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Graph-Skeleton: Less than 2% Nodes are Sufficient to Represent
Billion-Scale Graph

Anonymous Author(s)

ABSTRACT
Due to the ubiquity of graph data on the web, web graph mining has

become a hot research spot. Nonetheless, the prevalence of large-

scale web graphs in real applications poses significant challenges to

storage, computational capacity and graph model design. Despite

numerous studies to enhance the scalability of graph models, a no-

ticeable gap remains between academic research and practical web

graph mining applications. One major cause is that in most indus-

trial scenarios, only a small part of nodes in a web graph are actually

required to be analyzed, where we term these nodes as target nodes,
while others as background nodes. In this paper, we argue that prop-

erly fetching and condensing the background nodes from massive

web graph data might be a more economical shortcut to tackle the

obstacles fundamentally. To this end, we make the first attempt

to study the problem of massive background nodes compression

for target nodes classification. Through extensive experiments, we

reveal two critical roles played by the background nodes in tar-

get node classification: enhancing structural connectivity between

target nodes, and feature correlation with target nodes. Following

this, we propose a novel Graph-Skeleton model, which properly

fetches the background nodes, and further condenses the semantic

and topological information of background nodes within similar

target-background local structures. Extensive experiments on vari-

ous web graph datasets demonstrate the effectiveness and efficiency

of the proposed method. In particular, for MAG240M dataset with

0.24 billion nodes, our generated skeleton graph achieves highly

comparable performance while only containing 1.8% nodes of the

original graph.
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1 INTRODUCTION
The ubiquity of graph data, especially in the form of web graphs,

has made web graph mining a hot research topic. These web graphs

are crucial for various applications, including web search [6, 15],

social network analysis [42, 43], recommendation systems [31, 34],

and more. However, it remains a big challenge to deploy the graph

models on large-scale web graphs. In practice, web graph data can

be extremely large [45]. Take Facebook for instance, there are over

2.93 billion monthly active users [9]. Despite remarkable progress

such as node sampling [4, 16, 45], model simplification [35, 38] to

enhance the scalability of graph models on large-scale web graph

mining tasks, it remains a large gap between academic research and

practical web applications. One major reason is that in most indus-

trial scenarios, not all nodes in a web graph are actually required

to be analyzed [21]. We take DGraph, a real-world financial & so-

cial network dataset (users as nodes, social relationships between

users as edges) [21], as an example to further illustrate this. Given a

fraudster identification task among loan users, only the users with

loan records needs to be classified, while the other users without

loan behavior do not. Under this circumstance, we term the loan

users as target nodes, while the others as background nodes. This
target & background property is prevalent in web graph mining

scenarios. Moreover, the number of background nodes is typically

much larger than that of target nodes. For instance, to predict pa-

pers’ subject areas in MAG240M [19], only 1.4 million Arxiv papers

are concerned with classification among 240 million nodes.

Intuitively, it may not be an economical solution to deploy com-

plex graphical models on massive web data just for a small number

of node classification. It can pose significant challenges in terms of

time and memory costs, as well as model design. Alternatively, a

proper method to fetch and condense the useful background nodes

from massive web data might be a shortcut to fundamentally tackle

the above obstacles. Nevertheless, how to fetch and condense the

informative background nodes remains an open question at present.

Background nodes can play diverse roles in target nodes classifica-

tion, yet there is little understanding of how the background nodes

impact the task performance. In this paper, we thus raise two ques-

tions: Are background nodes necessary for target nodes classification?
What roles do they play in the target classification task?

To answer these questions, we conduct a comprehensive analysis

using Graph Neural Network (GNN), one of the most popular graph

models [41], for exploring the target-background issue. First of all,

we observe a significant performance degradation when removing

all background nodes, but a negligible impact of removing back-

ground nodes that are not neighboring the target nodes. Moreover,

we find that the connection between target nodes plays a vital

role in classification. Removing the background nodes that bridge

between multiple target nodes results in a dramatic performance

decline. Additionally, even background nodes neighboring a single

target node would exhibit relatively higher feature correlation with

1
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their corresponding target nodes and contribute to the classification.

Detail experimental results and analyses can be seen in Section 2.

This exploration reveals two key insights: First, the majority of

background nodes are redundant, while the nodes neighboring the

target nodes are crucial for target classification. Second, background

nodes contribute to the target nodes classification primarily in two

ways: i) enhance the connectivity between targets as bridging node;
ii) neighboring to single target node but have feature correlation
with the target node as the affiliation node (illustrated in Figure 1 (c)).
With this inspiration, we argue that it is possible to generate a small

and highly informative subgraph (with original target nodes and far

fewer background nodes) from original web graph. The generated

graph contains rich information for target nodes classification and is

also friendly for graph model deployment and storage. However, we

still face two challenges. (1) Extracting subgraph from original one

would inevitably cause semantic and structural information loss.

How to properly fetch the subgraph with useful background nodes?

(2) The fetched subgraph would also contain redundant structural

and semantic information. How to condense the subgraph while

preserving the essential information for target classification?

In this paper, we propose a novel Graph-Skeleton to generate a

small, synthetic and highly-informative graph for target node clas-

sification. Specifically, following the intuition of empirical analysis,

we formulate a principle for background node fetching, ensures that

the extracted subgraph maintains both the structural connectiv-

ity and feature correlation via bridging and affiliation background

nodes. After subgraph extraction, we propose three graph conden-

sation strategies to condense the redundant structural and semantic

information. The condensed synthetic graph (term as skeleton) con-
tains sufficient information for target node classification and enjoys

the benefits of small scale. Our main contributions are summarized

as follows: (1) We first address a common challenge in real-world

web applications: compressing the massive background nodes for

classifying a small part of target nodes, to ease data storage, GNNs

deployment and guarantee the performance. Empirical analysis

explicitly indicates the contributions of background nodes to the

target classification, i.e., enhancing target structural connectivity
and feature correlation with target nodes, which provides a valu-

able guidance for background nodes fetching. (2) We propose a

novel Graph-Skeleton for massive background nodes compression.

It properly fetches the useful background nodes from massive web

graph and performs background node condensation to eliminate

information redundancy. (3) Extensive experiments on various web

graphs demonstrate the effectiveness and efficiency of the pro-

posed method. In particular, for MAG240M dataset with 0.24 billion

nodes, our generated skeleton graph achieves highly comparable

performance while only contain 1.8% nodes of the original graph.

2 EMPIRICAL ANALYSIS
In this section, we conduct empirical analyses to explore the target-

background problem, for answering two key questions we raise

above: Are the background nodes necessary for target nodes predic-
tion? What roles do they play in the target classification task? We

first analyze the overall contribution of background nodes in target

classification, and then we explore what kind of background nodes

are essential and how they contribute to the performance.

To ensure the generality of our analysis, we employ GNNs

(GraphSAGE [16], GAT [33], GIN [36]) with three representative

aggregation mechanisms, including mean, weight-based and sum-

mation, as the backbones for target nodes classification. The task is

conducted on two datasets: (1) Financial loan network DGraph [21].

We follow the same task setting as the original dataset, i.e., fraud-

ster identification among loan users, so that the users with loan

action are regarded as target nodes (∼33%), while others are back-
ground nodes. (2) Academic citation network ogbn-arxiv [20]. We

aim to predict the subject areas of papers published since 2018.

In this case, papers published from 2018 are regarded as target

nodes (∼46%), while papers before 2018 are background nodes. The

detailed experimental settings are provided in Appendix A.3.

Are Background Nodes Necessary for Target Classification?
We first evaluate the contribution of background nodes to the over-

all performance. Specifically, we delete all the background nodes

by cutting background-to-background edges (B-B) and target-to-

background (T-B) edges. In this way, the information propagation of

each background node will be cut-off. As comparison, the random

edge cut (cut ratio spans from 0 to 1) is implemented. As results

depicted in Figure 1 (a), when cutting B-B ( ), the performances of

all GNNs show no significant decline and even presents slight im-

provement (DGraph) compared to the original graph, indicating the

background nodes are indeed highly redundant and even contain

noise. However, when cutting T-B ( ), the performance presents a

significant decline compared to the random edge cut ( ). It reveals

that the background nodes contain abundant information, which is

essential to target node prediction.

Background Nodes Contribute to Structural Connectivity Be-
tween Target Nodes. For a comprehensive analysis, we addition-

ally cut the target-to-target edges (T-T) to explore the dependency

between the target nodes. One key observation is that the structural
connectivity between target nodes plays an essential role in predic-

tion. As shown in Figure 1 (a), the performance of cutting T-T ( )

presents a significant decline compared to the original graph and

random edge cut ( ). Then, what role of the background nodes

play in the target node classification? Inspired by the above obser-

vations, we cut the T-B edges where background nodes act as the

1-hop bridging nodes between two target nodes (i.e., T−�A−−B−�A−−T,
BridB) to weaken the connectivity between targets. Consistent with

T-T edge cutting, the performance of BridB cutting ( ) also de-

clines significantly (Figure 1 (a)), indicating that enhancing target

connectivity via bridging background nodes contributes to task.

Background Nodes Has Higher Feature Correlation with
Neighboring Target Nodes. From the experimental results in

Figure 1 (a), we can still observe a performance gap between BridB

cutting ( ) and T-B edges cutting ( ), i.e., the performance of

BridB cutting outperforms that of cutting all background nodes.

This indicates that apart from the background node bridging mul-

tiple targets, the background node neighboring to a single target

node also contributes to the task.

From previous studies, numerous representative GNNs [14, 16,

27, 33] employ a repeated propagation process to integrate the

feature information from neighboring nodes [39, 40]. This process

promotes the similarity of features among neighboring nodes, lead-

ing to the creation of synthetic and robust node representations.

2
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Figure 1: (a) Explorations of background nodes influences. Upper: results on DGraph [21]. Lower: results on ogbn-arxiv [20].
(****𝑝 < 1e-4, **𝑝 < 1e-2, paired t-tests; errorbars represent the standard deviation). (b) Feature correlation between target nodes
and their neighboring background nodes. (c) Illustration of target nodes and the corresponding essential background nodes.

Following this, we hypothesize that the background nodes may ex-

hibit higher feature correlation with their neighboring target nodes,

enabling them to contribute during the propagation operation. To

verify our hypothesis, we compute the Pearson correlation coeffi-

cient of features between target nodes and the background nodes

with different neighboring hops. As the results shown in Figure 1

(b), the background nodes closer to the target nodes indeed have

higher feature correlation, suggesting that the features of back-

ground nodes neighboring to a single target may correlated with

feature of target itself, and thus contribute to the performance.

Intuitions. The analysis above provides us two key insights. First,

the majority of background nodes are redundant, while the nodes

neighboring to the target nodes are important to the target classifi-

cation. Second, background nodes contribute to the target nodes

classification primarily in two ways: i) enhance the structural con-
nectivity between target nodes as bridging node; ii) neighbor to a

solo target node with feature correlation to that target node as the

affiliation node (illustrated in the Figure 1 (c)).

3 METHODOLOGY
Problem Definition. Given a large-scale graph G = (V, E) and
a specific node classification task, we can thus get a corresponding

node set T = {𝑇1,𝑇2, ...,𝑇𝑛}, containing the nodes that are required
to be classified, where |T | ≪ |V| in most of real-world scenarios.

In this paper, we refer T as target nodes, and other nodes in G as

background nodes B := V \T = {𝐵1, 𝐵2, ..., 𝐵 |V |−𝑛}. The graph
is also associated with node features 𝑋 ∈ R |V |×𝑑 and target node

labels 𝑌 ∈ {0, ...,𝐶 − 1}𝑛 . Given that the majority of nodes are

background nodes, our objective is to generate a synthetic graph

G′ that is highly informative while significantly reducing back-

ground nodes to alleviate the computational and storage burdens.

This synthetic graph G′ can be used to train graph models and

classify the target nodes directly with comparable performance to

the original graph G. In this paper, we focus on the target nodes

analysis in the real-world applications. Therefore we only compress

the background nodes while preserving the whole original target

nodes T in the generated synthetic graph G′ . This ensures that
none of the target nodes are lost, which is crucial as it allows us

to trace and retain the specific information associated with each

individual target node in the compressed synthetic graph G′ .
Framework Overview. To tackle the problem, we propose a novel

Graph-Skeleton framework to generate a synthetic skeleton sub-

graph from massive web graph with much smaller size but rich

information for target classification. The framework is illustrated

in Figure 11. It first fetches all target nodes and a subset of back-

ground nodes to construct a vanilla subgraph (Figure 11, left). For

proper background nodes fetching, we formulate a fetching princi-

ple following the inspirations of structural connectivity and feature
correlation in Section 2. Then Graph-Skeleton condenses the graph

information of the vanilla subgraph (Figure 11, middle) to reduce

redundancy. Specifically, we design three graph condensation strate-

gies (i.e., 𝛼, 𝛽,𝛾 ) with condensation level ranging from low to high

degree. The condensed graph (refer as skeleton graph) is highly
informative and enjoys the benefits of small-scale for storage and

graph model deployment (Figure 11, right).

3.1 Node Fetching
The observations in Section 2 reveal that the background nodes

can be massive and highly redundant. To tackle this limitation, one

natural idea is to reduce the graph size by fetching the essential

background nodes and removing those that make little contribution

to target classification. Inspired by the key observations of structural
connectivity and feature correlation, we design a fetching principle

to properly fetch the bridging and affiliation background nodes

from massive original data as the first phase. Utilizing these nodes,

we can construct a vanilla subgraph containing all target nodes and

a small subset of background nodes. To alleviate the over-expansion

issue, we customize the fetching depth and width with𝑑1, 𝑑2, 𝐾 ∈ N.
The fetching principle is formulated as follows:

Principle of What Background Node Will be Fetched:
1. Structural connectivity: Bridges two or more target nodes within
𝑑1-hop as bridging node.
2. Feature correlation: K highest correlation background nodes
neighboring to solo target node within 𝑑2-hop as affiliation nodes.

Bridging Background Node Fetching. Following principle.1, to

fetch the bridging background nodes, our first step is to identify

all accessible background nodes for each target node. Note that the

3
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accessible nodes for a node𝐴 refers to the nodes that can be reached

from 𝐴 along a path only composed of background nodes. We will

use this notion in the following paper. To this end, we utilize the

breadth first search (BFS) [8] to find the shortest paths from each

target node to its all accessible background nodes. By traversing all

target nodes, the shortest paths set for each background node to its

accessible target nodes can also be obtained. Let 𝐵 𝑗 be one back-

ground node and is accessible to target nodes 𝑇𝑘1 ,𝑇𝑘2 , ...,𝑇𝑘𝑖 , with

the corresponding shortest path set 𝑃𝐵 𝑗 = {𝑝𝑘1, 𝑗 , 𝑝𝑘2, 𝑗 , ..., 𝑝𝑘𝑖 , 𝑗 }. To
verify whether 𝐵 𝑗 aligns with Principle.1, we calculate the length

of each path 𝑑 (𝑃𝐵 𝑗 ) = {𝑑 (𝑝𝑘1, 𝑗 ), ..., 𝑑 (𝑝𝑘𝑖 , 𝑗 )} (𝑑 (·) is the distance
function), and sum up the minimum and second-minimum distance

values of these paths as 𝑠𝑑 𝑗 = min[𝑑 (𝑃𝐵 𝑗 )] + min
2𝑛𝑑 [𝑑 (𝑃𝐵 𝑗 )]. If

𝑠𝑑 𝑗 ≤ 𝑑1, it indicates that the background nodes 𝐵 𝑗 bridges at least

two target nodes within 𝑑1-hop and will be regarded as the bridg-

ing node. By traversing all background nodes, a node subset BR
containing all bridging background nodes can be obtained.

Affiliation Background Node Fetching. By conducting BFS

for each target node 𝑇𝑖 , we can obtain the shortest path set of 𝑇𝑖
containing paths to its all accessible background nodes. Let 𝐽 :=

{ 𝑗1, 𝑗2, ..., 𝑗𝑘 } be the indices of accessible background nodes to 𝑇𝑖 ,

the corresponding shortest path set is 𝑃𝑇𝑖 := {𝑝𝑖, 𝑗 }, 𝑗 ∈ 𝐽 , where 𝑝𝑖, 𝑗
refers to the shortest path from𝑇𝑖 to an accessible background node

𝐵 𝑗 . Following principle.2, we first pick the accessible background

nodes with the shortest path distance within 𝑑2, i.e., {𝐵𝑚,𝑚 ∈
𝐽 , 𝑠 .𝑡 ., 𝑑 (𝑝𝑖,𝑚) ≤ 𝑑2}. To fetch the most essential 𝐾 background

nodes, we compute the feature Pearson correlation coefficient (𝑃𝐶𝐶)

for each picked 𝐵𝑚 with 𝑇𝑖 , 𝑃𝐶𝐶𝑖𝑚 =
𝑐𝑜𝑣 (𝑋 [𝑖 ]𝑋 [𝑚] )
𝜎𝑋 [𝑖 ]𝜎𝑋 [𝑚]

, where 𝑋 is

the node feature matrix, 𝑐𝑜𝑣 (·) refers to the covariance and 𝜎 refers

to standard deviation. Then background nodes in {𝐵𝑚} with 𝐾
largest 𝑃𝐶𝐶 will be fetched as affiliation nodes of 𝑇𝑖 . By traversing

all target nodes, an affiliation background nodes subsetAF can be

obtained. Then we can construct a vanilla subgraph G′ = (V ′ , E ′ )
by preserving the target nodes T and the fetched background nodes

B′ = {BR,AF } within the original graph G (Figure 11 left, where

𝑑1, 𝑑2 and 𝐾 are set to 3, 1 and 2 respectively).

3.2 Graph Condensation
To reduce information redundancy, we develop a condensation

process for the constructed vanilla subgraph G′ , which effectively

condenses both structural and semantic information. Specifically,

we propose three graph condensation strategies, denoted as 𝛼, 𝛽 ,

and 𝛾 , which provide varying degrees of condensation, ranging

from low to high.

Strategy-𝛼 . Following previous studies [5, 38], the number of equiv-

alence classes can be utilized to measure the richness of information.

Under this inspiration, we leverage the equivalence relationship

of node pairs as a hint of information redundancy, enabling us to

condense the semantic and structural information in the vanilla

subgraph G′ . To do so, we first introduce the notion of node pair

equivalence relation [5] on a graph G = (V, E), with 𝑋 the node

feature matrix.

Definition 3.1 (Node Pair Equivalence Class). Given a function

family F on G, define equivalence relation ≃F among all graph

node pairs such that ∀𝑢, 𝑣 ∈ V , 𝑢 ≃F 𝑣 iff ∀𝑓 ∈ F , 𝑓 (G, 𝑋 ) =
𝑓 (G, �̃� ), where �̃� = 𝑋 except �̃� [𝑢] = 𝑋 [𝑣], �̃� [𝑣] = 𝑋 [𝑢].

Considering the equivalent node pairs share an identical struc-

ture within the graph, we argue that there is a large space for graph

condensation. To this end, we propose a condensation strategy-𝛼 ,

which leverages multiple structure-set (𝑀𝑆𝑆) to captures the local

structural information of each fetched background node in vanilla

subgraph G′ . It allows us to identify background nodes with similar

structural information and condense them into a synthetic node

(shown in Figure 3). Specifically, for one background node 𝐵 𝑗 ∈ B
′

in G′ , we formulate the multiple structure-set𝑀𝑆𝑆 𝑗 via its accessi-

ble target nodes and the corresponding shortest path distances:

𝑀𝑆𝑆 𝑗 = {
〈
𝑇𝑖 , 𝑑𝑖, 𝑗

〉
, ...,

〈
𝑇𝑘 , 𝑑𝑘,𝑗 )

〉
}, (1)

where 𝑇𝑖 , ...,𝑇𝑘 are the accessible target nodes of 𝐵 𝑗 , 𝑑𝑖, 𝑗 represents

the shortest path distance between 𝐵 𝑗 and 𝑇𝑖 (For simplicity, we

use this notation in the following paper). For the background nodes

with the same𝑀𝑆𝑆 , we claim that these background nodes belong

to the same linear message path passing (LMPP) equivalence class.

The detailed definition is given below.

Definition 3.2 (Linear message passing operation). Given two

connected nodes 𝑢, 𝑣 , define the linear message passing operation

𝑓𝑙𝑚𝑝 (𝑢, 𝑣) from 𝑢 to 𝑣 as:

𝑋
′
[𝑣] ← 𝑓𝑙𝑚𝑝 (𝑋 [𝑣], 𝑋 [𝑢]) = AGGREGATE({𝑋 [𝑣], 𝑋 [𝑢]})𝑊,

(2)
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Figure 3: Illustration of Strategy-𝛼 , where the background
nodes sharing a identical structural multiple-set (𝑀𝑆𝑆)
{⟨𝑇,𝑑⟩} (within a same shadow envelope) will be condensed
into one synthetic node.

where𝑊 is a transformation matrix, AGGREGATE can be formu-

lated as element-wise mean or summation pooling.

Definition 3.3 (Linear message path passing). Given a path 𝑝 =

⟨𝑢0, 𝑢1, ..., 𝑢ℓ ⟩ ,∀𝑢𝑖 ∈ V , define the linear path passing functions

𝑓𝑠𝑝𝑝 (𝑋, 𝑝) aggregating node feature from 𝑢0 to 𝑢ℓ over 𝑝 as:

𝑋
′
[𝑢𝑖 ] ← 𝑓 𝑖

𝑙𝑚𝑝
(𝑋
′
[𝑢𝑖−1], 𝑋 [𝑢𝑖 ])𝑊 𝑖 , 𝑖 ∈ 1, .., ℓ . (3)

Definition 3.4 (LMPP equivalence class). Given a family of linear

message path passing functions LMPP, two nodes 𝑢, 𝑣 ∈ V
and one common accessible node 𝐾 ∈ V , with the corresponding

paths 𝑝𝑢,𝐾 := ⟨𝑢, ..., 𝐾⟩ and 𝑝𝑣,𝐾 := ⟨𝑣, ..., 𝐾⟩, let 𝑃 := 𝑝𝑢,𝐾 , 𝑝𝑣,𝐾 ,

define LMPP equivalence relation 𝑢 ≃LMPP,𝐾 𝑣 iff ∀𝑓𝑙𝑚𝑝𝑝 ∈
LMPP, 𝑓𝑙𝑚𝑝𝑝 (𝑋, 𝑃) = 𝑓𝑙𝑚𝑝𝑝 (�̃� , 𝑃) where �̃� = 𝑋 except �̃� [𝑢] =
𝑋 [𝑣], �̃� [𝑣] = 𝑋 [𝑢].
Here we relax the function family F in Definition 3.1 to linear

message path passing functions LMPP over the paths for aggre-

gation rather than the whole graph. Now we give a proposition to

characterize the LMPP equivalence relation of background nodes.

Proposition 3.5. With 𝑇 ∈ T denoting a target node in 𝐺 , B
denotes the set of background nodes, ∀𝑢, 𝑣 ∈ B, if𝑀𝑆𝑆𝑢 = 𝑀𝑆𝑆𝑣 ≠ ∅,
then 𝑢 ≃LMPP,𝑇 𝑣 .

We provide the proof of Proposition 3.5 in Appendix B. Propo-

sition 3.5 and the proof suggests that for background nodes with

same𝑀𝑆𝑆 , sharing one same path for linear message passing oper-

ation delivers the same aggregated features at target node as using

their own original paths. In this case the original multiple paths for

linear message passing are actually redundant.

Following this, we argue that the background nodes with the

same 𝑀𝑆𝑆 may also leverage quite similar structure for informa-

tion aggregation over the graph, and condensing this structural and

feature information may also deliver similar aggregation results

via nonlinear message passing operation. To this end, we condense

the background nodes with the same𝑀𝑆𝑆 into one synthetic node

for reducing information redundancy. As an example shown in

Figure 3, both 𝐵1, 𝐵2 have the identical multiple structure-set con-

tents, i.e.,𝑀𝑆𝑆1 = 𝑀𝑆𝑆2 = {⟨𝑇1, 1⟩ , ⟨𝑇2, 2⟩}, and will be condensed

into one synthetic node 𝐵
′
. To preserve the semantic information

of condensed background nodes, we generate the synthetic node

feature via aggregating the original features of the corresponding

condensed background nodes. Let B′𝑘 = {𝐵𝑖 , ..., 𝐵 𝑗 } be the set of
background nodes with same𝑀𝑆𝑆 to be condensed into a synthetic

node 𝐵
′

𝑘
, the feature of 𝑥

𝐵
′
𝑘

is

𝑥
𝐵
′
𝑘

← AGGREGATE({𝑥𝑣,∀𝑣 ∈ B
′
𝑘 }), (4)

T1 T2

T1

T2

{<T1>,
{<T2> }

{<T1>}

{<T2>}

T1

T2

β
weighted

D(T1)

D(T2)

Bridging 
Background Node

Affiliation 
Background Node

Target Node

Vanilla Graph Skeleton Graph Sβ

Figure 4: Illustration of Strategy-𝛽. The background nodes
sharing the same structural multiple-set𝑀𝑆𝑆 ′ {⟨𝑇 ⟩} (within
the same shadow envelope) will be condensed into one node.
To maintain the relative distance information between dif-
ferent nodes, we encode the distance information of target
nodes by weighting the edges of skeleton graph.

where AGGREGATE(·) can be element-wise mean or summation

pooling. By condensing all sets of B′ , the condensed skeleton graph

S𝛼 can be obtained for storage and graph model deployment.

Strategy-𝛽. While the strategy-𝛼 effectively reduces the graph

redundancy, its compression effect is limited as only a portion of

background nodes strictly share the same𝑀𝑆𝑆 {⟨𝑇,𝑑⟩}. To this end,
we propose the second condensation strategy-𝛽 with stronger con-

densation capacity over vanilla subgraph G′ . As a compromise, for

each background node, we only involve its accessible target nodes

while omitting the corresponding distance information in𝑀𝑆𝑆 , i.e.,

𝑀𝑆𝑆
′
= {⟨𝑇𝑖 ⟩ , ...,

〈
𝑇𝑗
〉
}. Similarly, for the background nodes with

the same 𝑀𝑆𝑆
′
, they will be condensed into a synthetic node. As

shown in Figure 4, the background nodes 𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵6 all

have the same𝑀𝑆𝑆
′
= {⟨𝑇1⟩ , ⟨𝑇2⟩}, which will be condensed into

a synthetic node 𝐵
′
. The features generations of new condensed

synthetic nodes follow the Eq 10.

However, it should be noted that in this strategy, the condensed

graph would lose the relative distance information between nodes.

For instance, the target nodes get closer when bridging background

nodes are condensed together. Some target nodes that were orig-

inally several hops apart may be connected by a 1-hop bridging

background node in the condensed graph.

To address this issue, we propose to encode the relative distance

information between targets and backgrounds onto the edges in

condensed graph. Let B′𝑘 = {𝐵𝑖 , ..., 𝐵 𝑗 } be the set of background
nodes in vanilla subgraph G′ with the same𝑀𝑆𝑆

′

𝑘
= {⟨T𝑘 ⟩}, which

will be condensed into a synthetic node 𝐵
′

𝑘
. Given one accessible

target node 𝑇𝑚 ∈ T𝑘 connected with 𝐵
′

𝑘
via edge 𝑒

′

𝑚,𝑘
, and the

shortest distance set of B′𝑘 to 𝑇𝑚 is 𝐷𝑚 := {𝑑𝑚,𝑖 , ..., 𝑑𝑚,𝑗 }. Then
the weight of edge 𝑒

′

𝑚,𝑘
is formulated as: 𝑤

′

𝑚,𝑘
=

∑
1

𝑑
,∀𝑑 ∈ 𝐷𝑘 ,

which can be utilized to weight the features during aggregation

in downstream graph models. To guarantee the scale consistency,

normalization based on rows and columns is also required for the

edge weights. After condensation for all sets of B′ , we can obtain

the condensed skeleton graph S𝛽 .
Strategy-𝛾 . Although the condensation-𝛽 strategy effectively re-

duces the size of bridging background nodes, there is still room for

further condensation of affiliation background nodes. Numerous

representative GNNs employ the propagation process to merge the

information from neighbors [16, 27]. Intuitively, aggregating the

features of affiliation nodes onto the neighboring target node di-

rectly would deliver a similar result with the recursive aggregation.
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Table 1: Target node classification comparisons on the original and the compressed graphs with fixed 𝐵𝐶𝑅s. “OOM”: out of
memory. DGraph uses AUC (%) for evaluation, other datasets use ACC (%).

Datasets GNN Original Skeleton-𝛾 Random Cent-P Cent-D Schur-C GC-VN GC-AJC GCond DosCond GPA

DGraph

BCR=15%

SAGE [16] 78.7±0.1 78.2±0.1 74.2±0.1 74.6±0.1 74.5 ±0.1 75.4±0.1 OOM OOM OOM OOM OOM

GCN [27] 73.4±0.2 74.4±0.1 72.1±0.1 72.6±0.1 72.5±0.1 72.8±0.2 OOM OOM OOM OOM OOM

GAT [33] 75.9±0.4 76.6±0.6 73.3±0.3 73.9±0.4 73.8±0.4 74.2±0.5 OOM OOM OOM OOM OOM

NAGphormer [3] 76.5±0.1 77.2±0.1 73.7±0.1 74.49±0.1 74.21±0.1 75.1±0.2 OOM OOM OOM OOM OOM

ogbn_arxiv

BCR=7%

SAGE [16] 71.0±0.5 68.8±0.4 66.7±0.2 68.0±0.3 67.9±0.3 68.9±0.4 67.5±0.5 68.3±0.4 64.2±0.3 61.2±0.3 OOM

GCN [27] 71.3±0.2 69.2±0.3 67.8±0.3 68.1±0.2 69.0±0.3 68.0±0.3 68.1±0.2 68.0±0.2 64.3±0.4 61.5±0.5 OOM

GAT [33] 72.1±0.1 70.9±0.1 70.1±0.1 70.3±0.2 70.2±0.1 70.5±0.2 70.1±0.2 70.3±0.2 62.4±0.5 59.3±0.4 OOM

SIGN [10] 71.8±0.1 69.3±0.2 68.8±0.2 69.0±0.1 69.2±0.2 69.1±0.2 69.1±0.1 69.2±0.2 63.6±0.3 60.4±0.3 OOM

DBLP

BCR=12%

SAGE [16] 84.1±0.4 82.0±0.3 79.3±0.2 80.0±0.4 79.8±0.5 78.3±0.4 77.9±0.8 79.8 ± 0.5 78.3±0.7 76.1±0.5 80.2±0.4

GCN [27] 81.7±0.3 82.1±0.3 79.5±0.3 80.1±0.2 80.0±0.3 67.1±0.8 81.2±0.7 81.4±0.5 79.5±0.9 76.5±0.6 79.7±0.3

GAT [33] 79.5±0.3 79.3±0.3 79.0±0.5 78.9±0.4 79.1±0.4 57.1±1.6 71.2±0.6 67.9±1.2 74.5±1.0 74.2±0.8 78.5±0.5

IMDB

BCR=36%

SAGE [16] 55.2±0.6 55.6±1.2 48.8±0.8 51.1±0.8 51.3±0.8 53.1±0.7 55.4±0.5 56.6±0.3 49.1±0.8 53.2±1.0 51.9±0.9

GCN [27] 56.9±0.7 56.9±1.2 49.8±0.8 51.6±0.7 51.8±0.7 53.4±0.8 55.5±0.5 56.4±0.5 50.6±0.6 53.5±0.8 52.5±0.7

GAT [33] 57.2±0.6 54.5±1.0 48.2±0.7 50.7±0.8 51.1±0.7 51.6±1.8 52.3±0.6 52.8±0.6 48.9±0.7 50.2±0.6 49.4±0.8

ogbn_mag

BCR=40%

R-GCN [32] 46.0±0.7 46.2±0.4 22.4±0.9 24.8±0.8 25.1±0.7 39.5±0.4 OOM OOM OOM OOM OOM

GraphSaint [37] 43.2±0.5 43.9±0.3 9.1±1.1 13.6±1.5 11.2±1.2 36.7±0.5 OOM OOM OOM OOM OOM

Cluster-GCN [7] 38.5±0.2 39.5±0.2 35.2±0.3 36.0±0.2 35.9±0.2 33.5±0.3 OOM OOM OOM OOM OOM

MAG240M

BCR=1%

R-GAT [32] 70.0 68.5 59.0 59.8 60.1 OOM OOM OOM OOM OOM OOM

R-SAGE [32] 69.4 68.2 59.4 59.6 60.4 OOM OOM OOM OOM OOM OOM

T1 T2

T1

T2

T1

T2

γ

β

Vanilla Graph Skeleton Graph Sγ

Bridging 
Background Node

Affiliation 
Background Node

Target Node

Skeleton Graph Sβ

Figure 5: Illustration of Strategy-𝛾 . Based on condensation-𝛽 ,
we further condense the affiliation nodes to the correspond-
ing target node.

Under this inspiration, we propose the third strategy-𝛾 for con-

densation. Given the vanilla subgraph G′ , we first perform strategy-

𝛽 to condense the bridging background nodes, then we condense

the affiliation nodes in the generated skeleton graphS𝛽 . Specifically,
given one target node 𝑇𝑘 in S𝛽 , with its corresponding affiliation

background node set AF 𝑘 , we update the feature of target 𝑇𝑘
by incorporate its feature with the features of AF 𝑘 , and then re-

move AF 𝑘 in G′ (shown in Figure 5), to eliminate the massive

affiliation nodes while maintaining most of the original correlation

information from affiliation nodes. The condensed feature of𝑇𝑘 via

aggregating the original features with AF 𝑘 is formulated below:

𝑥𝑇𝑘 ← AGGREGATE({𝑥𝑇𝑘 ∪ {𝑥𝑢 ,∀𝑢 ∈ AF 𝑘 }}), (5)

AGGREGATE(·) can be element-wise mean or summation pooling.

Finlay, we can obtain the condensed skeleton graph S𝛾 , which is

highly informative and friendly to storage and model deployment.

We provide the time complexity analysis in Appendix C.

4 EXPERIMENTS
Experimental protocol. To comprehensively evaluate the perfor-

mance of the proposed Graph-Skeleton, we conduct the target nodes
classification task on six web datasets: DGraph [21], ogbn-mag [20],

ogbn-arxiv [20], MAG240M [19], DBLP [11] and IMDb [11], span-

ning across multiple domains. Based on the downstream task, we

Table 2: Statistics of datasets.
Dataset Nodes Edges Target Definition Targets

DGraph 3,700,550 4,300,999 Loan Users 1,225,601

ogbn-arxiv 169,343 1,166,243 Papers (since 2018) 78,402

IMDB 11,616 17,106 Movies 4,278

DBLP 26,108 119,783 Authors 4,057

ogbn-mag 1,939,743 21,111,007 Papers 736,389

MAG240M 244,160,499 1,728,364,232 arxiv papers 1,398,159

can obtain the corresponding target nodes (required to be classified)

and background nodes. The basic information of datasets and how

we select the target nodes are listed in Table 2. We also provide a

more detailed description in Appendix A.1. Note that in our study,

we only compress the background nodes, and all target nodes are

preserved in the generated skeleton subgraph. In this case, the gen-

erated skeleton and original graph contain the same target nodes

for classification.

Experimental Setup. We compare the downstream target node

classification performance with original graph and other graph

compression baselines including coreset methods (Random, Cen-

trality Ranking [13] with PageRank centrality (Central-P) and de-

gree centrality (Central-D)), graph coarsening methods (variation

neighborhoods coarsening (GC-VN ) [22], Algebraic JC coarsening

(GC-AJC) [22], spectral coarsening with Schur complement (Schur-
C) [44]), graph condensation methods (GCond [25], DosCond [24])

and graph active learning method (GPA [18]). Note that our goal

is to compress the background node compression while maintain

all target nodes. The compression rate is indicated by background
node compression rate (𝐵𝐶𝑅) (ratio of synthetic background nodes

to original background nodes, details in A.2). For a fair compari-

son, we keep the 𝐵𝐶𝑅 same across all methods. More details of the

baselines and settings can be found in Appendix A.4.2.

After obtaining the compressed graphs by above methods, we

adopt the GNNs to evaluate their target classification performance.

Considering different datasets would be applicable to different

GNNs, for DGraph, ogbn-axiv, ogbn-mag and MAG240M, we select
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Figure 6: Comparisons of graph compression methods with varied 𝐵𝐶𝑅s for GNNs inference.

Table 3: Memory costs for data storage.

DGraph Target Feat Background Feat Adj Matrix AUC (SAGE)

Original

166.3 MB

336.6 MB 128.8 MB 78.7±0.1

Skeleton-𝛾 (BCR: 15%) 50.1 MB 52.4 MB 78.2±0.1

ogbn-arixv Target Feat Background Feat Adj Matrix ACC (SAGE)

Original

40.1 MB

46.5 MB 37.0 MB 71.0±0.5

Skeleton-𝛾 (BCR: 7%) 3.2 MB 12.3 MB 68.6±0.4

DBLP Target Feat Background Feat Adj Matrix ACC (GCN)

Original

1.0 MB

5.6 MB 3.8 MB 81.7±0.3

Skeleton-𝛾 (BCR: 12%) 0.7 MB 0.2 MB 82.1±0.3

IMDB Target Feat Background Feat Adj Matrix ACC (GCN)

Original

52.4 MB

89.9 MB 0.6 MB 56.9±0.7

Skeleton-𝛾 (BCR: 36%) 34.4 MB 0.4 MB 56.9±1.2

ogbn-mag Target Feat Background Feat Adj Matrix ACC (GraphSaint)

Original

377.0 MB

616.1 MB 674.9 MB 43.2±0.5

Skeleton-𝛾 (BCR: 40%) 245.6 MB 505.8 MB 43.9±0.3

MAG24M Target Feat Background Feat Adj Matrix ACC (R-SAGE)

Original

2.05 GB

372.97 GB 55.95 GB MB 69.4

Skeleton-𝛾 (BCR: 1%) 4.65 GB 2.69 GB 68.2

the base GNNs on their respective official leaderboards for evalua-

tion. For IMDB and DBLP, we adopt the most representative GNNs

(GCN [27], GraphSAGE [16], GAT [33]) for evaluation. The target

classification performance of DGraph is evaluated by AUC (%), and

other datasets are evaluated by ACC (%).

4.1 Graph Compression Comparison
We first report target node classification results of compressed

graphs under fixed compression rate (𝐵𝐶𝑅) on six datasets in Ta-

ble 1, where we compare the performance of Graph-Skeleton using

condensation strategy-𝛾 (Skeleton-𝛾 in short, which has highest

compression rate) to other baselines. As we can see, Skeleton-𝛾

presents strong ability of scaling up GNNs to all datasets, includ-

ing large-scale graph MAG240M with ∼0.24 billion nodes. It also

achieves superior target classification performance compared to

other compression baselines under similar 𝐵𝐶𝑅. Besides, compared

to other graph coarsening and compression methods being signifi-

cantly hindered by heavy memory and computational loads, our

method is more friendly for deployment on large-scale web graphs.

Moreover, compared to the original graph, Skeleton-𝛾 also presents

highly comparable or even better target classification performance

with a notably smaller number of background nodes.

Additionally, we report the target classification results of com-

pressed graph with varied 𝐵𝐶𝑅s in Figure 6. By selecting different

condensation strategies of Graph-Skeleton with different fetch-

ing depths (𝑑1, 𝑑2), we can flexibly achieve different compression

rates (details in Appendix A.4.5). It can be easily observed that our

method significantly outperforms other methods in a wider range

of compression rate.
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Figure 7: Compression performance of Graph-Skeleton with
three condensation strategies: 𝛼 , 𝛽, 𝛾 . The bars indicate the
background nodes compression rate (BCR), dashed lines with
points indicate target node classification performance.

4.2 Storage Costs
We report the memory costs for web graph storage of original graph

and Skeleton-𝛾 under the fixed 𝐵𝐶𝑅 on six datasets. To present the

results more intuitively, we decouple the storage costs of graph data

into three main aspects: costs of target nodes features, background

nodes features and graph adjacencymatrix. The results are shown in

Table 3. As we can see, Skeleton-𝛾 significantly reduces the memory

cost of background nodes features and graph adjacent matrix (green

in Table 3). Since we preserve all the target node in compressed

Skeleton-𝛾 , the storage cost of target nodes feature keeps the same

with the original graph. On the other hand, Skeleton-𝛾 also achieves

close or even better performance compared to the original data. This

highlights the effectiveness of our proposed method in preserving

the essential information for target node classification.

4.3 Studies on Three Condensation Strategies
In this section, we investigate the compression performance of

three proposed condensation strategies 𝛼, 𝛽,𝛾 of Graph-Skeleton.

Specifically, we use the same vanilla subgraph as input and use

three strategies for condensation. The results on four datasets are de-

picted in Figure 7, where the left axis (blue) presents the background

nodes compression rate (𝐵𝐶𝑅, bar) and right axis (red) presents

the target node classification performance (dashed lines). As we

can see, Skeleton-𝛼, 𝛽,𝛾 all present highly competitive target node

classification performance with the original data, indicating the ef-

fectiveness of three proposed strategies for condensation. Generally

the Skeleton-𝛼 presents the best classification performance within

three strategies due to fewer information losses. On the other hand,

Skeleton-𝛾 also well approximates the original performance un-

der all tested downstream GNNs while with a notably higher 𝐵𝐶𝑅,

showing aggregating the features of affiliation background nodes

7
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terns of background nodes in S𝛼 of DGraph. The correspond-
ing structural patterns are visualized upper the bars.

onto the neighboring target node can well preserve the original

background node information.

4.4 What Kinds of Background Nodes Are
Essential in Real-World Cases?

Due to different properties of the web graph data, the condensed

skeleton graph structure also vary dramatically from each other.

Since none of the target nodes are lost in our compressed skeleton

graph, it allows us to trace and investigate some important infor-

mation and patterns relevant to the target classification upon the

generated skeleton graphs. In this section, we utilize the distance

information in each background node’ multiple structure-set𝑀𝑆𝑆

in skeleton graph S𝛼 to represent the target-background structural

patterns and leverage the attention mechanism to explore the im-

portance of each structural pattern to the task. Given background

node 𝐵 with 𝑀𝑆𝑆 = {⟨𝑇𝑖 , 𝑑𝑖 ⟩ ,
〈
𝑇𝑗 , 𝑑 𝑗

〉
}, define its structural pat-

terns as {𝑑𝑖 , 𝑑 𝑗 }, indicating it has two accessible target nodes with

shortest distances of 𝑑𝑖 , 𝑑 𝑗 respectively. For each structural pattern

class, we compute its importance weights by averaging the atten-

tion weight of background nodes with the corresponding pattern

class in GNN. The implementation details are provided in A.6.

Exploration on DGraph. We take DGraph [21] as a case study

to investigate how the fetched background nodes contribute to the

classification. Figure 8 presents the importance weights of different

structural patterns maintained by the background nodes. For the

top four structural patterns, i.e., {1,1,1}, {1,1,1,1,1}, {1,1} and {1,1,1,1},

the background nodes all act as the 2-hop bridging nodes, revealing

the importance of connectivity between target nodes. This obser-

vation is also consistent with the exploration results in Section 1.

Moreover, the attention scores of these four patterns are quite close,

suggesting that the 2-hop bridging nodes with different degrees

might play similar roles in the task. These observations can offer

a good explanation for the classification task in the financial sce-

nario where the social relations between users are crucial for fraud

detection. Concretely, for one node connected with fraud users,

the likelihood that it and its direct neighbors are fraudsters will

increase significantly. Moreover, if most neighbors of one user are

frauds, it is likely to be a fraud intermediary agency. Another case

study of paper citation network is provided in Appendix E.4.

5 RELATEDWORKS
In many web graph mining scenarios, web graph data is massive,

and only a small ration of nodes are actually need to be analyzed.

In this paper, we argue that a small synthetic subgraph would also

be sufficient to trace, retain the information of each target node for

classification. As far as we are aware, this is the first work exploring

the contributions of background nodes to the target classification,

and compressing the graph while preserving essential information

for each original target node. In the following parts, we will briefly

introduce the mainstream methods of graph size reduction and

discuss their differences from our work.

Coreset Selection. Up to the present, various coreset selection

methods, including k-Means [17], centrality rank [1, 13], random

selection are designed to select a subset of essential samples to

reduce the data size. However, these methods either ignore the web

graph structural information (k-Means, random selection) or ignore

the node semantic (feature) information (centrality rank), leading to

unsatisfied selection results on graph data. Moreover, background

nodes contribute to the target classifications in different ways (e.g.,

structural connectivity enhancement, feature correlation), while

the above methods ignore this vital knowledge.

Graph Coarsening. Graph coarsening reduces the number of

graph nodes while preserving some important properties in the

original graph. The theoretical approximation guarantees on spec-

trum or structure have been studies in some previous coarsening

studies [2, 26, 29, 44]. Specifically, Zhu et al. propose a sparsifier

which leverages schur complement construction to approximate

the shortest distances between each pair of vertices in terminal

set [44]. Nevertheless, these graph reduction methods only focus

on the approximation of structure while ignoring the node features,

which are not tailored to the node classification tasks in web mining.

Huang et al. proposes a coarsening model for semi-supervised node

classification, which merges the original nodes into super-nodes

along with averaged node features for graph reduction [22].

GraphCondensation. Recently, graph condensation has also been
studied. Jin et al. develop a graph condensation method based on

gradient matching to imitate the GNNs training trajectory on large

graph [25], and further extend the method to one-step gradient

matching [24]. Nevertheless, these methods would inevitably lose

original target nodes during reduction. For coarsening model [22],

it is prone to merge the target nodes into one super-nodes. For the

condensation methods [24, 25], they can only compress the target

nodes since only the target nodes’ labels are effective for gradient

matching. However, in our study we aim to shrink the size of back-

ground nodes while maintaining all target nodes. Besides, these

methods require large memory cost with higher time complexity

during graph reduction, yet our method is efficient and effective,

which is much easier to implement on very large graphs.

6 CONCLUSION
In this paper,We focus on a common challenge in web graphmining

applications: compressing themassive background nodes for a small

part of target nodes classification, to tackle the storage and model

deployment difficulties on very large graphs. Empirical analysis

explicitly reveals the contributions of critical background nodes to

the target classification, i.e., enhancing target structural connectivity
and feature correlation with target nodes. With these inspirations,

we propose a novel Graph-Skeleton, which properly fetches and

condenses the informative background nodes, so that the generated

graph is small-scale but sufficient to trace, retain the information

of each target node for classification. Extensive experiments well

indicates the effectiveness of our proposed method.
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A DETAILED EXPERIMENTAL SETTINGS
A.1 Datasets
We evaluate the proposed framework on four datasets, i.e., DGraph

1
,

ogbn-mag, ogbn-arxiv, IMDB
2
, DBLP

3
and MAG240M. Since all the

datasets have no explicit definitions of the target & background,

we manually define the target & background settings according to

the usage scenarios of datasets. The datasets and their settings are

detailed below:

(1) DGraph [21]: A large-scale financial graph dataset, with

3,700,550 nodes and 4,300,999 directed edges. There are four

classes of nodes: Class 0 are normal loan users and Class

1 are loan fraud users, the other two classes of nodes are

non loan users. In our experiment, we follow the task in the

original dataset, i.e., identify the frauds among the users

with loan record. In this case, the loan users are the target

nodes required to be classified (∼33% of all nodes), while

the other users are set as the background nodes. The target

nodes are split randomly by 7:1.5:1.5 for training, validation

and testing, which is identical with the original dataset.

(2) ogbn-arxiv [20]: The citation arxiv network contains 169,343

nodes and 1,166,243 edges. Each node is an arXiv paper and

each directed edge indicates that one paper cites another

one. In this study, we define the task as predicting the 40

subject areas (e.g., cs.AI, cs.LG, and cs.OS) of each target pa-

per published since 2018. Thus papers published since 2018

(∼46%) are the target nodes, and papers published before

2018 are background nodes. We keep the test set identical

to the original dataset (i.e., paper published since 2019), and

randomly split the remaining nodes by 8:2 for training and

validation.

(3) IMDB [11]: IMDB is an online database about movies and

television programs, including information such as cast,

production crew, and plot summaries. We follow the data

usage in [11], which adopts a subset of IMDB scraped from

online, containing 4278 movies, 2081 directors, and 5257

actors. Movies are labeled as one of three classes (Action,

Comedy, and Drama). In our study, we set the movie nodes

as the target nodes while other nodes are regarded as back-

ground nodes. For semi-supervised learning, we follow the

split in [11]: movie nodes are divided into training, valida-

tion, and testing sets of 400 (9.35%), 400 (9.35%), and 3478

(81.30%) nodes, respectively.

(4) DBLP [11]: A computer science bibliography website. We

follow the data usage in [11], which adopts a subset of DBLP

extracted by [12, 23], containing 4057 authors, 14328 papers,

7723 terms, and 20 publication venues. In our study, we set

the author nodes as the target nodes while other nodes are

regarded as background nodes. The authors are divided into

four research areas (Database, Data Mining, Artificial In-

telligence, and Information Retrieval). For semi-supervised

learning models, we follow the split in [11]: author nodes

are divided into training, validation, and testing sets of 400

(9.86%), 400 (9.86%), and 3257 (80.28%) nodes, respectively.

1
Dgraph: https://dgraph.xinye.com/introduction

2
IMDB: https://www.imdb.com/

3
DBLP: https://dblp.uni-trier.de/

(5) ogbn-mag [20]: A heterogeneous academic graph contains

1,939,743 nodes and 21,111,007 edges, with four types of

nodes (entities) -papers, authors, institutions and fields of

study. In our study, we aim to predict the venue of each

paper. Hence, the paper nodes are regarded as target nodes

(∼ 38 %), and the other nodes (authors, institutions and

fields), on the contrary, are background nodes for informa-

tion supplement. We follow the split settings in the original

dataset, i.e., training models to predict venue labels of all

papers published before 2018, validating and testing the

models on papers published in 2018 and since 2019, respec-

tively.

(6) MAG240M [19]: A massive scale heterogeneous map with

240million nodes and 1.7 billion edges. Nodes are composed

of papers, authors and institutions in an academic graph.

In our study, we aim to predict arxiv papers’ subject areas.

Thus the arxiv paper nodes (0.6%, 1.4 million) are considered

as target nodes. We follow the original dataset split that the

papers published earlier than 2018 are training sets, while

articles published in 2018 and since 2019 are validation sets

and test sets, respectively.

A.2 Evaluation Metrics
We evaluate the proposed performance based on several metrics.

For target classification tasks, the performances of ogbn-mag, ogbn-

arxiv and MAG240M [20] are evaluated by accuracy metric (ACC).

Due to the imbalance of the positive and negative samples in

Dgraph, it uses the area under curve (AUC) metric for performance

evaluation.

To access the graph compression performance, we utilize the

background node compression rate (𝐵𝐶𝑅) to indicate the compres-

sion effectiveness, which is defined as:

𝐵𝐶𝑅 =
|B𝑆 |
|B𝑂 |

(6)

where B𝑆 and B𝑂 denotes the background node sets in generated

skeleton graph and original graph. Please note that our goal is to

maintain the whole target nodes in the generated synthetic graph,

so we just focus on the background nodes compression.

A.3 Experimental Settings in Section 2
Recently Graph Neural Networks (GNNs) [41] have become one

of the most popular and powerful methods for data mining and

knowledge discovery on graph data. Therefore we conduct our

exploration of target-background issue in Section 2 based on the

GNN models.

Concretely, we choose including GraphSAGE [16], GAT [33] and

GIN [36], which utilized three representative aggregation mecha-

nisms (mean, weight-based, summation), as the backbone model,

and deploy the model on two datasets for target nodes classification:

• Financial loan network DGraph, where we follow the task

setting of the original dataset [21], i.e., fraudster identifi-

cation among loan users. In this case the users with loan

action are regarded as target nodes (∼33%), while others
are viewed as background nodes.

• Academic citation network ogbn-arxiv [20], where we aim

to predict the subject areas of papers published since 2018.
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Table 4: Hyperparameters of GNNs on Dgraph

# Params SAGE GAT GIN

layers 3 3 2

hidden dim 256 128 64

head num - 3 -

sample size [10, 10, 10] [10, 10, 10] [10, 10]

batch size 65,536 16,384 100,000

epochs 200 100 100

learning rate 0.01 0.01 0.02

dropout 0.0 0.5 0.5

In this case, papers published from 2018 are regarded as target

nodes (∼46%), while papers before 2018 as the background nodes.

To analyze the contributions of background nodes to target

nodes, we cut the edges between different types of nodes and de-

ploy the cutted graphs on the GraphSAGE model. Specifically, we

cut the edges within the original graph including: (1) Random Cut:

randomly drop the edges within the graph with the edge drop

rate spanning from 0 to 1. (2) B-B Cut: drop the edges between

background nodes. (3) T-B Cut: drop the edges between target and

background nodes. (4) BridB Cut: drop the edges where background

nodes act as the 1-hop bridging nodes between two target nodes.

The model hyperparameter settings of two datasets are listed in

Table 4 and Table 5.

A.4 Experimental Settings in Section 4
A.4.1 Graph-Skeleton Settings in Fixed 𝐵𝐶𝑅 Experiments. For the
evaluation of proposed Gpaph-Skeleton, we first compare the per-

formance of baselines in a fixed 𝐵𝐶𝑅 manner in Section 4.1, Table 1.

Specifically, we choose the Gpaph-Skeleton using condensation

strategy-𝛾 (Skeleton-𝛾 in short, with highest compression rate) to

compare with other baselines. During node fetching phase (Sec-

tion 3.1), we set the fetching depth andwidth as𝑑1 = 2, 𝑑2 = 1, 𝐾 = 5

to generate the vanilla subgraph G′ . For 𝛾 condensation, we choose

mean operation as aggregation function in Equation 5. The statistics

of the final synthetic skeleton graph S𝛾 are shown in Table 6. For

baselines of Random, Centrality Ranking and GPA, we control the

query budgets of background node selection to keep the 𝐵𝐶𝑅 being

same with that of skeleton graphS𝛾 . For Graph Coarsening, GCond
and DosCond, we control the compression rate to keep the syn-

thetic graphs having the same total size (# Total after compression)

with skeleton graph S𝛾 . These synthetic graphs are considered to

have the same 𝐵𝐶𝑅 for comparison.

A.4.2 Baselines and Compression Settings. To compare the com-

pression performance of our method, we choose the following

baselines for graph compression:

• Random: Randomly selects the background nodes from

original data, where all target nodes can be preserved in

compressed graph. The background nodes compression rate

(𝐵𝐶𝑅) can be easily controlled by selection number.

• Centrality Ranking [13]: Selects the background nodes ac-

cording to the centrality ranking scores. Specifically, PageR-

ank centrality (Central-P) and degree centrality (Central-D)

are adopted for centrality ranking. The 𝐵𝐶𝑅 can be easily

controlled by selection number.

Table 5: Hyperparameters of GNNs on ogbn-arxiv

# Params SAGE GAT GIN

layers 3 3 2

hidden dim 256 256 256

head num - 3 -

sample size full full full

batch size full full full

epochs 500 100 1500

learning rate 0.005 0.002 0.005

dropout 0.5 0.75 0.5

• Schur Complement [44]: A communication-efficient dis-

tributed algorithm for constructing spectral vertex sparsi-

fiers (Schur complements), which closely preserve effective

resistance distances on a subset of vertices of interest in the

original graphs. To reduce the computational complexity,

we employ the rLap [28] for schur complement approxima-

tion. The 𝐵𝐶𝑅 can be controlled by controlling the size of

Schur complements.

• Graph Coarsening [22]: Merges the massive nodes into

fewer super-nodes to reduce the graph size. Specifically, we

implement the variation neighborhoods coarsening (GC-

VN) and Algebraic JC coarsening (GC-AJC) [30] in the orig-

inal paper respectively. Since the graph coarsening is prone

to delete the target nodes by merging them into the super-

nodes during compression, we keep the total size of com-

pressed graph to be same with that of skeleton during com-

parison while not strictly control the 𝐵𝐶𝑅 to be the same.

But we still regard them having the save 𝐵𝐶𝑅 when re-

porting results. Since the target nodes are different after

compression, we only utilize the synthetic graph for down-

stream model training and relax the model inference based

on the original graph to obtain the results of each original

target node.

• GCond [25]: Condenses the graph based on multi-step gra-

dient matching for imitating the GNNs training trajectory

on the original graph. This method generates the features

and adjacent matrix of synthetic graph by gradient match-

ing. Since the gradient matching task is implemented based

on the labels of target nodes, this method can only com-

press the target nodes. Similarly, we keep the total size of

compressed graph to be same with that of skeleton while

not strictly control the 𝐵𝐶𝑅 to be the same for comparison.

But we still report them to have same 𝐵𝐶𝑅 in the results.

To have the results of all target nodes, we only utilize the

synthetic graph for model training while relaxing the model

inference based on the original graph.

• DosCond [24]: Condenses the graph based on one-step

gradient matching for generating the features and adjacent

matrix of synthetic graph. Similarly, this method can only

compress the target nodes. and we keep the total size of

compressed graph to be same for comparison. But we still

report them to have same 𝐵𝐶𝑅 in the results. To have the

results of all target nodes, we utilize the synthetic graph for

model training while using the original graph for inference.

• GPA[18]: A graph active learning framework selecting nodes

for labelling. Here we use it for background node selection.
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Table 6: Statistics of the synthetic skeleton graphs in fixed 𝐵𝐶𝑅 experiments

DGraph ogbn-arxiv DBLP IMDB ogbn-mag MAG240M

# Target 1,225,601 78,402 4,057 4,278 736,389 1,398,159

# Original Background 2,474,949 90,941 22,071 7,338 1,203,354 242,762,340

# Compressed Background 373,015 6,349 2,690 2,810 479,861 2,970,934

# Total after compression 1,598,616 84,751 6,747 7,088 1,216,250 4,369,093

𝑩𝑪𝑹 0.150 0.069 0.121 0.362 0.398 0.012

Table 7: Hyperparameters for GNNs (a)

DGraph [21] ogbn-arxiv [20] MAG240M [19]

SAGE GCN GAT SAGE GCN GAT SIGN R-GAT R-SAGE

layers 3 3 3 2 2 3 2 2 2

hidden dim 256 64 128 256 256 250 512 1024 1024

head num - - [4,2,1] - - 3 - 4 -

sample size [10,10,10] Full [10,10,10] Full Full [10,10,10] Full [25,15] [25,15]

batch size 65,536 Full 16,384 Full Full 512 50000 1024 1024

epochs 200 200 200 500 500 500 1000 100 100

learning rate 0.005 0.01 0.01 0.01 0.01 0.002 0.001 0.001 0.001

weight decay 5e-7 5e-7 5e-7 0 0 0 0 0 0

dropout 0.5 0.5 0 0.5 0.5 0.5 0.5 0.5 0.5

Table 8: Hyperparameters for GNNs (b)

IMDB [11] DBLP [11] ogbn-mag [20]

GCN SAGE GAT GCN SAGE GAT RGCN GraphSaint ClusterGCN

layers 2 2 3 2 2 2 2 2 2

hidden dim 256 256 256 256 256 256 64 64 64

head num - - 4 - - 4 - - -

sample size Full Full Full Full Full Full [25,20] [30,30] Full

batch size Full Full Full Full Full Full 1024 20000 500

epochs 30 30 100 100 100 500 5 30 30

learning rate 0.001 0.001 0.001 0.005 0.005 0.001 0.01 0.005 0.005

weight decay 0 0 0 0.1 0.1 0.1 0 0 0

dropout 0.5 0.5 0.5 0.3 0.3 0.3 0.5 0.5 0.5

The 𝐵𝐶𝑅 can be easily controlled by setting the query bud-

gets of node selection.

A.4.3 Downstream Classification Settings in MAG240M and ogbn-
mag. For MAG240M and ogbn-mag, graphs contain various edge

types (7 types in original dataset, which will be utilized for classifica-

tion). Due to graph condensation would condense different nodes to-

gether and cause type inconsistency of generated edge, we re-define

the edge type via the target and background nodes connection in

original and compressed graphs (4 types in total: target-target,

background-background, target-background, background-target)

and implement node classification test.

A.4.4 GraphModels Settings. In our study, we evaluate target node
classification performance in downstream tasks with various GNN

models. Our experiments are implemented with PyTorch 1.10.0,

CUDA v12.1 on NVIDIA Quadro RTX 6000 GPU. The hyperparam-

eters of GNN models on each dataset are shown in Table 7 and 8.

For the model with mini-batch training and node-wise based sam-

pling settings, we report the corresponding batch size and sample

size values, and the training & testing is implemented in an in-

ductive fashion, otherwise we report them as “Full” and the node

classification is conducted in transductive setting. For all graphs

for node classification (i.e., original graph and compressed graphs),

we follow the same hyperparameter settings for a fair comparison.

Each experiment is repeated for 10 trials on all datasets except

MAG240M.

A.4.5 Varied Background Node Compression Rate Control. To ob-

tain the synthetic graphs with different compressed rates, we can

use different condensation strategies of Graph-Skeleton with varied

fetching depth (𝑑1, 𝑑2) for background nodes compression. Specif-

ically, the fetching depth (𝑑1, 𝑑2) controls the number of fetched

background nodes in the vanilla subgraph G′ . Increasing the fetch-

ing depth results in a more comprehensive collection of information,

but it also leads to a larger size of the vanilla subgraph. On the other
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Table 9: Statistics of the background nodes with various condensation strategies in synthetic skeleton graphs

DGraph ogbn-arxiv ogbn-mag MAG240M

# Background 𝐵𝐶𝑅 # Background 𝐵𝐶𝑅 # Background 𝐵𝐶𝑅 # Background 𝐵𝐶𝑅

Original 2,474,949 - 90,941 - 1,203,354 - 242,762,340 -

Skeleton-𝜶 1,044,856 0.422 46,523 0.511 800,835 0.665 5,696,810 0.023

Skeleton-𝜷 931,842 0.376 11,217 0.123 800,835 0.665 5,696,810 0.023

Skeleton-𝜸 373,015 0.150 6349 0.069 479,861 0.398 2,970,934 0.012

hand, three condensation strategies control the level of conden-

sation of redundant information in vanilla subgraph G′ , where
Strategy-𝛼 preserves the greatest amount of the original structural

and semantic information, while strategy-𝛾 delivers the lowest 𝐵𝐶𝑅.

We conduct a detailed analysis to evaluate the impact of different

fetching depths on compression performance in E.1, and explore

the performance of three condensation strategies in Section 4.3.

A.4.6 Settings of Three Strategies Analyses. To investigate the con-

densation performance of three condensation strategies, we conduct

the experiments and analyze the results in Section 4.3. During com-

pression, we keep the fetching depths being same ([𝑑1, 𝑑2] = [2,1])

for vanilla subgraph generation and use three strategies for con-

densation to generate the synthetic skeleton graphs respectively.

The detailed statistics of the final synthetic skeleton graphs under

three condensation strategies on four datasets in Section 4.3 are

shown in Table 9.

A.5 Discussion of Similar Performance
For ogbn-mag and MAG240M, skeleton-𝛼, 𝛽 present quite similar

performance in Figure 7(right two). It is because that two target

nodes (paper) in ogbn-mag and MAG240M are connected by either

one background nodes (author) or three background nodes (author-

institution-author). Thus when the node fetching distance 𝑑1 is less

than 4, we can only preserve the paper-author-paper edge, which

can not be further condensed by strategy-𝛽 , leading to a similar

condensation performance.

A.6 Attention Settings
To further investigate how the background nodes influence the tar-

get prediction performance, we leverage the attention mechanism

[33] to indicate importance of graph structure in 4.4. Specifically,

we deploy the graph data on GAT for target classification and com-

pute the importance weight of each background structural pattern.

Specifically, for each pair of adjacent nodes, we calculate the atten-

tion weight between them and normalize it with softmax function.

𝑒𝑖 𝑗 = 𝑎𝑡𝑡 (W®ℎ𝑖 ,W®ℎ 𝑗 ), (7)

𝛼𝑖 𝑗 = softmax𝑗 (𝑒𝑖 𝑗 ) =
exp (𝑒𝑖 𝑗 )∑

𝑘∈N𝑖
exp (𝑒𝑖𝑘 )

, (8)

where
®ℎ𝑖 ), ®ℎ 𝑗 ) are the hidden representations of node pair 𝑖, 𝑗 ,𝑊

is a transformationmatrix, 𝑎𝑡𝑡 (·) denotes the attention computation

in GAT. We use 𝛼𝑖 𝑗 = 𝛼𝑖 𝑗 − 1

deg(𝑖 )+1 to evaluate the importance of

nodes, where deg(𝑖) is the degree of node 𝑖 . Note that ˜𝛼𝑖 𝑗 could be

negative, and that means the importance of this node to the target

node is lower than the average. To evaluate how the background

nodes with different local structures contribute to target nodes

classification, we divide the background nodes into different groups

according to their structural pattern class (defined in Section 4.4)

and calculate the mean ˜𝛼𝑖 𝑗 of each group respectively.

B PROOF OF OF PROPOSITION 1
Before the proof, let’s revisit the definition of Linear message path

passing on a single path (Section 3.2, Definition 3.3), then we extend

the Linear message path passing function to multiple paths.

Definition B.1 (Linear message path passing). Given a path 𝑝 =

⟨𝑢0, 𝑢1, ..., 𝑢ℓ ⟩, we define the linear single path passing functions

𝑓𝑠𝑝𝑝 (𝑋, 𝑝) which aggregates node feature starting from 𝑢0 to 𝑢ℓ
over 𝑝 as:

𝑋
′
[𝑢𝑖 ] ← 𝑓 𝑖

𝑙𝑚𝑝
(𝑋
′
[𝑢𝑖−1], 𝑋 [𝑢𝑖 ])𝑊 𝑖 , 𝑖 ∈ 1, .., ℓ, (9)

where 𝑋 is the node feature matrix, 𝑓𝑙𝑚𝑝 (𝑢, 𝑣) denotes the linear
message passing operation (defined in equation 2) from 𝑢 to 𝑣 ,𝑊

is a transformation matrix.

Given𝑚 pathswith same end node𝐾 : P:={𝑝𝑢0
0
,𝐾 =

〈
𝑢1
0
, 𝑢1

1
, ..., 𝑢1∗, 𝐾

〉
,

𝑝𝑢1
0
,𝐾 =

〈
𝑢2
0
, 𝑢2

1
, ..., 𝑢1∗, 𝐾

〉
,...,𝑝𝑢𝑚

0
,𝐾 =

〈
𝑢𝑚
0
, 𝑢𝑚

1
, ..., 𝑢𝑚∗ , 𝐾

〉
}, define

the linear message path passing 𝑓𝑙𝑚𝑝𝑝 (𝑋, 𝑃) over𝑚 paths to end

node 𝐾 as:

𝑋
′
[𝐾] ← AGGREGATE(𝑋 [𝐾], {𝑋

′
[𝑢𝑖∗],∀𝑖 ∈ 1, ...,𝑚})𝑊𝐾

= AGGREGATE(𝑋 [𝐾], {𝑓𝑠𝑝𝑝 (𝑋, 𝑝𝑢𝑖
0
,𝑢𝑖∗
) [𝑢𝑖∗],∀𝑖 ∈ 1, ...,𝑚})𝑊𝐾

(10)

Proof. Let 𝑋 denotes node feature matrix, 𝑓𝑠𝑝𝑝 = 𝑓𝑚
𝑙𝑚𝑝
◦ ... ◦

𝑓 2
𝑙𝑚𝑝
◦ 𝑓 1
𝑙𝑚𝑝

denotes a single path passing function, where 𝑓𝑙𝑚𝑝 is

the linear message passing operation. Given 𝑢, 𝑣 ∈ B, s.t.,𝑀𝑆𝑆𝑢 =

𝑀𝑆𝑆𝑣 = {⟨T ,D⟩}. Pick one target 𝑇 ∈ T ′ with the corresponding

distance𝑑 , and two shortest paths 𝑝𝑢,𝑇 = ⟨𝑢,𝑢1, ..., 𝑢∗,𝑇 ⟩ and 𝑝𝑣,𝑇 =

⟨𝑣, 𝑣1, ..., 𝑣∗,𝑇 ⟩ from 𝑢,𝑣 to𝑇 respectively, where |𝑝𝑢,𝑇 | = |𝑝𝑣,𝑇 | = 𝑑 .
Assuming {𝑝𝑢,𝑢∗ } ∩ {𝑝𝑣,𝑣∗ } = ∅, let 𝑃 := {𝑝𝑢,𝑇 , 𝑝𝑣,𝑇 }, the linear

message path passing over paths to 𝑇 is formulated as:

𝑋
′
[𝑇 ] = 𝑓𝑙𝑚𝑝𝑝 (𝑋, 𝑃) [𝑇 ]

= AGGREGATE(𝑋 [𝑇 ], {𝑋
′
[𝑢∗], 𝑋

′
[𝑣∗]})𝑊𝑇

(11)

𝑋
′
[𝑢∗] = 𝑓𝑠𝑝𝑝 (𝑋, 𝑝𝑢,𝑢∗ ) [𝑢∗]

= 𝑓 𝑑−2
𝑙𝑚𝑝
(...𝑓 1

𝑙𝑚𝑝
(𝑋 [𝑢], 𝑋 [𝑢1])𝑊 1 ..., 𝑋 [𝑢∗])𝑊 𝑑−2 (12)
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𝑋
′
[𝑣∗] = 𝑓𝑠𝑝𝑝 (𝑋, 𝑝𝑣,𝑣∗ ) [𝑣∗]

= 𝑓 𝑑−2
𝑙𝑚𝑝
(...𝑓 1

𝑙𝑚𝑝
(𝑋 [𝑣], 𝑋 [𝑣1])𝑊 1 ..., 𝑋 [𝑣∗])𝑊 𝑑−2 (13)

Since 𝑓𝑙𝑚𝑝 is linear, the aggregated feature 𝑋
′ [𝑢∗] and 𝑋

′ [𝑣∗]
can be decoupled as:

𝑋
′
[𝑢∗] =

𝑋 [𝑢] ·𝑊 1 · ... ·𝑊 𝑑−2

𝑐𝑑−2
+ 𝑋 [𝑢1] ·𝑊

1 · ... ·𝑊 𝑑−2

𝑐𝑑−2

+ 𝑋 [𝑢2] ·𝑊
2 · ... ·𝑊 𝑑−2

𝑐𝑑−3
+ ... + 𝑋 [𝑢∗] ·𝑊

𝑑−2

𝑐

(14)

𝑋
′
[𝑣∗] =

𝑋 [𝑣] ·𝑊 1 · ... ·𝑊 𝑑−2

𝑐𝑑−2
+ 𝑋 [𝑣1] ·𝑊

1 · ... ·𝑊 𝑑−2

𝑐𝑑−2

+ 𝑋 [𝑣2] ·𝑊
2 · ... ·𝑊 𝑑−2

𝑐𝑑−3
+ ... + 𝑋 [𝑣∗] ·𝑊

𝑑−2

𝑐

(15)

where 𝑐 is the division index, 𝑐 = 2 for mean pooling aggregation

in Eq.(2), for summation pooling aggregation 𝑐 = 1. Combining

Eq.(11) and Eq.(14),(15) we have

𝑋
′
[𝑇 ] = AGGREGATE(𝑋 [𝑇 ], 𝑋

′
[𝑢∗], 𝑋

′
[𝑣∗])𝑊𝑇

=
(𝑋 [𝑢] + 𝑋 [𝑣]) ·𝑊 1 · ... ·𝑊 𝑑−2 ·𝑊𝑇

𝑐𝑑−2𝑐†

+ (𝑋 [𝑢1] + 𝑋 [𝑣1]) ·𝑊
1 · ... ·𝑊 𝑑−2 ·𝑊𝑇

𝑐𝑑−2𝑐†

+ (𝑋 [𝑢2] + 𝑋 [𝑣2]) ·𝑊
2 · ... ·𝑊 𝑑−2 ·𝑊𝑇

𝑐𝑑−3𝑐†
+ ...

+ (𝑋 [𝑢∗] + 𝑋 [𝑣∗]) ·𝑊
𝑑−2 ·𝑊𝑇

𝑐𝑐†

+ (𝑋 [𝑇 ]) ·𝑊
𝑇

𝑐†

(16)

where 𝑐† = 3 for mean pooling aggregation in Eq.(11), 𝑐† = 1 for

summation pooling aggregation. Similarly, for �̃� where �̃� = 𝑋

except �̃� [𝑢] = 𝑋 [𝑣], �̃� [𝑣] = 𝑋 [𝑢], we have

𝑋
′
[𝑇 ] = �̃�

′
[𝑇 ] ⇔ 𝑢 ≃LMPP,𝑇 𝑣 (17)

□

This indicates that the aggregated information via linear message

path passing is only related to the path length, but not the other

nodes on the path. The proposition also holds when {𝑝𝑢,𝑢∗ } ∩
{𝑝𝑣,𝑣∗ } ≠ ∅ and each 𝑓𝑚𝑙𝑚𝑝 in 𝑓𝑠𝑝𝑝 = 𝑓𝑚

𝑙𝑚𝑝
◦ ... ◦ 𝑓 2

𝑙𝑚𝑝
◦ 𝑓 1
𝑙𝑚𝑝

employs

different aggregation, we omit the proof since it is similar.

C TIME COMPLEXITY ANALYSIS
Our method is divided into two parts, node fetching and graph

condensation.

For the first part, we drop the node where the length of the

shortest path is greater than 𝑑2 or the length of the shortest path

+ the second short path is greater than 𝑑1. This can be achieved

through a multi-source shortest path problem (all target nodes as

the source). In this algorithm, each node will be accessed at most

twice, each node will be enqueued at most twice, and their adjacent

Algorithm 1: Bridging Background Node Fetching

Input: Graph G = (V, E), target nodes T = (𝑇1,𝑇2, ...,𝑇𝑛),
𝑑1

Output: The bridging node set 𝐵𝑟𝑖𝑑
1 Initialize a queue 𝑄 with all target nodes T ;
2 𝐵𝑟𝑖𝑑 ← ∅;
3 while 𝑄 is not empty do
4 𝑢 ← 𝑄.dequeue();

5 foreach 𝑣 is a neighbor of 𝑢 do
6 if edge (𝑢, 𝑣) has been accessed less than twice then
7 Accesse edge (𝑢, 𝑣);

// Note that the shortest and
2nd-shortest path are maintained in
the update process so that they
start from different target nodes.

8 Update the shortest and 2nd-shortest path of 𝑣

by 𝑢;

9 𝑄 .enqueue(𝑣);

10 foreach 𝑢 ∈ V/T do
11 if 𝑢’s length of shortest path + 2nd-shortest path ≤ 𝑑1

then
12 𝐵𝑟𝑖𝑑 ← 𝐵𝑟𝑖𝑑 ∪ 𝑢

13 return 𝐵𝑟𝑖𝑑

edges will be enumerated twice. And the time complexity of this

step is 𝑂 ( |𝐸 |). Specifically, to find shortest paths in an unweighted

graphs via BFS, the complexity is 𝑂 ( |𝐸 | + |𝑉 |) = 𝑂 ( |𝐸 | (assuming

no isolated nodes, |𝐸 | > |𝑉 |) [8]. For weighted graphs, we use the

same algorithm. Please note that we aim to find the minimum hop

paths while not the minimum weight paths in weighted graphs, so

the complexity is also 𝑂 ( |𝐸 |).
After that, the nodes in the k-order neighborhood of each target

node are accessed to calculate 𝑃𝐶𝐶 . Let the average number of

edges in each background node’s 𝑘-hop ego-network be 𝑒 (𝑘), then
the time complexity of the above steps is𝑂 (𝑒 (𝑘) |𝑉 |). The total time

complexity of the first part is 𝑂 ( |𝐸 | + 𝑒 (𝑘) |𝑉 |).
For the second part, we propose three graph condensation meth-

ods (−𝛼 , −𝛽 and −𝛾 respectively). All these methods need to cal-

culate the distance between each background node and the target

nodes in its 𝑘-hop ego-network. We use the hash method to merge

similar nodes, so the subsequent merging steps can be completed

with 𝑂 (1) for each node. This makes the time complexity of the

whole process determined by the complexity of previous distance

calculating, that is, 𝑂 (𝑒 (𝑘) |𝑉 |)
The first two methods (𝛼 , 𝛽) end after merging nodes with the

same hash value, while the last method(𝛾 ) requires an additional

step. For Graph Condensation-𝛾 , merging of affiliation nodes for

each target node only requires traversing the neighbors of these

target nodes, which means that the time complexity of this addi-

tional step is 𝑂 ( |𝐸 |). Therefore, the time complexity of these three

graph condensation methods for the second part is𝑂 ( |𝐸 | +𝑒 (𝑘) |𝑉 |).
To sum up, the total time complexity is 𝑂 ( |𝐸 | + 𝑒 (𝑘) |𝑉 |).
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Algorithm 2: Affiliation Background Node Fetching

Input: Graph G = (V, E), feature matrix 𝑋 , target nodes

T = (𝑇1,𝑇2, ...,𝑇𝑛), 𝑑2, 𝐾
Output: The affiliation node set 𝐴𝑓 𝑓 𝑖𝑙

1 Initialize an queue 𝑄 with all target nodes T ;
2 Initialize the an array 𝑑𝑖𝑠 with∞ for background nodes and

0 for target nodes;

3 𝐴𝑓 𝑓 𝑖𝑙 ← ∅;
4 𝐴𝑓 𝑓 𝑖𝑙

′ ← ∅;
5 while 𝑄 is not empty do
6 𝑢 ← 𝑄.dequeue();

7 foreach 𝑣 is a neighbor of 𝑢 do
8 if 𝑑𝑖𝑠 [𝑣] is∞ then
9 𝑑𝑖𝑠 [𝑣] ← 𝑑𝑖𝑠 [𝑢] + 1;

10 𝑄 .enqueue(𝑣);

11 foreach 𝑢 ∈ V/T do
12 if 𝑑𝑖𝑠 [𝑢] ≤ 𝑑2 then
13 𝐴𝑓 𝑓 𝑖𝑙

′ ← 𝐴𝑓 𝑓 𝑖𝑙
′ ∪ 𝑢

14 foreach 𝑢 ∈ T do
15 𝑝𝑐𝑐 ← ∅;
16 𝑎𝑓 𝑓 𝑖𝑙 ← ∅;
17 foreach 𝑣 is a neighbor of 𝑢 do
18 if 𝑣 ∈ 𝐴𝑓 𝑓 𝑖𝑙 ′ then
19 𝑎𝑓 𝑓 𝑖𝑙 ← 𝑎𝑓 𝑓 𝑖𝑙 ∪ 𝑣 ;
20 𝑝𝑐𝑐 ← 𝑝𝑐𝑐 ∪ 𝑐𝑜𝑜𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑋𝑢 , 𝑋𝑣);
21 sort 𝑎𝑓 𝑓 𝑖𝑙 according to 𝑝𝑐𝑐;

22 𝐴𝑓 𝑓 𝑖𝑙 ← 𝐴𝑓 𝑓 𝑖𝑙 ∪ 𝑎𝑓 𝑓 𝑖𝑙 [1 : 𝐾];

23 return 𝐴𝑓 𝑓 𝑖𝑙

D ALGORITHMS IMPLEMENTATION DETAILS
In this section, We show the detailed implementations of Graph-

Skeleton. Specifically, we present the corresponding background

fetching and graph condensation strategies respectively.

D.1 Background Node Fetching
Bridging Background Node. We show the detailed process of

bridging background node fetching in Algorithms 1. In detail, we

first initialize a queue 𝑄 with all target node T and set the initial

bridging background node set 𝐵𝑟𝑖𝑑 as empty. Then we search for

all accessible nodes starting from the target nodes in 𝑄 and update

their corresponding shortest and 2nd-shortest paths to target nodes

(Line 3-9). Thenwe select the background nodes under our proposed

fetching principle 1 of distance 𝑑1 in Section 3.1 as the bridging

background nodes 𝐵𝑟𝑖𝑑 (Line 10-12).

Affiliation Background Node. We show the detailed process of

affiliation background node fetching in Algorithms 2. In detail, we

search for all accessible nodes starting from the target nodes in 𝑄

and obtain their corresponding distances between each other (Line

5-10). Then we select the background nodes under our proposed

fetching principle 2 of distance 𝑑2 in Section 3.1 as the affiliation

Algorithm 3: Condensation-𝛼
Input: Graph G = (V, E), target nodes T = (𝑇1,𝑇2, ...,𝑇𝑛),

Affiliation and Bridging node set 𝐴𝑓 𝑓 𝑖𝑙, 𝐵𝑟𝑖𝑑 ,

ego-network’s hop 𝑘

Output: Condensed skeleton graph S𝛼
1 Set𝑚𝑎𝑠𝑘 [𝑢] to 0 for every node 𝑢;

2 foreach target node 𝑢 ∈ T do
3 for 𝑑 ← 1 to 𝑘 do
4 𝑘𝑒𝑦 [𝑢,𝑑] ← an unique random 256-bit integer;

5 foreach node 𝑣 in 𝑢’s 𝑘-hop ego-network and
𝑣 ∈ 𝐴𝑓 𝑓 𝑙𝑖 ∪ 𝐵𝑟𝑖𝑑 do

6 Let 𝑑 be the distance between 𝑢 and 𝑣 ;

// ⊙ denote Binary Exclusive Or(xor).

7 𝑚𝑎𝑠𝑘 [𝑣] ←𝑚𝑎𝑠𝑘 [𝑣] ⊙ 𝑘𝑒𝑦 [𝑢,𝑑];

8 Sort the node by node’s𝑚𝑎𝑠𝑘 with Radix Sort;

9 Merge nodes with the same mask into one node and get S𝛼 ;
10 return S𝛼

Algorithm 4: Condensation-𝛽
Input: Graph G = (V, E), target nodes T = (𝑇1,𝑇2, ...,𝑇𝑛),

Affiliation and Bridging node set 𝐴𝑓 𝑓 𝑖𝑙, 𝐵𝑟𝑖𝑑 ,

ego-network’s hop 𝑘

Output: Condensed skeleton graph S𝛽
1 Assign each target node 𝑢 with an unique random 256-bit

integer 𝑘𝑒𝑦 [𝑢];
2 Set𝑚𝑎𝑠𝑘 [𝑢] to 0 for every node 𝑢;

3 foreach target node 𝑢 ∈ T do
4 foreach node 𝑣 in 𝑢’s 𝑘-hop ego-network with

𝑣 ∈ 𝐴𝑓 𝑓 𝑙𝑖 ∪ 𝐵𝑟𝑖𝑑 do
// ⊙ denote Binary Exclusive Or(xor).

5 𝑚𝑎𝑠𝑘 [𝑣] ←𝑚𝑎𝑠𝑘 [𝑣] ⊙ 𝑘𝑒𝑦 [𝑢];

6 Sort the node by node’s𝑚𝑎𝑠𝑘 with Radix Sort;

7 Merge nodes with the same mask into one node;

8 Update edge weights by original distance information of

merged nodes and get S𝛽 ;
9 return S𝛽

node 𝐴𝑓 𝑓 𝑖𝑙
′
(Line 11-13). To control the width of fetching, we

compute the Pearson correlation coefficients (PCC) between the

target nodes and the their neighbors and select the background

nodes with largest 𝐾 PCCs as the affiliation background nodes

𝐴𝑓 𝑓 𝑖𝑙 (Line 14-22).

D.2 Graph Condensation
We show the detailed algorithm of graph condensation. The conden-

sation strategy-𝛼 is shown in Algorithms 3. In detail, we formulate

the multiple structure-set 𝑀𝑆𝑆 (𝑚𝑎𝑠𝑘 in Algorithms 3) for each

background node in 𝐴𝑓 𝑓 𝑖𝑙 ∪ 𝐵𝑟𝑖𝑑 via its accessible target nodes

and the corresponding shortest path distances (Line 2-7), then for

the background nodes with same𝑀𝑆𝑆 (𝑚𝑎𝑠𝑘), we merge them into

a synthetic node (Line 8-9). For condensation strategy-𝛽 , we only
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Table 10: Sensitivity Analysis of Target Nodes Sparsity. 𝑟 denotes the target masking ratio. Columns 2-4: The averaged count of
target node (ration to the total neighbors count) at 𝑘-th hop for each central target node. Columns 5-7: The test accuracy based
on the target masked graph and the corresponding compressed skeleton graphs with different settings of 𝑑1, 𝑑2.

𝑟 1st hop 𝑁𝑡 (ratio) 2nd hop 𝑁𝑡 (ratio) 3rd hop 𝑁𝑡 (ratio) Original Skeleton (𝑑1 = 3, 𝑑2 = 3) Skeleton (𝑑1 = 2, 𝑑2 = 1)

0.0 1.11 (0.123) 3.03 (0.028) 8.62 (0.009) 71.02±0.45 71.09±0.27 70.84±0.33

0.1 0.91 (0.094) 2.78 (0.021) 7.54 (0.007) 70.76±0.41 70.01±0.46 69.55±0.40

0.3 0.69 (0.075) 1.69 (0.016) 5.12 (0.005) 70.03±0.37 69.76±0.35 68.97±0.21

0.6 0.28 (0.051) 0.59 (0.006) 1.69 (0.002) 68.50±0.58 68.18±0.65 67.33±0.60

0.9 0.09 (0.011) 0.305 (0.004) 0.71 (0.001) 64.89±0.55 64.81±0.38 64.03±0.46

Table 11: Compression performance with varied fetching
distances 𝑑1, 𝑑2 under Skeleton-𝛼 strategy. “Gene_t” indicates
time costs of skeleton generation (graph compression), “BCR”
indicates background node compression rate. The target node
classification performance is evaluated by GraphSAGE.

Dataset Graph 𝑑1, 𝑑2 Gene_t BCR Test Score (%)

DGraph

Original - - 0.00 78.68±0.06

Skeleton-𝛼

[3, 3] 51s 0.76 78.61±0.06

[2, 2] 36s 0.65 78.56±0.06

[2, 1] 32s 0.47 78.52±0.07

arxiv

Original - - 0.00 71.02±0.45

Skeleton-𝛼

[3, 3] 35s 0.75 71.09±0.27

[2, 2] 8s 0.69 71.02±0.31

[2, 1] 5s 0.48 70.84±0.33

involve the accessible target nodes of each background node in

𝐴𝑓 𝑓 𝑖𝑙 ∪ 𝐵𝑟𝑖𝑑 while omitting the corresponding distance informa-

tion in𝑀𝑆𝑆 of strategy-𝛼 (Line 1, Algorithms 4). After merging the

background nodes with same𝑀𝑆𝑆 (L) to a synthetic node (Line 8-9),

we update the edge weights of condensed graph by the original

distance information of merged nodes. For condensation strategy-𝛾 ,

we omit the detailed pseudocode since it is similar to strategy-𝛽

but with the last step of merging the affiliation background nodes

to their corresponding target nodes using Equation 5.

E ADDITIONAL EXPERIMENTAL RESULTS
E.1 Analysis of Fetching Depths
In this subsection, we conduct experiments on the ogbn-arxiv and

DGraph datasets to explore the influences of node fetching depths

of 𝑑1 and 𝑑2 to graph compression performance. We compress the

graph data with varied fetching depths 𝑑1, 𝑑2 and use Skeleton-𝛼

strategy for node condensation since it preserves most background

node information and is most sensitive to fetching depths.

Considering most of the popular GNN backbones contain no

more than three convolution layers, we initially set the 𝑑1 and 𝑑2
no more than 3 (although structural connectivity beyond 3-hops

cannot be guaranteed, it has no impact on information aggrega-

tion in these GNNs). The compression performance is shown in

Table 11, where we report the skeleton graph S𝛼 generation time

costs, background node compression rate (𝐵𝐶𝑅) and target node

classification performance in downstream tasks. The test scores

in downstream tasks are evaluated by GraphSAGE. As we can see,

smaller fetching depths ([𝑑1,𝑑2]=[2,1]) notably increase the 𝐵𝐶𝑅

and reduces the compression time consumption, while presenting

negligible performance degradation of target node classification in

downstream tasks.

E.2 Sensitivity Analysis of Target Nodes
Sparsity

Considering the sparsity of target nodewithin theweb graphsmight

influence the background nodes fetching, we conduct an additional

experiment based on ogbn-arxiv graph to evaluate the relationship

between the target sparsity and sensitivity of 𝑑1, 𝑑2. To measure

the sparsity of target nodes within the graph, we employ the count

(ratio) of target nodes in the 𝑘-order neighborhood of each target

node as the metric to measure how sparse the target nodes are.

Specifically, we compute this target node sparsity metric within

3-hops for each target node on ogbn-arxiv dataset. To regulate the

sparsity of the target nodes, we randomly mask a fixed rate 𝑟 of

target nodes as background nodes within the ogbn-arxiv graph.

Then we compress these graphs using skeleton-𝛼 with different

settings of 𝑑1, 𝑑2. The results are shown in Table 10, where each

row depicts the statistics and test accuracy of the graph with a

target masking ratio 𝑟 . Columns 2-4 display the averaged count

of target node (ration to the total neighbors count) at 𝑘-th hop

for each central target node, while columns 5-7 present the test

accuracy based on the target masked graph and the corresponding

compressed skeleton graphs with different settings of 𝑑1, 𝑑2. The

initial row presents the statistics and test accuracy of the original

ogbn-arxiv graph, with a masking ratio of 𝑟 = 0.

As we can see, within the original ogbn-arxiv graph, each target

node maintains an average of one target node as its immediate

neighbor, three target nodes as its 2nd-order neighbors, and eight

target nodes as its 3rd-order neighbors, which results in a more

dispersed sparsity among target nodes. As illustrated in the table, for

various target masking ratios 𝑟 , the compressed graphs (skeleton)

with 𝑑1 = 3, 𝑑2 = 3 can still well approximate the performance of

the original graph. For skeleton (𝑑1 = 2, 𝑑2 = 1), we can see that

the performance gap with the skeleton (𝑑1 = 3, 𝑑2 = 3) becomes

larger with masking ration 𝑟 increasing (more sparse target nodes

scattering). This might be due to the fact that when the target

nodes are highly sparse scattering, skeleton (𝑑1 = 2, 𝑑2 = 1) can

hardly fetch the bridging nodes within𝑑1, and the fetched affiliation

nodes are also much fewer than skeleton (𝑑1 = 3, 𝑑2 = 3), leading

to the performance gap. Despite that, it remains clear that the

compressed graphs with different settings of 𝑑1, 𝑑2 presents close
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Figure 9: GNN training and test curves of original graph and skeleton graphs on different datasets
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node classification performance compared to the original graph,

indicating that our method has good robustness to the graphs with

different target nodes sparsity.

E.3 Convergence Analysis of Skeleton Graph
To explore the convergence performance of graph model on our

generated skeleton graph, we compare the training and test perfor-

mance of GNNs on skeleton graphs to the original graph. The con-

vergence curves of GNNs on four different datasets are presented in

Figure 9. The 𝐵𝐶𝑅 of each synthetic graph is shown in legend, the

dash lines represent the training scores and the solid lines represent

the testing scores. It is clear that the GNN can achieve convergence

rates on the skeleton graph-𝛾 that are very close to those of the

original graph. Similar performances are also observed in the test-

ing score curves. This illustrates that our proposed method can well

preserve the information that is essential for both model training

and inference.

E.4 Exploration of Background Nodes
Influences on ogbn-arxiv

We also take ogbn-arxiv as another case to investigate how the

background nodes influence the performance in the citation net-

work. The attention coefficients of the top 10 patterns and the

corresponding local structures are presented in Figure 10. Differ-

ent from DGraph, the affiliation nodes deliver the most essential

influence on the target prediction, indicating that the correlation

information is more important for paper area prediction. This is

reasonable because for the paper citation network, the direct neigh-

bor (cited paper) is most likely to belong to the same domain as the

target node. On the other hand, the target connectivity also con-

tributes to the task ({1,1}, {1,1,1} rank second and third respectively).

This can also be well explained by the fact that the articles cite the

same papers that may belong to the same field.

F DISCUSSION
In this paper, we focus on a common challenge in real-world appli-

cations: compressing the massive background nodes for predicting

a small part of target nodes within the graph data, to ease GNNs de-

ployment and guarantee the performance. Specifically, we propose

a effective yet efficient graph compression method to compress

the background nodes while maintaining the vital semantic and

structural information for target nodes classification. To the best

of our knowledge, this is the first work on the background nodes

compression problem for target node analysis, addressing the bot-

tleneck of data storage and graph model deployment in real world

applications.

Since some studies [22, 24, 25] have been conducted for graph

compression, here we emphasize the key differences and advantages

of Graph-Skeleton in the following aspects: (1) our method strictly

preserve the whole target nodes while restricting the the compres-

sion candidate nodes in the union of background nodes. It allows us

to easily trace and analyse the information of each individual target

node in the compressed graph. However, the methods mentioned

above would inevitably lose some target nodes or have no ability to

handle the background node compression. (2) our method is highly

efficient both on space and time costs. The above studies require

large memory costs during compression since complex and large

parameter space for synthetic graph structure and node features

generation, which greatly impedes the deployment in real-world

large-scale graphs. Instead, our method uses a simple yet effective

algorithm, which presents great scalability even on very large-scale

graphs (MAG240M with 2.4 million nodes) while preserving com-

parable performance to the original graph. Besides, the time cost

of our method is also very low, which only takes 5s to compress

the ogbn-arxiv data with more than 0.16 million nodes (Table 11).

(3) The studies mentioned above aim to generate a small sugbraph

for training acceleration while still require the entire graph for

inference, analysis and storage. In contrast, the compressed syn-

thetic graph of our method extends the benefits of a reduced scale

to all aspects, including inference, analysis, and storage. (4) Our

method can compress the graph once for all, with good adaptability
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to various downstream GNNs, without requiring distinct compres-

sion tailored for each individual GNN. In addition, our compressed

graph can also well preserve the dependency between distant nodes,

allowing deep graph models to explore multiple neighborhood hops.

for which we will give detailed discussion below. (5) Our method

has high flexibility on the dynamic evolution graphs. We present

detail illustration in the following section.

Long Range Dependency Preservation Our compressed graph

can also preserve the dependency between distant nodes even when

the 𝑑1 and 𝑑2 are small. Specifically, our method only strictly re-

stricts the hop size of affiliation background nodes into 𝑑2 for each

target node, but the distant dependencies maintained by the tar-

get nodes and bridging background nodes can be well preserved.

We present a toy example for better illustration in Figure 1 in our

uploaded PDF in global response. In Figure 1, the skeleton graph

is compressed with the settings of 𝑑1, 𝑑2 = [2, 1]. The two dashed
magenta lines indicate the potentially important dependencies be-

tween distant node pairs ({𝐵1,𝑇 6} and {𝑇 2,𝑇 5}, 7-hops and 4-hops
away respectively) for target nodes classification. As we can see,

these long-range dependencies can also be effectively preserved in

our compressed graph, allowing graph models to explore multiple

neighborhood hops.

Flexibility on Dynamic Evolution Graphs
A lot of domains now present highly dynamic data that exhibit

complex temporal properties. For example, new users (nodes) and

relations (edges) will continue to appear in social media platforms

like Facebook and Instagram. The dynamic evolution of a graph

would continuously introducing new features and labels that are

out of distribution (OoD) to the original graph. This requires the

continuous updates of the compressed graph so that it contains

the latest information for effective model training and target nodes

analysis.

Our proposed Skeleton-Graph can also be well extended to the

dynamic evolution graphs. To illustrate this, we provide a toy ex-

ample in Figure12 where Graph-Skeleton can easily updates the

compressed graph with a newly emerged target node 𝑇4 at time

𝑇 . In details, when a new target node 𝑇4 emerging connected with

some neighbors (𝐵4, 𝐵5, 𝐵6, 𝐵7), we first unfold the local entities

(synthetic nodes) associated with𝑇4’ neighbors, and then condense

these unfolded nodes under the Skeleton-Graph framework to gen-

erate new entities (synthetic nodes). In this way, we only need to

update the local subgraph associated to the new emerged target

nodes and their neighbors while not have to update the entire orig-

inal skeleton graph. This allows us to easily incorporates the new
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information into the compressed graph in an continuous manner.

In contrast, the other graph compression methods [22, 24, 25] in

last section have to rebuild the compressed graph from scratch to

incorporates new information, which largely impedes the imple-

mentation in real-word dynamic evolution graphs.

Limitations and Future Works
The limitations of our method are summarized as follows: (1)

Due to the lossy compression, our method would inevitably cause

the information loss and performance decline on some datasets.

There is a trade-off between the graph-size and information in-

tegrity. (2) The final graph size and 𝐵𝐶𝑅 of our condensed skeleton

graph also depend on the target node size in the original graph

data since we aim to compress the background nodes while pre-

serving all the target nodes. For the applications with most nodes

are target nodes within the graph, the compression rate would be

limited. (3) The condensation performance of three proposed con-

densation strategies varies from different datasets with different

graphs structures. For example, the condensation stratigy-𝛽 are not

that effective to condense the datasets of ogbn-mag and MAG240M

(detailed illustration in A.5).

G CODE DEMO
https://github.com/GraphSkeleton/WWW24_GraphSkeleton.git
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