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Abstract

Why do we build local large language models001
(LLMs)? What should a local LLM learn from002
the target language? Which abilities can be003
transferred from other languages? Do language-004
specific scaling laws exist? To explore these005
research questions, we evaluated 35 Japanese,006
English, and multilingual LLMs on 19 evalua-007
tion benchmarks for Japanese and English, tak-008
ing Japanese as a local language. Adopting an009
observational approach, we analyzed correla-010
tions of benchmark scores, and conducted prin-011
cipal component analysis (PCA) on the scores012
to derive ability factors of local LLMs.013

We found that training on English text can014
improve the scores of academic subjects in015
Japanese (JMMLU). In addition, it is unneces-016
sary to specifically train on Japanese text to en-017
hance abilities for solving Japanese code gener-018
ation, arithmetic reasoning, commonsense, and019
reading comprehension tasks. In contrast, train-020
ing on Japanese text could improve question-021
answering tasks about Japanese knowledge and022
English-Japanese translation, which indicates023
that abilities for solving these two tasks can024
be regarded as Japanese abilities for LLMs.025
Furthermore, we confirmed that the Japanese026
abilities scale with the computational budget027
for Japanese text.028

1 Introduction029

Major large language models (LLMs) are English-030

centric (English LLMs hereafter), e.g., Meta Llama031

3 (Dubey et al., 2024), Mistral (Jiang et al., 2023),032

and Phi-3 (Abdin et al., 2024), due to the dom-033

inance of English on the internet and the global034

economy, which results in a limited focus on non-035

English languages. Several companies and re-036

search institutes have been actively developing037

LLMs that perform well on non-English texts (lo-038

cal LLMs hereafter), e.g., Bllossom (Choi et al.,039

2024), Chinese-LLaMA (Cui et al., 2024) and open-040

Cabrita (Larcher et al., 2023), driven by various041

motivations. These include advancing research and 042

development in natural language processing, mit- 043

igating security risks associated with relying on 044

a limited number of foreign companies, and pro- 045

moting responsible artificial intelligence for their 046

community. 047

Recently, dozens of Japanese-centric LLMs 048

(Japanese LLMs hereafter) have been developed in 049

Japan, such as Sarashina21, Llama 3.1 Swallow2, 050

and LLM-jp (LLM-jp et al., 2024). However, the 051

advantages of training LLMs on non-English text, 052

such as Japanese, remain underexplored. While 053

LLMs have demonstrated high multilingual abili- 054

ties, such as arithmetic reasoning (Shi et al., 2023) 055

and machine translation (Briakou et al., 2023), 056

Zhang et al. (2023) reported that they performed 057

poorly on non-English commonsense reasoning. 058

Although Fujii et al. (2024) reported that train- 059

ing on Japanese text improved question-answering 060

(QA) tasks, the contribution of Japanese training 061

data on each task has not been investigated. 062

A straightforward approach for analyzing the 063

impact of Japanese training data in LLMs is to 064

conduct ablation studies; more specifically, we pre- 065

pare training data by changing the size and mix 066

of Japanese data sets, train an LLM on the data, 067

and measure its performance. However, this ap- 068

proach is inefficient due to the significant compu- 069

tational resources required. Even if such studies 070

were conducted, it would remain unclear whether 071

the findings could be generalized beyond specific 072

design choices, such as variations in training data, 073

the numbers of model parameters, or pre-training 074

methods (from scratch or continual pre-training). 075

Instead of cost-intensive ablation studies, this pa- 076

per adopts an observational approach (Ruan et al., 077

2024) for Japanese LLMs, leveraging the excep- 078

1https://huggingface.co/sbintuitions/
sarashina2-7b

2https://swallow-llm.github.io/llama3-swallow.
en.html
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tionally active development of Japanese LLMs079

among non-English initiatives. Specifically, we080

evaluate publicly available 35 Japanese, English,081

and multilingual LLMs representing a variety of082

design choices. We also use 19 comprehensive083

evaluation benchmarks, including Japanese transla-084

tions of English benchmarks, where the same tasks085

are evaluated in both languages. Our goal is to086

derive insights that are generalizable (unrestricted087

to specific design choices) through a quantitative088

analysis focusing on the following points.089

First, to explore multilinguality, we analyzed090

score correlations across 19 task benchmarks for091

35 LLMs, and conducted Principal Component092

Analysis (PCA) to represent the performance in093

a low-dimensional ability space (Ruan et al., 2024).094

We found that tasks such as academic subjects,095

code generation, and arithmetic reasoning exhib-096

ited strong cross-lingual correlations on their scores097

and were associated with the same ability fac-098

tors across languages. This indicates strong multi-099

lingual transferability, suggesting that training in100

English text would also improve performance in101

Japanese for these tasks. Conversely, tasks such102

as QA about Japanese knowledge and English-103

Japanese translation exhibited weak correlations104

with other English tasks and were strongly asso-105

ciated with an independent ability factor, which106

indicates language-specific abilities.107

Second, to examine language-specific scaling108

laws, we defined the language-specific compu-109

tational budget as the product of the number110

of parameters and training tokens for each lan-111

guage (Hoffmann et al., 2022), and analyzed the112

log-linear relationship between these budgets and113

the ability factors obtained by PCA. We found that114

the English computational budget showed a strong115

correlation with the general ability factor but a116

weak correlation with the Japanese-specific ability117

factor. In contrast, the Japanese computational bud-118

get showed a strong correlation with the Japanese119

ability factor, suggesting that tasks such as QA120

about Japanese knowledge and English-Japanese121

translation scale with the amount of Japanese text122

and are difficult to learn solely on English texts.123

2 Related Work124

2.1 Correlations between Tasks and Ability125

Factors126

Several prior studies have investigated the correla-127

tions between different task benchmarks and asso-128

ciated the task performance with a small number 129

of ability factors (Ruan et al., 2024; Ni et al., 2024; 130

Tiong et al., 2024). These studies have reported 131

strong correlations between knowledge-based QA 132

tasks and identified ability factors specific to arith- 133

metic reasoning and code generation. Addition- 134

ally, Ruan et al. (2024) observed the log-linear 135

relationship between the computational budget and 136

ability factors. However, these discussions are lim- 137

ited to English monolingual settings, leaving cross- 138

language generalization and scaling laws in multi- 139

lingual contexts, including Japanese and English 140

as in our study, unexplored. 141

2.2 Effects of Training on Non-English Text 142

There is a growing number of studies examining 143

both the promising and disappointing impacts of 144

training local LLMs on target language data. 145

On the promising side, continual pre-training 146

(continued pre-training) of strong English LLMs 147

on non-English languages such as Chinese (Cui 148

et al., 2024), Korean (Choi et al., 2024), Por- 149

tuguese (Larcher et al., 2023), and Thai (Pi- 150

patanakul et al., 2023) has reported improvements 151

on a variety of tasks in the target languages, includ- 152

ing commonsense reasoning, reading comprehen- 153

sion, question answering, and academic subjects. 154

Tejaswi et al. (2024) conducted systematic exper- 155

iments under continual pre-training settings and 156

reported that the effectiveness varies across differ- 157

ent base LLMs. 158

On the disappointing side, Berend (2022) re- 159

ported that multilingual training does not always 160

improve performance due to the curse of multilin- 161

gualty (Conneau et al., 2020). In addition, Holm- 162

ström et al. (2023) reported that a Swedish LLM 163

trained from scratch performed poorly compared to 164

GPT-3, highlighting the difficulty of outperforming 165

strong multilingual LLMs. Furthermore, English 166

and multilingual LLMs reportedly show strong mul- 167

tilingual abilities on tasks such as arithmetic and 168

commonsense reasoning (Shi et al., 2023) through 169

cross-language generalization (Zhang et al., 2023). 170

These findings suggest that the benefits of training 171

on non-English text might be limited or, at the very 172

least, task-dependent. 173

Despite these debates, there has not yet been 174

a comprehensive and cross-lingual benchmarking 175

using a wide variety of LLM families to assess the 176

effect of training on non-English text. 177
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3 Experimental Settings178

3.1 Models179

To obtain generalizable insights, we evaluated pub-180

licly available 35 Japanese, English, and Multi-181

lingual LLMs (see Table 1 in Appendix A.1 for182

the complete list), which represent diverse design183

choices, including training data, the number of184

model parameters, and pre-training approach. The185

evaluated models include: English LLMs (e.g.,186

Llama 3 (Dubey et al., 2024), Mistral (Jiang et al.,187

2023), and Mixtral (Jiang et al., 2024)); Japanese188

LLMs continually pre-trained from English base189

LLMs on 18–175 billion tokens of Japanese text190

(e.g., Llama 3 Swallow (Fujii et al., 2024) and191

Llama 3 Youko (Sawada et al., 2024)); Japanese192

LLMs pre-trained primarily on 130–1,050 billion193

tokens of Japanese text from scratch (e.g., LLM-194

jp (LLM-jp et al., 2024) and Sarashina2; and mul-195

tilingual LLMs pre-trained on multilingual data196

including Japanese (e.g., C4AI Command-R3 and197

Qwen2 (Yang et al., 2024)). Notably, all the En-198

glish LLM families that served as base models for199

the continually pre-trained Japanese LLMs were200

evaluated as well. We focused on base models and201

did not evaluate instruction-tuned models to ex-202

amine the effect of pre-training and avoid the con-203

founding effects of task-oriented instruction tuning.204

To estimate the computational budget for each205

model, we collected data on the number of model206

parameters and the number of training tokens for207

Japanese, English, and total across all languages208

from official sources such as technical reports,209

press-release documents, and model cards. Re-210

fer to Appendix A.3 for details. For a continually211

pre-trained model, we calculated the total number212

of training tokens by summing the tokens used in213

both initial and continual pre-training stages.214

3.2 Evaluation Tasks and Benchmarks215

We evaluated the models using 19 evaluation bench-216

marks in both Japanese and English4 , which is217

listed in Table 2 of Appendix A.2. These tasks218

were selected from the perspective of cross-lingual219

benchmarking and comprehensiveness for general-220

purpose LLMs. The evaluation was conducted us-221

ing zero-shot or few-shot in-context learning set-222

3https://huggingface.co/CohereForAI/
c4ai-command-r-v01

4The evaluation scores for each model will be publicly
available on Zenodo with a CC-BY Attribute license upon
acceptance (for blind review).

tings depending on tasks. Refer to Appendix A.2 223

for details. 224

We employed some Japanese benchmarks cor- 225

responding to their English counterparts for 226

cross-lingual benchmarking: code generation 227

(JHumanEval (Sato et al., 2024) vs. Hu- 228

manEval (Chen et al., 2021)), commonsense 229

(JCommonsenseQA (Kurihara et al., 2022) vs. 230

XWINO (Tikhonov and Ryabinin, 2021) and Hel- 231

laSwag (Zellers et al., 2019)), arithmetic reasoning 232

(MGSM (Shi et al., 2023) vs. GSM8K (Cobbe 233

et al., 2021)), encyclopedic knowledge-based QA 234

(JEMHopQA (Ishii et al., 2023) and NIILC (Sekine, 235

2003) vs. TriviaQA (Joshi et al., 2017)), read- 236

ing comprehension (JSQuAD (Kurihara et al., 237

2022) vs. SQuAD2 (Rajpurkar et al., 2018)), and 238

academic subjects (JMMLU (Yin et al., 2024) 239

vs. MMLU (Hendrycks et al., 2021)). Notably, 240

MGSM, JMMLU, and JHumanEval are transla- 241

tions of GSM8K, MMLU, and HumanEval, respec- 242

tively. Cross-lingual correlations between these 243

benchmarks provide insights into the multilingual- 244

ity and language specificity of each task. It is also 245

worth noting that JEMHopQA and NIILC are devel- 246

oped based on Japanese Wikipedia and include in- 247

stances that assess knowledge specific to Japanese 248

culture, such as history, geography, notable figures 249

and society, making them suitable for evaluating 250

how much LLMs acquire knowledge about Japan. 251

For comprehensiveness, inspired by the natu- 252

ral language processing taxonomy (Chang et al., 253

2024; Guo et al., 2023) and to capture as many 254

ability factors as possible, we included additional 255

task benchmarks beyond cross-lingual benchmarks. 256

Specifically, we employed Japanese automatic sum- 257

marization (XL-Sum (Hasan et al., 2021)), ma- 258

chine translation between English and Japanese 259

(WMT20-en-ja and ja-en (Barrault et al., 2020)), 260

English question answering (OpenBookQA (Mi- 261

haylov et al., 2018)), and logical reasoning (Big- 262

Bench-Hard (Suzgun et al., 2023)). Because we 263

posit that local LLMs serve as foundational mod- 264

els for the target language, our evaluation focused 265

on fundamental knowledge and skills rather than 266

domain-specific tasks (e.g., question answering in 267

financial or medical domains). Furthermore, we ex- 268

cluded safety and bias-related tasks, as these should 269

be addressed in the post-training stage. 270

3.3 Definition of the Computational Budgets 271

The Chinchilla scaling laws (Hoffmann et al., 2022) 272

propose an approximation for training FLOPs as 273
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Figure 1: Task performance grouped by primary language of LLMs. Bubble size indicates the number of parameters.

C ≈ 6ND, where C represents the training274

FLOPs, N is the number of parameters, and D is275

the number of training tokens. Following this for-276

mula, we define NDl as the computational budget,277

where Dl is the training tokens for the language l.278

3.4 Evaluation Framework and Environment279

We evaluated all 35 LLMs on 19 task benchmarks280

by using a custom implementation5 of existing eval-281

uation frameworks such as llm-jp-eval (Han et al.,282

2024) and the Language Model Evaluation Har-283

ness6. Refer to Table 3 for the details of imple-284

mentations used for evaluation. We used NVIDIA285

A100 GPUs mostly for the evaluations.286

4 Experimental Results287

Based on the experimental setting explained in the288

previous section, we obtained a matrix of bench-289

mark scores X ∈ RM×D, where M and D are the290

numbers of LLMs and benchmarks, respectively291

5Our implementation has been available on Github, but is
hidden here for blind review.

6https://zenodo.org/records/10256836

(M = 35 and D = 19 in this study) and an ele- 292

ment Xi,j presents the score of the LLM i on the 293

benchmark j. In this section, we analyze the matrix 294

X to unveil the difference in training strategies for 295

Japanese LLMs (§ 4.1), similarity of benchmarks 296

in terms of LLM performance (§ 4.2), ability fac- 297

tors of LLMs (§ 4.3). We then confirm that our 298

findings about ability factors are aligned with the 299

scaling laws (§ 4.4) and generalizable to different 300

training strategies (§ 4.5). 301

4.1 Comparison of Benchmark Scores by 302

Pre-trained Languages 303

Figure 1 presents a bubble chart showing the bench- 304

mark score distributions grouped by the primary 305

language of the LLMs: Japanese continually pre- 306

trained (light blue), Japanese trained from scratch 307

(green), English (red), and Multilingual (gray). The 308

variable n in each group represents the number of 309

models included. 310

On overall, it is evident that LLMs with larger 311

parameters tend to achieve higher scores in each 312

group. When comparing benchmark scores for 313
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Relatively weak correlations
with other tasks

between JA ver. and EN ver.
Strong correlations

Blue: JA Benchmarks
Black: EN Benchmarks

Figure 2: Pearson correlation matrix among task benchmarks (n = 35).
Figure 3: Principal component scores for
each LLM.

smaller models, there is a clear tendency for LLMs314

continually pre-trained on Japanese text (the green315

bubbles) to outperform English LLMs (the red bub-316

bles) on Japanese benchmarks (shown in blue) ex-317

cept JHumanEval and MGSM. This indicates the318

effectiveness of continual pre-training on Japanese319

text. The advantage is particularly evident in320

tasks such as Japanese QA (NIILC) and English-321

Japanese translation (WMT20-en-ja). Refer to Ap-322

pendix B for detailed discussion. Considering their323

smaller number of parameters, Japanese LLMs324

trained from scratch (green bubbles) achieve com-325

petitive scores on most Japanese benchmarks, with326

the exceptions of the arithmetic reasoning (MGSM)327

and the code-generation (JHumanEval).328

4.2 Correlation Between Evaluation329

Benchmarks and Language-Specific330

Performance331

To group benchmarks based on the similarities of332

LLM performance, we computed a Pearson cor-333

relation between two benchmarks a and b. More334

specifically, let the column vectors X:,a and X:,b335

represent the array of two benchmarks a and b,336

we compute the Pearson correlation coefficient337

corr(X:,a, X:,b). Figure 2 shows the Pearson corre-338

lation matrix, revealing two key findings7:339

7We confirmed that using Spearman’s rank correlation
produced no significant differences in the findings.

First, we observed strong cross-lingual correla- 340

tions on certain tasks: academic subjects (MMLU 341

vs. JMMLU: 0.91), arithmetic reasoning (GSM8K 342

vs. MGSM: 0.94), and code generation (Hu- 343

manEval vs. JHumanEval: 0.98). In other words, 344

for these tasks, when LLMs perform well on the 345

English benchmarks, they are also likely to perform 346

well on the corresponding Japanese benchmarks. 347

This suggests that multilinguality outweighs lan- 348

guage specificity in these tasks, and that LLMs 349

may generalize abilities acquired through training 350

primarily on English text. 351

Second, QA tasks about Japanese knowledge 352

(JEMHopQA, NIILC) and an English-Japanese 353

translation task (WMT20-en-ja) exhibit relatively 354

weak correlations with other tasks respectively. In 355

particular, NIILC shows negative correlations with 356

most English tasks, and WMT20-en-ja does nearly 357

no correlations with them. These facts suggest that 358

performance on these tasks may be determined by 359

factors different from those influencing other tasks. 360

While we observe strong linear correlations be- 361

tween JMMLU, MGSM, and JHumanEval and 362

their English counterparts, given that these are de- 363

rived from English benchmarks, readers may be 364

concerned that cross-lingual correlations of these 365

benchmarks are overestimated. An straightforward 366

workaround would be to evaluate using random, 367

non-overlapping subsets of instances for each lan- 368

guage. Instead of implementing this directly, we 369
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Figure 4: Factor Loadings of principal components for each benchmark (n = 35; r is the variance explained; blue:
Japanese benchmarks; black: English benchmarks).

Figure 5: Relationship between principal component scores and raw benchmark scores with significant factor
loadings: PC1 vs En/Ja average [left], PC2 vs Japanese knowledge-based QA and En-Ja translation [center], and
PC3 vs code-generation and arithmetic reasoning [right] (n = 35; r is the pearson correlation coefficient).

Figure 6: Relationship between the computational bud-
get for English and PC1 scores (n = 27).

approximated the accuracy variation introduced by370

such splits using the estimated standard error (SE)371

following Biderman et al. (2024) and confirmed372

that impact of the fluctuation by the SE is negli-373

gible on the observed linear trends. For example,374

MGSM has 250 instances, and the SE for an accu-375

racy of 0.5 is approximately
√

0.5(1−0.5)
250 ≈ 0.032.376

In contrast, the observed standard deviation of ac-377

curacy across LLMs was 0.246, sufficiently larger378

than the SE.379

Figure 7: Relationship between the computational bud-
get for Japanese and PC2 scores (n = 25).

4.3 Principal Component Analysis (PCA) 380

We observed benchmark groups from the correla- 381

tion matrix in the previous subsection. In order to 382

identify ability factors of LLMs, we apply Princi- 383

pal Component Analysis (PCA)8 to project the task 384

performance into a low-dimensional ability space. 385

Formally, we first standardize each column of X 386

to have a mean of zero and a standard deviation of 387

one: X̂ . Next, we perform eigendecomposition of 388

the correlation matrix as X̂⊤X̂ = UΛU⊤, where 389

8We used the sklearn.decomposition.PCA() method
from the scikit-learn package.

6



Figure 8: Factor loadings of principal components for each benchmark (n = 20: only with models trained from
scratch; r is the variance explained; blue: Japanese benchmarks; black: English benchmarks).

U = [u1, u2, . . . , uD], and uj ∈ RD is the j-th390

unit-length eigenvector. We then select the top four391

principal components (PCs), as their cumulative392

fraction of variance explained (r; contribution ra-393

tio) is 90.8% (= 65.2% + 15.4% + 7.0% + 3.2%394

from PC1 to PC4). We define the eigenvectors cor-395

responding to PC1 to PC4, U4 = [u1, u2, u3, u4] ∈396

RD×4 as the factor loadings and compute corre-397

sponding PC scores as S4 = X̂U4. Given that U398

is an orthonormal matrix and the total variance ex-399

plained by PC1–PC4 is approximately 90%, the400

original matrix can be approximated as the product401

of PC scores and factor loadings: X̂ ≈ S4U
⊤
4 .402

In this way, we decompose standardized bench-403

mark scores X̂ into the product of LLM-specific404

principal component scores (ability factors) S4 ∈405

RM×4 in Figure 3 and benchmark-specific factor406

loadings U4 ∈ RD×4 in Figure 4, which represent407

the associations between the ability factors and task408

performances9.409

The first principal component (PC1) has rela-410

tively uniform factor loadings. As shown in Fig-411

ure 5 left, LLMs with higher PC1 scores tend to412

have higher average benchmark scores in both En-413

glish and Japanese, suggesting that PC1 represents414

a general ability factor. It represents the average415

performance across most benchmark scores, in-416

cluding commonsense and reading comprehension417

in Japanese. It is also noteworthy that the fac-418

tor loadings for the three Japanese benchmarks,419

NIILC, WMT20-en-ja, and JEMHopQA, are rel-420

atively small, suggesting that these benchmark421

scores are more closely associated with a differ-422

ent principal component.423

The second principal component (PC2) shows424

concentrated factor loadings on JEMHopQA, NI-425

ILC, and WMT20-en-ja, and relatively small fac-426

tor loadings on JCommonsenseQA and JSQuAD,427

indicating the abilities of (encyclopedic) knowl-428

9Technically, since the signs and magnitudes of the PC
scores and factor loadings are arbitrary, we adjusted the signs
for ease of interpretation and normalized the factor loading
vectors to have an L2 norm of 1.

edge about Japan and English-Japanese translation. 429

In fact, Figure 3 shows that LLMs pre-trained on 430

Japanese text, such as Swallow and Sarashina2 431

families, have high PC2 scores, which will be ana- 432

lyzed in detail in § 4.4. Additionally, as shown in 433

Figure 5 center, the higher PC2, the higher bench- 434

mark scores on those tasks. For instance, the magin 435

of NIILC accuracy between LLMs with the low- 436

est and highest PC2 scores is approximately 40 437

points. Considering that PC1 has relatively low 438

factor loadings for these benchmarks, PC2 repre- 439

sents Japanese-specific abilities, such as QA about 440

Japanese knowledge and English-Japanese transla- 441

tion, whereas PC1 represents the general abilities. 442

The third principal component (PC3) shows con- 443

centrated factor loadings on MGSM, GSM8K, JHu- 444

manEval, and HumanEval, representing abilities 445

of multilingualism, language-agnostic arithmetic 446

reasoning, and code generation. As shown in Fig- 447

ure 5 right, there is a moderate trend suggesting that 448

higher PC3 score are associated with higher bench- 449

mark scores on code-generation and arithmetic- 450

reasoning. While we observe some outliers in the 451

lower right corner, which correspond to LLM-jp- 452

13B v2.0, CyberAgentLM2-7B, and Fugaku-LLM 453

13B, we think the PC3 scores for these LLMs might 454

be overestimated due to compensation for their ex- 455

cessively low PC1 scores (as seen in Figure 3). This 456

interpretation is supported by the alternative fac- 457

tor analysis using Promax rotation (Appendix C.1), 458

where we observed diminished principal compo- 459

nent scores for arithmetic reasoning and code gen- 460

eration in these LLMs. 461

Finally, the fourth principal component (PC4) 462

shows positive factor loadings for some English 463

benchmarks. However, strong English LLMs, such 464

as Llama-3-70B, do not show higher PC4 scores 465

compared to Japanese LLMs like CyberAgentLM2- 466

7B. In addition, given that the variance explained 467

by PC4 is only 3.2%, PC4 is likely to correspond 468

to residuals that are difficult to interpret in a way 469

tied to specific benchmarks or abilities. 470
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4.4 Scaling Laws between Ability Factors and471

Computational Budget472

In § 4.3, we made two key observations: 1) PC2473

represents Japanese ability while PC1 represents a474

general ability; 2) LLMs pre-trained on Japanese475

text tend to have higher PC2 scores. Based on these476

observations, we explore the language-specific scal-477

ing laws by examining the log-linear relationship478

between the computational budgets (§ 3.3) and prin-479

cipal components, which are expected to represent480

different abilities.481

Figure 6 shows the scatter plot with the En-482

glish computational budget (log scale) and PC1.483

It reveals that the general ability (PC1) scales484

with the English computational budget (Pearson’s485

ρ = 0.916)10. Figure 7 shows the scatter plot with486

the Japanese computational budget (log scale) and487

PC2. We can see that the Japanese ability (PC2)488

moderately scales with the Japanese computational489

budget (ρ = 0.779). We also confirmed that the cor-490

relation between PC2 and the English or total com-491

putational budget is much weaker (ρ = 0.164 and492

0.186, respectively). These findings indicate that493

PC2 and associated Japanese task performances494

scale with an increase in Japanese training tokens,495

thereby supporting our claim in § 4.3 that “PC2496

represents Japanese ability.” Furthermore, we ar-497

gue that the source of Japanese ability lies in the498

computational budget allocated to Japanese texts.499

4.5 PCA for Japanese LLMs Trained from500

Scratch501

In order to remove the influence of high compute502

budgets for English LLMs, we excluded LLMs503

continually pre-trained in Japanese and focused504

only on 20 LLMs trained from scratch. Figure 8505

shows factor loadings of PCs with the 20 LLMs,506

which also identified similar ability factors to those507

found in § 4.3. We omit the results of relationships508

between computational budgets and English and509

Japanese abilities, but observed the consistent cor-510

relations with Figures 6 and 7 (see Figures 13 and511

14 in Appendix C.2).512

5 Conclusion and Future Work513

In this paper, we evaluated the performance of514

35 Japanese, English, and Multilingual LLMs on515

10The correlation with the logarithm of the total computa-
tional budget was slightly higher (ρ = 0.938). Still, given the
weak correlation with the Japanese computational budget, we
concluded that it scales more with the English computational
budget.

19 task benchmarks that assess the abilities in 516

both Japanese and English. We then analyzed the 517

cross-task and cross-lingual correlations of bench- 518

mark scores, mapped the performance in a low- 519

dimensional ability space, and explored the rela- 520

tionship between ability factors and computational 521

budgets for English and Japanese. The correlation 522

analysis showed strong multilingual abilities in aca- 523

demic knowledge, code generation, and arithmetic 524

reasoning tasks. This suggests that, in order to en- 525

hance the abilities of these tasks, there is no strong 526

motivation for using Japanese training data. 527

The low-dimensional factor analysis using PCA 528

identified three ability factors. PC1 represents the 529

general ability and affects nearly all tasks except 530

for QA about Japanese knowledge and English- 531

Japanese translation. PC1 follows a scaling law 532

with the computational budget for English. Com- 533

plementing PC1, PC2 represents the ability for QA 534

about Japanese knowledge and English-Japanese 535

translation. Interestingly, PC2 follows a scaling law 536

with the computational budget for Japanese data. 537

Although PC3 represents multilingual abilities in 538

arithmetic reasoning and code generation, we have 539

not reached the point of identifying a scaling law 540

that it follows. 541

From these analyses, we concluded that the ad- 542

vantage of building local LLMs by training on 543

Japanese text is particularly evident in acquiring 544

local knowledge written in Japanese and enhancing 545

the ability to translate from English. This conclu- 546

sion is likely to characterize Japanese LLMs. 547

We consider two directions as future work. First, 548

we plan to extend the analysis with more LLMs 549

and evaluation tasks to discover additional insights. 550

This includes using LLMs with unique designs, for 551

example, Phi family (Li et al., 2023; Abdin et al., 552

2024), which were trained on synthetic text. We 553

also want to add evaluation tasks such as Japanese 554

logical reasoning and standardized admission ex- 555

ams. The second direction is to extend our analysis 556

and findings to other languages. We believe that 557

the conclusion of this paper can be generalized to: 558

the advantage of building local LLMs by training 559

in a language is acquiring local knowledge written 560

in the language and enhancing the ability to trans- 561

late from English to the language. This direction 562

is nontrivial because conducting LLM experiments 563

properly requires a deep understanding of the target 564

languages and cultures. We hope this paper serves 565

as a catalyst for analysis in other languages. 566
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Limitations567

Observational Approach568

This study uses an observational approach, rely-569

ing solely on the evaluation results of the LLMs.570

We did our best to collect open LLMs and bench-571

marks that are available as of writing and to evalu-572

ate LLMs correctly by ourselves. Still, the findings,573

including those from factor analysis, may be influ-574

enced by the selection of models and evaluation575

task benchmarks. Although we assessed the statis-576

tical error of factor loadings using leave-one-out577

cross-validation on the analyzed LLMs (see Figure578

17 in the appendix) and confirmed that the stan-579

dard deviations were small relative to the absolute580

values, this does not guarantee that our findings581

remain valid as a new best practice for designing582

LLMs emerges.583

English Predominance in the Training Data584

In § 4.4, we discussed that the general ability was585

acquired through training on English text, based on586

the solid log-linear relationship between the com-587

putational budget for English and PC1. However,588

this could be a limitation of our observational ap-589

proach. Specifically, most of the LLMs evaluated590

in this study were trained on the English-centric591

data, with at least half of the data in English. When592

we have LLMs predominantly trained in Japanese,593

different findings might emerge.594

Generalization of Findings beyond Japanese595

This study focuses solely on Japanese LLMs as596

an instance of non-English and local LLMs. It is597

unclear whether the findings are applicable to other598

non-English LLMs. However, we want to empha-599

size that even evaluating LLMs accurately in lan-600

guages that we are familiar with is not an easy task.601

Some LLMs scored zero for a benchmark, and we602

ended up debugging the problem only to find that603

they require a special token or even a line break604

in the prompt to obtain a valid generation. Imple-605

mentation details (e.g., probabilistic decoding) also606

affected the performance of LLMs in downstream607

tasks. Technology has not yet advanced to the point608

where simply submitting a local LLM to a leader-609

board yields reliable evaluation results effortlessly.610

Therefore, accurately conducting evaluation experi-611

ments with a lot of LLMs and benchmarks, as done612

in this study, requires a deep understanding of the613

target language, which sets a high bar for us.614

Ethical Considerations 615

This study does not evaluate the safety aspects of 616

LLMs, such as harmlessness or honesty (Askell 617

et al., 2021), which are considered to be largely 618

shaped by pre-training data. The same applies 619

when developing local LLMs — they are likely to 620

absorb social group-specific biases (Yanaka et al., 621

2024), stereotypes, and racism. Consequently, 622

there is a concern that we may be overlooking an 623

inconvenient side effect: it might be unavoidable 624

for local LLMs to reinforce social biases specific 625

to the target language. 626
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A Details of the Experimental Setup933

A.1 Evaluated Models934

Table 1 shows a list of LLMs evaluated in this study.935

The table includes the name, the number of active936

parameters during inference, the base model from937

which the model was continually pre-trained, the938

language distribution of the training corpus, the939

total number of training tokens, the reported or940

estimated number of training tokens in English and941

Japanese, and the reference of each model. § A.3942

explains the method used to estimate the number943

of language-specific training tokens. CPT stands944

for continual pre-training.945

A.2 Evaluation Tasks and Benchmarks946

Table 2 provides an overview of the evaluation947

benchmarks used in this study. The table includes948

the benchmark name, a brief description, the lan-949

guage of the task, the metric for scoring the model’s950

output, the experimental setting (e.g., few-shot,951

zero-shot, chain-of-thought), and the reference of952

each benchmark. The scale of evaluation metrics is953

normalized between 0 and 1, and EM means exact954

match.955

A.3 Estimating the Number of Training956

Tokens957

The numbers of language-specific training tokens958

(in billions) were either obtained from or calculated959

based on official sources such as technical reports,960

release documents, or model cards. When an exact961

number was unavailable in the source, we used the962

following estimates:963

• Ratio of Japanese training tokens:964

– Llama 2, Llama 3: 0.1%965

– Mistral, Mixtral: 0%966

– Full-scratch Japanese LLMs: 50%967

– Japanese LLMs with CPT: 100%968

• Ratio of English training tokens:969

– Qwen1.5, Qwen2: 50%970

– Yi-1.5: 70%971

– Llama 2: 89.7%972

– Llama 3: 95%973

A symbol ‘–’ in Table 1 indicates that the number974

could not be obtained or estimated despite our best975

efforts. We excluded these LLMs from the analysis976

of the scaling laws in § 4.4.977

A.4 Evaluation Framework 978

Table 3 reports a list of evaluation frameworks used 979

in this study. The table shows the framework name, 980

a brief description, and the reference of the frame- 981

work. We slightly customized these evaluation 982

frameworks to cover benchmarks that are not of- 983

ficially supported and to implement workarounds 984

for LLMs; for example, some LLMs require spe- 985

cial tokens or line breaks in the prompt to generate 986

valid outputs. We will release the customized im- 987

plementation upon acceptance. 988

A.5 Details of LLM Grouping 989

Table 4 shows the breakdown of LLM groups used 990

in Figure 1. 991

B Analysis of the Evaluation Results 992

This section presents detailed observations that 993

complement the explanation in § 4.1. 994

B.1 Performance Difference between the 995

Pre-trained Languages 996

Figure 1 reveals a notable observation: the scores 997

of Japanese LLMs pre-trained from scratch (the 998

blue box) are consistently lower than those of con- 999

tinually pre-trained models. This may be due to 1000

the relatively small number of parameters of the 1001

LLMs in this category (e.g. CyberAgentLM2-7B, 1002

Sarashina2-7B, Fugaku-LLM 13B), as well as the 1003

limited training budget (i.e., number of training to- 1004

kens) available for developing LLMs from scratch. 1005

This highlights a challenge in developing local 1006

LLMs in Japan. 1007

Additionally, compared to other groups, multi- 1008

lingual LLMs (the black box) performed signifi- 1009

cantly better in arithmetic reasoning (MGSM and 1010

GSM8K) and code generation (JHumanEval and 1011

HumanEval) tasks. However, we believe that this 1012

does not reflect the overall strength of multilin- 1013

gual LLMs, but rather the strengths of Qwen fam- 1014

ily (Yang et al., 2024), which represents three out 1015

of four LLMs in this group. 1016

B.2 Variations in Task Scores 1017

Figure 1 highlights tasks with both high and low 1018

score variances. Tasks with low score variances 1019

can be grouped into two categories: 1020

1. Benchmarks evaluated with n-gram based met- 1021

rics (e.g. WMT20-ja-en and WMT20-en-ja 1022

with BLEU, and XL-Sum with ROUGE-2). 1023
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2. Tasks requiring essential skills (e.g. JSQuAD1024

and SQuAD2.0 (reading comprehension), and1025

OpenBookQA and XWINO (commonsense)).1026

In contrast, tasks with high score variances can1027

be grouped into two categories:1028

1. Tasks requiring specific capabilities (e.g.1029

MGSM, GSM8K (arithmetic reasoning), JHu-1030

manEval and HumanEval (code generation))1031

2. Knowledge-intensive tasks (e.g. NIILC,1032

JMMLU, MMLU, and TriviaQA)1033

The scores for these tasks heavily depend on1034

whether a model possesses the necessary capabil-1035

ities or specialized knowledge, which leads to a1036

greater variance.1037

C Robustness Check of Findings1038

Obtained from Experimental Results1039

To test the robustness of the findings presented in1040

§ 4, we conducted two additional analyses using1041

different methods and settings: the use of maxi-1042

mum likelihood estimation and Promax rotation131043

instead of PCA (in § 4.3); and exclusion of continu-1044

ally pre-trained models to focus on models trained1045

from scratch.1046

C.1 Maximum Likelihood Estimation and1047

Promax Rotation1048

Figure 10 presents factor loadings with Promax1049

rotation applied. This figure reveals two factors1050

similar to those identified in § 4.3: ability factor for1051

arithmetic reasoning and code generation (Factor 21052

for PC3), and ability factor Japanese (Factor 3 for1053

PC2). In contrast, the first factor (Factor 1) seems1054

to represent English ability, not the general ability1055

(PC1), since the loading scores are strongly posi-1056

tive on the English task benchmarks such as Open-1057

BookQA, TriviaQA, HellaSwag, and XWINO.1058

Additionally, the fourth factor (Factor 4) seems1059

to be a distinct ability factor for Japanese at first1060

glance since the loading scores are strongly pos-1061

itive on two Japanese task benchmarks (JCom.1062

and JSQuAD). However, the correlation coefficient1063

with the logarithm of the computational budget for1064

Japanese is as small as 0.241, much lower than that1065

of the computational budget for English (0.788).1066

Figure 9 shows small Factor 4 scores on Japanese1067

13We used the factor_analyzer.FactorAnalyzer()
and factor_analyzer.Rotator() method from the
factor_analyzer package.

LLMs, such as Llama 3 Youko 8B, Japanese Stable 1068

LM Beta 7B, CyberAgentLM2-7B, LLM-jp-13B 1069

v2.0 and Fugaku-LLM 13B. Even strong Japanese 1070

LLMs (e.g., Llama 3 Swallow 70B, Japanese Sta- 1071

ble LM Base Gamma 7B) do not show high scores 1072

compared to non-Japanese LLMs. Therefore, the 1073

fourth factor should be considered as a residual that 1074

is difficult to interpret; therefore, commonsense 1075

tasks and reading comprehension do not determine 1076

Japanese abilities. 1077

To sum, these results confirm two similar factors 1078

to those identified in § 4.3 (an ability factor for 1079

arithmetic reasoning and code generation, and a 1080

Japanese ability factor) and two unique factors (an 1081

English ability factor and a residual factor). 1082

C.2 Analysis with only Full-scratch Models 1083

We removed continually pre-trained LLMs, which 1084

are categorized as LLMs continually pre-trained on 1085

Japanese text in Table 4 and conducted the same 1086

analysis as in § 4.2 to § 4.4. 1087

Figure 15 shows the Pearson correlation ma- 1088

trix of benchmark scores. The figure reveals that 1089

JEMHopQA, NIILC (QA about Japanese knowl- 1090

edge) and WMT20-en-ja (English-Japanese transla- 1091

tion) are weakly correlated with other tasks. In ad- 1092

dition, the figure shows strong correlations across 1093

languages in benchmarks of arithmetic reasoning 1094

(GSM8K vs. MGSM), academic subjects (MMLU 1095

vs. JMMLU), and code generation (HumanEval vs. 1096

JHumanEval). These findings are consistent with 1097

those identified with continually pre-trained LLMs 1098

in § 4.2. 1099

Figure 16 shows the factor loadings for each task 1100

benchmark. The figure highlights four factors: a 1101

general ability factor with uniform scores on each 1102

benchmark (PC1); a Japanese ability factor with 1103

high scores on JEMHopQA, NIILC, and WMT20- 1104

en-ja (PC2); an ability factor for arithmetic rea- 1105

soning and code generation with high scores on 1106

HumanEval, JHumanEval, MSGM, and GSM8K 1107

(PC3); and a residual factor that is difficult to inter- 1108

pret (PC4). These observations are consistent with 1109

those obtained with continually pre-trained LLMs 1110

in § 4.3. 1111

Lastly, we examined the relationship between 1112

the computational budget for English and PC1 (Fig- 1113

ure 13) and the one between the computational 1114

budget for Japanese and PC2 (Figure 14). Fig- 1115

ure 13 exhibits a strong positive correlation be- 1116

tween PC1 (general ability) and computational 1117

budget for English (ρ = 0.923), and Figure 14 1118
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Figure 9: Factor scores for each model with Promax rotation applied.

Figure 10: Factor loadings by task with Promax rotation applied (n = 35; r represents a contribution; blue and
black colors correspond to Japanese and English task benchmarks, respectively).

indicates a moderate positive correlation between1119

PC2 (Japanese ability) and computation budget for1120

Japanese (ρ = 0.779). These relationships are1121

the same as those confirmed with continually pre-1122

trained LLMs in § 4.4.1123

In this way, we could confirm the findings ob-1124

served in § 4.2 to § 4.4 even with the LLMs built1125

from scratch, which indicates the robustness of the1126

findings against the construction methods of LLMs.1127

Figure 11: Relationship between the computational bud-
get for English and Factor 1 (n = 27).
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Figure 12: Relationship between the computational bud-
get for Japanese and Factor 3 (n = 27).

Figure 13: Relationship between the computational bud-
get for English and PC1 (n = 16; only with models
trained from scratch).

Figure 14: Relationship between the computational bud-
get for Japanese and PC2 (n = 10; only with models
trained from scratch).
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Figure 15: Pearson correlation matrix among benchmark scores (n = 20; only with models trained from scratch).
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Figure 16: Principal component scores for each model (n = 20; only with models trained from scratch).
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Table 1: List of evaluated LLMs (the number of tokens is in billions [Bil], including estimates).

Model name
Num

of
params

Con-
stru-
ction
met-
hod

Source of CPT Corpus Training
tokens

EN
tokens

JA
tokens Reference

Yi-1.5 6B 6 PT －
ZH,EN,
Code 3600 2170 － AI et al. (2024)

CyberAgentLM2-7B 7 PT － JA,EN 1300 650 650 cyberagent/calm2-7b
Japanese Stable LM
Base Gamma 7B 7 CPT Mistral-7B-v0.1 JA,EN － － 100 stabilityai/japanese-

stablelm-base-gamma-
7b

Japanese StableLM
Beta 7B 7 CPT Llama2 7B JA,EN 2100 1794 102 stabilityai/japanese-

stablelm-base-beta-7b
Llama 2 7B 7 PT － EN 2000 1794 2 Touvron et al. (2023)
Mistral-7B-v0.1 7 PT － EN － － － Jiang et al. (2023)
Mistral-7B-v0.2 7 PT － EN － － － Jiang et al. (2023)
Qwen1.5-7B 7 PT － － 4000 2000 － Team (2024)

Qwen2-7B 7 PT －
ZH,EN,
Code+27 7000 3500 － Yang et al. (2024)

RakutenAI-7B 7 CPT Mistral-7B-v0.1 JA,EN － － 175 RakutenGroup et al.
(2024)

Sarashina2-7B 7 PT － JA,EN 2100 840 1050 sbintuitions/sarashina2-
7b

Swallow 7B 7 CPT Llama2 7B JA,EN 2100 1794 102 Fujii et al. (2024)

Swallow-MS v0.1 7 CPT Mistral-7B-v0.1 JA,EN,
Code － － 100 Fujii et al. (2024)

Youri 7B 7 CPT Llama2 7B JA,EN 2040 1834 42 Sawada et al. (2024)
Llama 3 8B 8 PT － EN 15000 14250 15 Dubey et al. (2024)

Llama 3 Swallow 8B 8 CPT Llama3 8B JA,EN,
Code 15100 14250 115 Fujii et al. (2024)

Llama 3 Youko 8B 8 CPT Llama3 8B JA,EN 15022 14250 37 Sawada et al. (2024)

Yi-1.5 9B 9 PT －
ZH,EN,
Code 3100 2170 － AI et al. (2024)

ELYZA-japanese-
Llama-2-13b 13 CPT Llama2 13B JA 2018 1794 20 Sasaki et al. (2023)

Fugaku-LLM 13B 13 PT － JA,EN 400 200 200 Fugaku-LLM/Fugaku-
LLM-13B

Llama 2 13B 13 PT － EN 2000 1794 2 Touvron et al. (2023)

LLM-jp-13B v2.0 13 PT －
JA,EN,
Code 260 120 130 LLM-jp et al. (2024)

Sarashina2-13B 13 PT － JA,EN 2100 840 1050 sbintuitions/sarashina2-
13b

Swallow 13B 13 CPT Llama2 13B JA,EN 2100 1794 102 Fujii et al. (2024)

Yi-1.5 34B 34 PT －
ZH,EN,
Code 3100 2170 － AI et al. (2024)

C4AI Command-
R v0.1 35 PT －

JA,EN,
ZH+8 － － － CohereForAI/c4ai-

command-r-v01
Mixtral-8x7B-
v0.1 12.879 PT － EN － － － Jiang et al. (2024)

Swallow-MX 8x7B
v0.1 12.879 CPT Mixtral-8x7B-

Instruct-v0.1 JA,EN － － 100 Fujii et al. (2024)

Japanese Stable LM
Beta 70B 70 CPT Llama2 70B JA,EN 2100 1794 102 stabilityai/japanese-

stablelm-base-beta-70b
KARAKURI LM 70B
v0.1 70 CPT Llama2 70B JA,EN 2016 1794 18 KARAKURI Inc.

(2024)
Llama 2 70B 70 PT － EN 2000 1794 2 Touvron et al. (2023)
Llama 3 70B 70 PT － EN 15000 14250 15 Dubey et al. (2024)

Llama 3 Swallow 70B 70 CPT Llama3 70B JA,EN,
Code 15100 14250 115 Fujii et al. (2024)

Swallow 70B 70 CPT Llama2 70B JA,EN 2100 1794 102 Fujii et al. (2024)

Qwen2-72B 72 PT －
ZH,EN,
Code+27 7000 3500 － Yang et al. (2024)
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Table 2: List of benchmarks used for evaluation.

Name Description Lang.
Eval.

metric11,12
Exp.
setup

Reference

JcommonsenseQA
(JCom.)

Multiple-choice questions
with 5 options based on
a knowledge base

JA Acc. 4-shot Kurihara et al. (2022)

JEMHopQA
Free-form question answering
to evaluate knowledge
and reasoning ability

JA Char F1 4-shot Ishii et al. (2023)

NIILC
Free-form question answering
where answers can be obtained
from an encyclopedia

JA Char F1 4-shot Sekine (2003)

JSQuAD
Free-form question answering
on Wikipedia articles

JA Char F1 4-shot Kurihara et al. (2022)

XL-Sum
Generating summaries
from BBC articles

JA ROUGE-2 1-shot Hasan et al. (2021)

MGSM

Japanese translation of the
primary school math
word problem
dataset (GSM8K)

JA
Acc.
(EM)

4-shot Shi et al. (2023)

WMT20(en-ja)
English-Japanese translation
of news articles

JA BLEU 4-shot Barrault et al. (2020)

WMT20(ja-en)
Japanese-to-English translation
of news articles

JA BLEU 4-shot Barrault et al. (2020)

JMMLU
Japanese translation of the
multiple-choice benchmark
MMLU (53 subjects)

JA Acc. 5-shot Yin et al. (2024)

JHumanEval
Japanese translation of
HumanEval

JA pass@1
0-shot
10 trials

Sato et al. (2024)

OpenBookQA
Multiple-choice questions based
on scientific knowledge and
common sense

EN Acc. 4-shot Mihaylov et al. (2018)

TriviaQA
Free-form question answering
based on trivia knowledge

EN
Acc.
(EM)

4-shot Joshi et al. (2017)

HellaSwag
Multiple-choice questions
to predict the next event

EN Acc. 4-shot Zellers et al. (2019)

SQuAD2
Free-form question answering
based on a supporting document

EN
Acc.
(EM)

4-shot Rajpurkar et al. (2018)

XWINO
Binary-choice questions
to identify the antecedent
of a pronoun in a sentence

EN Acc. 4-shot Tikhonov and
Ryabinin (2021)

MMLU
Multiple-choice questions
across 57 subjects

EN Acc. 5-shot Hendrycks et al. (2021)

GSM8K
Primary school math word
problem dataset

EN
Acc.
(EM)

4-shot Cobbe et al. (2021)

BBH
23 challenging tasks from
the BIG-Bench dataset

EN
Acc.
(EM)

3-shot
CoT

Suzgun et al. (2023)

HumanEval
Evaluation of code generation
ability via unit tests

EN pass@1
0-shot
10 trials

Chen et al. (2021)
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Table 3: List of evaluation frameworks.

Name Description Reference
LLM-jp eval
(1.3.0)

Automatic evaluation tool
for Japanese LLMs

Han et al. (2024)

JP Language Model
Evaluation Harness
(commit #9b42d41)

An evaluation framework
for Japanese LLMs

zenodo.10256836

Language Model
Evaluation Harness
(0.4.2)

An evaluation framework
for LLMs

zenodo.10256836

Code Generation LM
Evaluation Harness
(commit #0261c52)

An evaluation framework
for code generation task

Ben Allal et al. (2022)

Table 4: Breakdown of LLM groups used in Figure 1.

Category Models
Japanese LLMs pre-trained
from scratch

CyberAgentLM2-7B， Sarashina2-7B， Sarashina2-13B，
Fugaku-LLM 13B， LLM-jp-13B v2.0

LLMs continually pre-trained
on Japanese text

Japanese Stable LM Base Gamma 7B
Japanese Stable LM Beta 7B，
RakutenAI-7B， Swallow 7B， Swallow-MS v0.1，
Youri 7B， Llama 3 Swallow 8B，
Llama 3 Youko 8B， ELYZA-japanese-Llama-2-13b，
Swallow 13B， Swallow-MX 8x7B v0.1，
Japanese Stable LM Beta 70B， KARAKURI LM 70B v0.1，
Llama 3 Swallow 70B， Swallow 70B

Egnlish LLMs

Yi-1.5 6B， Llama 2 7B，Mistral-7B-v0.1，
Mistral-7B-v0.2， Llama 3 8B， Yi-1.5 9B，
Llama 2 13B， Yi-1.5 34B，Mixtral-8x7B-v0.1，
Llama 2 70B， Llama 3 70B

Multilingual LLMs
C4AI Command-R v0.1,
Qwen1.5-7B， Qwen2-7B， Qwen2-72B

Figure 17: Leave-One-Out CV statistics: mean and standard deviations of the factor loadings (n = 35, blue:
Japanese benchmarks, black: English benchmarks).
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