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Abstract

Language model fine-tuning is essential for
modern natural language processing. The ef-
fectiveness of fine-tuning is limited by the in-
clusion of training examples that negatively
affect performance. Here we present Infor-
mation Gain Filtration, a general fine-tuning
method, for improving the overall final per-
formance of a fine-tuned model. We define
Information Gain of an example as the im-
provement on a validation metric after train-
ing on that example. A secondary learner is
then trained to approximate this quantity. Dur-
ing fine-tuning, this learner filters informa-
tive examples from uninformative ones. We
show that our method is robust and has consis-
tent improvement across datasets, fine-tuning
tasks, and language model architectures.

1 Introduction

Language modeling is the task where a model pre-
dicts the conditional probability of the next to-
ken based on the context of previously observed
tokens. Recent advances in transformers-based
models (Vaswani et al., 2017), lead to language
modeling success as a pre-training objective for
self-supervised representation learning. Once pre-
trained, language models (LMs) can be updated
for downstream tasks through fine-tuning (Devlin
et al., 2019; Radford et al., 2019). Hence, improv-
ing fine-tuning leads to higher quality models.

Several methods have been proposed to improve
LM fine-tuning performance. These include reg-
ularization techniques Lee et al. (2020), supple-
mentary training on supervised tasks Phang et al.
(2018), incorporating out of domain data Moore
and Lewis (2010), and using features from inter-
mediate transformer layers Tenney et al. (2019);
Liu et al. (2019). In addition, its instability
of this process has been investigated with rela-
tion to insufficiently general training sets (Mos-
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bach et al., 2021), and to optimization techniques
(Zhang et al., 2021).

Recently, Dodge et al. (2020) showed that the
fine-tuning process has high variability between
runs being sensitive to data ordering. They reduce
this variability by fine-tuning models using many
random seeds and keeping the best. While this im-
proves performance, the reasons for the high vari-
ability between random seeds are unknown.

In this work, we propose a novel approach to
improving the effectiveness of fine-tuning by care-
fully selecting “informative” samples. Our ap-
proach uses a secondary learner to estimate the
usefulness of each example, and then selects only
informative examples for fine-tuning. We show
that this technique works well and is applicable in
a variety of settings. We further analyze the sec-
ondary learner capabilities.

2 Background

A language model L is a function with pa-
rameters θ, which, when given an ordered se-
quence of tokens X = {x1, . . . , xn} as in-
put, outputs a probability distribution over the
next token y, L(X; θ) = p̂(y|X). Given
a test set T of (sequence, next token) pairs,
T = {(X1, y1), . . . , (Xn, yn)}, the perplex-
ity Λ(T ; θ) of the language model L(X; θ)
over the set T is defined as Λ(T ; θ) =

2
−

∑
(Xi,yi)∈T p̄(yi)·log2 L(Xi;θ), where p̄(yi) denotes

the one-hot probability distribution that assigns all
of its probability mass to the token yi. LMs are
trained to minimize perplexity on very large train-
ing corpora.

In practice, pre-trained LMs are often fine-tuned
using a new corpus or transferred to a new task
(Howard and Ruder, 2018). Formally, let F =
{(Xi, yi)}i be a target set. Fine-tuning on the set
F minimizes the expected value of the loss Λ:

θ̂ = argmin
θ

E(log2 Λ(F ; θ)). (1)



The initial parameterization θ̂0 of the LM is de-
fined by its pre-trained parameters θ̂0 = θ. The
fine-tuning problem in Eq. (1) is solved by apply-
ing stochastic gradient descent (SGD) on samples
from F . We refer to methods that randomly sam-
ple contexts to update pretrained model parame-
ters as standard fine-tuning.

3 Information Gain Filtration

3.1 Informativeness of an Example
Given a pre-trained language model L(X; θ) and a
target dataset F , we define the informativeness of
an example (X, y) ∈ F as the improvement that
it will grant to the model. Namely, we define the
information gain (IG) of (X, y) over an objective
set O as the difference in perplexity measured on
O before and after training on (X, y),

IGO(X, y) = Λ(O; θ′(X, y))− Λ(O; θ), (2)

where θ is the initial parameterization of the LM
and θ′(X, y) is the parameterization after train-
ing with the example (X, y). The objective set
O = {(X1, y1), . . . , (Xn, yn)} is a held-out sub-
set of training data that informs our decision about
which contexts are informative.For brevity, we de-
note IGO(X, y) as IG(X). In practice, the objec-
tive set could be a subset of the set F .

3.2 Filtering Examples
Next, we propose Information Gain Filtration
(IGF), a new method, that exploits IG(X) for
fine-tuning. Given a new example (X, y) the
method chooses between a) updating the model
parameters θ backpropagating (X, y), and b)
skipping it, leaving the model parameters un-
changed. For this purpose, we define the function
q(X, action) and assign a value to each of the ac-
tions above:

q(X, BACKPROP) = IG(X) (3)

q(X, SKIP) = TSKIP, (4)

where TSKIP is a free “threshold” parameter for
deciding which IG(X) values are sufficiently
high to warrant a model update. Following
this definition, we apply a greedy policy for fil-
tering examples during fine-tuning: π(X) =
argmaxa∈{BACKPROP,SKIP}q(X, a). By filtering ex-
amples in this way, we aim to reduce the vari-
ability effect in data order (Dodge et al., 2020),
and improve the generalizability of our training set
(Mosbach et al., 2021).

3.3 Approximating Information Gain

Computing IG(X) in Eq. (2) entails a back-
propagation step, making direct application of
q(X, action) as expensive as standard fine-tuning.
Thus, we approximate IG(X) with a secondary
learner model Q̂(X). First, we construct a train-
ing dataset D by drawing a random subset of ex-
amples from the fine-tuning set F and measur-
ing IG(X) on the objective set O. Each entry
in D is of the form (Xi, IG(Xi)). Using D, we
train the secondary learner Q̂ to predict a normal-
ized IG(X). Normalization helps standarize the
threshold TSKIP during filtration. The resulting Q̂
is applied to filter examples for fine-tuning.

The effectiveness of the learner at distinguish-
ing “high quality” from “low quality” examples
should degrade as the parameters diverge from
their initial values θ0 used for constructing D. To
ameliorate this problem, we modify the threshold
TSKIP during the fine-tuning process. Since Q̂ is
most accurate at the first step, we switch from
highly selective (a high value) to highly permis-
sive (a low value). This allows the model to take
advantage of the accurate predictions for IG(X)
early in the fine-tuning process.

4 Experimental Results

We next analyze IGF’s performance across dif-
ferent choices of datasets, fine-tuning tasks, and
models. We tested these results on a Books dataset
(Zhu et al., 2015), a “Mixed” dataset composed
from the Books and a corpus of scraped Reddit
comments (Huth et al., 2016), and WikiText-103
(Merity et al., 2017). The Books corpus allows us
to fairly compare standard fine-tuning against IGF,
whereas the Mixed corpus allows us to analyze the
effectiveness of the method at separating informa-
tive contexts from uninformative ones. We im-
plement standard fine-tuning with Adam (Kingma
and Ba, 2015). Our secondary learner, Q̂, repre-
sents the input text X by embedding it with 768-
dimensional byte-pair embeddings (Gage, 1994),
followed by a convolution with kernel width 3, a
max-pooling operation over the time axis, and a
2-layer network.

4.1 Fine-tuning Performance

We compare the performance of IGF directly
to standard fine-tuning on the pre-trained GPT-2
Small model (Wolf et al., 2020). Figure 1 depicts
the results of fine-tuning the model on the Mixed
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Figure 1: Performance comparison of standard fine-
tuning and IGF of GPT-2 Small on the mixed corpus
over 50 runs. IGF obtains the best performance (red).

dataset (batch size 16, learning rate 5 × 10−5,
Adam β1 = 0.9, β2 = 0.999). As GPT-2 was
trained originally including Reddit data, we expect
some Mixed dataset examples to be uninforma-
tive. Hence, we included standard fine-tuning on
the Books corpus as a reference run with more in-
formative data. Standard fine-tuning on Books (or-
ange) achieves a median perplexity of 57.3, com-
pared to 56.9 for IGF with a constant threshold and
54.0 for IGF with a shifting threshold.

We further tested IGF with shifting threshold
across several choices of dataset, fine-tuning spec-
ifications, and model architecture. We tested on
WikiText-103 when fine-tuning GPT-2 Small (Per-
plexity: IGF 67.8 vs 69.8), GPT-2 Medium (Per-
plexity: IGF 27.1 vs 27.4), BERT (Devlin et al.,
2019) (Masked perplexity IGF 4.29 vs 4.33), and
on Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013) (Accuracy IGF 94.27 vs 94.06). In ev-
ery case, IGF exceeds the performance of standard
fine-tuning, suggesting that it is a method broadly
applicable to a variety of modalities and domains.

4.2 Understanding the Secondary Learner
As the secondary learner aims to approximate the
informativeness of a sample, we analyze next the
quality of such approximation. For this purpose,
we created a dataset of 10,000 (X, IG(X)) pairs
from the Mixed corpus using an objective set of
160 contexts with 32 tokens each drawn solely
from the Books corpus. Then, we trained the sec-
ondary learner on this dataset and tested it on ran-
domly sampled contexts from the Mixed corpus.
Because the objective set contains only examples
from one corpus, we expect the secondary learner
to assign higher IG(X) values to other examples
from the same corpus. Figure 2 shows that there
is a significant difference in the distributions of Q̂
values between the two corpora, demonstrating its
separating capabilities.
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Figure 2: Normalized predicted Q(X) values by the
secondary learner. Good separation is achieved using
the information gain IG(X) metric despite computing
the true q-value using a small objective set.
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Figure 3: Comparison of the sample efficiency of sec-
ondary learners as a function of the training size. Cor-
relation coefficient of the prediction vs. ground truth.

Above, we used a convolutional neural network
as Q̂. Here we explore how other simpler meth-
ods perform. We encoded the contexts both by
using the standard GPT-2 Small word embedding,
and with a one-hot encoding of the token identi-
ties. Standard linear regression performed on both
encoding types (30K parameters for word embed-
dings and 450K parameters for one-hot encoding)
performs nearly as well at approximating IG(X)
with a convolutional model. We also tested a
learner with only 25K parameters that assigned
each token a value by averaging the IG(X) val-
ues for contexts that contained that token. Fig-
ure 3 compares the performance of these archi-
tectures across different training data sizes. The
convolutional network is the most sample efficient
method, as it can effectively learn IG(X) with as
few as 2K training examples.

5 Conclusion

In the context of LM fine-tuning, we have shown
that a secondary learner can efficiently and ef-
fectively distinguish between informative and un-
informative training examples. This secondary
learner can select useful training examples in a
method we call Information Gain Filtration, lead-
ing to better model performance than standard
fine-tuning.
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