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a b s t r a c t 

Quantitative evaluation of an image processing method to perform as designed is central to both its 

utility and its ability to guide the data acquisition process. Unfortunately, these tasks can be quite chal- 

lenging due to the difficulty of experimentally obtaining the “ground truth” data to which the output of 

a given processing method must be compared. One way to address this issue is via “digital phantoms”, 

which are numerical models that provide known biophysical properties of a particular object of inter- 

est. In this contribution, we propose an in silico validation framework for dynamic contrast-enhanced 

magnetic resonance imaging (DCE-MRI) acquisition and analysis methods that employs a novel dynamic 

digital phantom. The phantom provides a spatiotemporally-resolved representation of blood-interstitial 

flow and contrast agent delivery, where the former is solved by a 1D-3D coupled computational fluid 

dynamic system, and the latter described by an advection-diffusion equation. Furthermore, we establish 

a virtual simulator which takes as input the digital phantom, and produces realistic DCE-MRI data with 

controllable acquisition parameters. We assess the performance of a simulated standard-of-care acquisi- 

tion ( Protocol A ) by its ability to generate contrast-enhanced MR images that separate vasculature from 

surrounding tissue, as measured by the contrast-to-noise ratio ( CNR ). We find that the CNR significantly 

decreases as the spatial resolution ( SR A , where the subscript indicates Protocol A ) or signal-to-noise ratio 

( SNR A ) decreases. Specifically, with an SNR A / SR A = 75 dB / 30 μm, the median CNR is 77.30, whereas 

an SNR A / SR A = 5 dB / 300 μm reduces the CNR to 6.40. Additionally, we assess the performance of 

simulated ultra-fast acquisition ( Protocol B ) by its ability to generate DCE-MR images that capture con- 

trast agent pharmacokinetics, as measured by error in the signal-enhancement ratio ( SER ) compared to 

ground truth ( PE SER ). We find that PE SER significantly decreases the as temporal resolution ( TR B ) increases. 

Similar results are reported for the effects of spatial resolution and signal-to-noise ratio on PE SER . For ex- 

ample, with an SNR B / SR B / TR B = 5 dB / 300 μm / 10 s, the median PE SER is 21.00%, whereas an SNR B / 

SR B / TR B = 75 dB / 60 μm / 1 s, yields a median PE SER of 0.90%. These results indicate that our in silico 

framework can generate virtual MR images that capture effects of acquisition parameters on the ability of 

generated images to capture morphological or pharmacokinetic features. This validation framework is not 

only useful for investigations of perfusion-based MRI techniques, but also for the systematic evaluation 

and optimization new MRI acquisition, reconstruction, and image processing techniques. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The task of validating image processing routines to perform as 

esigned can be quite challenging due to the difficulty of obtain- 
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ng the appropriate “ground truth” data to which the output of 

 given processing method can be quantitatively compared. One 

ay to address this issue is to design and apply realistic “digi- 

al phantoms”, which are numerical models or software that pro- 

ide the geometry and biophysical properties of a particular ob- 

ect of interest ( Hsu, 2010 ; Segars et al., 2010 ; Badano et al., 2017 ).

igital phantoms, also known as virtual phantoms ( Segars et al., 

010 ; Badano et al., 2017 ; Saint-Jalmes et al., 2014 ) or digital ref-

rence objects ( Semmineh et al., 2017 ), have become important 

ools for developing and evaluating new medical imaging tech- 

iques, devices, and analysis approaches ( Hsu, 2010 ; Keenan et al., 

018 ; Ger et al., 2017 ). For example, Collins et al. (1998) con-

tructed a volumetric, digital brain phantom defining the spatial 

istribution of ten types of human brain tissue ( Collins et al., 1998 ;

ubert-Broche et al., 2006 ); this digital phantom has become a 

ommonly used tool for simulating MRI acquisition and testing 

rocessing algorithms in neuroimaging ( Alfano et al., 2011 ). Sim- 

larly, the Virtual Imaging Clinical Trial Regulatory Evaluation (VIC- 

RE) phantom ( Badano et al., 2017 ) recapitulates the tissues and 

arge vessels of the breast, to enable in silico replication of exist- 

ng clinical features. Importantly, the VICTRE phantom has demon- 

trated that computational modeling can play a central role in the 

egulatory assessment of imaging products ( Badano et al., 2018 ). 

nother example is the 4D extended cardiac-torso (XCAT) phan- 

om ( Segars et al., 2010 ) which realistically models cardiac-torso 

natomy and body movements. Compared to ex vivo measurements 

or obtaining the “ground truth” on tissue properties, digital phan- 

oms do not suffer from the issue of tissue shrinkage, deforma- 

ion, or any physical changes that may be caused by invasive or 

ost-mortem procedures. Moreover, they can frequently outper- 

orm physical phantoms ( Shukla-Dave et al., 2019 ; Driscoll et al., 

011 ; Cloutier et al., 2004 ) due to the complexity and flexibility of

eometry and material properties that they can represent. 

Quantitative dynamic contrast enhanced (DCE-) MRI has the 

bility to characterize perfusion, vessel permeability, and inter- 

titial transport ( Gordon et al., 2014 ) to assess pathophysiol- 

gy in a large range of organs or tissues ( Gordon et al., 2014 ;

ankeelov and Gore, 2007 ; Heye et al., 2014 ; Sujlana et al., 2018 ).

pecifically, we have recently developed a suite of novel methods 

or quantitatively analyzing DCE-MRI data that return segmenta- 

ions of tumor-associated vasculature as well as characterization 

f their hemodynamics (e.g., perfusion, diffusion, and interstitial 

ransport) ( Wu et al., 2019 ; Wu et al., 2020 ). To validate these

ethods, we require a digital phantom to provide a detailed de- 

cription of vascular structures from major vessels to microvascu- 

ature, as well as spatiotemporal-resolved representations of cap- 

llary permeability, blood flow, interstitial flow, and tracer distri- 

ution. These features are of fundamental importance for a re- 

listic, physics-based simulation of the acquisition and analysis 

f DCE-MRI data. While there have been many effort s investigat- 

ng the use of digital phantoms to evaluate DCE-MRI techniques, 

any have limited flexibility in the geometry or kinetic models 

hat can be investigated which constrains their ability to realisti- 

ally represent anatomical and functional characteristics. For ex- 

mple, Kudo et al. (2013) utilized a perfusion phantom to com- 

are x-ray computed tomography and MRI analyses used at mul- 

iple sites. This digital phantom assumes a 2D geometry contain- 

ng 7 × 7 square regions of interest (ROI), each with 12 × 12 

ixels, with no consideration of tissue morphology. Of particu- 

ar note, the perfusion in this phantom is defined by empirical 

oncentration-time curves prescribed for each ROI with specific pa- 

ameters (i.e., mean transit time and cerebral blood flow)—a strat- 

gy that is quite common (see, e.g., Hansen et al., 2019 ; Le et al.,

013 ; Zhu et al., 2015 ; Grimm et al., 2012 ). While this approach has

he advantage of straight-forward implementation, the prescribed 

oncentration-time curves may not accurately reproduce realistic 
2 
inetics of contrast agent uptake. Bosca and Jackson (2016) pre- 

ented a variation on this approach with a more realistic, anthro- 

omorphic digital phantom, where the DCE-MRI signals were gen- 

rated voxel-wise with a three-component kinetic model and pa- 

ient data-driven parametric maps. However, the voxel-wise gener- 

tion of tracer concentration curves still does not consider the fluid 

ynamics of tracer delivery. Thus, the morphological and functional 

roperties of the digital phantom have limited physiological mean- 

ng. 

More recently, there have been efforts designed to more 

ealistically characterize tissue hemodynamics in digital 

hantoms. For example, the digital phantom developed by 

emmineh et al. (2017) for the evaluation of dynamic suscepti- 

ility contrast (DSC)-MRI data ( Bell et al., 2019 ), considers the 

ffects of water diffusing in a heterogeneous 3D tissue structure 

that includes blood vessels and cells) on simulated MRI signals. 

 key innovation of this phantom is the contrast agent relaxivity 

nd compartmental volume fractions are determined by modeling 

f the tissue microstructure. This feature ensures the phantom 

rovides a “ground truth” for studies seeking to investigate the 

iophysical basis of DSC-MRI. However, the concentration of 

ontrast agent in this phantom is still governed by the simplistic, 

wo-component pharmacokinetic model commonly employed 

n the field ( Yankeelov and Gore, 2007 ). A different strategy of 

sing computational fluid dynamics to obtain the spatiotemporal 

istribution of contrast agent in phantoms has been presented by 

ariharan et al. (2013) . In their implementation, a single-phase 

uid flow within a vessel is solved given specific impulse pro- 

les and boundaries, providing a flow field which subsequently 

etermines how the contrast agent is distributed throughout the 

omain. However, this phantom is based on a simple geometry 

hat does not include vascular-tissue interactions. 

In this contribution, we propose an in silico validation frame- 

ork for quantitative DCE-MRI acquisition and analysis. The 

ethodology is based on the virtual simulation of DCE-MRI data 

ithin a novel digital phantom capturing realistic vasculature and 

emodynamics (see Fig. 1 for an illustrative overview). Specif- 

cally, we construct a 4D digital phantom which contains de- 

ailed information on vascular structure, tissue properties, perfu- 

ion and time-resolved contrast agent delivery based on an MR 

icroscopy imaging dataset of a murine kidney ( Xie et al., 2012 a, 

012b ). Furthermore, we adapt a virtual simulator ( Easley et al., 

019 a, ( Easley et al., May 2019 )) to produce realistic DCE-MR 

mages, under various, user-defined, acquisition settings includ- 

ng spatial resolution, temporal resolution, and signal-to-noise ra- 

io (SNR). In particular, two very different types of DCE-MRI ac- 

uisition protocols are used for testing the performance of the 

irtual simulator: a standard-of-care acquisition ( Protocol A ), and 

n ultra-fast acquisition ( Protocol B ). The datasets generated by 

rotocol A are assessed for their ability to generate contrast- 

nhanced MR images that separate vasculature from surround- 

ng tissue. The datasets generated by Protocol B are assessed for 

heir ability to accurately capture contrast agent pharmacokinet- 

cs. This framework is a useful tool for systematically evaluating 

ew contrast-enhanced or perfusion-based MRI acquisition, recon- 

truction and processing techniques. In particular, DCE-MRI in the 

idney has shown promise in assessing both physiological func- 

ion and renal diseases ( Bokacheva et al., 2008 ) including early 

etection of both acute kidney injury ( Privratsky et al., 2019 ) 

nd chronic renal failure ( Anderlik et al., 2009 ). Moreover, DCE- 

RI has been applied to measure renal perfusion and permeability 

s diagnostic biomarkers of renal cell carcinoma ( Pedrosa et al., 

009 ; Palmowski et al., 2010 ; Notohamiprodjo et al., 2010 ), and 

o monitor or predict tumor response to treatments ( Rosen and 

chnall, 2007 ; Flaherty et al., 2008 ). Hence, the most direct ap- 

lication of our approach is to assist the development and valida- 
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Fig. 1. Overall workflow of the in silico validation. Given the ground truth in panel 

(a), a digital phantom (panel (b)) is generated to represent realistic vascular ge- 

ometry and spatiotemporally-resolved contrast agent distributions. The phantom is 

imported into the virtual MRI simulator in panel (c), producing simulated DCE-MRI 

data in panel (d) with varying acquisition settings. The image processing and mod- 

eling methods that we seek to validate are applied to these simulated images. Fi- 

nally, error is evaluated by comparing the outputs of quantities of interest to the 

corresponding ground truth as presented in panel (e). 

Fig. 2. Ultra-high spatial resolution MRI data used to build the digital phantom. 

Panel (a) and panel (b) present the maximum intensity projection of the coronal 

T 1 -weighted and T 2 
∗-weighted images, respectively. 
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ion of DCE-MRI techniques in the kidney. Additionally, it is worth 

oting that this validation framework is designed as a general tool 

or the evaluation of DCE-MRI techniques on any organ or tissue. 

ven though the current realization of the digital phantom is based 

n the geometry of a murine kidney, the technique can be gener- 

lized to applications for other organs (see the Discussion section 

or more details on this important point). 

. Methods 

.1. Digital phantom 

.1.1. MRI data 

The construction of the digital phantom is based on the ultra- 

igh spatial resolution MRI data of excised rat kidneys published 

y Xie et al. (2012 a). We thank the Duke Center for In Vivo Mi-

roscopy for graciously sharing the dataset ( Fig. 2 ) ( Xie et al.,
3 
012b ), which consists of contrast-enhanced T 1 - and T 2 
∗-weighted 

mages of an excised kidney taken from a male Sprague-Dawley 

at (52 weeks). Briefly, Xie et al.’s study used conventional trans- 

ardiac perfusion fixation to preserve the anatomy of vasculature. 

he rat was anesthetized and perfused with a saline flush followed 

y injection of 50 mM of the contrast agent Magnevist (Bayer 

ealthCare Pharmaceuticals, Wayne, NJ) dissolved in 10% formalin. 

hen the renal artery, renal vein, and ureter were ligated, and the 

idney was excited, stored in 2.5 mM Magnevist + 10% formalin for 

4 h, and then fit in acrylic holder filled with fomblin (Ausimont 

SA, Inc., Thorofare, NJ) for imaging. All images were acquired on 

 9.4 T system (400 MHz vertical bore Oxford superconducting 

agnet) with a matrix size of 1024 × 1024 × 512 slices over a 

2 × 32 × 16 mm 

3 field of view, yielding an isotropic resolution 

f 31 μm. The T 1 -weighted acquisition used a spin echo sequence 

ith TR = 50 ms, TE = 9.3 ms; and the T 2 
∗-weighted acquisition

sed a gradient echo sequence with TR = 50 ms, TE = 6.5 ms, and

 flip angle = 60 °; detailed acquisition parameters are provided in 

 Xie et al., 2012 a). 

.1.2. Generation of geometric model 

Kidney tissue segmentation : The mask of the whole kidney tissue 

as generated by segmenting the T 1 -weighted image by applying 

 Matlab (Matlab R2019b, Mathworks Inc, Natwick MA) k -means 

lustering algorithm, ‘ kmeans ’, with k = 2. The surface of the seg- 

ented tissue volume was then smoothed with a Gaussian filter 

ith a standard deviation of 1. Note that since this segmentation 

s based on a grayscale feature, the Otsu and k -means methods 

re equivalent ( Liu and Yu, 2009 Aug 12 ). In this study, we chose

 -means because it provided a nearly identical answer to Otsu’s 

ethod with one fewer step (i.e., intensity normalization is not re- 

uired). 

Arterial vasculature construction : The vasculature structure is 

onstructed from the T 2 
∗-weighted image. First, the intensity of 

he T 2 
∗-weighted image is globally normalized and locally trans- 

ormed to enhance the vascular regions (Please see Appendix A for 

ore details). To achieve a well-organized connective structure as 

ell as a smooth surface of the vasculature on the enhanced im- 

ge, we apply a 2D strategy that first obtains centerlines and then 

enerates the 3D mesh and graphic representation of the vascula- 

ure ( Les et al., 2010 ). We do this, rather than directly segmenting

 3D vascular mask from the image ( Xiong et al., 2011 ), because

irect segmentation usually requires complex modifications to pro- 

uce volumes with smooth surfaces with a hierarchical structure. 

ather, we developed a semiautomatic algorithm to extract the 

ascular centerlines and radii from the enhanced image; a method 

dapted from a previously established method for tracking the ax- 

llary artery ( Li et al., 2011 ). 

For each arterial vessel tree, the tracking is initialized with a 

anually identified seed point within the renal artery (i.e., the 

oot of a vascular tree as indicated in the red star of Fig. 3 (a)).

o determine the local vascular radius R at the seed point, nine 

pherical averaging kernels, co-centered on this point with kernel 

adii of r = 1 to 9 voxels, are successively applied on the inten- 

ity image ( Fig. 3 (b)); this provides a list of intensities averaged 

ithin the spherical neighborhoods of the seed point ( Fig. 3 (c)). 

omputing the second derivative of the averaged intensities over 

he increasing radii neighborhoods, the radius corresponding to the 

inimal second derivative is identified as the local vascular ra- 

ius R ( Fig. 3 (d)). Next, each voxel adjacent to the seed point is

entered by a spherical window with radius R to form a cluster. 

mong these clusters, we find the one with highest averaged in- 

ensity, so that the corresponding adjacent voxel is defined as a 

ew seed point. This tracking procedure goes through the entire 

essel to provide the first generation of the vascular tree ( Fig. 3 (e)).

he next step is to manually select branching points along the ob- 



C. Wu, D.A. Hormuth II, T. Easley et al. Medical Image Analysis 73 (2021) 102186 

Fig. 3. Determination of centerlines and local radii of vessels. Panel (a) displays a seed point (red star within dashed box) selected during the vessel tracking procedure on 

a sagittal slice of a T 2 
∗-weighted image (pseudo colored), with the maximum intensity projection of the entire T 2 

∗ image as the background (grayscale). Panel (b) presents a 

zoom-in view of the point and cross-section of the vessel within which this point is located. Three examples of spherical kernels centering this seed point are also presented, 

with radii of r 1 = 4 voxels (cyan), r 2 = 7 voxels (red), and r 3 = 9 voxels (yellow). Panels (c) and (d) plot the averaged intensity within spherical kernels and their second 

derivative over the kernels’ radii, respectively, where the values at r 1 (cyan), r 2 (red), and r 3 (yellow) are indicated. With the lowest second derivative of averaged intensity 

in panel (d), the local radius is determined as R = r 2 = 7 voxels, which matches the visualization in panel (b). For the centerline determination, on the maximum intensity 

projection of the coronal T 2 
∗-weighted image, panel (e) shows the main trunk of an arterial tree (red line) tracked from the initial root point (red star). Along this major 

trunk, multiple seed points (blue stars) are manually set for tracking the branches (red lines), as presented in panel (f). The procedure of setting seed points (blue stars) and 

tracking are iterated until all visible branches (red lines) of one arterial tree are obtained as displayed in panel (g). 
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ained main trunk, and the tracking algorithm is repeated multi- 

le times to identify subsequent generations of branches ( Fig. 3 (f)). 

his process results in a hierarchical, tree-like structure of vascula- 

ure ( Fig. 3 (g)), represented by its centerlines and associated local 

adii. This semiautomatic construction is performed for each indi- 

idual arterial tree, at the conclusion of which the set of visible 

rterial trees are verified by the user. 

.1.3. Generation of perfusion and delivery model 

Hemodynamic fields : Given the constructed tissue-vascular ge- 

metry, a 1D – 3D coupled computational fluid dynamics model 

 Wu et al., 2020 ) is adapted to compute the steady-state, hemo- 

ynamic flow fields in the virtual kidney. The numerical domain 

onsists of the pseudo-1D arterial vasculature ( �) and the 3D ex- 

ravascular tissue ( �t ). Within the vascular domain, blood flow is 

overned by Poiseuille’s law, 

 v (l) = − πR 

4 (l) 

8 μ
· d p v (l) 

dl 
, l ∈ � (1) 

here μ is the viscosity of blood and l indicates location along the 

ascular network, and R, p v , and Q v are the local vascular radius, 

lood pressure, and blood flow rate, respectively. The 3D interstitial 

ow in the tissue domain is governed by Darcy’s law, 

 t ( x ) = −κ( x ) · ∇ p t ( x ) , x ∈ �t , (2) 

here x indicates location in the extravascular interstitial space, 

nd p t , u t , and κ are the local interstitial pressure, flow veloc- 

ty, and tissue hydraulic conductivity, respectively. The extraction 
4 
f fluid from vessel to tissue is modeled by Starling’s law, 

 e ( l ) = L p ( l ) · [ p v ( l ) − p t,e v ( l ) ] , l ∈ �. (3) 

here q e , p t,ev , and L p are the local fluid extraction rate, exterior 

urface pressure, and vascular hydraulic conductivity along the vas- 

ular network, respectively. 

Parameters quantifying the tissue properties are assigned as 

onstant values, based on experimental measurements of kidney 

eported in the literature. We set the vascular hydraulic conductiv- 

ty to be L p = 1.5 × 10 −8 g − 1 cm 

2 s ( Renkin, 1977 ). The tissue hy-

raulic conductivity is simply scaled from the literature ADC value 

f 2.69 × 10 −3 mm 

2 /s ( Yang et al., 2004 ), yielding κ = 2.69 × 10 −9 

 

− 1 cm 

3 s. (Detailed justifications for the parameter assignments 

re provided in Appendix B .) 

For the boundary conditions, blood pressure ( Winston and 

afirstein, 1985 ) is given at the inlets of arterial vasculature 

s p v,inlet = 105 mmHg. Similarly, the capillary bed pressure 

 Shore, 20 0 0 ) is given as the outlet at the terminal ends of the vas-

ulature, p v,outlet = 15 mmHg. The boundary of the tissue domain is 

onsidered as two components, the kidney surface and the exterior 

urface of the vasculature. The boundary condition on the vascu- 

ar surface is naturally given by Starling’s law, while the Dirichlet 

ondition of constant boundary pressure is predetermined by the 

iterature value of interstitial hydrostatic pressure appropriate for 

idney ( Khraibi et al., 1989 ), p t,contour = 5 mmHg. 

Bolus propagation through vasculature : Based on the computed 

emodynamics, the pharmacokinetics of the contrast agent can be 

etermined. We assume the bolus of contrast agent arrives at the 
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Fig. 4. Initial bolus profile and arrival-time throughout vasculature. Panel (a) shows the initial plasma bolus function given as the input. Panels (b), (c), and (d) present the 

maximum intensity projections of the calculated bolus-arrival time ( BAT ) along the vasculature in the axial, coronal, and sagittal orientations, respectively. The color-coding 

coding indicates time and therefore implies the direction of blood flow. 
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idney from the renal artery, subsequently propagating through 

he tree-like vasculature, and then extracted into the tissue via 

oth advection and diffusion. As the vascular structure is hierar- 

hical, and can therefore be represented by a directed tree, every 

essel segment in the vasculature has a unique input. In particu- 

ar, the blood flow direction and upstream-downstream relation- 

hip between vessel segments can be easily identified from the 

teady-state flow solution. That is, when the bolus is propagating 

hrough the vasculature no dispersion of bolus due to mixture of 

ultiple inputs will occur. (We note that we do not consider colli- 

ions between tracer particles with vessel walls.) The plasma con- 

entration function is delayed, though, but without changing the 

hape as it propagates. Thus, we assign an experimentally-derived 

nitial plasma bolus function ( Parker et al., 2006 ), C p, 0 , at the vas-

ular inlets ( Fig. 4 (a)), which is a mixture of two Gaussians plus an

xponential modulated by a sigmoid function, 

 p , 0 ( t ) = 

αe −βt 

1 + e −s(t − τ ) 
+ 

2 ∑ 

n=1 

A n 

σn 

√ 

2 π
e 

− (t − τn ) 
2 

2 σ2 
n , (4) 

here α and β are the amplitude and decay constants, respec- 

ively, of the exponential, and s and τ are the width and center 

f the sigmoid, respectively, and A n , τ n , and σ n are scaling con- 

tants, centers, and widths of the n th Gaussian functions, respec- 

ively. The first term on the right-hand side of Eq. (4) indicates 

he long-term enhancement due to tracer delivery, while the last 

wo terms represent the first and second peaks of the bolus func- 

ion due to the initial arrival of the bolus and re-circulation, re- 

pectively. Here we empirically set the parameter values, α = 1.05, 

= 168.5, s = 3.81 × 10 4 , τ = 4.83 × 10 −4 , A 1 = 8.09 × 10 −4 ,

1 = 5.63 × 10 −4 , τ 1 = 1.71 × 10 −4 , A 2 = 3.30 × 10 −4 , σ 2 

 1.32 × 10 −4 , and τ 2 = 3.65 × 10 −4 . The procedure results in an

nput function similar to the AIF observed in ( Li et al., 2011 ). The

ocal plasma concentration of contrast agent is then given as 

 p ( t, l ) = C p, 0 ( t − BAT ( l ) ) , l ∈ � (5) 

here C p ( t, l ) represents the plasma tracer concentration at time 

 (with the time of injection as 0) and vascular location l. BAT ( l )

s the bolus arrival time at this vascular location, which can be 

btained from the steady-state solution (visualized in Fig. 4 (b) –

d)). 

Contrast agent delivery through tissue : The delivery of contrast 

gent through tissue is further modeled by an advection-diffusion 

quation with a surface source, J : 

∂ C t 

∂t 
= −u t · ∇ C t + ∇ · (D ∇ C t ) + J , x ∈ �t (6) 

here C t = C t ( t , x ) is the tracer concentration in tissue at time t

nd location x, u t is the interstitial flow velocity (obtained from 

he steady-state solution), D is the diffusivity of contrast agent in 

he interstitial tissue which can be directly estimated from the ADC 
5 
alue (i.e., D = 2.69 × 10 −5 cm 

2 /s). The source term J , defined on

he vascular boundary, represents the extraction of contrast agent 

rom vessel to tissue, which is a combination of advection by the 

ulk flow, J A , and diffusion down the concentration gradient, J D , 

 Yuan and Rigor, 2010 ; Huxley et al., 1987 ; Yuan et al., 1993 ): 

 = J A + J D 
 [ q e ( 1 − σ ) + P d ] ( C p − C t ) n 

: P ( C p − C t ) n , x ∈ � = ∂ �t ∩ ∂ �v , 

(7) 

here P [cm/s] is the apparent permeability of renal vessels to the 

racer under investigation, which is a combination of its vascular 

iffusive permeability, P d , and its extraction rate, q e (1 – σ ) = L p 
1 – σ ) ( p v – p t ). Here q e is the bulk fluid extraction rate, calcu-

ated from the steady-state flow solution as in Eq. (3) , and σ is 

he solute reflection coefficient so that (1 – σ ) is the filtration rate 

f tracer through the vascular walls. (Detailed justification of the 

alues assigned to P d and σ can be found in Appendix B .) 

The time-dependent, advection-diffusion equation is first tem- 

orally discretized and then solved spatially using the finite ele- 

ent method and evolved in time with the Crank-Nicolson (CN) 

ethod. Specifically, the spatial discretization is performed with 

etrahedral elements and uses second-order, continuous, piecewise 

olynomials for the test and trial basis functions, which is imple- 

ented using the Python FEniCS library ( Logg et al., 2012 ). The 

ime dimension is divided into N T intervals, with the time vertices 

 = 0, �t , 2 �t , …, n �t , …, N T �t . For the n th time step, t ∈ [( n –

) �t, n �t ], the weak form is 

here 

(
v , 

(
C t 

(n ) − C t 
(n −1) 

))
�t 

= �t 
[
−(v , u t · ∇ C t 

( CN ) ) �t − (∇ v , D ∇ C t 
( CN ) ) �t 

+ 

(
v , P 

(
C p − C t 

(CN) 
))

�

]
, ∀ v ∈ V 

C t 
( n ) = C t ( n �t, x ) , C t 

(n −1) = C t ( ( n − 1 ) �t, x ) , x ∈ �t , 

C t 
( CN ) = 

[
C t 

(n ) + C t 
(n −1) 

]
/ 2 . 

(8) 

The model is solved to obtain the contrast agent distribution 

or the first minute after injection, with the time step width of 

t = 0.01 s, a zero initial condition of C t (0, x ) = 0, and a zero-flux

ondition on the kidney surface boundary (i.e., ∂ �t / ∂ �v ). 

We note that the CN method is chosen as our problem is 

iffusion-dominated and it is unconditionally stable with regard 

o the time step. Specifically, the mesh is well refined to ensure 

he Peclet number is small almost everywhere; the median (range) 

f the Peclet number across the computational domain is 0.32 

0.27 – 2.09) × 10 −2 << 1, which means the diffusive effect dom- 

nates over the advective effect in the interstitial distribution of 

ontrast agent. Hence, the general concern of oscillations caused 

y solving advection-dominated flow with the CN method is not 

bserved in this study (refer to Fig. C.1 in Appendix C for illus- 

ration) . We recognize that in situations where advection is sig- 
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ificant, stabilization techniques, such as the streamline-upwind 

 Petrov-Galerkin (SUPG) method ( Brooks and Hughes, 1982 ), the 

ariational multiscale (VMS) method ( Hughes et al., 1998 ), and the 

alerkin / Least-squares method ( Hughes et al., 1989 ) can be used 

o suppress the oscillation ( Franca et al., 1992 ). Additionally, local 

efinement of mesh at areas with high advection also helps to in- 

rease the stability. 

.1.4. Generation of voxel-based dynamic digital phantom 

A voxel-based, temporally resolved digital phantom can be ob- 

ained by combining the bolus propagation solved in the pseudo- 

D vascular network, C p ( t, l ), and contrast agent distribution solved 

n the 3D extravascular tissue, C t ( t , x ). To do so, let the index and

oordinate of voxels in the image grid be i and x i , respectively. The

issue concentration solution is interpolated from the mesh ele- 

ents to the image grid, producing C t ( t , x i ). The image grid co-

rdinates are defined as x i = x i ( l ) to couple the 3D coordinates x i 
ith the location along the vessel, l . Then the vascular solution can 

e mapped to the vascular region in the image, C p ( t , x i ). Thus, the

oncentration map at time t is given as follows, 

 ( t, x i ) = δtissue ( x i ) C t ( t, x i ) + δv essel ( x i ) C p ( t, x i ) , (9) 

here δ is the delta function defined as following, 

tissue ( x i ) = { 1 , x i ∈ { tissue mask } 
0 , x i / ∈ { tissue mask } , (10) 

vessel ( x i ) = { 1 , x i ∈ { vessel mask } 
0 , x i / ∈ { vessel mask } . (11) 

Finally, the dynamic digital phantom can be presented as a 

D matrix, O , with a matrix size of N x × N y × N z × ( N T + 1),

here first three dimensions are spatial and the fourth is tempo- 

al. In particular, we choose the spatial matrix size by achieving 

n isotropic voxel size of 30 × 30 × 30 μm 

3 . N T can be deter-

ined by dividing the total simulation time, T = 60 s, by the time 

tep width used for solving the contrast agent delivery, �t = 0.01 s 

i.e., N T = 60 0 0; of course, the value of N T can simply be reduced

y sampling the time points every few frames). 

.2. Virtual simulator 

The virtual MRI simulator used in this study was adapted from 

he work by the MRI Research Center at The University of Chicago 

 Easley et al., 2019 , Easley et al., May 2019 ). The demonstration of

his simulator is available on GitHub ( https://github.com/tyo8/ECA _ 

emo ). Here we present a brief description of the virtual simulator 

nd its adaptation to the present effort. 

.2.1. Overall structure of the simulator software 

There are five major components of the simulator software as 

eveloped in Matlab and illustrated in Fig. 1 (c). The functions 

 Make_AcqPars ’ and ‘ Make_ReconPars ’ generate the data structures 

hich store the acquisition and reconstruction parameters, Acq- 

ars and ReconPars , respectively. Specifically, AcqPars contains the 

alues for the field-of-view ( FOV ), repetition time ( TR ), echo time 

 TE ), flip angle ( FA ), matrix acquisition size ( n x × n y × n z ), acqui-

ition temporal resolution, scan number ( N S ), and k -space SNR. Re- 

onPars contains the reconstruction temporal resolution, as well as 

arameters required for the optimization-based reconstruction al- 

orithm, which will be described more fully below in Section 2.2.2 . 

 Make_Path ’ generates the sampling path through k -space during 

canning, T , which is an n x × n y × n z × N S array specifying 

he time that each point in k -space is to be sampled. ‘ Gener- 

te_KspaceSignal ’ takes the dynamic digital phantom ( O ), AcqPars , 

nd T as inputs and produces the sampled k -space signal of DCE- 

RI, Y , which is an n x × n y × n z × N S array of complex numbers.

inally, Y is imported into ‘ ReconAlg ’ together with ReconPars , gen- 

rating the reconstructed image, ˆ X . 
6 
.2.2. k-space sampling 

One important innovation of the virtual simulator is that it de- 

nes the sampling path to specify the sampling time of each point 

n k -space, rather than assuming all signals of one scan are ob- 

ained simultaneously at the beginning or end of the acquisition. 

his addresses the fact that during signal acquisition, the status 

f the imaged object (the digital phantom in our situation) might 

hange; a feature that is essential for realistically mimicking the 

CE-MRI experiment. 

In addition to the matrix size and scan number, T depends on 

he sampling strategy (standard Cartesian, inter-aliased Cartesian, 

adial, spiral, etc. ( Bernstein et al., 2004 )). Here we choose the sim- 

lest, standard Cartesian sampling of k -space, with the x -direction 

eing the read-out, and the y - and z -directions being the phase- 

ncoding directions ( Bernstein et al., 2004 ). Thus, T is given as fol-

owing, 

 ( k x , k y , k z , i ) = k t [ ( k x T S/ n x + T DP ) + T R ( k y − 1 ) 
+ T R n y ( k z − 1 ) + T R n y n z ( i − 1 ) ] , 

ith ( k x , k y , k z ) ∈ K = { 1 , . . . , n x } × { 1 , . . . , n y } 
{ 1 , . . . , n z } , i ∈ { 1 , . . . , N S } , 

T S = 0 . 5 /γ , T DP = T E − T S/ 2 , 

(12) 

here K represents the spatial-frequency grid of k -space, which 

as the same size as the acquisition matrix. TE represents the time 

pent to read out each line in the x -direction, γ as the gyromag- 

etic ratio, and TDP represents the de-phasing time. 

Given the generated T and the digital phantom O , a k -space 

ignal with no noise can be generated, Y 

(0) . Recall that the digital 

hantom is stored as a 4D array of size N x × N y × N z × ( N T + 1).

s the acquisition spatial resolution can be set lower than the res- 

lution of original phantom, the acquisition matrix size can be 

maller than that of the digital phantom; i.e., n x ≤ N x , n y ≤ N y ,

 z ≤ N z . Thus, if the matrix sizes are different, the phantom is first 

own-sampled to the spatial dimensions by cubic interpolation, 

 

′ (�′ , n ) = M (O (�, n )) , (13) 

here I maps the digital phantom from the original spatial grid, 

= {1, …, N x } × {1, …, N y } × {1, …, N z }, to the imaging grid,

’ = {1, …, n x } × {1, …, n y } × {1, …, n z }, which is done for each

ime frame of phantom, n = 0, …, N T . Note that this process of di-

ectly down-sampling the imaging object is designed to circumvent 

ossible artifacts introduced by down-sampling the k -space data 

we revisit this point in the Discussion section). The down-sampled 

bject, O ’ , gives the concentration of contrast agent over time for 

ach voxel. The signal intensity equation for the pulse sequence 

nder investigation (here, the spoiled gradient echo) is then ap- 

lied to convert the concentration of contrast agent to the signal 

ntensity at each voxel location. Thus, the whole spatial signal X is 

iven as, 

 ( v ) = S 0 
sin (F A ) 

[
1 − e (−T R/ T 1 (v )) 

]
1 − cos (F A ) e (−T R/ T 1 (v )) 

, ∀ v ∈ �′ × { 1 , . . . , N T }
(14) 

ith 

 1 (v ) = r 1 [ CA ] ( v ) + T 1 , 0 , (15) 

 

CA ] (v ) = O 

′ ( v ) , ∀ v ∈ �′ × { 1 , . . . , N T } , (16) 

here TR and FA are given as acquisition settings in AcqPars. S 0 
s a constant describing proton density and scanner gain settings, 

hich can be set to one without loss of generality. [ CA ]( v ) refers

o the concentration of contrast agent at each voxel, v , in the 4D 

igital phantom. r 1 is the T 1 -relaxivity of studied contrast agent 

Magnevist®, Gd-DTPA) and assigned a value of 3.8 mM 

−1 s −1 ap- 

ropriate for 3 T ( Shen et al., 2015 ). T 1,0 is the native T 1 value of

https://github.com/tyo8/ECA_Demo
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issue, which is assigned as 1200 ms for the entire kidney tissue 

 Stanisz et al., 2005 ) and zero for empty regions. Note also that we

ave taken TE << T 2 
∗ in Eq. (14) . 

Since there are ( N T + 1) frames in the digital phantom, the 

tatus of the phantom will be updated N T times through the en- 

ire acquisition. Every time the digital phantom is updated, some 

oints in k -space will be sampled. Within each time interval of up- 

ating, for example the n th interval, [ t n-1 , t n ] = [( n – 1) �t, n �t ], we

efine Y n-1 and Y n to be the Fourier transforms of the true spatial 

ignal from the phantom before and after the update, respectively: 

 n −1 (K) = F(O 

′ (�′ , n − 1)) , (17) 

 n (K) = F(O 

′ (�′ , n )) , (18) 

here F refers to the Fourier transform. O ’ ( �’, n – 1) is the frame

f the down-sampled digital phantom at time t n-1 , similarly for O ’ 

 �’, n ). We can then identify points in k -space that are sampled

ithin this time interval based on T , 

 n = { ( k x , k y , k z , i ) | t n −1 ≤ T ( k x , k y , k z , i ) ≤ t n } ⊂ K × { 1 , . . . , N S } , 
(19) 

here P n is the set of identified points. Then for each point p = ( k x ,

 y , k z , i ) ∈ P n , we can find a weight c ∈ [0, 1] such that, 

 ( p ) = c t n −1 + ( 1 − c ) t n , (20) 

nd the clean k -space signal at this point can be generated by lin-

ar interpolation, 

 

( 0 ) ( p ) = c Y n −1 ( k x , k y , k z ) + ( 1 − c ) Y n ( k x , k y , k z ) . (21) 

This procedure is conducted for all n ∈ {1, …, N T }, to produce

he Y 

(0) of the entire scan. The last step is to add random Gaussian 

oise based on the SNR value from AcqPars , resulting in the final 

 -space signal, 

 = Y 

(0) + N (K ; SNR ) , (22) 

here N represents the matrix of applied Gaussian noise. In par- 

icular, we use the MATLAB-built-in function, ‘ awng ’ ( The Math- 

orks, Inc 2019b ), to add the appropriate level of white noise to 

btain the desired SNR. 

.2.3. Optimization-based image reconstruction 

Another innovation of the simulator is the optimization-based 

econstruction algorithm, which treats the reconstruction prob- 

em as optimizing the signal smoothness over time. This algo- 

ithm allows reconstructing images at a higher temporal resolution 

han the nominal acquisition resolution via partial k -space sam- 

ling. Specifically, the acquisition lasts for one minute after bolus 

njection during which N S post-contrast frames are collected; that 

s, the acquisition temporal resolution is 60/ N S seconds per frame. 

o achieve a reconstructed image with the same or higher tempo- 

al resolution (i.e., N R frames with N R ≥ N S ), the sampled acqui- 

ition matrix of size n x × n y × n z × N S is rearranged to a new 

atrix of size n x × n y × n z × N R , based on the information within 

he sampling path. For each point in T , p = ( k x , k y , k z , i ), by setting

he time of sampling to be t = T ( p ) and the total scanning time be

 , we can find the corresponding j ∈ {1, … , N R } so that ( j – 1) T / N R 

 t ≤ jT / N R . Then the rearranged signal matrix can be written as,

 

( R ) ( k x , k y , k z , j ) = Y ( k x , k y , k z , i ) . (23) 

With this procedure, values at some parts of Y 

( R ) are assigned, 

hile the others are left as unmeasured. We define the measured 

omain as �, 

= 

N R ⋃ 

j=1 

( K j × { j } ) ⊂ K × { 1 , . . . , N R } , (24) 
7 
here K j presents the set of measured points on the j th recon- 

tructing frame. 

The reconstruction problem is solved by maximizing the 

moothness of voxel-wise reconstructed signals over time. The op- 

imization problem will be briefly described below (a more de- 

ailed derivative of the objective function can be found in the 

ppendix D .) For notational convenience, we reshape the 3D spatial 

rid of the image into a 1D index (i.e., storing the reconstructed 

ignal in a 2D matrix), ˆ X , of size ( n x × n y × n z ) × N R . The opti-

ization procedure is given as, 

rgmi n ˆ X 

{〈 W , ˆ X P S 
ˆ X 

′ 〉 : F ( ̂  X ) (�) = Y 

( R ) (�) 
}
, (25) 

here the < •> denotes the inner product, and the term 

ˆ X P S ˆ X 

′ is 

he temporal-smoothness penalty; the smoother the time courses 

f the reconstructed signal ˆ X are, the smaller the penalty will 

e. P S can be any positive definite matrix of size N R × N R that 

easures the smoothness penalty of the signal intensity time 

ourses, which is defined as the l 2 -norm of time courses’ dis- 

rete second derivative. W is a diagonal, weighting matrix of size 

 n x × n y × n z ) × ( n x × n y × n z ), W = diag( w 1 , w 2 , …, w i , …),

here the w i indicate the weight of smoothness penalty acting on 

oxel i . Larger w i values correspond to enforcing the time course of 

 

th voxel to be smoother (i.e., smaller l 2 -norm of the discrete sec- 

nd derivative). This optimization problem is then converted to a 

inear system (see Appendix D ) and solved via the preconditioned 

onjugated gradient descent method ( Barrett et al., 1994 ), where 

he convergence parameters are given in ReconPars . 

Exact implementation of the reconstruction algorithm involves 

olving a large linear system, which is very memory- and time- 

ntensive. More specifically, the major step of reconstruction is to 

olve a linear equation axe = b , where the x is a complex vector

f size ( n x × n y × n z × N R ) × 1. (See Appendix D for numerical

erivation.) Thus, for the present project, we design a (practical) 

cheme to trade time for memory, in which the temporal dimen- 

ion is divided into multiple intervals and solved individually. Fi- 

al reconstructed images are obtained by connecting the results 

rom each interval. (Details of this implementation can be found in 

ppendix E .) 

.3. Data generation and assessment 

To assess the performance of DCE-MRI generation using the dig- 

tal phantom and simulator, two very different DCE-MRI acquisi- 

ion protocols are used: a standard-of-care acquisition ( Protocol A ), 

nd an ultra-fast acquisition ( Protocol B ). Here we introduce the 

arameters defined for each protocol, and the associated measure- 

ents used to assess the generated images. 

.3.1. Protocol A 

For Protocol A we set TR / TE / FA = 5 ms / 2.5 ms / 10 °,
nd assume a constant native T 1, 0 = 1200 ms for kidney tissue 

o yield contrast-enhance (CE-) MR images before and after injec- 

ion of the contrast agent, with a constant temporal resolution of 

0 s; such data makes the morphology of the enhancing structures 

learly visible. Multiple datasets for Protocol A are generated by 

arying the acquisition parameters over a reasonable range of val- 

es. Specifically, data with different spatial resolutions ( SR A , with 

he subscript indicating Protocol A ) are constructed with values of 

0, 60, 150, and 300 μm, and signal-to-noise ratios ( SNR A ) of 5, 15,

nd 75 dB. These datasets yield a range of contrast-to-noise ratios 

 CNR ) which affects the ability to separate the vasculature from the 

ackground tissue. The CNR is calculated for each voxel in vascular 

egion as, 

NR = ( S post − S pre ) / N n v , (26) 
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Fig. 5. Geometric model of the digital phantom. Panel (a) presents the 3D rendering of the vasculature, with the whole kidney as a semi-translucent volume. Panels (b) –

(g) shows the six individual renal arterial trees which correspond to the labels (blue) in the panel (a). 
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here S post and S pre are the post- and pre-contrast signal intensi- 

ies of the voxel, respectively, and N nv is the standard deviation of 

he subtracted (i.e., post-contrast minus pre-contrast) signal inten- 

ities in the non-vessel ROI. 

.3.2. Protocol B 

For Protocol B we set TR / TE / FA = 3.2 ms / 1.6 ms / 10 °, and

ssume a constant native T 1, 0 = 1200 ms for kidney tissue to yield 

ltra-fast, DCE-MR images, which consists of five frames of pre- 

ontrast images, followed by 6 – 60 frames during the first minute 

fter contrast injection, with the number of frames depending on 

he temporal resolution. Multiple datasets for Protocol B are gener- 

ted by varying the acquisition parameters over a reasonable range 

f values. Specifically, data are constructed with different spatial 

esolutions ( SR B , where the subscript indicates Protocol B ) values of 

0, 150, and 300 μm, temporal resolutions ( TR B ) of 1, 4, 7, and 10 s,

nd signal-to-noise ratios ( SNR B ) of 5, 15, and 75 dB. These datasets

ield a range of signal-enhancement ratio ( SER ) which affects the 

bility of DCE-MRI to assess tracer pharmacokinetics ( Sorace et al., 

018 ). The SER is calculated for each voxel as, 

ER = ( S 1 − S 0 ) / ( S 2 − S 0 ) , (27) 

here S 1 is the peak signal intensity of the voxel-wise time course, 

 0 is the average of pre-contrast signal intensities, and S 2 is the 

ignal intensity at the last time point of the acquisition. Addition- 

lly, the SER measured along vessel centerlines can be compared to 

he ground-truth of plasma SER to obtaining a percent error of the 

ER estimate: 

 E SER = | SER − SE R GT | /SE R GT , (28) 

here the ground-truth of plasma SER ( SER GT ) equals 2.22, which 

s calculated based on the input bolus profile, Eq. (4) and the 

oncentration-to-signal conversion, Eqs. (14 – 16). 

. Results 

We have made the digital phantom described in this contribu- 

ion into an open-source toolkit, R2D2 ( Wu, 2020 ). (For an intro- 

uction to the toolkit, please refers to the Appendix F .) 

.1. Generated geometric model 

As shown in Fig. 5 , a total of six arterial vasculature trees are

onstructed from the kidney to provide the vascular geometry of 

he digital phantom. Panel (a) presents the entire vascular tree and 

idney. Panels (b) - (g) show six individually reconstructed renal 

rterial trees. The major branches of the renal arteries and several 
8 
enerations of further arterioles are completely constructed based 

n the MRI data, thereby preserving realistic a geometry. 

.2. Generated hemodynamic fields 

The calculated blood and interstitial flow on the digital phan- 

om are presented in Fig. 6 . The solution within the vascular do- 

ain provides the blood pressure ( p v ), fluid extraction rate ( q e ),

nd blood flow rate ( Q v ) as presented in panels (a) – (c), respec-

ively. The blood pressure gradually decreases from the renal arte- 

ial input to the terminal ends of arterioles. A similar phenomenon 

s observed for the vascular fluid extraction rate, which falls from 

 × 10 −3 cm/s to approximately 1 × 10 −4 cm/s, because the pres- 

ure difference between the two sides of the vessel wall decreases 

long the blood flow direction. Moreover, the blood flow rate re- 

eals a large value ( Q v ~ 700 cm 

3 /s) at the source of the arterial

nput, then rapidly decreases from the first branch, and remains at 

pproximately 10 cm 

3 /s for most of the terminal arterioles. With 

hese calculated blood flow characteristics, we can further com- 

ute the bolus-arrival time through the vasculature, with the time 

f the bolus arriving at the inlets of the renal arteries considered 

s the initial time point (see Fig. 4 for visualization of bolus arrival 

ime). 

The interstitial pressure ( p t ) and flow velocity ( u t ) fields are

olved within the interstitial space. Fluid leaks out of the arterial 

essels ( Fig. 6 (f)) and causes high interstitial flow velocity close to 

he vascular surface. According to the distribution of arterioles, the 

ighest magnitudes of flow velocity are observed at the renal cor- 

ex and areas close to the major arteries, as shown in Fig. 6 (e).

oreover, the interstitial pressure accumulates within the middle 

f the kidney, as visualized in Fig. 6 (d). Overall, the calculation 

rovides spatially-resolved estimates of arterial perfusion on the 

seudo-1D vascular network, and interstitial transport on the 3D 

issue mesh. 

.3. Dynamics of contrast agent delivery 

Based on the computed steady-state flow, the delivery of con- 

rast agent over time is then determined. The numerical solution 

f contrast agent distribution is stored as two components: 1) a 

ist saving point-wise plasma concentration time courses along the 

asculature, and 2) numerical mesh-based solutions saving the tis- 

ue concentration at every time point. For both the vascular and 

issue solution, the time step is 0.01 s over a total period of 60 s

fter injection of the contrast agent bolus. As shown in Fig. 7 , the

racer rapidly propagates through the vasculature, and is then de- 

ivered through the whole kidney tissue over time. After the arrival 
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Fig. 6. Generated steady-state pressure and flow fields. Panels (a) – (c) shows the blood pressure ( p v ), fluid extraction rate ( q e ), and blood flow rate along vasculature 

( Q v ), respectively, which are mapped from the pseudo-1D solution to the 3D mesh for visualization. Panels (d) – (f) present the interstitial pressure ( p t ), magnitude and 

streamlines of interstitial flow velocity ( u t ) in the extravascular space of the kidney tissue, respectively. The decreasing of p v , q e , and Q v from the vascular inlets to the 

terminals can be seen in panels (a) – (c). The p t tends to accumulate near the middle of kidney (panel (d)). Interstitial flow directed from a vascular source to extravascular 

tissue (panel (f)) causes a large magnitude of u t close to the vascular surface (panel (e)). 

Fig. 7. Dynamics of tissue contrast agent distributions and the final digital phantom. Panels (a) – (f) show the spatial distribution of contrast agent concentration in the 

tissue domain (coronal view) at 5 s, 15 s, 25 s, 35 s, 45 s, and 55 s after the initial delivery of the bolus, respectively. To highlight the distribution within the vasculature, 

panels (g) – (l) show the corresponding maximum intensity projections of voxel-based contrast agent concentration at 5 s, 15 s, 25 s, 35 s, 45 s, and 55 s after the initial 

delivery of the bolus, respectively. 
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f the bolus through the vasculature (the first 20 s of computation, 

ee Fig. 7 (a) – (b)), extracted contrast agent is first accumulated in 

he area immediately adjacent to the vasculature ( Fig. 7 (b) – (c)), 

hen gradually distributed to a wider area in the tissue ( Fig. 7 (d) –

f)). 

.4. Voxel-based digital phantom 

The computational description of the bolus propagation through 

he vasculature and tissue is voxelized within the digital phantom 

nd stored in a 4D matrix ( Fig. 7 ). Though the original T 1 - and

 2 
∗-weighted images have a matrix size of 1024 × 1024 × 512, 

o save memory we have truncated the areas near the edges of 

he images which are empty. Additionally, the time dimension 

s inter-aliased to achieve a temporal resolution of 250 ms (i.e., 

 T = 240). These manipulations yield a digital phantom of matrix 

ize 706 × 576 × 360 × 240. 
9 
.5. Simulated DCE-MR images 

For Protocol A , as shown in Fig. 8 (a – i), increasing either 

he spatial resolution or SNR results in a significant increase of 

NR . For example, as the last column of Table 1 indicates, for a 

xed SNR A of 75 dB, increasing the spatial resolution ( SR A ) from 

00 μm to 30 μm leads to an increase of median CNR values from 

5.00 to 77.30, which are significantly different on a pair-wise ba- 

is (Wilcoxon test: P < 0.001). Moreover, as seen in the last row 

f Table 1 , for a fixed SR A of 30 μm, increasing the SNR A from

 dB to 75 dB leads to an increase of median CNR values from 

5.53 to 77.30, which are significantly different on a pair-wise basis 

Wilcoxon test: P < 0.001). 

For Protocol B , as shown in Fig. 8 (j – l), fixing SNR B and SR B 
hile increasing the temporal resolution results in a significant de- 

rease of PE SER . For example, comparing the rows in Table 2 with 

NR B of 75 dB and SR B of 150 μm, increasing the temporal reso- 
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Fig. 8. Simulated MR images and signals obtained with various combinations of acquisition parameters. Panels (a) – (c) are the maximum intensity projections (MIPs) of 

the subtracted images acquitted by the standard protocol with an SR A of 60 μm and SNR A of 75, 15, and 5 dB, respectively. Similarly, panels (d) – (f) are the MIPs of the 

simulated images with an SR A of 150 μm and SNR A of 75, 15, and 5 dB, respectively. Panels (g) – (i) are the MIPs of the simulated images with an SR A of 300 μm and SNR A 
of 75, 15, and 5 dB, respectively. From the ultra-fast datasets with the SR B of 300 μm, one arterial voxel is picked to show simulated time courses. Specifically, panels (j) –

(l) show the time courses obtained with varying temporal resolutions, TR B = 1 s (purple curves), 4 s (yellow curves), 7 s (orange curves), 10 s (blue curves), with the SNR B 
of 5, 15, and 75 dB, respectively. The y -axis represents the signal intensity and x-axis indicate the time, with the injection time as zero. 

Table 1 

Vascular CNRs calculated from all datasets of Protocol A . 

CNR median (interquartile range) 

SNR A (dB) 5 15 75 SR A ( μm) 

300 6.40 (3.99 – 9.14) 16.11 (10.53 – 23.72) 25.00 (16.65 – 37.15) 

150 7.25 (4.51 – 12.20) 17.77 (11.51 – 31.30) 26.62 (17.65 – 47.08) 

60 8.09 (4.79 – 14.15) 21.00 (13.17 – 39.13) 40.78 (25.69 – 76.68) 

30 15.53 (14.04 – 17.15) 40.77 (38.31 – 44.30) 77.30 (73.65 – 83.04) 
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ution ( TR B ) from 10 s to 1 s leads to a decrease of median PE SER 

alues from 21.53% to 2.83%, which are significantly different on 

 pair-wise basis (Wilcoxon test: P < 0.05). Moreover, when TR B 
7 s, a significant decrease in PE SER is observed with increas- 

ng spatial resolution or SNR . For example, comparing the rows in 

able 2 with SR B of 150 μm and TR B of 1 s, increasing the SNR B 
rom 5 dB to 75 dB leads to a decrease of median PE SER values

rom 10.69% to 2.83%, which are significantly different on a pair- 

ise basis (Wilcoxon test: P < 0.001). When the temporal resolu- 

ion is low ( TR B = 10 s), the effects of SNR B or SR B on PE SER are not

tatistically significant; but a clear trend of the interquartile range 

arrowing can be seen as the SNR B increases. 

. Discussion 

We have constructed a novel validation framework consisting of 

 digital phantom and a virtual simulator, which can be used for in 

ilico evaluation of DCE-MRI acquisition and post-processing meth- 

ds. The digital phantom preserves a detailed geometric model as 

ell as a realistic dynamic model. Specifically, it represents the 

tructure of arterial vasculature and interstitial tissue of the rat 

idney, including tissue properties related to vascular permeabil- 

ty and tissue hydraulic conductivity. The dynamic model describes 
10 
oth steady-state flow fields and time-dependent delivery of tracer. 

emodynamic flow fields are stored as both numerical solutions 

nd voxelized arrays. The final output of spatiotemporally-resolved 

ontrast agent distribution has a voxelized representation within a 

D matrix, where the first three dimensions represent space and 

he fourth dimension is time evolving with the time step of 0.25 s 

er frame. 

Two types of DCE-MRI acquisition protocols were used for test- 

ng the performance of the virtual simulation: a standard-of-care 

cquisition ( Protocol A ), and an ultra-fast acquisition ( Protocol B ). 

ccording to the results, Protocol A can recapitulate the effects of 

patial resolution and SNR on the ability of simulated CE-MR im- 

ges to highlight morphological structures. Specifically, the CNR 

learly increases as either spatial resolution or signal-to-noise in- 

rease s . Moreover, Protocol B can recapitulate the effects of spa- 

ial resolution, temporal resolution, and SNR on the ability of sim- 

lated DCE-MR images to capture contrast agent pharmacokinet- 

cs. Specifically, accuracy of estimated SER significantly increases 

s the temporal resolution increases. Additionally, when temporal 

esolution is high (i.e., TR B ≤ 7 s), the accuracy of the estimated 

ER also significantly increases when either the spatial resolution 

r SNR increases; while when temporal resolution is reduced (e.g., 

R B = 10 s), the effects of SNR B or SR B on PE SER are not statisti-
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Table 2 

Vessel centerline SER and PE SER calculated from all datasets of Protocol B . 

Datasets Measures 

SR B ( μm) TR B (s) SNR B (dB) SER median (interquartile range) PE SER median (interquartile range) 

300 10 5 1.75 (1.55 – 1.93) 21.00% (13.49% – 30.38%) 

15 1.72 (1.65 – 1.79) 22.26% (19.15% – 25.61%) 

75 1.75 (1.72 – 1.78) 21.07% (19.77% – 22.60%) 

7 5 1.89 (1.68 – 2.14) 16.69% (8.60% – 24.39%) 

15 1.88 (1.74 – 2.04) 15.28% (7.84% – 21.37%) 

75 1.92 (1.79 – 2.03) 13.41% (8.46% – 19.22%) 

4 5 2.04 (1.83 – 2.26) 12.32% (6.14% – 19.67%) 

15 1.92 (1.80 – 2.07) 13.27% (6.61% – 18.94%) 

75 1.93 (1.83 – 2.04) 13.05% (7.86% – 17.45%) 

1 5 2.15 (1.91 – 2.39) 11.91% (5.78% – 18.54%) 

15 2.01(1.86 – 2.14) 9.38% (4.12% – 16.36%) 

75 2.01 (1.91 – 2.10) 9.60% (5.34% – 14.00%) 

150 10 5 1.75 (1.58 – 2.00) 21.72% (11.90% – 29.23%) 

15 1.75 (1.68 – 1.83) 21.11% (17.35% – 24.36%) 

75 1.74 (1.70 – 1.79) 21.53% (19.40% – 23.21%) 

7 5 2.05 (1.84 – 2.31) 12.08% (5.92% – 21.19%) 

15 2.08 (1.94 – 2.19) 6.84% (3.06% – 12.72%) 

75 2.10 (1.98 – 2.19) 5.28% (1.38% – 10.89%) 

4 5 2.12 (1.91 – 2.38) 10.81% (5.36% – 20.22%) 

15 2.08 (1.95 – 2.20) 6.53% (2.73% – 12.13%) 

75 2.12 (1.98 – 2.21) 4.61% (0.91% – 10.76%) 

1 5 2.32 (2.08 – 2.54) 10.69% (5.13% – 18.23%) 

15 2.17 (2.05 – 2.27) 4.84% (2.22% – 8.60%) 

75 2.16 (2.06 – 2.22) 2.83% (0.89% – 7.07%) 

60 10 5 1.72 (1.58 – 1.89) 22.62% (15.01% – 28.99%) 

15 1.68 (1.64 – 1.74) 23.92% (21.59% – 25.96%) 

75 1.69 (1.68 – 1.69) 23.87% (23.85% – 24.07%) 

7 5 2.17 (1.99 – 2.39) 9.22% (4.41% – 15.02%) 

15 2.16 (2.11 – 2.22) 3.25% (1.56% – 5.43%) 

75 2.17 (2.166 – 2.173) 2.31% (2.05% – 2.33%) 

4 5 2.20 (2.02 – 2.40) 8.59% (4.18% – 15.09%) 

15 2.19 (2.13 – 2.26) 2.96% (1.39% – 5.13%) 

75 2.19 (2.19 – 2.20) 1.08% (0.79% – 1.11%) 

1 5 2.29 (2.10 – 2.52) 9.24% (4.06% – 16.00%) 

15 2.22 (2.16 – 2.28) 2.80% (1.38% – 4.61%) 

75 2.20 (2.20 – 2.21) 0.90% (0.58% – 0.93%) 
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ally significant, though they do continue the trend of interquartile 

ange narrowing as SNR B increases. Moreover, based on the data 

n Table 2 , we can offer general recommendations of SNR, spatial 

esolution, and temporal resolution for DCE-MRI measurements. 

pecifically, to achieve a measurement of SER with a small bias 

i.e., PE SER < 10%), the image acquisition needs to satisfy either: 

) SR B of 300 μm, SNR B ≥ 15 dB, and TR B ≤ 1 s, 2) SR B of 150 μm,

NR B ≥ 15 dB, and TR B ≤ 7 s, or 3) SR B of 60 μm, SNR B ≥ 5 dB, and

R B ≤ 7 s . Our observation with SR B of 300 μm matches the results

eported in Kershaw et al. ( Kershaw and Cheng, 2010 ). We respect- 

ully note that the “ground truth” used in the Kershaw study is a 

ingle time course directly generated by simulating the tissue ho- 

ogeneity model with varying parameters, in which the effect of 

patial resolution is not considered. Conversely, the method out- 

ined in this study additionally considers spatial resolution. 

As the first major component of this contribution, the digi- 

al phantom has a number of advantages compared to previously 

ublished effort s. First, the digital phantom is constructed in a 

2 × 32 × 16 mm 

3 field of view, with arterial vessels with radii 

etween 30 and 300 μm, thereby covering the major renal arter- 

es down to terminal arterioles. The realistic morphology of arte- 

ial vasculature on this level has never been presented by previous 

hysical or digital phantoms. Second, the new phantom provides 

patiotemporally-resolved information on both flow fields and con- 

rast agent delivery. Thus, the phantom provides a unique opportu- 

ity to evaluate the ability of estimating interstitial flow with non- 

nvasive imaging in a realistic tissue structure; thus, it serves as 

n excellent reference for investigating the effects of flow on DCE- 

RI data. As the digital phantom is extremely flexible, it can be 

pplied to many other imaging studies. While the present study 
11 
ept the imaging “object” static in space, if the object were to 

hange geometries across time, the phantom could be deformed 

cross frames, with specific motion mimicking the physical process 

nder investigation (e.g., respiration or the cardiac cycle). Another 

otential application involves using the phantom to describe the 

bility to image blood flow at multiple spatial scales to determine 

he accuracy of (for example) dynamic susceptibility MRI, arterial 

pin labeling, or angiography to capture properties of the microvas- 

ulature. A third potential avenue of investigation is to modify the 

nitial bolus injection function ( C p ,0 ) and the vascular permeabil- 

ty ( P d ), to systematically compare the resulting image quality of 

ifferent injection protocols and contrast agents with different re- 

axivities. 

The second major component of this contribution, is the use of 

 digital phantom to guide a virtual simulator to construct in silico 

CE-MRI datasets. The new virtual simulator consists of five parts: 

) setting the acquisition parameters, 2) setting the reconstruction 

arameters, 3) defining the signal sampling path in k -space, 4) 

enerating the k -space signal, and 5) implementing image recon- 

truction. One important innovation of this simulator is it defines 

he specific time of sampling of each point in k -space, rather than 

ssuming all signals of one scan are obtained simultaneously at the 

eginning or ending of the acquisition. Including the effects of con- 

rast agent uptake into the acquisition also helps to generate more 

ealistic DCE-MRI signal time courses ( Heisen et al., 2010 ). More- 

ver, the k -space signal generation scheme allows reconstructing 

mages at a higher temporal resolution than the nominal acquired 

emporal resolution, which is achieved by an optimization-based 

econstruction in this simulator. Similar to the digital phantom 

omponent, this simulator is also quite flexible. First, input of the 
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igital phantom into the virtual simulator relies on a single inter- 

ace; i.e., importing as an argument of the software function gener- 

ting the k -space signal. That means the digital phantom and vir- 

ual simulator have a very high level of independence. Therefore, 

eside the potential applications of the digital phantom described 

n this effort, the simulator can accept any number of digital phan- 

oms; importantly, any changes to a digital phantom would not re- 

uire significant modification of the virtual simulator. Furthermore, 

he format of the input digital phantom required by the simulator, 

 4D grid-based matrix (or 3D if static in time) is straight-forward 

o achieve. Design of the simulator components also have a very 

igh compatibility for testing various k -space sampling as well as 

econstruction methods. 

All of the above considerations indicate the proposed validation 

ramework is a powerful, efficient, and generalizable tool for rigor- 

usly investigating various quantitative MRI acquisition and analy- 

is techniques. For example, estimating interstitial properties from 

CE-MRI ( Liu et al., 2016 ; Wu et al., 2020 ) data has been studied as

here are both in vitro ( Kingsmore et al., 2016 ; Shields et al., 2007 ;

hang et al., 2008 ; Schäfer and Werner, 2008 ; Shieh et al., 2011 ;

im et al., 2016 ) and in vivo ( Baxter and Jain, 1989 ; Heldin et al.,

004 ) studies indicating that the interstitial flow/pressure within 

umors prevents optimal drug delivery. However, these models are 

ery challenging to validate even with animal experiments due to 

he difficulty in measuring interstitial flow in vivo (let alone within 

 human). Our validation framework contains a digital phantom 

roviding spatiotemporally resolved maps of interstitial pressure 

nd flow, which could be used as a ground truth for validating 

hese models, as well as determining the imaging quality required 

or these models to be successfully applied. 

There are several opportunities for refining this digital phan- 

om. First, we currently assign uniform tissue properties, κ , 

hrough the entire extravascular space, so the differences between 

enal tissues (e.g., cortex and medulla) are not considered. This 

an be modified to a heterogenous property distribution. For ex- 

mple, if a detailed kidney segmentation were available to differ- 

ntiate variable kidney tissues (e.g., cortex and medulla), we could 

ssign different values of properties of interest to each tissue type 

ccording to (for example) experimental measurements of intersti- 

ial hydraulic pressure and conductivity via an inserted catheter 

r implanted matrix ( Wunderlich et al., 1971 ; Khraibi et al., 

989 ). Another option would be to directly assign some proper- 

ies if advanced imaging measurements were available. For exam- 

le, in a previous study ( Wu et al., 2020 ) we developed an ap-

roach to quantify spatially-resolved tissue hydraulic conductivi- 

ies via the ADC map, which is available from diffusion-weighted 

RI. Additionally, the vasculature in the current geometric model 

ncludes only the arterial trees, neither the venous components nor 

he renal duct system is considered. The lack of significant fluid 

rainage limits the accuracy of this model to mimic the processes 

f fluid filtration and reabsorption in kidney. Specifically, the cur- 

ent modeling of steady-state, hemodynamic flow assumes a con- 

tant pressure value (Dirichlet boundary condition) on the kid- 

ey contour. However, we acknowledge that a better representa- 

ion of fluid behavior on the contour would be a zero-flux con- 

ition. But due to the lack of drainage system in the domain, as- 

ignment of the zero-flux condition would lead to a system that 

as no steady state solution. Therefore, even though the physiolog- 

cal properties we used are based on realistic literature values, the 

odel system itself is significantly simplifying the kidney physi- 

logy. A complete digital representation of actual renal physiology 

ould require additional modeling considerations ( Postnov et al., 

016 ). For example, to integrate large-scale renal blood flow or 

essel-tissue exchange phenomena likely requires multi-scale ef- 

orts ( Bensalah et al., 2013 ; Niederalt et al., 2013 ; Lee et al., 2017 ,
i

12 
018 ; Yim et al., 2004 ) with nephron-level modeling of filtration 

nd reabsorption ( Layton et al., 2016 ; Sgouralis and Layton, 2013 ). 

Another area for future development is to modify the current 

igital phantom for applications in the human kidney or, more 

enerally, any organ or tissue. As noted in the Introduction, the 

eometry of the murine kidney was chosen because it is a very 

igh-quality data set ( Xie et al., 2012 a, 2012b ) that provides a clear,

epresentative, and realistic visualization of a hierarchical arterial 

etwork. Furthermore, it enables realistic assignment of physical 

issue properties and computation of the spatiotemporal distribu- 

ion of contrast agent obtained by physics-based modeling. To ap- 

ly this methodology to any other organ (even in humans), the 

nly requirement is acquisition of the requisite data; namely, high 

patial resolution images of the vascular tree from the input vessel 

o the arterioles, the ability to calculate blood flow rate with the 

ppropriate boundary conditions on the inlet and outlet pressures, 

nd estimates of the interstitial hydraulic conductivity and vascu- 

ar permeability. Importantly, none of these issues are rate limiting 

teps. Fortunately, when we designed the phantom, we made the 

mplementation and storage of its different components as inde- 

endent as possible, so modifications should be flexible. In partic- 

lar, the generation of the digital phantom is independent from the 

ther components of the validation framework (such as the virtual 

RI simulator, and post-processing evaluation), so modification of 

he phantom would not affect the implementation of the remain- 

er of the pipeline. 

An additional limitation of the current simulator (alluded to in 

ection 2.2.2 ) is that we interpolate the digital phantom to replace 

he real k -space down-sampling process for acquisition of images 

ith low spatial resolution. In real MRI experiments, scanning with 

ower spatial resolution is actually achieved by truncating the infi- 

ite spatial-frequency space (i.e., complete k -space). However, be- 

ause the voxel-based nature of our digital phantom could cause 

 discontinuity of intensity on the spatial dimensions (especial for 

he time points immediately after arrival of the contrast agent bo- 

us), simple truncation of k -space will result in a classic Gibbs 

inging artifact. Thus, we decided to choose the alternative strat- 

gy presented here as a practical option. But we note that k -space 

ampling and reconstruction techniques designed for fast vascular 

maging ( Wright et al., 2014 ; Stinson et al., 2018 ) are certainly of

nterest for future studies. 

. Conclusions 

We have established a novel in silico framework to systemat- 

cally evaluate and validate quantitative DCE-MRI analysis meth- 

ds based on a dynamic digital phantom and a virtual MRI sim- 

lator. The digital phantom provides a detailed representation of 

asculature, tissue properties, flow dynamics, and spatiotemporally 

esolved tracer distribution. The virtual MRI simulator has a flex- 

ble “acquisition protocol” that provides realistic DCE-MR images, 

hich can successfully represent the effects of acquisition parame- 

ers on the ability of simulated images to capture realistic morpho- 

ogical and pharmacokinetic features of the anatomy under inves- 

igation. This validation framework can be used for investigations 

n contrast-enhanced or perfusion-based MRI techniques or, more 

enerally, to systematically evaluate and optimize new MRI acqui- 

ition, reconstruction, and image processing techniques. 
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ppendix A. Image enhancement for constructing the 

asculature 

In preparation for constructing the vascular tree, the intensity 

f the T 2 
∗-weighted images are globally normalized throughout the 

hole kidney and locally transformed to enhance the vascular re- 

ions (as illustrated in Fig. A.1 ). In particular, a k -means clustering 

ith k = 2 is first applied on the entire kidney to segment the im-

ge, I , into vasculature ( I v ) and extravascular ( I t ) regions. The ex-

ravascular component, I t , is then smoothed with a Gaussian filter 

ith a standard deviation of 10, producing the map of local tissue 

ackground intensity, I t ’ . The normalized image, I’ , is then obtained 
ig. A.1. Maximum Intensity Projections (MIPs) of the input, output, and interme- 

iate results of the normalized and enhanced T 2 
∗-weighted images. Panels (a) – (f) 

resent, respectively, coronal MIPs of the original T 2 
∗-weighted image ( I ), initially 

egmented tissue background ( I t ), initially segmented vascular region ( I v ), smoothed 

ackground ( I t ’ ), image after background intensity normalization ( I’ ) and the final 

utput image after vascular enhancement ( I’’ ). Compared to the original image I 

panel a), the intensity of the vasculature in I’’ (panel f), especially the smaller ves- 

els, is strongly enhanced, and its contrast to the background is substantially im- 

roved and normalized. 
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13 
y subtracting this background map from the original image, 

 

′ = I − I t 
′ 
. (A.1) 

The last step is to apply a local transform to enhance small ves- 

els in the image, 

 

′′ = I ′ / 
√ 

I ′ ∗ K , (A.2) 

here ∗ represents convolution, and K is a spherical averaging ker- 

el with a radius of 10 voxels (thus, I’ ∗ K represents the local in-

ensity average). The downstream processing to construct the vas- 

ulature is performed on the enhanced image, I’’ . 

ppendix B. Justification of assignment of parameters for 

issue properties 

The delivery of contrast agent is modeled within the arteries of 

he kidney and the kidney tissue. Even though the detailed struc- 

ure of glomeruli (where the majority of filtration occurs) is not in- 

luded in this model, we seek to assign physiologically reasonable 

alues of glomerular capillary permeability as input parameters 

i.e., L p , σ , and P d ) so that the simulation is as realistic as possible.

o justify the parameters, literature values on renal vascular per- 

eability have been reviewed. Specifically, L p describes the ability 

f water to transmit through porous media (e.g., the vessel wall). 

s glomerular capillaries are fenestrated, they are much more per- 

eable to small molecules than most other capillaries. Renkin 

t al. (1977) reported the L p of renal glomerulus as 1.5 × 10 −8 g − 1 

m 

2 s. This magnitude is consistent with the simple approximation 

rom glomerulus filtration rate ( GFR ) ( Hall, 2010 ), 

F R = K f × NF P, (B.1) 

here NFP (net filtration pressure) = glomerular hydrostatic pres- 

ure – Bowman’s capsule pressure – glomerular osmotic pres- 

ure = 60 mmHg – 18 mmHg – 32 mmHg = 10 mmHg ( Hall, 2010 ).

 f is the capillary filtration coefficient equal to L p × S , with S 

s the total surface area of glomerular capillaries. For an aver- 

ge adult human, GFR is about 125 ml/min, and S is about 60 0 0

m 

2 ( Bohle et al., 1998 ). Thus, L p is approximately 2.6 × 10 −8 

 

− 1 cm 

2 s, which matches the magnitude reported in the lit- 

rature. We choose L p = 1.5 × 10 −8 g − 1 cm 

2 s in our model 

or modeling the rat kidney. Furthermore, the contrast agent em- 

loyed in our study (Magnevist®, Gd-DTPA) has a small molecular 

eight (MD = 938 Da < 70 0 0 Da), so the filtration rate defined

n Eq. (7) is approximately one ( σ = 0); thus, (1 – σ ) = 1 for our

odel. 

The P d value of a given solute through the vasculature is re- 

ated to the physical properties of both the vascular wall and the 

olute. The value of P d depends heavily on the molecular size of 

he solute, as well as its charge. For example, the diffusion of al- 

umin (MW ≈ 70 kDa) across the vasculature is estimated to be 

bout 10 0 0-fold less than that of water ( Nagy et al., 2008 ). Un-

ortunately, we were not be able to find literature values of P d 
pecifically for Gd-DTPA in the rat kidney. However, the P d of inulin 

MW ≈ 50 0 0 Da) is reported as 1.44 × 10 −4 cm/s for dog kidney 

 Crone, 1963 ), and we have assumed that the value for our tracer 

s close to, or slightly larger, than this value. To provide additional 

upport for the selection of the P d value, we note that the diffusive 

ermeability through the capillary wall for the mammalian mus- 

le has been empirically shown to be a function of the molecular 

eight (MW) for hydrophilic solutes of the size ranging from 60 

urea) to 50 0 0 (inulin) ( Waniewski et al., 1999 ; Dedrick, 1982 ): 

 d = 296 × M W 

−0 . 63 × 10 

−6 cm / s . (B.2) 

For Gd-DTPA, P d = 3.97 × 10 −6 cm/s in muscle. Combining 

his number with the fact that muscle capillaries are approxi- 

ately 100-fold less permeable to water than glomerular capil- 

aries ( Pappenheimer et al., 1951 ), yields P of Gd-DTPA through 
d 
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X vec = P S � W F ∗, �
· x . (C.19) 
enal vasculature on the order of 10 −4 cm/s. Thus, we choose 

 d = 2 × 10 −4 cm/s for our model. 

ppendix C. Numerical stability for solving the 

dvection-diffusion equation 

Fig. C.1 

ig. C.1. Time courses of defined contrast agent concentration in tissue. Each curve 

epresents concentration time course simulated at a point randomly sampled within 

he digital phantom. No obvious oscillations are observed. 

ppendix D. Numerical derivation of optimization-based 

econstruction 

The reconstruction problem is solved by maximizing the 

moothness of voxel-wise reconstructed signals over time. Specifi- 

ally, in this study, for the reconstructed signal time course of the 

 

th voxel, ̂ x i = ( x i ,1 , …, x i, N R ), we define the smoothness penalty as

he l 2 -norm of its discrete second derivative, 

 ( ̂  x i ) = 

N R −1 ∑ 

j=2 

∣∣( x i , j+1 − x i , j ) − ( x i , j − x i , j −1 ) 
∣∣2 = ̂

 x i P ̂

 x i 
′ 
. (C.1) 

Since P is poorly conditioned, we add a small smoothing pa- 

ameter, λ, to the linear operator P to ensure it to be invertible, 

S = P + λI = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 −2 1 

−2 5 −4 

1 −4 6 

0 

1 

−4 

· · · 0 0 

· · · 0 0 

· · · 0 0 

0 1 −4 6 · · · 0 0 

. 

. 

. 
. 
. 
. 

. 

. 

. 

0 0 0 

0 0 0 

. 

. 

. 

0 

0 

. . . −4 1 

−4 5 −2 

1 −2 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

+ λI , 

(C.2) 

here λ > 0 being given as a reconstruction parameter, and I 

eing the identify matrix. Therefore, the regularized smoothness 

enalty is, 

λ( ̂  x i ) = 

̂ x i PS ̂  x i (C.3) 

This penalty can be trivially applied to the reconstructed image; 

.e., 

λ
(

ˆ X 

)
= 

n x × n y × n z ∑ 

i=1 

ˆ x i P S ˆ x i 
′ . (C.4) 

Additionally, during the optimization procedure, it may be de- 

irable to enforce different smoothness criteria in different voxels. 

o address this purpose, a voxel-wise weighting term, w i , is ap- 

lied to the penalty at each voxel, 

 

(
ˆ X 

)
= 

n x × n y × n z ∑ 

i=1 

w i ˆ x i P S ˆ x i 
′ . (C.5) 
14 
Writing the weighting as a diagonal matrix of size 

 n x × n y × n z ) × ( n x × n y × n z ), W = diag( w 1 , w 2 , …, w i ,

), and constraining the optimization with the measured k -space 

ignal, minimization of this loss function leads to the optimization 

rocess given by Eq. (25) in the main manuscript, 

ˆ 
 = argmi n ˆ X 

{
L 
(

ˆ X 

)
: F 

(
ˆ X 

)
( �) = Y 

( R ) ( �) 
}

= argmi n ˆ X 

{〈 W , ˆ X P S 
ˆ X 

′ 〉 : F 
(

ˆ X 

)
( �) = Y 

( R ) ( �) 
}
. (C.6) 

By proper re-arranging, a closed-form solution can be found for 

his optimization object. Specifically, the data array, Y 

( R ) , and the 

econstructed image array, ˆ X , can be rearranged into vector forms, 

 vec and 

ˆ X vec , respectively, 

 v ec ( ξ ) = Y 

( R ) ( ι1 , ι2 , ι3 , ι4 ) , (C.7) 

ˆ 
 vec ( ξ ) = 

ˆ X ( ι1 , ι2 , ι3 , ι4 ) , (C.8) 

ith ξ = ι1 + ( ι2 − 1 ) n x + ( ι3 − 1 ) n x n y + ( ι4 − 1 ) n x n y n z , (C.9) 

∈ { 1 , . . . , ( n x × n y × n z × N R ) } , 

 

ι1 , ι2 , ι3 , ι4 ) ∈ { 1 , . . . , n x } × { 1 , . . . , n y } × { 1 , . . . , n z } × { 1 , . . . , N S }
With the vectorized formula, we can equivalently rewrite the 

ptimization problem as, 

rgmi n ˆ X vec 

{
ˆ X vec 

′ ( P S � W ) | ˆ X vec : 
[
( I � F ) · ˆ X vec 

]
�

= [ Y vec ] �
}
, 

(C.10) 

here � indicates the tensor product. I is the identity matrix 

f size ( N R × N R ). The subscript � is the subset of {1, …, 

 n x × n y × n z × N R )}, which corresponds to the measurement do- 

ain (i.e., � defined by Eq. (24) in the main manuscript). So, for 

n arbitrary vector β, we define 

 

β] � = { β( ξ ) , ξ ∈ �
0 , ξ / ∈ �

. (C.11) 

Similar, for arbitrary array B , we define 

 

B ] ∗, � = { B ( ξ1 , ξ2 ) , ξ2 ∈ �, ∀ ξ1 

0 , ξ2 / ∈ �, ∀ ξ1 
, (C.12) 

 

B ] �, � = { B ( ξ1 , ξ2 ) , ξ1 , ξ2 ∈ �
0 , otherwise 

. (C.13) 

Then, the optimization problem has the closes-form solution, 

ˆ 
 vec = 

[
P S 

−1 
�

(
W 

−1 F ′ 
)]

∗, �
·
([

P S 
−1 

�
(
F W 

−1 F ′ 
)]

�, �

)−1 

· [ Y vec ] � . 

(C.14) 

The main step in computing this solution is to compute prod- 

ct of the inverse term, ( [ P S 
−1 

� ( F W 

−1 F ′ ) ] �, �) −1 , and the mea- 

ured signal, [ Y vec ] � . To simplify the format, we let the inverse 

erm be A 

− 1 , and rename [ Y vec ] � to be b : 

 = 

[
P S 

−1 
�

(
F W 

−1 F ′ 
)]

�, �
, (C.15) 

 = [ Y vec ] �. (C.16) 

If we set 

 = A − 1 b = 

([
P S 

−1 
�

(
F W 

−1 F ′ 
)]

�, �

)−1 

· [ Y vec ] �, (C.17) 

hen the main step of the optimization (i.e., computing the x ) be- 

omes solving the linear system, 

x = b. (C.18) 

After solving for x , the computation in the Eq. (C.14) can be 

ompleted as follows, 

ˆ 
[ −1 

( −1 ′ )]
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Fig. E.1. Illustration of the optimization-based reconstruction for one example arterial signal time-course. Panel (a) shows the ground truth signal (blue curve) and the 

time-course with temporal resolution of 3.5 s reconstructed by the conventional inverse Fourier transform (“IFFT Recon”; pink circle and dash line). The whole time-course 

is truncated, and a 10 s interval is selected (red dash lines and arrow). Panel (b) shows the signal (“Opti-based Recon”; red-cyan dots and lines) reconstructed by the 

optimization-based algorithm within the selected interval. Specifically, the red dots are preserved while cyan ones are eliminated to avoid extrapolative errors. In panels (c) 

and (d), reconstructions of the whole time-course with temporal resolutions of 2.5 s and 0.5 s, respectively, is achieved by shifting selected intervals. 
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ppendix E. Practical implementation of optimization-based 

econstruction 

Although it has the advantage of reconstructing images at a 

emporal resolution higher than that of the nominal acquisition, 

he exact implementation of the optimization-based reconstruc- 

ion algorithm involves solving a large linear system, which is very 

emory- and time-intensive. More specifically, the central step 

f reconstruction is to solve a linear equation axe = b , where 

 is the vectorized presentation of reconstructed image dataset. 

ith the desired reconstructed temporal resolution of 250 ms and 

ithout spatial down-sampling, x is a complex vector of length 

706 × 576 × 360 × 240). The iterative solution of this inverse 

roblem via the preconditioned conjugated gradient descent (PCG) 

ethod ( Barrett et al., 1994 ) requires over 500 GB of memory and

ours of computing time. This places a fundamental limitation on 

he practical feasibility of this simulator. To overcome the mem- 

ry issue, we designed a scheme to trade time for memory in 

hich the temporal dimension is first divided into multiple inter- 

als and solved individually (see Fig. E.1 (a)). More specifically, the 

hole time-course is first truncated, and a time interval of 10 s is 

elected. In this interval, the optimization algorithm described in 

ection 2.2.3 of the main text is implemented to reconstruct with 

 temporal resolution of 2.5 s ( Fig. E.1 (b)). The first and last frames

f this five-frame image is discarded to avoid errors of extrapo- 

ation ( Fig. E.1 (b)). Then, the selected interval is shifted by 7.5 s,

5 s, etc., and the reconstruction is repeated in these new intervals 

 Fig. E.1 (c)). Eventually, this procedure results in an approximate 

econstruction of the whole time-course with a resolution of 2.5 s. 
i

15 
urthermore, by shifting the intervals with a smaller time step, a 

igher effective temporal resolution is achievable. For example, in 

ig. E.1 (d), the reconstructed time course has a temporal resolution 

f 0.5 s. 

We note that the scheme outlined in the previous paragraph is 

uboptimal because performing optimization on a truncated time 

nterval sacrifices the global accuracy. Moreover, because the time 

ourses in each time interval are reconstructed individually, a dis- 

ontinuity of signal intensity at the gap between two adjacent in- 

ervals might occur. Ongoing effort s are designed to alleviate the 

roblems by implementing the exact algorithm on a distributed 

omputing system, powered by Texas Advanced Computing Center. 

his distributed implementation will overcome the limitation of 

emory and significantly accelerate the computation, along with 

reservation of global accuracy and continuity. 

ppendix F. R2D2: Introduction to Digital Phantom Toolkit and 

ocumentation 

We have made the dynamic digital phantom introduced in 

his manuscript into an open toolkit, R2D2 ( https://github.com/ 

hengyueWu/R2D2 _ toolkit ). In this repository, we provided a de- 

ailed description and documentation, as well as a link to the en- 

ire digital phantom dataset (which is stored on Google Drive). 

sers are encouraged to download part of or the whole dataset ac- 

ording to their own needs. The documentation included informa- 

ion regarding how to download, visualize, and use data involved 

n R2D2 ( Wu, 2020 ). 

https://github.com/ChengyueWu/R2D2_toolkit
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There are three major components of the phantom shared in 

he toolkit, ‘Geometric Model’, ‘Steady-State Flow’ and ‘Contrast 

gent Deliver’, each of which stored in a folder. The folder ‘Ge- 

metric Model’ stores files containing information on the geome- 

ry of the phantom, including the vascular and kidney tissue. The 

older ‘Steady-state Flow’ stores data of computed hemodynamic 

haracteristics of the phantom, including interstitial pressure, in- 

erstitial flow velocity, blood pressure, and vascular hydraulic con- 

uctivity. The folder ‘Contrast Agent Delivery’ stores data for the 

omputed, spatiotemporally resolved distributions of tracer propa- 

ating through vasculature and interstitial tissue. 

Data provided in this phantom include both regular-grid-based 

i.e., voxelized) representations and unstructured-mesh-based rep- 

esentations of domain geometries, steady-state flow fields and 

ime-dependent distribution of contrast agent. The voxelized data 

re stored in MATLAB-files, where loading and visualization are 

ested to be successfully supported by MATLAB versions R2016b –

2020a. No specific MATLAB package is required for using the vox- 

lized data, so earlier or later versions of MATLAB should also be 

ompatible. 

The mesh-based representations are stored as XML or HDF5 

ython files. Python-based computing platform, FEniCS Porject 

 https://fenicsproject.org/ ), is required for loading and further pro- 

essing of these data. All related demos and examples provided are 

uilt on FEniCS version 2017.2.0. Visualization of the mesh-based 

epresentations via ParaView is recommended. Examples of con- 

erting HDF5 data files to VTK image files as well as visualizing 

sing ParaView version 5.6.0 are included in the documentation. 
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