.

brings two unique challenges. The first is how to discriminate objects using part-level attributes.
Unlike previous works which refer to objects based on holistic attributes such as object category, the
specific ontology nature of objects and their parts requires a detailed study. The second is how to
leverage part-level attributes to interconnect objects. Objects of various categories are interrelated via
some common parts (e.g., leg, central support, pedestal). The reasoning performed on one category
should thus be easily generalized to reasoning on unseen categories with shared parts. Human
beings are endowed with such modular but interconnected perceptual systems. They can effortlessly
discriminate between the two tables in Figure 1 [I] based on the differences in the tops and drawers,
as well as observe a connection between the bed and chair due to the similarity of legs. It remains to
be explored whether machines have the same hierarchical perceptual capabilities.

Based on the highly composite part-whole hierarchies, visual reasoning tasks can be richer, more
complex, as well as more challenging. First, the introduction of parts enriches the diversity of both
visual perception and question understanding. Apart from basic object-level properties such as
color and category, the visual scenes and natural language questions extend upon the properties of
object parts, the composition of which makes the image-question pairs more distinctive. Second,
the relations between parts go beyond simple spatial relations. Parts can often be approximated as
oriented geometric primitives (e.g., line, plane), and there naturally exist abundant geometric relations
between these primitives such as “perpendicular” and “parallel” (e.g., Q2 in Figure 1[II]). Analogical
reasoning can also be established given such relationships. Third, reasoning on parts enables the
understanding of implicit properties of objects, such as physics. For example, the arrangements of
the parts and their geometric relations affect the stability of the objects (e.g., Q3, Q4 in Figure 1[I]).

In this paper, we present a large-scale ParT Reasoning dataset, or PTR for short, a benchmark for
part-based conceptual, relational and physical reasoning. It includes ~ 70k scenes paired with 700k
questions containing part-whole structures. We include over 10k objects from the PartNet [45] dataset
across five object categories (chair, table, bed, refrigerator, cart) with rich geometric and structural
variations to construct our scenes. Our dataset consists of five types of questions: concept, geometry,
analogy, arithmetic, and physics. We provide scene graph annotations including the ground-truth
locations, segmentations, and properties for all objects and parts, as well as all the object-object



Dataset 3D Objects Parts Relation Diagnostic Geometry Analogy Physics

VQA [3] v
VCR [61] v
GQA [28] v
CLEVR [29]
X
v

RAVEN [62]
PTR (ours)

AN N N NN
NN X X X X%
ANA N N NN
SO N X %
N X X X X X
NN X X X X%
N X X X X X

Table 1: Comparison between PTR and other visual reasoning benchmarks.

and part-part relationships for model diagnostic. We also provide functional programs paired with
questions.

We analyze a suite of state-of-the-art visual reasoning models on the PTR dataset and find that they
all struggle with it, especially in relational, analogical, and physical reasoning. One oracle neural
symbolic model performs better than other models but highly relies on additional supervision such
as object and part masks and visual attributes from simulations. Also, the performances of all the
models are inferior to human performance by a large margin, suggesting that there’s still a long way
to go to equip machines with human-like hierarchical perceptual and reasoning abilities.

2 Related Work

2.1 Visual Reasoning

To assess machines’ ability on understanding and reasoning over vision and language, a wide variety
of benchmarks have been created over the recent years [29, 3, 28, 16, 61, 12, 64, 36]. In terms of data
input, our dataset mostly resembles the CLEVR dataset [29], which is also a diagnostic dataset of
synthetic images, template-based questions and compositional programs. However, the objects in
CLEVR’s scenes are of simple shapes and do not contain parts to form complex logical chains of
reasoning. The VQA dataset [3] contains large-scale crowd-sourced real images and human-generated
questions. Since it’s not a fully-controlled synthetic dataset, it shows great inherent bias. Visual
Commonsense Reasoning (VCR) [61] focuses on reasoning on commonsense knowledge. The GQA
dataset [28] pairs real images with synthetic compositional questions. However, none of these datasets
provide part-based dense annotations and questions. RAVEN [62] associates vision with structural,
relational, and analogical reasoning in a hierarchical representation. The dataset asks models to
choose an image according to analogy. However, their images are rather simple, mainly consisting of
2D shapes like circles and triangles, and they do not pair images with natural language questions.

Although numerous visual reasoning datasets have been proposed, the reasoning chain typically
terminates at the object level for these datasets, due to the mere reference to objects based on holistic
features or spatial relationships. Also, while previous datasets emphasize reasoning based on spatial
relationships, humans possess diverse reasoning abilities, including analogy [62], geometry[48, 40],
arithmetic[63, 20, 21], and physics [13]. These aspects can be effortlessly incorporated into visual
reasoning to constitute a benchmark that further approaches humans’ intellectual level. Thus, we
create a new visual-reasoning dataset that focuses on multiple aspects of reasoning on part-whole
relations. We compare our dataset with previous visual reasoning datasets in Table 1.

A large number of visual reasoning models have been proposed. Specifically, MAC [27] combined
multi-modal attention for compositional reasoning. LCGN [23] built contextualized representations
for objects to support relational reasoning. These methods, though embedded in neural networks,
model the reasoning process implicitly. Neural-symbolic methods [56, 42, 7, 38] explicitly perform
symbolic reasoning on the objects representations and language representations. Recently, methods
based on transformers [33] have achieved remarkable performance on visual reasoning tasks by
utilizing end-to-end object detector. In this paper, we conduct experiments and assess strengths and
weaknesses of these baseline models on part-based visual reasoning.



2.2 Part-based 3D Understanding

Understanding 3D parts has been a long-standing problem in computer vision and graphics. It is
important due to several reasons. Firstly, parts and their arrangements that describe the detailed
object geometry and structure are helpful for object discrimination purposes [9, 1]. Secondly, parts
are usually action handles and their forms could reveal the object functionality [34, 43, 24], therefore
crucial for interacting with objects. Thirdly, functionally related object parts usually share similar
forms, making parts suitable for connecting different objects, facilitating knowledge transfer and
promoting generalizable learning [17, 41]. Finally, parts are often commonly used for 3D generation
and content editing purposes [11, 44, 46].

To facilitate part-based 3D understanding, various part-centric 3D datasets have been proposed in the
literature. ShapeNet part dataset [58] annotates 31,963 shapes from ShapeNet [4] with semantic part
segmentation covering 16 categories. And each shape is annotated with 2 to 5 parts. PartNet [45]
further increases the granularity of parts, contributing 573,585 finegrained part instance annotations
for 26,671 shapes across 24 object categories. Going beyond semantic understanding, several datasets
also focus on the functionality and articulation aspects of parts [54, 43, 24, 25, 52]. However, most
of these datasets target at part identification rather than part-based conceptual, relational and physical
reasoning. Chang et al. [5] collected 27,477 part instances from 2,278 models covering 90 object
categories, with a focus of studying conceptual part-based reasoning. ShapeGlot [1] presents an
object reference dataset with part-level conceptual reasoning implicitly considered. Want et al. [51]
proposes PartNet-Chairs, which contain questions about parts of chairs. These datasets are restricted
to conceptual reasoning while our PTR has a broader scope covering ampler reasoning types.

Restricted by the annotations in existing large-scale datasets, previous part-based 3D understanding
works mainly focus on identifying parts [15, 30, 26, 55, 32, 58] and part relations [6, 10, 31, 35, 60,
50] for individual 3D objects. Several methods also consider a more complex hierarchical structure
of 3D parts [59, 44, 37, 53, 14, 22, 8]. Moreover, these works usually assume a strong categorical
prior and tend to have poor generalizability across categories. However, we human beings can easily
do more than just part identification or single-object part relationship understanding for objects from
known categories. We can reason the relationship between parts from different object instances, make
analogies, conduct mental arithmetic, and even infer the physical realism or stability. These tasks
are not well supported by current datasets. Therefore we present PTR to close this gap and to better
support the study of these human-like common sense.

3 The PTR Dataset

The PTR dataset aims to assess machines’ ability to perform part-based visual reasoning. We
carefully design this dataset in a fully-controlled synthetic environment and enable model diagnostics
on this complex reasoning task. Each image has ground-truth annotations regarding the locations,
orientations and attributes of objects and parts, as well as the object masks and part masks. We also
provide depth images, camera locations and orientations to facilitate the possible use of 3D models
on our dataset in the future. For reasoning on geometric relations of parts, we include the geometric
information of a part indicating whether it can be considered as a geometric line or plane, and the
line equation or plane equation. For physical reasoning, we include the stability information of each
object. The images are paired with five types of questions: concept, relation, analogy, arithmetic and
physics. The questions have associated functional programs.

3.1 Image Generation

PTR includes approximately 52k images for training, 9k for validation and 10k for testing. The
images are rendered via Blender’. To get the physical information, we apply Bullet* to simulate the
future motion traces of each object.

Scene, Objects and Parts. The PTR universe contains five categories of objects (chair, table, bed,
refrigerator and cart) from the PartNet dataset. The reasons why we choose these categories are as
follows: 1) These are commonly seen objects in real life scenes; 2)The objects share a lot of generic

3https://www.blender.org/
*https://pybullet.org/wordpress/



~70k different scenes
Objects: chair, table, bed, refrigerator, cart

Parts:
chair: arm, leg, back, seat, central support, pedestal, leg bar, wheel, arm vertical bar,
arm horizontal bar
table: top, drawer, shelf, leg, pedestal, leg bar, door, central support, wheel
bed: sleep area, leg, back
refrigerator: body, door
cart: body, wheel
Part Colors: gray, red, blue, green, brown, cyan, purple, and yellow
y 4 gray, red, > 8 yan, purp. y

Spatial Relationship: left, right, front, behind
Physics: stable, unstable, possible positional change

Geometric Relationship: line-line perpendicular, line-line parallel, plane-plane
perpendicular, plane-plane parallel, line-plane perpendicular, line-plane parallel

Figure 2: An overview of the scene structure and concepts in the PTR dataset. The PTR universe
contains five object categories, each consisting of a set of part categories. Objects have spatial
relationships and parts have geometric relationships. Physical properties are also defined on objects.

parts (e.g., leg, leg bar, central support, pedestal, door, wheel, efc.); 3)The objects have rich physical
configurations depending on the constitution of the parts. Each object can have an arbitrary number
of parts. Each part takes one of eight colors (gray, red, blue, green, brown, cyan, purple, and yellow).
The specific concepts used in the PTR dataset are listed in Figure 2. The distribution of the number
of parts in the scenes is shown in Figure 3c.

When constructing the scene, we first place a floor and three walls of random texture to enrich
geometric and physical information. We add jitters to the locations and orientations of the camera
and the lamps. Every scene has three to six objects. To place an object, we ensure that no objects
overlap (except for physical scenes which have objects stacking). We also ensure that the objects
are of proper orientations so that no much burden would be placed on object detection. The training
dataset and test dataset has no shared 3D object models (i.e,, the PartNet 3D models are not shared
across splits, but the semantics are shared).

The physical scenes contain objects that are tilted, leaned towards walls, or stacked onto other objects.
We use the Bullet physics engine to simulate physical effects. We calculate the change of object
locations and orientations along time steps to determine the stability of an object. If the change of
location and orientation is within a threshold value, an object can be considered stable. For unstable
objects, we move the objects in four directions (front, behind, left, right) around their original location,
to account for possible changes for the objects to become stable. To avoid missing such possible
changes, for each direction we define four moving distances to place the objects.

Relationships PTR has three types of relationships: spatial relationships of objects, geometric
relationships of parts, and same-attribute relationships of both objects and parts.

Objects are spatially related via four relationships (left, right, in front of, behind). The spatial
relationships are dependent upon the camera viewpoint.

Parts have geometric relations if they, with negligible thickness, can be considered as 1D lines or 2D
planes (e.g., the legs and leg bars of Figure 1 [II] can be treated as lines, and the doors can be treated
as planes). To detect such geometric primitives, for each part we randomly sample two points for
lines, or three points for planes from the raw 3D data, for 1000 times. Each time we derive a line
equation or plane equation from the sampled points. We ensure that distances between the points are
sufficient enough with regard to the size of the part to reduce noise. The final line or plane equation
is then approximated by averaging the equations. We then further sample 2500 points from the 3D
data to see if the majority of points conform to the equation. If not, the part cannot be considered as a
line or plane. The same-attribute relationships involve same-category relationship between objects,
as well as same-category and same-color relationships between parts.



3.2 Question Generation

We pair each image with machine-generated questions coupled with executable functional programs.
PTR contains approximately 520k questions for training, 90k for validation and 100k for testing. All
questions are open-ended and can be answered with a single word. Sample questions and detailed
distributions can be found in Figure 1 and Figure 3.

Concept Conceptual questions evaluate a model’s capability to understand and reason about basic
part-whole relations. The reasoning tasks are grounded within the compositional space of both
object-level and part-level properties. Unlike previous visual reasoning datasets which refer to an
object based on the object’s holistic attributes, PTR distinguishes objects by the existence of parts
and the attributes of parts. To shed light on the interconnected nature of part-whole hierarchies,
there are also questions that do not specify any object category but only the common part categories
(e.g., Q1 in Figure 1 [I] makes a connection between bed and chair by asking about the objects with
legs). Conceptual questions contain multiple sub-types including: query object category, query part
category, query part color, count object, exist object and count part.

Relation Relational questions query about the spatial relationships of objects, geometric relationships
of parts, as well as same attribute relationships of objects and parts. Upon querying about the spatial
relationships, the questions take the six sub-types of the conceptual questions, except that objects are
also filtered using spatial information.

As for geometric relationships, we first detect a part that can be considered as a line or a plane, refer
to the part using color, and then query the existence/count/color of parts in another object that has
certain geometric relation to this part. There are in total six types of geometric relationships, which
are listed in Figure 2. Q2 in Figure 1 [II] is an example of geometric questions. By considering the
blue leg bars as lines and the purple doors as planes, we can easily examine that the two parts are
perpendicular.

The same attribute relationships take three forms. The first one asks the model to compare two
attributes of two objects/parts and return a “yes/no" answer (e.g.,, Q1 of Figure 1 [II]). The second
refers to an object with the “same-category" relation to another object. The third detects whether an
object has the same part attributes (e.g., same color of legs) as another object.

Analogy Analogical questions query analogy on spatial relationships and geometric relationships.
Specifically, given objects or parts A, B, C where B has a certain relation to A, the model is required
to select an object or part D that has the same relation to C. The question may query about the
existence/count/attribute of D. An exemplar question is shown in Figure 1 [II] Q3. In this question,
A is the leg bars of the chair, B is the door of the refrigerator. We find that the two parts have the
“line-plane perpendicular" relationship. C is the legs of the table, and the question queries about the
color of D, such that C and D have the same relation as A and B.

Arithmetic Arithmetic questions take the quantities of two types of parts in two objects, and apply
two types of operations to the quantities. The first type is “compare integer". The model is asked to
predict whether the two quantities follow “equal/greater than/less than" relationships and return a
“yes/no" answer. The other type is “sum/minus"", where the sum or the difference of two numbers
is queried (e.g., Figure 1 [I] Q2). We ensure that the answer is no greater than 10 or less than O to
facilitate the training of neural models.

Physics Physical questions query about the stability of objects. For example, Q3 in Figure 1 [I] asks
how many objects are stable. If an object is unstable, further questions can be asked concerning the
possible changes to the location of the object to make it stable, as in Figure 1 [I] Q4.

Program In PTR, each question can be parsed into a hierarchical tree-structured functional program,
as shown in the functional programs in Figure 1. Different from previous datasets, PTR has three
key functions: expand parts, filter part exist and filter part count, which enable the flexible transition
between object-level reasoning and part-level reasoning. When the reasoning procedure switches
from object level to part level, expand parts takes all the objects, and returns the parts of the objects.
filter part exist filters objects by examining whether certain parts exist in the objects, and filter part
count filters objects by the number of certain parts in objects. A list of program modules can be found
in the Supplementary Material.

Bias control Questions are generated from pre-defined templates, and transformed into natural
language questions with associated object-level and part-level attributes from the scene. We manually
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Figure 3: Analysis on question types and distributions.

define 58 templates for question generation. We sort the question types and templates each time
we generate a question to ensure a balanced question distribution. To avoid bias, we force a flat
answer distribution for each question type by rejection sampling. Specifically, when sampling a
question-answer pair, if the count of the answer exceeds the median count of all answers in that type
by a margin, we discard the question-answer pair.

4 Baseline Evaluations

4.1 Baseline Models

We mainly evaluate three kinds of state-of-the-art visual reasoning methods, including heuristic
models, end-to-end neural networks, and neural-symbolic models.

Q-type (Rand.), Q-type (Freq.): These are language-only baselines that examine the bias in the
dataset. Q-type (Rand.) uniformly samples an answer from the answer set given a specific question
type. Q-type (Freq.) selects the most frequent training set answer for each question type.

UP-DOWN: We extract part-centric features in an unsupervised manner using Slot Attention[39],
and apply bottom-up and top-down attention [2] on the part-centric features.

CNN+LSTM The question is encoded by the final hidden states from a Long Short Term Memory
network (LSTM) and the image is encoded using features from a convolutional network (CNN). The
features are concatenated and fed to an MLP to predict the final answer. This is a simple baseline that
examines how vanilla neural networks perform on PTR.

MAC, MAC(P) ([27]) MAC utilizes a novel Memory, Attention and Composition cell to perform
iterative reasoning process. The image features and question features are incorporated via a joint
attention mechanism. This is a strong baseline achieving state-of-the-art performance on CLEVR
without any supervision on vision and language. To boost part-level reasoning, we construct part-
aware features by adding the segmentation masks of all parts and their attributes to the original
features, denoted as MAC(P).

LCGN ([23]) The objects are represented as nodes in the graph network, and are described by a
context-aware representation from related objects through iterative message passing conditioned on
the textual input.

MDETR ([33]) This model fuses the two modalities at an early stage, leveraging an end-to-end
modular detector to boost downstream tasks like visual question answering. It uses ground-truth
bounding boxes of parts to train the detector.

NS-VQA ([56]) The visual recognition and language understanding are performed by neural networks,
which are passed to a symbolic execution module to get the final results. We treat this baseline as
an oracle model where we use the annotations of both vision (ground-truth masks) and language
(ground-truth programs).

Implementation Details We use an ImageNet-pretrained ResNet-101 to extract 14 x 14 x 1024
feature maps for MAC, MAC(P) and LCGN. For CNN-LSTM, we use the 2048-dimensional feature
from the last pooling layer. The setup of MDETR is the same as the original paper with ResNet-101
as backbone. We first train only the task of part detection for 30 epochs, and then train the full PTR
with question answering loss.



For NS-VQA, we use Mask R-CNN [18] to generate segmentation proposals of objects and parts,
respectively. The Mask R-CNN is trained on 20% of the training data annotated with ground-truth
masks for 30,000 iterations. We do not include labels of categories and attributes when training
segmentation. We extract the categories and attributes of objects and parts using attribute networks
(ResNet-34). The extraction works in a top-down, bottom-up fashion. First, the object proposals
are sent to attribute networks to propose object categories. They are then paired with contextual
information (i.e., the original images), to produce pose and physics information. Second, the part
proposals are augmented with top-down object proposals and categories and sent to the attribute
networks, to predict the part categories and colors separately. We also output the probability of
a part being a line or a plane, and the orientation (parameters of the line/plane equation) of the
geometric parts. Finally, in a bottom-up fashion, if parts cover a region that is not covered by object
segmentations, we reconstruct objects by taking the summed area of the parts, and label the objects
by taking into account the labels of parts. The program generator of NS-VQA is trained on 1,000
question-program pairs. The part segmentations and attributes are also used in MAC(P).

Question Type Model | pand. Freq gg\_VNL(Sj:FM LCGN MAC MAC(P) MDETR VI\(IQS/; Human
query-object 200 265 71.8 733 764 768 80.5 79.8 96.7 95.5

exist-object 50.1 524 72,6 739 77.1 748 765 78.2 91.5 97.8

Concept count-object 9.8 19.8 50.0 589 685 633 64.5 67.9 80.8 95.4
query-part 89 109 344 357 315 482 494 52.3 71.8 89.1

count-part 10.0 20.1 455 468 504 49.6 509 51.2 60.6 82.9

spatial I1.5 182 40.6 472 512 549 593 57.6 67.1 85.7

Relation geometric 40.1 417 486 579 586 648  65.6 67.1 55.3 76.4
same-attribute 36.1 395 473 529 548 576 < 58.0 61.4 62.5 94.2

Analogy spatial 26.1 329 192 51.0 543 534 533 585 68.7 84.2
geometric 121 267 222 267 233 233 30.0 34.3 32.5 73.7

compare-integer | 49.7 517 69.7 740 745 750 75.3 72.0 67.1 83.3

Arithmetic sum-minus 10.0 198 268 31.1 350 342 348 36.2 43.4 75.6
Physics stability 379 435 505 563 607 392 615 58.0 41.2 74.0
possible-change | 40.6 48.1 535 54.1 572 578 56.8 53.8 52.0 79.8

All 284 335 454 3529 554 575 58.9 59.8 62.1 84.8

Supervision | 7/ / A A A A AMS AMT MSP |

Table 2: Test accuracies on the PTR dataset. For the supervision types, "A" denotes the answers,
"M" denotes the segmentation masks, "S" denotes the semantics of objects and parts, "T" denotes
the spans of tokens associated with masks, and "P" denotes the programs of the questions. Though
humans achieve an 84.8% accuracy, SOTA visual reasoning models struggle with it.

4.2 Result Analysis

We summarize the performances for each question type of baseline models in Table 2. All models are
trained on the training set until convergence, tuned on the validation set, and evaluated on the test set.

Overall Result From the table, we can see that the neural-symbolic model, NS-VQA, outperforms
neural models by a large margin. This is credited to the extra supervision of both vision (ground-truth
part masks and attributes) and language (ground-truth programs). Still, it cannot achieve nearly
perfect performances in basic conceptual problems due to the difficulty in perception module (i.e.,
mask-rcnn and attribute net). MDETR stands out from all the neural models. However, two additional
ingredients are required to train MDETR: the bounding boxes of all the parts, and the alignment
between vision and language. We further observe that augmenting MAC with part segmentations
and attributes boost the accuracy. The results suggest that currently, extra supervision is crucial
for both neural models and neural-symbolic models to perform compositional reasoning. On the
contrary, if the part segmentations and representations are extracted in an unsupervised manner (e.g.,
UP-DOWN), the results are much inferior to the results of other baseline models. We also include the
unsupervised segmentation results by Slot Attention [39] in the Supplementary Material. The results
suggest that our benchmark can also be served as a nature testbed for unsupervised part detection.

All baseline models have unsatisfactory performances compared to human evaluation, especially in
question types that require specific reasoning skills, such as analogy, physics and arithmetic.

Question Types We observe a variance of performances across the wide spectrum of reasoning tasks.
Starting with physics problems, we find that although NS-VQA has great performances for conceptual



questions, its performance drops drastically when it comes to physical problems, worse than all
neural baselines by 15% to 20%. The same phenomenon can be observed in the geometry-type
problems, where NS-VQA performs worse than most of the neural baselines. This indicates that the
attribute nets in current neural-symbolic models can only learn explicit attributes while struggling
with implicit high-level attributes such as physics and geometry. MAC(P) is superior to MAC in
“stability" problems, indicating that the physical properties of objects are linked to the composition of
parts.

As for tasks that focus on part-level reasoning, models augmented with part-level representations
(MAC(P), MDETR, NS-VQA) have better performances than others. Specifically, MDETR excels in
geometric problems, and NS-VQA manages to achieve good performances for geometric analogy
problems while other models fail. MAC(P) outperforms MAC in query-part, count-part and geometric
questions, showing that part-based representations are essential for reasoning on part-level attributes
and relationships.

4.3 Data Efficiency

o CNN+LSTM o LCGN » MAC v MAC(P) <« MDETR ¢ NS-VQA

Overall Conceptual Relational Physics

Acc (%)

PO T D S— o
40
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Figure 4: Compared results on data efficiency of different baseline models.

We compare different baselines on a systematic study on data efficiency, which is presented in Figure
4. Specifically, we train the model with 10%, 25%, 50% and 100% randomly chosen training images
paired with questions, and evaluate the model on the original testing dataset. For NS-VQA, we use
the corresponding percentage of annotated data for part detection and question parsing.

From Figure 4, we find that the neuro-symbolic model remains good performances across all
splits. This might be the consequence of the disentanglement of perception module and reasoning
module. LCGN is data-efficient, achieving ~ 49% accuracy with only 10% data, but does not show
large improvement with more data. This might be due to the context-aware representations which
provide more information with fewer data. All the models improve slightly on the physics category,
which suggests that the underperformance on physics problems is rarely caused by insufficient data.
Increasing the amount of data boosts the performances in the conceptual questions most, indicating
that data is important for learning part-whole concepts.

4.4 Cross-Category Generalization

To examine machines’ ability of interconnecting objects of different
categories via common parts (i.e., generalizing to unseen categories
based on seen categories), we curate a subset from the original dataset.
The curated training set has only three object categories: chair, refrig- s
erator, and cart. The testing set contains objects of all five categories, =
and questions asking about the common parts of the categories (e.g.,, .,
both the table and the refrigerator have doors). The cross-category «

training set has about 15% data of the original training set. For fair LCGN  MAC  MDETR  NS-VQA
comparison, we extract approximately the same amount of data in CromCatezory Ol

the training set that have all five categories in the scenes, denoted as  Figure 5: Results on cross-
“original" in Figure 5. category generalization.



Figure 5 summarizes the cross-category generalization results. From

the figure, we can see that NS-VQA shows great generalization ability, mainly because the part
detection and part attribute extraction trained on one category can be easily transferred to another
with similar part appearances. Of all the neural models, MDETR has the best performance, which
is largely due to modular detection. LCGN also achieves satisfying performance. However, the
cross-category accuracy for LCGN is much lower than the original accuracy, suggesting that the
good performance is due to data efficiency. MAC(P) has the same problem. Although we augment
image features with part segmentations, it does not show good generalization ability given by parts.
One explanation is that choosing the right form of part features is crucial. Explicit mechanisms as in
MDETR and NS-VQA can lead to better performances and generalization ability.

4.5 Ablative Studies of NS-VQA

We further eliminate perception difficulty, and investigate the challenges of our benchmark if ground-
truth part-segmentations are given. We experiment with two settings: 1) Replacing masks output by
Mask-RCNN with ground-truth masks (instance segmentations given); 2) Based on 1), replacing
attributes output by attribute networks with ground-truth attributes (both instance and semantic
segmentations given). The results are shown in Figure 6.

100
90
80
70
60
50 I
40

Concept Relation Analogy Arithmetic Physics
NS-VQA /wo segmentation /wo semantics = NS-VQA w/ segmentation wo/ semantics
B NS-VQA /w segmentation w/semantics

Figure 6: Ablative Studies of NS-VQA model

We can see that given all the ground-truth segmentations and semantics, NS-VQA can achieve perfect
results in conceptual and arithmetic problems. However, it still performs poorly in geometric and
physical problems. Given only segmentations, NS-VQA has a much lower accuracy than NS-VQA
with semantics, showing that existing attribute network architectures also fall short in predicting
semantics on our dataset.

5 Conclusion and Future Work

In this paper, we propose PTR, a novel large-scale benchmark that emphasizes visual reasoning on
part-whole hierarchies. We propose several challenging question types for PTR, including: concept,
relation, analogy, arithmetic and physics. We describe the detailed dataset creation procedure. We
further conduct experiments on state-of-the-art visual reasoning models on PTR. Experimental results
show that current visual reasoning models underperform humans in part-based reasoning tasks by a
large margin. We believe this benchmark will open up opportunities for building and testing a new
family of visual reasoning models.

For future work, we can leverage the depth image in PTR and experiment with RGBD-based visual
perception models. Also, results show that current models fail to represent part-whole hierarchies
delicately, encouraging the design of novel neural networks that specializes in this aspect (e.g., Hinton
[19] proposes some feasible ideas.) Last but not least, all models have bad performances in physical
reasoning. One promising direction is to integrate physics engines with visual reasoning models to
boost performances.
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