
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATE AUTOREGRESSIVE NORMALIZING FLOWS
SAMPLING WITH GS-JACOBI ITERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

AutoRegressive Normalizing Flows (abbreviated as AR Flow) enjoy extensive ap-
plications in tasks such as density estimation and image generation. However, due
to the causal affine coupling blocks requiring sequential computation, the sampling
process is extremely slow. In this paper, we demonstrate that through a series of op-
timization strategies, such AR Flows sampling can be greatly accelerated by using
the Gauss-Seidel-Jacobi (abbreviated as GS-Jacobi) iteration method. Specifically,
we find that blocks in AR Flows have varying importance: a small number of blocks
play a major role in image generation, while other blocks contribute relatively little;
some blocks are sensitive to initial values and prone to numerical overflow, while
others are relatively robust. Based on these two characteristics, we propose the
Convergence Ranking Metric (CRM) and the Initial Guessing Metric (IGM): CRM
is used to identify whether a Flow block is "simple" (converges in few iterations) or
"tough" (requires more iterations); IGM is used to evaluate whether the initial value
of the iteration is good. The TarFlow was chosen as the main experimental subject
in our study owing to its SOTA performance on several benchmarks. Experiments
on four TarFlow models demonstrate that GS-Jacobi sampling can significantly
enhance sampling efficiency while maintaining the quality of generated images
(measured by FID), achieving speed-ups of 4.53× in Img128cond, 5.32× in AFHQ,
2.96× in Img64uncond, and 2.51× in Img64cond without degrading FID scores or
sample quality.

1 INTRODUCTION

Image generation models have been widely applied in various scenarios. As an instance, normalizing-
flow-based models, from the original NICE [11] model, to improved RealNVP [12] and Glow [21]
models, offer unique advantages through their invertible architecture that applies sequence of lossless
transformations to noise vectors, but show limited performance in the generation of high solution and
complex images.

Recently, AutoRegressive Flow models, especially TarFlow [38] introduces stacks of autoregressive
Transformer blocks (similar to MAF [27]) into the building of affine coupling blocks to do Non-
Volume Preserving, combined with guidance [16] and denoising [5], finally achieves state-of-the-art
results across multiple benchmarks. However, AR Flow’s sampling efficiency suffers from a critical
bottleneck: the causal structure within each affine coupling block forms a nonlinear RNN. This forces
strictly sequential computation during sampling, where each step must wait for the full update of
preceding series, resulting in significantly reduced computational efficiency for large-scale image
generation tasks.

In this paper, we try to solve this. We first transform the nonlinear RNN in the sampling phase into a
diagonalized nonlinear system, then we can employ iteration-based solvers such as Gauss-Seidel-
Jacobi (GS-Jacobi) iteration [26] [33] [31]. However, naively applying GS-Jacobi iteration leads to
generation failure (see 1st and 2nd row of Figure 4). Through detailed analysis, we discover that
blocks in the AR Flow have varying importance: a small number of blocks play a major role in
image generation tasks, while other blocks contribute relatively little; some blocks are sensitive to
initial values and prone to numerical overflow, while others are relatively robust. Based on these two
characteristics, we propose the Convergence Ranking Metric (CRM) and the Initial Guessing Metric
(IGM): CRM is used to identify whether a AR Flow block is "simple" (converges in few iterations) or

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

"tough" (requires more iterations); IGM is used to evaluate whether the initial value of the iteration
is appropriate. Leveraging these two metrics, we present a sampling algorithm that substantially
reduces calculation amount required.

As a summary, we list our contributions as follows:

• Transform the sampling process of the AR Flow into a diagonalized nonlinear system, and
apply a Gauss-Seidel-Jacobi hybrid iteration scheme to it, providing corresponding error
propagation analysis and convergence guarantees;

• To identify the non-uniform transformation patterns in affine coupling blocks and control
the number of iterations, we propose the Convergence Ranking Metric (CRM) to evaluate
and measure them;

• To control the stability of iteration initial values to avoid numerical overflow, we propose
the Initial Guessing Metric (IGM);

• Comprehensive experiments demonstrate 4.53× speedup in Img128cond, 5.32× in AFHQ,
2.96× in Img64uncond, 2.51× in Img64cond sampling without measurable degradation in
FID scores or sample quality in TarFlow.

2 RELATED WORK

Normalizing Flow Based Models In the field of image generation, numerous methods have been
proposed. From PixelRNN ([35]), GANs [14], to DDPM [18], Stable Diffusion ([29]). Diffusion
models seem to dominate this field, but normalizing flows still offer unique advantages, including
exact invertibility [37] enabling precise density estimation [34], single-step sampling for efficient
generation [15], and structured latent spaces that support interpretable manipulation [6].

Normalizing Flows learn an invertible model f that transforms noise z into data x, such that x = f(z).
The key to build invertible models is accessible inverse function with Jacobi determinant easy to
calculate, series of flow models accomplishes this through coupling layers. NICE [11] introduced the
additive coupling layers. To enhance the non-linear capability, RealNVP [12] integrated scaling and
shifting to the non-volume preserving transform as the affined coupling layer. Glow [21] improved
the images generation by introducing invertible 1×1 convolution, and Flow++ [17] included attention
mechanic. The most significant advantage of these models is that the inverse function is explicit
and Jacobi matrix is lower triangle. This can avoid the complex calculation in the general invertible
ResNet framework proposed in [4]. Implicit Normalizing Flow [23] trys to eliminate the need for
multi-layer stacking by applying deep equilibrium models [3; 36]. However, overly simple structure
makes these flow models less nonlinear.

To improve this, normalizing flows are combined with autoregressive models. IAF [22] pioneered
dimension-wise affine transformations conditioned on preceding dimensions to improve variational
inference. MAF [27] utilized the MADE [13] to create invertible autoregressive mappings. NAF
[19], which replaced MAF’s affine transformations with per-dimension monotonic neural networks to
enhance expressivity. T-NAF [28] augmented NAF by integrating a single autoregressive Transformer,
whereas Block Neural Autoregressive Flow [9] adopted an end-to-end autoregressive monotonic
network design. TarFlow [38] proposed a Transformer-based architecture together with a set of
techniques to train high performance normalizing flow models and show SOTA in many fields, thus
becomes the sampling object of this article.

Parallel solving of linear/nonlinear systems Linear/nonlinear systems refer to fi(x) = 0,x ∈ Rn,
where fi, i = 1, . . . , n is a linear/nonlinear function. The parallel solution of these systems is an
important problem in scientific computing. [30] established methods such as Jacobi, Gauss-Seidel,
successive over-relaxation (SOR), and Krylov subspace techniques for linear systems. Block-Jacobi
iterations [1; 2; 8] use GPU parallelization to solve linear/nonlinear equations. As a special case,
when fi takes the form fi(x) = xi − gi(x<i), it is called an autoregressive system. Lots of
approaches have been proposed to accelerate autoregressive computation. [25] introduced probability
density distillation for transferring knowledge from slow autoregressive models to faster computation.
MintNet [32] developed a specialized Newton-Raphson-based fixed-point iteration method to speed
up autoregressive inversion. Similar theoretical concepts were earlier explored by [24] without
empirical validation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

P
re
p
ro
ce
ss
in
g CRM

IGM

dominant

No

Yes

Unpatchify

Patchify

×L

S
am

p
ling

Figure 1: Simple intuition diagram of GS-Jacobi sampling. First pass forward a small batch of images
to compute Initial Guessing Metric (IGM) and Convergence Ranking Metric (CRM) for each block.
When sampling, the initial iteration value X(0) is determined by IGM; for blocks whose CRM is
non-dominant, parallel Jacobi iterate X; for CRM-dominant blocks, segment X into small modules
Xg , parallel Jacobi iterating within modules, then serially deliver to next module.

3 METHODS

3.1 JACOBI MODE FIXED POINT ITERATION SAMPLING

Let z denotes the noise direction and x denotes the image direction, both with size (B, T,C), where
B,T,C represent batch size, patchified sequence length, and feature dimension, respectively. For AR
Flow models, an affine coupling block can be written as:

Forward: zt = exp(−s(x<t))(xt − u(x<t)), Inverse: xt = exp(s(x<t))zt + u(x<t). (1)

for t = 1, · · · , T and x1 = z1. x<t := {xi}t−1
i=1 denotes the history before time t, s(x<t), u(x<t)

generated from some deep neural network (IAF, MAF use MADE[13], TarFlow use Attention). In
forward direction, all xt are given, so all s(x<t), u(x<t) can be calculate in parallel. But in inverse
direction, xt can only be computed serially after x<t has been solved. In Table 3a, it takes about 213
seconds for such serial sampling to generate 100 128×128 images with a single A800 GPU.

Denote exp(−s(x<t)) = σ−1
t , u(x<t) = ut, the former process can be written in a matrix form, and

with σ1 = 1, u1 = 0, then the transform from X to Z can be seen as an non-linear system:

Forward: Z = Σ−1(X)(X − µ(X)), Inverse: X = Σ(X)Z + µ(X). (2)

For the inverse process, we can view the target X∗ as the fixed point of the nonlinear system
g(X) = Σ−1(X)Z + µ(X), and then solve it using the non-linear Jacobi iteration [20]:

X(k+1) = Σ(X(k))Z + µ(X(k)), x
(k+1)
t = σ

(k)
t zt + u

(k)
t (3)

parallel for t = 1, . . . , T with an initialized X(0). We propose Proposition (1) to explain the
convergence and error propagation of Jacobi mode iteration under this nonlinear system. See
Appendix A for detailed discussion.

Proposition 1 (Converge and Error Propagation). For fixed point iteration (3), let ε(k) = X(k) −X∗

be the error after k iteration, et be its t-th component, f (k)
t = x

(k)
t − σ

(k)
t zt − u

(k)
t , then:

• Equation (3) converges strictly after T − 1 times,

• e
(k)
t ≈ −

∑t−1
i=k+1 γ

(k)
ti e

(k)
i , with γ

(k)
ti = ∂ft

∂xi

∣∣
X(k) , t ≥ k + 2.

This iteration method involves two components: the initial value X(0) and the maximum number
of iterations. As shown in Figure 4, different initialization strategies lead to different convergence

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150
0.0

0.6

1.2

1.8

2.4 ×10 4 Img128cond
block7
block6
block5
block4
block3
block2
block1
block0

0 25 50 75 100 125 150
0.0

0.5

1.0

1.5

2.0
×10 5 AFHQ

block7
block6
block5
block4
block3
block2
block1
block0

0 25 50 75 100 125 150
0.0

0.6

1.2

1.8

2.4 ×10 4 Img64cond
block7
block6
block5
block4
block3
block2
block1
block0

0 25 50 75 100 125 150
0.0

0.6

1.2

1.8

2.4
×10 4 Img64uncond

block7
block6
block5
block4
block3
block2
block1
block0

Figure 2: The distance between X(k) (up to 150 times) and target X∗ of all 8 blocks in four models.
Most blocks converge within iteration times << T , with each model exhibiting only one or two
slowly descending curves.

effects, with poor strategies causing model collapse. Also as shown in Figure 2, different blocks
converge at varying speeds, some blocks converge quickly while others slowly, suggesting that we
should employ different iteration strategies for different blocks. We propose Initial Guessing Metric
and Convergence Ranking Metric to address these two issues, respectively.

3.2 INITIAL GUESSING METRIC

A common choice for initialization is to take X(0) = Z = [z1, z2, . . . , zt]
′, i.e, the output of the

former block, with intuition Flow models transform images "gradually" [38], which means that the
difference between adjacent affine coupling blocks maintain stable. As shown in Figure 3, the change
from noise to image in most steps is gradual, and Z locates in the neighbor of X∗, which can be a
good initial guessing. However, in practice, we find that take all X(0) = Z cause numeric collapse in
Img64cond models in Block0, as shown in the 1st row of Figure 4.

Figure 3: The trace of the sampling in four models. From top to bottom: Img128cond, Img64cond,
Img64uncond, AFHQ. From left to right: noise, Block 7-0, denoised image.
An alternative workable guessing is X(0) = Z0 = [z1, 0, . . . , 0]

′, since pixel value ranges from -1 to
1 and centers in 0. A natural strategy is comparing Z and Z0 and choose the better one. Since the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: The influence of different initial value and iteration times of an Img64cond sample. From
top to bottom: Set all X(0) = Z, Jacobi 30 times; Adaptive initialized according to IGM, Jacobi 20
times; Adaptive by IGM, Jacobi 30 times; GS-Jacobi [0/7-16/8-10/13-6]

.

worst inflation occurs at first few iteration, we define following "Initial Guessing Metric":

IGM(X(0)) = ||Σ(X(0))Z + µ(X(0))−X∗||2. (4)

to measure a rough distance with X(0) chosen from {Z,Z0}. In Appendix D, different norms showed
similar results, spectral norm is a little better and we use it in this paper. We can calculate IGM with
the following steps:

• Select a batch of images from the training set, patching to size (B, T,C), which is X∗;
• Forward passing X∗ through AR Flow blocks to get Z = Σ−1(X∗)(X∗ − µ(X∗));

• Calculate the residual Σ(X(0))Z + µ(X(0))−X∗ with both {Z,Z0};
• Calculate the mean of residual in the dim B, calculate the norm of the (T,C) matrix.

3.3 CONVERGENCE RANKING METRIC

When sampling with (3), although all blocks converge strictly, some get nice solution with very small
k, while others need k near T − 1. As shown in Figure 2, Block6 of Img128cond, Block7 of AFHQ,
Block0 of Img64cond, Block6 of Img64uncond behave worse compared to other blocks. To measure
this difference, we propose the following Convergence Ranking Metric:

CRM = ||Σ−1(X)X||2||Ws||2 + ||Wu||2 (5)

with Ws,Wu the weight matrix of the project out layer (the final full connect layer) of s(x<t), u(x<t).
Ws measures the change of variance; Wu measures the mean, and Σ−1(X)X measures the non-
volume-preserving. See Appendix B for detailed derivation. CRMs can be calculated with the
following steps:

• Extract the project out parameters for each AR Flow block, calculate ||Ws||2, ||Wu||2;
• Select a small batch of images from the training set, go through the forward process, get
Σ−1(X)X with size (B, T,C), take means over B dimension to get (T,C) size matrixs;

• Calculate ||Σ−1(X)X||2 then CRM for each block.

This metric doesn’t strictly measure the convergence rate, only represents the relative convergence
ranking among TarFlow blocks, therefore we call it a ranking metric. In Appendix D, different matrix
norms behave similarly in relatively ranking, and we use spectral norm.

By CRM, we can know whether a block can converge rapidly or slowly, thus roughly determine
the iteration times of (3). Blocks with dominant CRM values in Table 2 converge slowly in Figure

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0
×10 5 Img128cond Block6

module1
module2
module3
module4
module5
module6
module7
module8

0 5 10 15 20 25 30
0.0

0.3

0.6

0.9

1.2
×10 5 AFHQ Block7

module1
module2
module3
module4
module5
module6
module7
module8

0 5 10 15 20 25 30
0.0

0.4

0.8

1.2

×10 4 Img64cond Block0
module1
module2
module3
module4
module5
module6
module7
module8

0 5 10 15 20 25 30
0.0

0.3

0.6

0.9

1.2
×10 4 Img64uncond Block6

module1
module2
module3
module4
module5
module6
module7
module8

Figure 5: The distance between GS-Jacobi iteration and target X∗
g of four tough blocks. All modules

tend to converge within 30 iterations, and the 1st module suffer a more difficult trace.

2. In practice, although only very few blocks in TarFlow converge slowly, this severely affects the
speed and effectiveness of the Jacobi iteration method: For "tough" blocks, fewer iterations result
in poor generation quality (see 2nd row of Figure 4), while more iterations improve the model but
simultaneously lose the speed advantage. As shown in Table 3a 3b, the Jacobi-30 strategy exhibits
significantly inferior performance, while Jacobi-60 shows measurable improvement with much more
time cost.

Although computed from a small sample set, we posit that IGM and CRM are intrinsic properties of
the trained model, remaining fixed across different sample categories. These metrics do not require
recomputation during sampling. Experimental validation of this is provided in Appendix E.
3.4 MODULAR GUASS-SEIDEL-JACOBI ITERATION

For a (B, T,C) tensor, (3) updates all T units in parallel, while "For" iteration updates 1 unit a time,
serially run T − 1 times. Naturally, an in-between method is to update a set of units in parallel
(with Jacobi) in one iteration, and serially go to another set, that’s so-called Guass-Seidel-Jacobi
iteration. Let X := {xt}Tt=1, {Gg}Gg=1 an non-decrease segmentation for time-step index 1 : T ,
Xg := {xt|t ∈ Gg}Gg=1, X:g :=

⋃g
i=1 Xi, and similar defination for {Z, zt}, {Σ, σt}, {µ, ut}. Then

the concept of modular GS-Jacobi method can be shown in Figure 1, and detailed algorithm is shown
in Appendix F.

All the analysis of Jacobi mode iteration is applicable to the modules of GS-Jacobi sampling. We
point out that GS-Jacobi can effectively improve the solution for blocks with large CRM:

• The probability of numerical overflow due to initial guessing value is greatly reduced. The
size of error matrix (6) is smaller thus the error cumsum (7) reduced;

• The convergence of each sub-Jacobi will be accelerated, since the modules closer to the
back will have a more accurate initial value;

• An appropriate GS-Jacobi strategy (select Gg and maximum Jacobi iteration times) can
achieve both accurate and fast solution.

We segment the tough blocks into 8 equal modules and apply GS-Jacobi iteration in Figure 5. In
Figure 2, pure Jacobi iteration requires between 50 to 150 times to converge for tough blocks,
whereas in Figure 5, the GS-Jacobi method reduces this number to approximately 30, and usually
only module1 suffer a more difficult trace.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Initial Guessing Metric for initialization with Z,Z0 for four models.

Blocks Img s128cond Img64cond Img64uncond AFHQ
X(0) Z Z0 Z Z0 Z Z0 Z Z0

Block0 12.06 14.15 5.4×1e5 9.89 1443.13 9.98 21.81 26.28
Block1 14.19 3.55 7.23 6.92 10.49 5.64 12.48 9.81
Block2 3.35 5.66 6.19 5.92 5.89 6.25 11.88 8.73
Block3 10.33 14.23 4.99 6.40 6.65 3.50 34.36 40.80
Block4 9.04 29.26 10.64 13.45 3.13 8.47 15.58 46.59
Block5 14.78 26.89 5.55 24.23 2.74 5.46 28.61 48.51
Block6 53.42 42.03 4.31 20.18 34.98 5.64 13.91 51.48
Block7 11.00 39.67 23.64 13.92 23.11 31.86 124.80 134.86

So, a proper strategy can take advantage of such modular iteration method. Ideally, IGM and CRM
should be calculated for each GS-Jacobi modules to judge it is tough or not. Then for every modules,
allocate more iteration to large CRM and vice versa. This can be seen as an adaptive strategy.

In practice, equal-size segmentation and same Jacobi times is usually enough. Then strategies can be
denoted in the format [Stack-GS-J-Else]. Stack indicates the tough blocks should be segmented; GS
indicates the number of equal size segmentation with length T//GS; J indicates the maximum Jacobi
times of each module; Else indicates the maximum Jacobi times for other blocks with small CRM.

To determine the stacked blocks, select blocks with large CRM one by one until there are no dominant
blocks in the remaining set. By Table 2, we stack Block6 in Img128cond, Block7 in AFHQ, Block0&6
in Img64uncond, Block0&7 in Img64cond.

4 EXPERIMENT

We train four models given by [38]: TARFLOW [4-1024-8-8-N (0, 0.152)] for Conditional ImageNet
128×128 [10]; TARFLOW [8-768-8-8-N (0, 0.072)] for AFHQ 256×256 [7]; TARFLOW [2-768-8-
8-N (0, 0.052)] for Unconditional ImageNet 64×64 [35]; TARFLOW [4-1024-8-8-N (0, 0.052)] for
Conditional ImageNet 64×64. The first three T = 1024, the last T = 256, and all four models have
8 TarFlow blocks. For convenience we will refer to them as Img128cond, AFHQ, Img64uncond and
Img64cond.

4.1 INITIAL GUESSING METRIC

We first calculate IGMs for four models with 128 training images, as shown in Table 1. We find that
there are not significant difference between two initializations in Img128cond and AFHQ, while the
sampling of Img64cond and Img64uncond will collapse if initialize X(0) = Z for all blocks. This
is evident in Table 1 since IGMs of Block0 in Img64cond and Img64uncond are pathological with
X(0) = Z, while set X(0) = Z0 can release this.

As shown in Figure 2, IGM is highly correlated with the potential maximum value occur during the
iteration. We find that Img64cond and Img64uncond are more sensitive to the initial value. This may
be because low-resolution images are more prone to mutations between pixels, which causes huge
fluctuations in the attention layers parameters. In practice, the GS-Jacobi segmentation can greatly
improve the problem of numerical overflow, so it is sufficient to simple initialize with Z,Z0 by IGM.

4.2 CONVERGENCE RANKING METRIC

We calculate CRMs for four models with 128 images in Table 2 the same time with IGMs. Detailed
components are shown in Appendix C. Table 2 is consistent with Figure 2, following the simpe rule:
The larger the CRM, the more Jacobi times required for convergence, and vice versa.

An important property is, only very few blocks in a TarFlow model have relative large CRM. This may
be because TarFlow, or other normalizing-flow based generative models are over-determined, which
means that the amount of parameters is redundant relative to the generative capacity, and many blocks

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Convergence Ranking Metric of four TarFlow models, with dominant blocks bolded.

Models Img128cond AFHQ Img64uncond Img64cond
CRM Percent CRM Percent CRM Percent CRM Percent

Block0 6.52 5.22 51.85 6.33 22.29 50.71 141.22 74.58
Block1 7.03 5.63 51.45 6.28 1.06 2.42 9.25 4.88
Block2 3.08 2.47 66.76 8.16 1.01 2.29 1.36 0.72
Block3 13.63 10.93 64.98 7.94 1.48 3.38 1.82 0.96
Block4 9.66 7.74 73.77 9.01 0.77 1.77 7.68 4.05
Block5 9.17 7.35 84.05 10.27 0.58 1.33 5.08 2.68
Block6 70.54 56.57 76.64 9.36 14.78 33.62 3.08 1.62
Block7 5.05 4.05 348.51 42.60 1.95 4.44 19.81 10.46

Table 3: FIDS of different GS-Jacobi strategies for four Models, with relative error <1% bolded.

Strategy FID (rel) time (rate)

Original 5.06 133.19 (1.00)
Jacobi-30 10.36 58.16 (2.29)
Jacobi-60 6.07 114.24 (1.17)

[6-1024-1-8] 5.07 (0.20) 33.11 (4.02)
[6-1024-1-10] 5.04 (0.00) 36.31 (3.67)
[6-1024-1-20] 5.04 (0.00) 52.98 (2.51)

[6-1-128-10] 5.50 (8.70) 48.46 (2.75)
[6-2-64-10] 5.19 (2.60) 34.08 (3.91)
[6-4-32-10] 5.22 (3.20) 27.59 (4.83)
[6-8-16-10] 5.40 (6.72) 24.37 (5.46)

[6-1-256-10] 5.30 (4.74) 78.93 (1.69)
[6-2-128-10] 5.10 (0.79) 48.75 (2.73)
[6-4-64-10] 5.05 (0.00) 35.64 (3.74)
[6-8-32-10] 5.09 (0.59) 29.41 (4.53)
[6-16-16-10] 5.16 (2.00) 26.38 (5.05)

(a) Img128cond with cfg=1.5 lr=0.97

Strategy FID (rel) time (rate)

Original 14.67 109.05 (1.00)
Jacobi-30 25.66 45.60 (2.39)
Jacobi-60 17.98 92.06 (1.18)

[0/6-1024-1-10] 15.27 (4.10) 38.17 (2.86)
[0/6-1024-1-20] 14.77 (0.68) 47.65 (2.29)
[0/6-1024-1-30] 14.72 (0.34) 57.16 (1.91)

[0/6-2-64-20] 15.22 (3.7) 51.11 (2.13)
[0/6-4-32-20] 15.18 (3.5) 36.89 (2.96)
[0/6-8-16-20] 16.44 (12.1) 28.11 (3.88)
[0/6-16-8-20] 21.16 (44.2) 26.14 (4.17)

[0/6-2-128-20] 15.03 (2.50) 76.41 (1.43)
[0/6-4-64-20] 14.81 (0.95) 50.06 (2.18)
[0/6-8-32-20] 14.80 (0.89) 36.84 (2.96)
[0/6-16-16-20] 15.17 (3.40) 31.38 (3.47)
[0/6-32-8-20] 17.47 (19.0) 29.86 (3.65)

(b) Img64uncond with cfg=0.2 attn=0.3 lr=0.9

don’t modify the images drastically, only carefully crafted. As shown in Figure 3, visually, many
middle blocks have no obvious changes, which provides the possibility of GS-Jacobi acceleration.

To identify such "tough" blocks, we just need to repeatedly select the block with the largest CRM
until there is no dominant block in the remaining blocks. So for Img64cond, we first select Block0,
but Block7 with CRM 10.46 is still dominant in remaining, so Block7 is included.

4.3 QUANTITATIVE EVALUATIONS WITH FID

We tune the hyperparameters cfg (classifier free guidance), lr (denoise learing rate), attntemp (attention
temperature), sampling 50000 images with "For" iteration to restore the FIDs results in [38]. Treat
it as the target FIDs, then keep the hyperparameters consistent, sampling with different GS-Jacobi
strategies, recording the FIDs, relative error (%), running time (100 s) and accelerating rate. Rates
with a relative error less than 1% are bolded. The strategy is as stated above [Stack-GS-J-Else]. All
samplings are performed on 8 A800 GPUs with 80G memory.

In Table 3a Img128, keep "For" iteration for tough Block6, just few pure Jacobi for other blocks are
enough to get good FID, like [6-1024-1-10], speeds up 3.67×. Then we fixed the total Jacobi times
for Block6 with 128 and 256, and try different [GS-J] pairs. We found that simple strategies, like
[6-8-32-10] can achieve results with relative error < 1% and surprising speed-up.

Similar results occurred in the sampling for AFHQ, as shown in Table 4a. Since the two models both
have just one tough block, the acceleration rate behave similarly. For Img64 models, the situations

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: FIDS of different GS-Jacobi strategies for four Models, with relative error <1% bolded.

Strategy FID (rel) time (rate)

original 13.60 109.24 (1.00)

[7-1024-1-10] 13.61 (0.07) 26.58 (4.11)
[7-1024-1-20] 13.60 (0.00) 37.69 (2.90)
[7-1024-1-30] 13.60 (0.00) 48.70 (2.24)

[7-1-128-10] 14.70 (8.08) 33.36 (3.27)
[7-2-64-10] 14.27 (4.92) 23.56 (4.54)
[7-4-32-10] 14.15 (4.04) 19.06 (5.73)
[7-8-16-10] 15.52 (14.1) 16.83 (6.49)

[7-1-256-10] 14.21 (4.48) 53.62 (2.04)
[7-2-128-10] 14.07 (3.45) 33.98 (3.21)
[7-4-64-10] 13.82 (1.62) 24.81 (4.40)
[7-8-32-10] 13.73 (0.96) 20.54 (5.32)
[7-16-16-10] 14.12 (3.82) 18.49 (5.91)

(a) AFHQ with cfg=3.4 lr=1.4

Strategy FID (rel) time (rate)

Original 4.42 12.16 (1.00)

[0/7-256-1-6] 4.42 (0.00) 5.26 (2.31)
[0/7-256-1-8] 4.42 (0.00) 5.81 (2.09)
[0/7-256-1-10] 4.42 (0.00) 6.37 (1.91)

[0/7-256/1-1/64-6] 4.41 (0.00) 6.78 (1.79)
[0/7-256/2-1/32-6] 4.40 (0.00) 5.51 (2.20)
[0/7-256/4-1/16-6] 4.54 (2.71 4.86 (2.50)
[0/7-256/8-1/8-6] 5.35 (21.0) 4.59 (2.65)
[0/7-256/4-1/24-6] 4.38 (0.00) 5.34 (2.28)
[0/7-256/8-1/13-6] 4.41 (0.00) 5.03 (2.42)

[0/7-16/8-8/13-6] 4.50 (1.81) 4.63 (2.63)
[0/7-16/8-10/13-6] 4.43 (0.23) 4.85 (2.51)
[0/7-16/8-12/13-6] 4.42 (0.00) 4.97 (2.45)

(b) Img64cond with cfg=2.0 lr=1.0

are quite different. As shown in Table 3b Img64uncond, acceleration rates are not as high as single
tough block models because it stacks both Block0 and 6, but still speeds up about 3×.

In Img64uncond, we treat two tough blocks equal since the CRMs have no absolute gap. For
Img64cond, we first stack both Block0 and Block7 to original "For" loop, get the rate 2.31. Then we
keep Block0 unchanged, try different strategies for Block7, the rate can be improved to 2.42. From
Figure 5 and Table 2, we notice that Block0 behaves much tougher than any other blocks, so we
segment Block0 into more modules and get 2.51× speed up.

Based on all above experiments, we can conclude that, the fewer the blocks with dominant CRMs and
the longer the time step after patching, the more significant the acceleration can achieve by GS-Jacobi
sampling. This is consistent with intuition. GS-Jacobi achieves acceleration by iterating batches of
equations in parallel, avoiding repeated serial updates of the kv caches in the "For" loop.

4.4 OTHER FLOW MODELS

To demonstrate the versatility of the GS-Jacobi iteration across AR Flows, we also do acceleration
for Masked Autoregressive Flow (MAF[27]) on the MNIST dataset with following steps: Train a
MAF for MNIST with 5 maf_layer; Forward 50,000 images X∗ into MAF, get normal noise Z;
Backward Z with inversed MAF to regenerate X , with both baseline "For" loop and pure Jacobi
iteration; Record the sampling time (in seconds), and MAE (for per pixel) between X,X∗. The
results are shown in Table 5.
5 CONCLUSION

Number of
iteration Time (s) Speed up

ratio MAE

baseline 4903 1.00 0.000
10 563 8.73 0.043
20 772 6.35 0.019
30 1114 4.40 0.007

Table 5: Performance metrics of acceleration for
MAF. In first column, baseline is original "For"
loop, others are Jacobi iteration with different time.

In this paper, we comprehensively optimize the
sampling process of Autoregressive Flow mod-
els. By identifying the non-uniform transfor-
mation patterns across affine coupling blocks
and proposing IGM and CRM, we effectively
address the problems of initial value chosen and
convergence rate differences. The introduction
of the GS-Jacobi iteration and its in-depth er-
ror propagation analysis provides practical and
efficient solution for TarFlow sampling. The
experimental results on multiple TarFlow mod-
els show the superiority of proposed methods.
The GS-Jacobi sampling achieving speed-ups of
4.53× in Img128cond, 5.32× in AFHQ, 2.96×
in Img64uncond, and 2.51× in Img64cond without degrading sample quality, which is of great
significance for the application of TarFlow models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Hartwig Anzt, Edmond Chow, and Jack Dongarra. Iterative sparse triangular solves for precondi-
tioning. In Euro-Par 2015: Parallel Processing: 21st International Conference on Parallel and
Distributed Computing, Vienna, Austria, August 24-28, 2015, Proceedings 21, pages 650–661.
Springer, 2015.

[2] Hartwig Anzt, Edmond Chow, Daniel B Szyld, and Jack Dongarra. Domain overlap for iterative
sparse triangular solves on gpus. In Software for Exascale Computing-SPPEXA 2013-2015,
pages 527–545. Springer, 2016.

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in neural
information processing systems, 32, 2019.

[4] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. In International conference on machine learning, pages 573–582.
PMLR, 2019.

[5] Siavash A Bigdeli, Geng Lin, L Andrea Dunbar, Tiziano Portenier, and Matthias Zwicker.
Learning generative models using denoising density estimators. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

[6] Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton. Latent
variable modelling with hyperbolic normalizing flows. In International conference on machine
learning, pages 1045–1055. PMLR, 2020.

[7] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image
synthesis for multiple domains, 2020. URL https://arxiv.org/abs/1912.01865.

[8] Edmond Chow, Hartwig Anzt, Jennifer Scott, and Jack Dongarra. Using jacobi iterations and
blocking for solving sparse triangular systems in incomplete factorization preconditioning.
Journal of Parallel and Distributed Computing, 119:219–230, 2018.

[9] Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neural autoregressive flow. In Uncertainty
in artificial intelligence, pages 1263–1273. PMLR, 2020.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[11] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

[12] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

[13] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. In International conference on machine learning, pages 881–889.
PMLR, 2015.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

[15] Matej Grcić, Ivan Grubišić, and Siniša Šegvić. Densely connected normalizing flows. Advances
in Neural Information Processing Systems, 34:23968–23982, 2021.

[16] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[17] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving
flow-based generative models with variational dequantization and architecture design. In
International conference on machine learning, pages 2722–2730. PMLR, 2019.

10

https://arxiv.org/abs/1912.01865

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[19] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autore-
gressive flows. In International conference on machine learning, pages 2078–2087. PMLR,
2018.

[20] Carl T Kelley. Iterative methods for linear and nonlinear equations. SIAM, 1995.

[21] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

[22] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. Advances in neural information
processing systems, 29, 2016.

[23] Cheng Lu, Jianfei Chen, Chongxuan Li, Qiuhao Wang, and Jun Zhu. Implicit normalizing flows.
arXiv preprint arXiv:2103.09527, 2021.

[24] Maxim Naumov. Parallel complexity of forward and backward propagation. arXiv preprint
arXiv:1712.06577, 2017.

[25] Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu,
George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, et al. Parallel wavenet:
Fast high-fidelity speech synthesis. In International conference on machine learning, pages
3918–3926. PMLR, 2018.

[26] James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations in several
variables. SIAM, 2000.

[27] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30, 2017.

[28] Massimiliano Patacchiola, Aliaksandra Shysheya, Katja Hofmann, and Richard E Turner.
Transformer neural autoregressive flows. arXiv preprint arXiv:2401.01855, 2024.

[29] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

[30] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[31] Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi,
Riccardo Marin, and Emanuele Rodolà. Accelerating transformer inference for translation via
parallel decoding. arXiv preprint arXiv:2305.10427, 2023.

[32] Yang Song, Chenlin Meng, and Stefano Ermon. Mintnet: Building invertible neural networks
with masked convolutions. Advances in Neural Information Processing Systems, 32, 2019.

[33] Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon. Accelerating feedforward compu-
tation via parallel nonlinear equation solving. In International Conference on Machine Learning,
pages 9791–9800. PMLR, 2021.

[34] Brian L Trippe and Richard E Turner. Conditional density estimation with bayesian normalising
flows. arXiv preprint arXiv:1802.04908, 2018.

[35] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. In International conference on machine learning, pages 1747–1756. PMLR, 2016.

[36] Shuai Wang, Yao Teng, and Limin Wang. Deep equilibrium object detection. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 6296–6306, 2023.

[37] Jay Whang, Erik Lindgren, and Alex Dimakis. Composing normalizing flows for inverse
problems. In International Conference on Machine Learning, pages 11158–11169. PMLR,
2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[38] Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie
Zheng, Tianrong Chen, Miguel Angel Bautista, Navdeep Jaitly, and Josh Susskind. Normalizing
flows are capable generative models. arXiv preprint arXiv:2412.06329, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A CONVERGENCE AND ERROR PROPAGATION

Indeed, (3) is an equivalent form of the diagonal Newton method. Let f(X) = X − g(X), to find its
root, the iteration of diagonal Newton method is:

X(k+1) = X(k) −D−1
f (X(k))f(X(k))

with D−1
f (X(k)) the diagonal of Jacobi matrix Jf (X) = ∂f/∂X . Because g(X) is causal designed

in T dimension, D−1
f (X(k)) = I . Then the iteration formula of diagonal Newton method is again

(3).

Since I −D−1
f Jf is a strictly lower triangle matrix with zero spectral norm, the fixed point iteration

(diagonal Newton method) is superlinear convergence in the neighbor of X∗. Indeed, this iteration
can converge strictly after T − 1 times:

x
(k+1)
t − x

(k)
t = (σ

(k)
t − σ

(k−1)
t)zt + (u

(k)
t − u

(k−1)
t)

Initially, x∗
1 = z1, for t = 2, one iteration can get the accurate x∗

2, and so for x∗
t . But we don’t need a

absolutely accurate solution, since the difference between x
(k)
t and x∗

t reduced after each iteration.
Let ε(k) = X(k) −X∗ be the error after k iteration, f (k)

t = x
(k)
t −σ

(k)
t zt −u

(k)
t , for t-th component:

e
(k+1)
t = e

(k)
t − f

(k)
t

≈ e
(k)
t −

t∑
i=1

∂ft
∂xi

∣∣
X(k)e

(k)
i

= −
t−1∑
i=1

∂ft
∂xi

∣∣
X(k)e

(k)
i

with the ≈ obtained by first-order Taylor expansion at X∗. Denote ∂ft
∂xi

∣∣
X(k) as γ(k)

ti , then e
(k+1)
t ≈

−
∑t−1

i=1 γ
(k)
ti e

(k)
i , and the error recursion can be written in a matrix form:

ε(k+1) = Γ(k)ε(k),Γ(k) = −


0
γ21 0

...
.

γT1 . . . γT,T−1 0


(k)

. (6)

Since ε(k) =
∏k−1

j=0 Γ
(j)e(0) and e

(0)
1 = 0, the product of Γ(k) will move down the lower triangle part

one unit afer each iteration, so the error will go to 0 after T − 1 iteration.

Thus for each component et:

e
(k)
t = −

t−1∑
i=k+1

γ
(k)
ti e

(k)
i (7)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B DERIVATION FOR CONVERGENCE RANKING METRIC

To measure the convergence difference between affine coupling blocks, a direct method is to calculate
the norm of error recursion matrix (6). But, analytically,

γti = −∂σt

∂xi
zt −

∂ut

∂xi

= −σtzt
∂s(x

<t
)

∂xi
− ∂u(x<t)

∂xi

the derivative of σt, ut is hard to calculate since they are generated by series of attention layers, thus
we propose a simple but vaild alternatives. Since s(x<t), u(x<t) consist of series of deep neural
network and a project out layer:

s(x<t) = WsNN(x<t) + bs

u(x<t) = WuNN(x<t) + bu

then:

γti = −(σtztWs +Wu)
∂NN(x<t)

∂xi

Γ = −(Σ(X)ZWs +Wu)J(X)

Since the norm of Jacobi matrix of attention layers behave in coordination with the previous item,
which can be dropped out without effect in ranking.

In practice, we can replace the non-volume-projection parts with Σ−1(X)X to calculate it at the
same time with IGM in the forward direction. Intuitively Σ(X)Z and Σ−1(X)X measure the same
property from symmetric direction. Then the simplified norm of error can be written as:

CRM = ||Σ−1(X)X||2||Ws||2 + ||Wu||2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C COMPONENTS OF CONVERGENCE RANKING METRIC

The components of CRM for Non-Volume-Preserving ||Σ−1X||, variance ||Ws|| and mean ||Wu||
are shown as Table 6.

Table 6: Components of Convergence Ranking Norm, with dominant CRMs bolded.

Imagenet128 AFHQ
||Σ−1X|| ||Ws|| ||Wu|| CRM ||Σ−1X|| ||Ws|| ||Wu|| CRM

Block0 20.06 0.31 0.24 6.52 52.78 0.96 0.86 51.85
Block1 14.77 0.46 0.18 7.03 39.32 1.28 0.75 51.45
Block2 13.65 0.19 0.37 3.08 34.70 1.90 0.73 66.76
Block3 33.65 0.40 0.17 13.63 73.39 0.87 0.65 64.98
Block4 43.65 0.21 0.26 9.66 118.90 0.61 0.94 73.77
Block5 53.86 0.16 0.26 9.17 159.91 0.51 0.96 84.05
Block6 131.84 0.53 0.19 70.54 153.54 0.49 0.94 76.64
Block7 26.08 0.18 0.17 5.05 286.83 1.21 0.93 348.51

Img64uncond Img64cond
||Σ−1X|| ||Ws|| ||Wu|| CRM ||Σ−1X|| ||Ws|| ||Wu|| CRM

Block0 53.48 0.41 0.10 22.29 82.72 1.70 0.42 141.22
Block1 8.00 0.11 0.12 1.06 14.26 0.59 0.78 9.25
Block2 8.55 0.08 0.24 1.01 4.53 0.16 0.59 1.36
Block3 13.79 0.09 0.12 1.48 7.61 0.16 0.53 1.82
Block4 8.36 0.06 0.25 0.77 25.09 0.29 0.33 7.68
Block5 8.06 0.05 0.13 0.58 27.44 0.17 0.38 5.08
Block6 40.50 0.36 0.13 14.78 12.26 0.21 0.45 3.08
Block7 13.97 0.12 .26 1.95 56.91 0.34 0.28 19.81

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D IGM AND CRM WITH DIFFERENT NORM

We also computed the IGM and CRM under both the Frobenius norm and the 1-norm, shown in Table
7a 7b. The numerical values differ among the Frobenius norm (F), 1-norm, and spectral norm (Table
1 2), while the relative ranks of each block remain entirely consistent. Notably, the spectral norm
exhibits a more dispersed distribution in its measurements.

Table 7: IGM and CRM for four models in both F-Norm and 1-Norm

Models Img128cond Img64cond Img64uncond AFHQ

F-norm Z Z0 Z Z0 Z Z0 Z Z0

Block0 12.40 14.61 4.2×1e5 10.13 1416.83 8.29 21.38 23.24
Block1 14.83 3.92 7.95 8.66 10.67 7.08 12.79 11.23
Block2 3.56 6.50 6.55 7.66 9.39 7.83 13.12 11.69
Block3 10.27 13.94 5.00 7.42 6.47 5.30 35.07 44.06
Block4 9.37 29.58 10.63 13.86 4.02 10.19 16.39 53.62
Block5 14.88 27.92 5.39 26.29 3.86 7.82 30.00 54.26
Block6 53.36 41.41 4.54 19.83 33.96 7.74 14.99 60.40
Block7 10.27 39.87 24.04 14.17 24.98 35.99 134.16 145.32

1-Norm Z Z0 Z Z0 Z Z0 Z Z0

Block0 137.76 198.3 3.5×1e6 39.77 14915.71 156.51 94.23 148.39
Block1 167.96 53.21 39.2 49.39 204.01 116.13 71.84 113.24
Block2 88.66 99.38 35.58 45.56 143.53 98.95 204.35 69.05
Block3 106.1 161.9 49.86 42.7 188.01 99.36 302.48 277.35
Block4 97.83 551.18 95.01 156.55 61.84 169.69 158.54 1024.6
Block5 151.26 357.02 48.15 173.57 68.53 112.22 271.19 429.51
Block6 634.4 454.57 38.66 228.86 1028.43 174.63 99.23 766.3
Block7 118.41 449.14 236.01 77.94 524.11 633.18 1698.14 1370.99

(a) IGM with Frobenius Norm and 1-Norm

Models Img128cond Img64cond Img64uncond AFHQ

F-Norm CRM Percent CRM Percent CRM Percent CRM Percent

Block0 9.35 5.50 150.29 63.42 19.23 35.22 60.31 5.10
Block1 10.89 6.41 14.62 6.17 2.12 3.88 74.53 6.30
Block2 5.72 3.37 3.66 1.54 2.25 4.13 103.02 8.72
Block3 17.12 10.08 4.59 1.93 3.12 5.72 82.16 6.95
Block4 16.50 9.71 13.09 5.52 1.68 3.08 104.05 8.80
Block5 19.34 11.38 10.82 4.57 1.43 2.62 133.83 11.33
Block6 83.75 49.30 6.59 2.78 21.99 40.27 149.97 12.69
Block7 7.17 4.22 33.25 14.03 2.75 5.04 473.30 40.07
1-Norm CRM Percent CRM Percent CRM Percent CRM Percent

Block0 99.98 3.39 799.34 45.24 219.04 25.17 1320.45 4.56
Block1 194.08 6.59 274.96 15.56 46.72 5.37 948.31 3.28
Block2 84.62 2.87 15.43 0.87 25.37 2.91 1085.57 3.75
Block3 666.29 22.64 33.05 1.87 64.74 7.44 2364.8 8.18
Block4 160.53 5.45 97.42 5.51 15.79 1.81 1799.76 6.22
Block5 345.13 11.72 144.68 8.18 23.56 2.70 4486.86 15.52
Block6 1253.95 42.61 52.84 2.99 341.51 39.25 2396.26 8.28
Block7 137.96 4.68 349.06 19.75 133.23 15.31 14507.4 50.18

(b) CRM with Frobenius Norm and 1-Norm

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E ROBUSTNESS FOR IGM AND CRM

To further verify the robustness of these metrics across categories, we computed CRMs of Img128cond
model with 1000 diverse categories in ImageNet. We then calculated:

The percentage of CRMs and its std across the 8 TarFlow blocks and the corresponding ranking of
CRMs and its std, we listed the results in table 8.

CRM Mixed Average over 1000 categories
Rank Percent Rank Percent

Block0 3 5.22 3.63± 1.24 6.50± 2.30
Block1 4 5.63 5.49± 1.19 8.86± 2.66
Block2 1 2.47 1.06± 0.24 2.66± 0.25
Block3 7 10.93 6.72± 0.54 11.01± 0.79
Block4 6 7.74 5.04± 0.86 7.41± 0.52
Block5 5 7.35 3.93± 0.86 6.94± 0.50
Block6 8 56.57 8± 0 52.73± 3.92
Block7 2 4.05 2.12± 0.42 3.89± 0.29

Table 8: CRM performance comparison across different blocks on Img128cond datasets

It can be observed that the dominant CRM layer remains unchanged (std=0) across different categories,
and the fluctuations are minimal. Based on these experiments, we speculate that CRM-guided behavior
has minimal impact on input image categories, thus using values computed from one class will almost
not affect performance on another.

We then calculated IGMs for 8 blocks in Img128cond model with 1000 diverse categories in ImageNet.
We recorded:

The means and stds of IGMs by initializing with Z,Z0 and the total counts of CRM(Z) < CRM(Z0)
in all 1000 categories.

IGM Mixed Average over 1000 categories Count
Z Z0 Z Z0

Block0 12.06 14.15 16.16± 5.87 20.21± 8.29 958
Block1 14.19 3.55 17.18± 5.93 6.85± 2.92 17
Block2 3.35 5.66 4.30± 1.41 15.25± 7.90 996
Block3 10.33 14.23 11.86± 3.10 15.17± 3.76 989
Block4 9.04 29.26 9.42± 1.51 29.78± 4.16 1000
Block5 14.78 26.89 15.30± 3.32 28.26± 5.94 1000
Block6 53.42 42.03 53.10± 4.32 42.69± 7.21 12
Block7 11.00 39.67 19.71± 5.91 43.66± 4.77 1000

Table 9: IGM performance comparison across different blocks

As shown in table 9, the relative size of IGM between Z,Z0 -initialization for each block—computed
across all 1000 categories—exhibit stability, with count of I (Z < Z0) clustering tightly around 0
and 1000. As discussed in the paper, since GS-Jacobi iteration is guaranteed to converge within finite
steps, the influence of input categories on IGM is negligible.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F GS-JACOBI SAMPLING

The complete algorithm of GS-Jacobi sampling is as follows:

Algorithm 1 Guass-Seidel-Jacobi Sampling

Input: Well trained TarFlow model containing L blocks {Block⟨l⟩ := Σ⟨l⟩, µ⟨l⟩}Ll=1, a batch of
training samples X , a batch of noise Z, other hyperparameters.

Output: Generated images of the same size as Z.
Preprocessing:

1: Patchify X into size (B, T,C)

2: for Block⟨l⟩, l in 1 : L do
3: Calculate IGM⟨l⟩ with equation (4)
4: Calculate CRM⟨l⟩ with equation (5)
5: end for
6: Record the initial guessing mode of l-th block to Z⟨l⟩ or Z⟨l⟩

0 according to IGM⟨l⟩

7: Determine the GS modules numbers {Gl}Ll=1 and Jacobi times {Jl}Ll=1 for each blocks according
to CRM⟨l⟩, with JL ≤ T//Gl

Sampling:
1: Patchify Z into size (B, T,C)
2: Set Z⟨1⟩ = Z, ebound = 10−8

3: for Block⟨l⟩, l in 1 : L do
4: for g in 1 : Gl do
5: set k = 0, e = 1000
6: while k < Jl and e > ebound do
7: X

⟨l⟩(k+1)
g = Σg(X

⟨l⟩(k)
:g)Z

⟨l⟩
g + µg(X

⟨l⟩(k)
:g)

8: e = ||X⟨l⟩(k+1)
g −X

⟨l⟩(k)
g ||/(B × T × C)

9: k = k + 1
10: end while
11: Z⟨l+1⟩ = X⟨l⟩(k+1)

12: end for
13: end for
14: return Unpatchified Z⟨L+1⟩

An intuition Figure is:

Figure 6: Intuition diagram of Gauss-Seidel-Jacobi sampling in single block. The horizontal long
dashed line segment (3) into G subgroups. The red rotating arrow denote the in-group Jacobi iteration
with kg ≤ card(Gg) times. Then, the solution closed to X∗

g will be delivered to next subgroup serially,
this is the Gauss-Seidel part which denoted by blue rotating arrow.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G VISUAL COMPARISON OF DIFFERENT METHODS

We used the original "For" loop and GS-Jacobi strategy with FID relative error within 1% for each
model under the same guidance and denoise, and visualized the sampling results in Figure 7.

(a) AFHQ Original Sampling (b) AFHQ GS-Jacobi [7-8-32-10]

(c) Img128 Original Sampling (d) Img128 GS-Jacobi [6-8-32-10]

(e) Img64 Original Sampling (f) Img64 GS-Jacobi [0/7-16/8-10/13-6]
Figure 7: Visual Comparison of Different Methods

19

	Introduction
	Related Work
	Methods
	Jacobi Mode Fixed Point Iteration Sampling
	Initial Guessing Metric
	Convergence Ranking Metric
	Modular Guass-Seidel-Jacobi Iteration

	Experiment
	Initial Guessing Metric
	Convergence Ranking Metric
	Quantitative Evaluations with FID
	Other flow models

	Conclusion
	Convergence and Error Propagation
	Derivation for Convergence Ranking Metric
	Components of Convergence Ranking Metric
	IGM and CRM with Different Norm
	Robustness for IGM and CRM
	GS-Jacobi Sampling
	Visual Comparison of Different Methods

