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Abstract

Understanding the functionality of proteins has been a focal point of bio-
logical research due to their critical roles in various biological processes.
However, this endeavor is challenging due to the complex nature of pro-
teins, requiring sophisticated experimental designs and extended timelines
to uncover their specific functions. In this work, we introduce BetaDescribe,
a collection of models designed to generate detailed and rich textual de-
scriptions of proteins, encompassing properties such as function, catalytic
activity, involvement in specific metabolic pathways, subcellular localiza-
tions, and the presence of specific domains. The trained BetaDescribe model
receives protein sequences as input and outputs a textual description of
these properties. The model was trained on datasets containing both bi-
ological and English text, which allowed the incorporation of biological
knowledge. We demonstrate the utility of BetaDescribe by providing de-
scriptions for proteins that share little to no sequence similarity to proteins
with functional descriptions in public datasets. Using in-silico mutagenesis,
we show that BetaDescribe relies on functionally important regions, as part
of its prediction, suggesting that the model identifies regions of impor-
tance for the protein functionality without needing homologous sequence.
BetaDescribe offers a powerful tool to explore protein functionality, aug-
menting existing approaches such as annotation transfer based on sequence
or structure similarity.

1 Introduction

Since the discovery of the first protein sequence (Sanger & Thompson, 1953), researchers
have been fascinated by understanding the intricate functionality of proteins. Proteins play
a vital role in almost every biological process, serving as catalysts for chemical reactions,
transmitting signals within cells, providing structural support, and much more. Unraveling
protein functions is crucial for the advancement of fields such as medicine, agriculture, and
biotechnology. However, discovering protein functions can be complex and requires metic-
ulous planning, innovative techniques, and sophisticated instrumentation. Experimental
determination of a new protein functionality may take years. As a result, the functions of
most proteins across all domains of life are computationally predicted.

In the last decade, artificial neural networks have emerged as a powerful paradigm for
solving complex problems in different fields (LeCun et al., 2015) such as computer vision



LM4Sci Workshop at COLM 2025 (Non-Archival)

(Voulodimos et al., 2018), natural language processing (NLP; Young et al. (2018)), speech
(Nassif et al., 2019), and structural biology (Jumper et al., 2021). Biological sequences,
like natural languages, are composed of discrete characters: letters in human languages,
nucleotides in DNA sequences, and amino acids in proteins. These characters form the foun-
dation for more complex structures, such as sentences and genes, which ultimately create
documents and genomes (Simon et al., 2024; Dotan et al., 2024). However, there are many
differences between the two. While human languages follow known grammatical rules,
specific morphological structures, and contextual cues, biological sequences are arranged in
highly specific and intricate patterns that convey complex biochemical information. Further-
more, evaluating texts written in natural languages, is relatively straightforward, a simple
read-through by a native speaker can reveal errors and convey meaning. Nevertheless, simi-
lar properties of protein sequences and English text allow adapting NLP-based techniques
for protein analyses (Hayes et al., 2025; Lin et al., 2023; Nijkamp et al., 2023; Zhang et al.,
2024).

Early work in the intersection of protein science and deep learning, was primarily focused
on classification and regression tasks. Regression tasks include predicting continuous-
valued biological properties, such as protein fluorescence (Wang et al., 2022) or stability
(Alley et al., 2019; Gong et al., 2023). On the classification side, deep learning models
have been developed to predict protein subcellular localization (Elnaggar et al., 2022; Jiang
et al., 2023b; 2021), infer structural characterization (Hou et al., 2017), identify type III
effectors (Wagner et al., 2022), classify antibiotic resistance genes properties (Li et al., 2021)
or recognize antimicrobial activity (Veltri et al., 2018). A major application area has been
function prediction, formulated as the task of assigning proteins to Gene Ontology (GO)
terms. Many GO predictors have been trained (Cao & Shen, 2021; Gligorijevi¢ et al., 2021;
Kulmanov et al., 2018; Littmann et al., 2021; Sanderson et al., 2023; Strodthoff et al., 2020;
Sureyya Rifaioglu et al., 2019; Yuan et al., 2024).

More recently, protein language models were successfully trained to predict structures
from sequences, as exemplified by landmark models such as AlphaFold3 (Abramson et al.,
2024) and ESM3 (Hayes et al., 2025). These models demonstrate that transformer-based
architectures can internalize physical principles and accurately predict three-dimensional
structures from sequence alone, thereby enabling transformative applications in structural
biology and drug discovery.

Building on these developments, researchers have begun to explore generative models that
go beyond prediction and classification to produce new sequences or descriptions condi-
tioned on biological context. For example, ProGen2 (Nijkamp et al., 2023) demonstrated the
feasibility of controlled protein sequence generation. Of particular relevance to our work
are models that generate natural language descriptions of proteins, an emerging direction
that aims to provide a detailed output tailored specifically to each protein. While recent
studies (Abdine et al., 2024; Zhuo et al., 2024) have proposed early approaches to protein
captioning, there remains a lack of systematic evaluation regarding the consistency and
biological relevance of the generated text.

In this work, we developed BetaDescribe, a collection of models, trained to accurately
generate rich textual descriptions of proteins. Given a protein sequence as input, our trained
model provides a description that may include several properties, such as the protein’s
function, catalytic activity, its subcellular localization, and the PTMs it can undergo. The
starting model of BetaDescribe is a LLAMA2 model (Touvron et al., 2023), trained on trillions
of English tokens. We further trained this model on more than 120 billion tokens containing
protein knowledge extracted from UniProt. We tested the performance of BetaDescribe by
evaluating the differences between its generated descriptions for protein sequences with a
known function and the functions reported in UniProt. We also demonstrate its applicability
for predicting the function of proteins with insignificant sequence similarity to any of the
proteins used for training.
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Figure 1: BetaDescribe workflow. The generator processes the protein sequences and creates
multiple candidate descriptions. The validators, independently, provide simple textual
properties of the protein. The judge receives the candidate descriptions (from the generator)
and the predicted properties (from the validators) and rejects or accepts each description.
Finally, BetaDescribe provides up to three alternative descriptions for each protein.

2 New Approaches

2.1 Outline

BetaDescribe is a collection of deep-learning models designed to generate and validate
optimal descriptions of proteins. This collection comprises three components that we
termed generator, validators, and judge (Figure 1). The generator creates rich and detailed
candidate textual descriptions for each protein. The validators predict simple properties of
proteins (e.g., the subcellular localization of the protein). The judge receives a candidate
description (from the generator), and the predicted properties (from the validators) and
rejects or accepts the candidate. The generator and the validators process the protein
sequence and generate textual (English) descriptions and properties, respectively. The judge
processes English text only. Specifically, we trained a large model (7 billion parameters)
as the generator, and smaller models (150 million parameters) as validators (since text
generation is more complex than its validation). In addition, we harnessed GPT4 (OpenAl
et al., 2024) to serve as the judge. Similar techniques to generate and validate solutions have
been proposed in the context of code generation (Haluptzok et al., 2023). As the final output,
BetaDescribe provides a set of possible descriptions, ranked by their likelihood.

2.2 The Generator

The generator is the central model in BetaDescribe. It is a decoder-only model (Radford et al.,
2018) trained to generate textual descriptions of proteins in English, serving as a bridge
between the protein domain and the English domain. The model was pretrained on two
trillion English tokens by Meta (Touvron et al., 2023). Next, we continued training the model
on 120 billion additional tokens, which include protein sequences and their descriptions,
thus incorporating biological knowledge. The model was trained to predict the next token,
i.e., given a sequence prefix, the model was trained to complete it. The model was trained
in several phases, designed to gradually move from general English language modeling to
generating textual descriptions of proteins.

22.1 Training

Starting from the original LLAMAZ2 model pretrained on general English text (Touvron
et al., 2023), BetaDescribe was trained in three stages to incorporate biological knowledge.
In the Stage 1, we introduced Dataset 1 (~ 29B tokens), a mix of 70% protein sequences
from UniRef-90 and 30% general English text from the RedPajama dataset, allowing the
model to learn protein data without losing general language abilities. Next, the model was
trained on Dataset 2 (~ 13B tokens) paired protein sequences with their corresponding
English descriptions from the UniProt dataset (The UniProt Consortium, 2016), providing
biological context and expert vocabulary. This dataset was composed of 45% protein-then-
description pairs, 45% description-then-protein pairs, and 10% unrelated English text. In
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the final stage, Dataset 3 (~ 83B tokens) was used to train the model specifically to predict
protein descriptions from sequences. Each stage built on the previous one using transfer
learning. For specific models, training hyperparameters, and dataset configurations, see
Supplementary Information S1.

2.2.2 Memorization and Generalization

Multiple proteins in the dataset have the same descriptions, which led the generator to
memorize some of them. With a temperature of 0, most of the generated descriptions appear
in the training set. This resembles a “search” operation within the description domain.
The generation of novel descriptions could provide additional insights. By increasing the
temperature hyperparameter, the generator can predict descriptions that are not present in
our training set. In a preliminary analysis, a temperature of 1.0 provided a good balance
between description diversity and lack of hallucinations (not shown).

2.2.3 Architecture and Inference

The model architecture is based on the LLAMA2 model with its default tokenization (Tou-
vron et al., 2023). It is a decoder-only model with seven billion parameters, comprising
32 layers and 32 attention heads. The hidden state size is 4,096. See Touvron et al. (2023)
for additional details on the architecture. During inference, we employed two strategies
to generate multiple candidate descriptions: varying the prompt, and generating multiple
outputs by sampling with the temperature parameter (for more details, see Supplementary
Information S2).

2.3 The Validators

We trained three different validators, each predicting a specific protein property given the
input protein sequence. We selected properties that can be accurately predicted and are rele-
vant for many proteins. The three properties were: (1) higher-level taxonomic classification,
“viruses”, “bacteria”, “archaea” and “eukaryota”, based on the UniProt lineage property;
(2) subcellular localization consisting of 388 categories including “acrosome”, “chlorosome
envelope”, “Golgi apparatus lumen”, and “plasmodesma”. Since proteins may function in
more than one location, this classification is multi-labeled; and (3) presence of enzymatic
activity (a binary-classification task). The starting point for each validator is the ESM2 base
model (Lin et al., 2023), which is associated with 150 million parameters. For training and
evaluating the validators, we extracted the proteins and their corresponding labels from
the UniProt dataset (The UniProt Consortium, 2016). For the models, tokenizers, training
hyperparameters, and datasets, see Supplementary Information S3.

24 The Judge

The congruence between the validators’ predictions and a candidate description is deter-
mined by the judge. For example, the judge is expected to reject a bacterial protein (property
predicted by a validator) with a description that includes activity related to the eukaryotic
spliceosome (a description generated by the generator). The judge is an external LLM
trained on English text, some of which relates to biological knowledge. The generator and
the validators convert the protein sequences to English descriptions, and English properties,
respectively, and the resulting text is used as input for the judge (Figure 1). Specifically, we
used a combination of rule-based decision and prompt-based queries to GPT4 (OpenAl
et al., 2024) to reject unlikely descriptions (see Supplementary Information S4).

2.5 Selecting a Subset of Diverse Descriptions

From the resulting descriptions, we aim to select a subset of representative descriptions
reflecting the diversity of the suggested protein functions. Specifically, we selected three
descriptions from the descriptions that passed the judge (up to 45 descriptions, 15 for each
of the three prompts). To this end, we created a graph, in which nodes are descriptions,
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and edges are the string-based distances between two descriptions; specifically, we used
the Character n-gram F score (ChrF; Popovi¢ (2015); Supplementary Information S5). Next,
we computed communities (clusters), i.e., groups of nodes (descriptions) that are more
densely connected to each other than to the rest of the nodes (Blondel et al., 2008; Radicchi
et al., 2004). We focused on the three largest communities and for each such community, we
selected the representative description with the highest average ChrF value. The yielded
descriptions are ranked by the community size. We used the Networkx library to implement
the graph and the search for communities (Hagberg et al., 2008).

2.6 Evaluation

To evaluate the performance of BetaDescribe on the test set, we compared each inferred
description to the true one, the latter provided by UniProt (The UniProt Consortium, 2016).
We sampled dozens of proteins and conducted an extensive manual assessment of their
descriptions generated by BetaDescribe and BlastP. Furthermore, four automatic metrics
were used to evaluate performance: exact match, ChrF (Popovi¢, 2015), SacreBLEU (Post,
2018) and cosine similarity (see Supplementary Information S5).

3 Results

3.1 BetaDescribe Performance

A total of 2.5 million proteins, comprising the test set, were divided into three categories
according to their similarity to the training set, evaluated by BlastP E-values (Altschul et al.,
1990). Category 1 sequences lack BlastP hits (E — value > 10, 151 proteins), Category 2
sequences had statistically insignificant hits against the training data (1 < E — value <= 10,
151 proteins), and Category 3 sequences had nearly significant or significant hits (E-value j=
1, ~ 2.5 x 10° proteins). In our analysis, we compared BetaDescribe predictions to the best
BlastP hit (with the lowest E-value) when searching the training set.

3.1.1 Providing Descriptions when BlastP is Unavailable

Within Category 1, BlastP

failed to find proteins that Table 1: Performance of BetaDescribe on Category 1 pro-
share the same sequence due  teing, i.e., test proteins without BlastP hits when searched
to some peptides being too against the training data. The number of descriptions for
short to yield any E-value each column is stated in parentheses. Predictions 1,2, and
(see Supplementary Informa- 3 are the first, second, and third descriptions, respectively

tion S56). Accordingly, we provided by BetaDescribe.
excluded all proteins with

an identical sequence in the

o Metric Prediction 1 (133) Prediction 2 (114) Prediction 3 (93)
training and test data from
all further analyses. In gen- Exactmatch (count) 4 6 2
ChrF 034402 0.33+0.22 0.340.19
eral, across all measures of SacreBLEU 0.15+£0.22 0.15+0.24 0.12+0.19
accuracy, the differences be- Cosine similarity 0.64+0.17 0.59 +0.17 0.58 +0.15

tween the first, second, and

third predictions were rela-

tively small (Table 1). For 151 Category 1 proteins, 69 had the exact same description in the
training set but for a protein with a different sequence. For example, protein AOASCOXGCO
in the test set is 50 amino-acid long and has the following description in UniProt: “Pro-
tamines substitute for histones in the chromatin of sperm during the haploid phase of
spermatogenesis. They compact sperm DNA into a highly condensed, stable and inactive
complex”. This function was perfectly predicted by our model, probably because the func-
tion exists in the training set. However, the same functional description appears for a related
protein, that differs from AOA8COXGCO by three indels of length one, and nine substitutions,
i.e., 77% identity. The presence of low-complexity regions and repetitive elements probably
failed BlastP to detect significant sequence similarity (see Supplementary Information S7).
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Notably, even when the performance scores are substantially less than 1, components of
the predicted descriptions may be accurate. Consider the case of protein AOA1E3Q8Q4,
for which the accuracy was: 0.35, 0.081, and 0.61 for The ChrF, SacreBLEU, and cosine
similarity scores, respectively. The description of this 84 amino-acid long protein in UniProt
is: ‘ ‘FUNCTION$ Binds tightly to hydroxyapatite. Appears to form an integral part of
the mineralized matrix. Probably important to cell-matrix interaction. Promotes
Arg-Gly-Asp-dependent cell attachment, SUBCELLULAR LOCATIONS$ Secreted.’’

In comparison, our model prediction is: ¢ ‘FUNCTION$ Plays a role in cell adhesion
and tissue remodeling. May be a cell-cell adhesion protein with cell-adhesive
properties, SUBCELLULAR LOCATION$ Secreted, extracellular space, extracellular
matrix, PTM$ May be proteolytically cleaved, SUBUNIT$ Interacts with SPREDT,
SIMILARITY$ Belongs to the invertebrate Chitin-binding protein family.’’ The
predicted description correctly captures that this protein is secreted and is involved in
cell-cell and cell-extracellular matrix interactions. Here too, the reason for BlastP’s failure to
find a similar sequence in the training set is the presence of low-complexity regions (see
Supplementary Information S7), while a similar description appears in the training data. To
conclude, for many of the proteins in this category, BlastP technically fails to find a hit as the
proteins are short, include low-complexity regions, or both (see Supplementary Information
S6).

3.1.2 Providing Descriptions when BlastP E-value is High

Category 2 includes 151 proteins with no significant hits in the training data (E-value higher
than 1). For four of the proteins, BetaDescribe failed to provide a valid description (2.6%). Of
the remaining 147 cases, BetaDescribe provided an exact match for two and three proteins
for predictions 1, and 2, respectively. Although a Blast E-value above 1 is considered
insignificant (usually the threshold is much lower, e.g., Moreno-Hagelsieb & Latimer, 2008),
retrieving the description from the best hit (lowest E-value) returned five proteins with
the exact match. When comparing the cosine similarity score, BetaDescribe performance
(prediction 1) was superior to BlastP: 0.58 and 0.48, respectively (paired t-test; pj0.0001; see
Supplementary Information S8). The ChrF and the SacreBLEU scores were not significantly
different. We additionally tested PSI-Blast (Altschul et al., 1997) and HMMER (Eddy, 2011),
both of which underperformed compared to BetaDescribe (see Supplementary Information
S8). We note, that E-values may not be reliable for short sequences, and thus, we tested
the performance of BetaDescribe and BlastP on additional stricter criteria (Supplementary
Information S8). While there is no clear value of a cosine score above which a prediction
is considered reliable, from our experience, prediction scores above 0.6 were relatively
accurate. With this cutoff, out of the 147 predictions, Prediction 1 of BetaDescribe was
accurate in 55 predictions and BlastP was accurate in 27 cases (Supplementary Information
59). In addition, Supplementary Information S9 presents an example that highlights the
advantages of having multiple candidate descriptions.

3.1.3 Providing Descriptions when BlastP Hits are Significant

We sampled 1,000 proteins from the test set, for which similar proteins are present in the
training set, i.e., E-values lower (or equal) to 1.0 when running BlastP against the training
set. Taking the description from the closest hit as the predicted function, yielded accurate
predictions (Supplementary Information S8). Across all metrics, BlastP-based descriptions
were significantly better than the ones provided by BetaDescribe (paired t-test; p < 0.0001),
suggesting that functionality transfer based on BlastP between closely related proteins is
highly accurate. However, we found a strong correlation between the accuracy of the BlastP
prediction if it “agrees” with BetaDescribe prediction (Supplementary Information 510),
suggesting that BetaDescribe could be applied to boost confidence for BlastP predictions.
Furthermore, we evaluated whether public LLMs: GPT4 (OpenAl et al., 2024), Gemini
(Gemini Team et al.) and Claude (https:/ /www.anthropic.com/news/claude-3-5-sonnet)
could generate accuarte descriptions. The descriptions produced by GPT-4 and Gemini did
not differ significantly from random scores (see Supplementary Information S13).
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Figure 2: Histogram reporting the manual evaluation results. The subplots correspond to
the different categories. Each bar represents the count of items assigned a specific grade
(1 - 4), grouped by the description type (BetaDescribe or BlastP), in which a grade of 4
represents highly accurate descriptions and a grade of 1, highly inaccurate ones.

3.1.4 Analyzing the Source of Errors

In some cases, the judge rejects a description generated by the generator, based on input
from the validators (Figure 1). Such cases can result from three scenarios: either the gener-
ator’s description is false, and the validators correctly disagree with it, or the generator’s
description is correct, but the validator’s predictions are wrong, which is the source of the
disagreement. Another option is that both the validator and the generated description are
correct, but the judge erroneously determines that they are incompatible. Supplementary In-
formation S11 provides detailed ablation tests, including validators and judge performance,
the effect of pretraining on the generator, performance of accepted and rejected descriptions
and performance of descriptions part of the top predictions and not.

3.1.5 Manual Evaluation

We manually evaluated a subset of the predicted descriptions to test the agreement between
cosine similarity scores and expert assessments. We randomly sampled ten proteins from
each of the three categories and compared the predictions obtained using either BlastP
or BetaDescribe. As BlastP fails to produce predictions for Category 1, the evaluation
set included 50 descriptions in total. Each expert assigned a grade to each of these 50
descriptions. Grades were between 1 and 4, where 4 indicates an excellent match, and 1 an
inadequate match (see Supplementary Information S5).

As shown in Figure 2, the distributions differ notably between methods and categories. In
Category 1, BetaDescribe shows a reasonable spread of scores, with half of the predictions
receiving a grade of 3 or 4, suggesting moderate quality even in low-similarity settings.
In Category 2, BetaDescribe continues to show a similar distribution of five predictions
receiving a score of 3 or 4, while BlastP’s predictions cluster heavily at grade 1. By contrast,
in Category 3, where sequence similarity is high, BlastP performs better, as most of its
predictions receive a perfect match, while BetaDescribe shows a more balanced distribution
of scores, including some high-scoring predictions. These distributions reinforce the notion
that BetaDescribe is less dependent on sequence similarity than BlastP, maintaining stable
performance even when similarity is low. In addition, the results indicate a highly significant

positive correlation (p < 0.0001; R?> = 0.827) between our primary automatic metric, cosine
similarity, and the grades assigned by the experts (see Supplementary Information S12).

3.2 Providing Descriptions for Proteins with Unknown Functions

We demonstrate the usage of BetaDescribe by analyzing six examples of proteins with no
experimentally proven functionality, but whose function can be predicted by other attributes,
e.g., location in the genome and structural features. Specifically, we selected five proteins
from three different viruses, encompassing two proteins with putative envelope glyco-
proteins and three RNA-depended RNA polymerase subunits. We also analyzed a newly
discovered bacterial protein involved in the immune system. Supplementary Information
S14 provides a detailed discussion of three likely-to-be RNA-dependent RNA polymerase
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Figure 3: Identifying functionally important regions for the preproinsulin protein. The four
regions of the insulin are marked: Signal, Insulin B chain, C peptide, and Insulin A chain.

subunits, SnRV-Env protein, CRISPR related protein and the descriptions generated by
BetaDescribe and those retrieved via BlastP.

3.2.1 TGV-S (UniProt ID: UPI0027A96E0A)

The first example consists of the putative spike (S) protein of the recently identified nidovirus,
the Trout Granulomatous Virus (TGV). The inferred function of this protein is based on the
genomic localization of its open reading frame and the protein’s domain structure, which
are typical for nidoviruses (Karniely et al., 2023). BlastP search with TGV-S sequence against

the training set yielded a significant hit (Q28042; E — value < 10~°). This known protein
has an unrelated function in fertilization. In contrast, BetaDescribe provided two valid
predictions, describing a membrane virion protein (see Supplmenetary Infomration 514).

3.3 Association of the Prediction with Functionally Important Protein Regions

Functionally important protein regions can be identified through mutagenesis experiments
(Hutchison et al., 1978). We next hypothesized that BetaDescribe relies on functionally
important regions, as part of its prediction. This suggests that in-silico alanine-scanning
mutagenesis experiments will affect descriptions within functionally important regions
substantially more than in the remaining protein regions. Specifically, we quantified the
fit (negative log-likelihood) of the description of the wild-type protein to that of the al-
tered protein sequence, expecting that disturbing functionally important regions would
substitutionally reduce this fit (see Supplementary Information 515).

We report preliminary results for this approach on the extensively studied human insulin
protein (P01308; an additional example, the protein RecA, is provided in Supplementary
Information S15). The preproinsulin precursor is comprised of four domains: Signal peptide,
Insulin B chain, C peptide, and Insulin A chain. The Signal peptide and the C peptide (which
are less evolutionary conserved) are excised during insulin protein maturation, leaving
insulin B and A chains (which are highly evolutionary conserved) to form functional insulin
(Steiner et al., 2009). Figure 3 reports the importance of each of the amino acids in the
insulin sequence. As expected, BetaDescribe descriptions were mostly affected by mutating
amino acids within the Insulin A and B chains, and substantially less by mutations in the
Signal peptide and C peptide. This analysis suggests that the BetaDescribe model learned
to capture biological meaningful domains. Furthermore, we have included a rigorous in-
silico mutagenesis analysis across 165 well-characterized proteins from ProteinGym (Notin
et al., 2023). This analysis statistically evaluates the association of BetaDescribe’s predicted
important regions within annotated functional domains, providing a quantitative measure
of biological relevance (see Supplementary Information S15).

4 Discussion

BetaDescribe harnesses generative capabilities of LLMs to provide rich and accurate textual
descriptions for any protein of interest. To this end, the generator was trained on rich
datasets of millions of biological pairs of sequences and their descriptions. In this work, we
provide evidence that BetaDescribe is mostly useful in cases where BlastP fails (Category
1) or yields insignificant hits (Category 2). BetaDescribe provides up to three alternative
possible predictions for each protein. In addition, as exemplified by Category 3 proteins,
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when the predictions of BetaDescribe and BlastP are congruent, the confidence in each of
the provided predictions increases. Notably, disagreements among BetaDescribe alternative
predictions suggest that each prediction is uncertain. Alternative descriptions could be
viewed as hypotheses that need to be experimentally tested.

Explaining model predictions is common in the NLP domain (Atanasova et al., 2020).
As exemplified by the preproinsulin and the RecA analysis (Supplementary Information
515), explanation techniques can be utilized in order to gain a better understanding of the
functional importance of different protein regions. In our analysis, we applied a simple
sliding window alanine scanning approach for this task. Future work could investigate
exposing interacting regions via in-silico complex mutation. We envision a system that not
only predicts protein functions but also highlights functionally important regions, providing
context-specific insights into their roles.
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A Appendix

A1l Supplementary Information S1: Generator — Training Hyperparameters, and
Training Datasets

A.1.1 Training Outline

Starting from the original Llama2 model (Touvron et al., 2023), pretrained on general
English text only (from multiple public open sources), we trained the generator in three
consecutive stages. We first added protein sequences to the training data. These training
data (Dataset 1, ~ 2.9 x 100 tokens) contained a mixture of English sentences from the
RedPajama (https://www.together.ai/blog/redpajama) dataset (30%) and a large set of
diverse proteins (70%), randomly sampled from the Uniref-90 dataset (Suzek et al., 2015).
Training on both English and protein sequences together allowed the model to incorporate
biological knowledge without losing the ability to generate English text.

While Dataset 1 contained both English and protein sequences, the English text was not
directly connected to the protein sequences. In Dataset 2, we incorporated protein sequences
and their cognate textual description (in English), thus adding expert vocabulary and knowl-
edge regarding protein functionality. Specifically, this dataset contained protein sequences
followed by their English descriptions (45%), English descriptions followed by their cognate
proteins (45%), and English sentences not related to biology (10%). In total, this dataset
contained ~ 1.3 x 10'? tokens, in which the biological proteins and their cognate-rich tex-
tual description were derived from the UniProt dataset (The UniProt Consortium, 2016).
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For example, protein “A0AOVOV610” with the following protein sequence, “"MGREDKT-
TWKSNYFLKLVI...]”, is trained to predict the following: ‘ ‘FUNCTION$ Ribosomal protein
PO is the functional equivalent of E.coli protein L10, SIMILARITY$ Belongs to
the universal ribosomal protein uL1@ family[...]’’, and vice versa, i.e., the model is
trained to predict the protein sequence given the rich description.

Finally, we trained the model to predict the protein description given the protein sequences
(Dataset 3). This dataset contained ~ 8.3 x 100 tokens. Between the different stages, we
used transfer learning, i.e., the optimal model trained in the previous stage was the starting
point for the training of the next stage (Tan et al., 2018). We tested two pretraining models
and different values for the learning rate for the processing of biological data.

A.1.2 Preliminary Stage

As a starting point for training the generator, we used the LAMMA?2 model developed by
Meta (Touvron et al., 2023). This model was trained on 2 trillion English tokens. The model
was downloaded from Hugginface (Wolf et al., 2020). The training dataset is English only,
from multiple public open sources.

A13 Stagel

We downloaded the Uniref-90, which contains about 175 million protein sequences
(Suzek et al,, 2015), and the RedPajama dataset, which includes general English text
(https:/ /www.together.ai/blog/redpajama). From these datasets, we established the train-
ing data which includes 70% protein sequences (~ 4,900,000 proteins) and 30% English
text (~ 2,100,000 sentences). The model architecture is the same as the LLAMA2 model,
with the initial weights equal to the weights provided by the LLAMA2 model. We did
some experiments to find the best learning rate and initial models (see below) and chose a

learning rate of 3 x 10~° with the LLAMA?2 model (Touvron et al., 2023).

Regarding the specific hyperparameters, we kept the same batch size (1,024) and the
maximum sequence length (4,096) as was done in the training of the LLAMA2 model. Due
to memory limitations, we applied the following techniques to reduce the memory footprint:
numbers are kept in a Brain Floating Point (bfloat16) format (Kalamkar et al., 2019), gradient
accumulation of 128 (with a micro-batch size of 1), and flash-attention 2 (Dao et al., 2022).
We used a constant scheduler, i.e., a fixed learning rate for the entire training, and the
AdamW optimizer (Loshchilov & Hutter, 2018), with betas of 0.9 and 0.999. The training
was done with the Accelerator library (Wolf et al., 2020), on a single node with eight cores of
NVIDIA A100-SXM4-80GB.

A.1.4 Choosing Architecture and Learning Rate for Stage 1

For optimal results, we started by finding the best model and learning rates for the biological
data. We did experiments to evaluate the optimal learning rates as well as the initial model.
We considered two models of similar sizes (about 7 billion parameters): Mistral (Jiang et al.,
2023a) and LLAMAZ2 (Touvron et al., 2023). Each of these models was trained for 500 training
steps with four learning rates: 3 x 1075,1 x 107, 1 x 107%, and 1 x 10~7. The models were
evaluated on three different validation datasets: English (RedPajama), protein sequences
(Uniref-90), and protein sequences and their descriptions (from UniProt). Table 2 reports
the validation loss of the models trained with different learning rates. As expected, the
loss of the biological data, and the protein sequences with their corresponding descriptions,
starts high and decreases. However, the loss on the English dataset starts low and slightly
increases. We anticipated this behavior as the model was trained for many steps on a similar
English dataset. The performance of the LLAMA?2 with a learning rate of 3 x 10> had
the lowest loss on the biological data, and thus, we decided to continue training with this
specific learning rate.
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Table 2: We report the validation perplexity of LLAMA? (a) and Mistral (b). For each model,
we tested four different learning rates for 500 steps (corresponding to 2.1 billion tokens).
Validation was conducted on three datasets: (1) English sentences (RedPajama); (2) protein
sequences (Uniref-90); and (3) proteins and their corresponding descriptions (from UniProt).
Training data contain 70% of proteins and 30% of English (Dataset 1).

(@)

Learning rate Validation set 0 100 200 300 400 500
3x107° English 17686 1.7788 1.7831 1.786 1.7883 1.7895
3x107° Proteins 4.6591 4.3469 4.3245 43101 4.2963 4.2835
3x107° Descriptions ~ 2.827 2.8223 2.8074 2.8214 2.8005 2.7961
1x107° English 1.7686 1.7618 1.7608 1.7605 1.7598 1.7597
1x107° Proteins 4.6591 4.3465 4.3306 4.3216 4.3149 4.3026
1x107° Descriptions ~ 2.827 27885 2789 27886 27834 2.7805
1x10°° English 1.7686 1.7665 1.7621 1.7612 176  1.7588
1x10°° Proteins 4.6591 4.3805 4.3643 4.3529 4.3451 4.3409
1x10°° Descriptions ~ 2.827 27858 2.7799 27783 27762 2.7743
1x1077 English 1.7686 1.7682 1.7682 1.7709 1.7706 1.7688
1x1077 Proteins 4.6591 4.5394 4.4688 4.4228 4.4017 4.3937

1x1077 Descriptions ~ 2.827 2.8155 2.8074 2.8051 2.7975 2.7936
(b)

Learning rate Validation set 0 100 200 300 400 500
3x107° English 1.8559 2.0395 2.1036 2.1301 2.1304 2.1513
3x107° Proteins 48126 4.5226 4.4713 4.4426 4418 4.3975
3x107° Descriptions ~ 2.8405 3.0433 3.0032 3.0125 2.9999 2.9918
1x107° English 1.8559 1.8659 1.878 1.8895 1.8936 1.8983
1x107° Proteins 48126 4.4834 4.4507 4.4299 4.4115 4.3928
1x107° Descriptions  2.8405 2.848 2.8296 28273 2828 2814
1x10°6 English 1.8559 1.821 1.8189 1.817 1.8153 1.8143
1x10°° Proteins 48126 4.4982 4.4744 4.4671 4.4573 4.4448
1x10°° Descriptions ~ 2.8405 2.7822 27812 27833 2.7793 2.7769
1x1077 English 1.8559 1.8354 1.8298 1.8268 1.8247 1.8232
1x1077 Proteins 4.8126 4.5595 4.5403 4.5277 4.5167 4.5072

1x1077 Descriptions  2.8405 2.7994 27902 2.7863 2.7839 2.7829

A.15 Stage?2

We trained the model on a mixture of the UniProt (The UniProt Consortium, 2016) and the
RedPajama datasets. Unlike the training in Stage 1, which contained sequences and English
text, here the UniProt dataset contains both protein sequences and their English descriptions
(32,409,736 pairs of proteins and English descriptions). We converted the UniProt data from
a Json format to a text format, extracting only specific fields, specifically: function, catalytic
activity, pathway, subcellular localization, domains, cofactors, PTMs, subunits, assignment
to protein families, activity regulations, keywords, and features. An example of the resulting
text for protein entry AOA6I7XUQO is:

protein sequence: MTRIILPGKTIGIIGGGQLGRMMALAAKEMGYKIAVLDPTKHSPCAQVADI-
EIVASYDDLKAIQHLAEISDVVTYEFENIDYRCLQWLEKHAYLPQGSQLLS-
KTONRFTEKNAIENAGLPVATYRLVQTQEQLTEAITELSYPSVLKTTTGGY-
DGKGQVVLRSEADVDKARKLANAAECILEKWVPFEKEVSVIVIRSVSGETK-
VFPVAENIHVNNILHESIVPARITEELSQKAIAYARVLADELELVGTLAVE-
MFATADGEIYINELAPRPHNSGHYTQDACETSQFGQHIRAICNLPLGETNL-
LKPVVMVNILGEHIEGVLRQVNRLTGCYLHLYGKEEAKAQRKMGHVNILND-
NIEVALEKAKSLHIWDHQEQLLEGKR description: FUNCTIONS$ Catalyzes the
ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-)
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to Nb5-carboxyaminoimidazole ribonucleotide (N5-CAIR), FUNCTIONS$ Catalyzes the
ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)-
to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR), CATALYTIC ACTIVITY$
5-amino-1-(5-phospho-beta-D-ribosyl)imidazole + ATP + hydrogencarbonate = 5-
carboxyamino-1-(5-phospho-D-ribosyl)imidazole + ADP + 2 H(+) + phosphate, PATHWAY$
Purine metabolism; IMP biosynthesis via de novo pathway; 5-amino-1-(5-phospho-D-
ribosyl)imidazole-4-carboxylate from 5-amino-1-(5-phospho-D-ribosyl)imidazole (N5-CAIR
route): step 1/2, SUBUNIT$ Homodimer, SIMILARITYS$ Belongs to the PurK/PurT family.
keywords: ATP-binding & Ligand, Ligase & Molecular function, Nucleotide-binding &
Ligand, Purine biosynthesis & Biological process. features: Domain* 1, Binding site* 7.

We removed all proteins that do not have a specific functional property in their description.
The training data at this stage were divided in a way that 45% (corresponding to 2,100,000
samples) of the data were assigned to generate the protein amino-acid sequence given the
description, 45% of the data were assigned to generate the description given the protein
sequence, and 10% (corresponding to 460, 000 sentences) were assigned for English sentences.
The same hyperparameters were used as described in Stage 1.

A.1.6 Stage3

We trained the model to generate the descriptions given the amino-acid sequence from the
UniProt dataset (The UniProt Consortium, 2016), containing 20,480, 000 samples of proteins
and their descriptions. The optimal model from Stage 2 was the starting position for this
stage. We used the same training hyperparameters and only reduced the learning rate to

1x 1072,

A.2 Supplementary Information S2: Effect of Temperature and Multiple Prompts on
Diversity

A.2.1 Multiple Candidate Descriptions

We used two techniques to generate multiple candidate descriptions. The first relies on
changing the prompts, which are used as the input to the LLMs. For English LLMs, the
prompt includes the instructions (the task, e.g., “shorten the following text”), and the context
(additional information needed to perform the task, e.g., the text to be shortened). Different
prompts lead to different responses (Sahoo et al., 2025). For our generator, we used three
alternative prompts (see below). Note that detailed instructions are not needed in our case,
as the model was trained for the specific task, which is to describe the function of the query
protein.

For each prompt, we generated 15 alternative descriptions using a temperature hyperparam-
eter (Ackley et al., 1985; Hinton et al., 2015). Generating text is done by choosing the next
token until reaching the special token marking the end of the text or reaching a predefined
maximum length. By default, the next token chosen is the one with the highest probability.
However, the model can choose the next token based on the distribution of token probabil-
ities. A high temperature flattens this distribution and thus, introduces variability in the
generated outputs, i.e., the descriptions (see below).

A.2.2 The Temperature Hyperparameter

Decoder-only models are trained to predict the next token, i.e., given the start of a sentence,
the models are trained to predict the next word. Typically, the next predicted token is the
one with the highest probability. However, it is possible to sample the next token from a
distribution based on token probabilities. Low temperature results in a sharper distribution
of tokens, i.e., the next token is likely to be the one with the highest probability. In contrast,
high temperature flattens the distribution, increases diversity, and thus produces different
alternative descriptions. We used the value of 1.0 for the temperature.
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Table 3: Detailed prompts used for generating the descriptions.

Prompt 1 protein sequence: MTRIILPGKTIGIIGGGQLGRMMALAAKEMGYKIAVLD-
PTKHSPCAQVADIEIVASYDDLKAIQHLAEISDVVTYEFENIDYRCLQWLE-
KHAYLPQGSQLLSKTQNRFTEKNAIENAGLPVATYRLVQTQEQLTEAITEL-
SYPSVLKTTTGGYDGKGQVVLRSEADVDKARKLANAAECILEKWVPFEKEV-
SVIVIRSVSGETKVFPVAENIHVNNILHESIVPARITEELSQKAIAYARVL-
ADELELVGTLAVEMFATADGEIYINELAPRPHNSGHYTQDACETSQFGQHI-
RAICNLPLGETNLLKPVVMVNILGEHIEGVLRQVNRLTGCYLHLYGKEEAK-
AQRKMGHVNILNDNIEVALEKAKSLHIWDHQEQLLEGKR descrip-
tion:

Prompt 2 protein sequence: MTRIILPGKTIGIIGGGQLGRMMALAAKEMGYKIAVLD-
PTKHSPCAQVADIEIVASYDDLKAIQHLAEISDVVTYEFENIDYRCLQWLE-
KHAYLPQGSQLLSKTQNRFTEKNAIENAGLPVATYRLVQTQEQLTEAITEL-
SYPSVLKTTTGGYDGKGQVVLRSEADVDKARKLANAAECILEKWVPFEKEV-
SVIVIRSVSGETKVFPVAENIHVNNILHESIVPARITEELSQKAIAYARVL-
ADELELVGTLAVEMFATADGEIYINELAPRPHNSGHYTQDACETSQFGQHI-
RAICNLPLGETNLLKPVVMVNILGEHIEGVLRQVNRLTGCYLHLYGKEEAK-
AQRKMGHVNILNDNIEVALEKAKSLHIWDHQEQLLEGKR descrip-
tion: FUNCTION$

Prompt 3 protein sequence: MTRIILPGKTIGIIGGGQLGRMMALAAKEMGYKIAVLD-
PTKHSPCAQVADIEIVASYDDLKAIQHLAEISDVVTYEFENIDYRCLQWLE-
KHAYLPQGSQLLSKTQNRFTEKNAIENAGLPVATYRLVQTQEQLTEAITEL-
SYPSVLKTTTGGYDGKGQVVLRSEADVDKARKLANAAECILEKWVPFEKEV-
SVIVIRSVSGETKVFPVAENIHVNNILHESIVPARITEELSQKAIAYARVL-
ADELELVGTLAVEMFATADGEIYINELAPRPHNSGHYTQDACETSQFGQHI-
RAICNLPLGETNLLKPVVMVNILGEHIEGVLRQVNRLTGCYLHLYGKEEAK-
AQRKMGHVNILNDNIEVALEKAKSLHIWDHQEQLLEGKR descrip-
tion: FUNCTION$

Formally, consider ¢;, I;, P(.) to be the i'th token from a vocabulary with size n, the logits of
the t; and the probability function, respectively. With the softmax approach, we select the
token with the highest probability:

1

( l) Zz:l elk

This expression is modified to account for the temperature, t, but here, we sample the next
token according to the resulting probability:

oli/t

P(t;) = T ot

A.2.3 Alternative Prompts

We considered three different prompts (Table 3): (1) protein sequence alone; (2) protein
sequence with the ‘ ‘FUNCTION$’’ property; and (3) protein sequence with double space and
the ¢ ‘FUNCTIONS$’ ’ property. For the above example, the three prompts are:

A.2.4 Combining the Temperature and the Alternative Prompts Provides Diversity in the
Generated Descriptions

The goal of accounting for the temperature and alternative prompts is to introduce stochas-
ticity in the model, thus providing several descriptions for each input protein sequence.
Specifically, we selected a temperature ¢ = 1.0 and generated 15 alternative descriptions
for each alternative prompt (totaling 45 alternative descriptions). After removing invalid
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Figure 4: We report the number of unique and shared descriptions using the different
prompts on Categories 1, 2 and, 3, for figures (a), (b), and (c), respectively. For example, in
Category 1, we analyzed 151 proteins and obtained 6,795 descriptions (151 proteins times
45 alternative descriptions). After processing (verifying the function property), removing
cases rejected by the judge and removing duplications, we received the following 1,429
descriptions. For example, of these 1,429 descriptions, 14 generated by prompts 1 and 2
were identical, but different from those generated in prompt 3.

predictions and those rejected by the judge, we plotted the shared and unique descriptions
of each of the prompts. As can be seen in Figure 4, most alternative descriptions are unique,
i.e., it is relatively rare that the different prompts have the same exact prediction.

A.3 Supplementary Information S3: Validators Architecture, Training, Datasets and
Tokenization

We fine-tuned the ESM2 (Lin et al., 2023), an encoder-only model with 150 million parameters
for predicting each of the following properties: subcellular localization, higher taxonomy,
and enzyme activity. The base model has 30 hidden layers, 20 attention heads, a hidden size
of 640, an intermedjiate size of 2,560, and a max sequence length of 1,026. The tokenizer for
the model encodes each of the amino acids separately, and thus the vocabulary size is 33
(including special tokens).

We used the following training parameters for each of the validators: maximum sequence
length of 1,026 (same as the pretraining), batch size of 8, learning rate of 2 x 105, 2,000
steps for warmup, weight decay of 0.01, and maximum training steps of 1,200,000. We
trained with a mixed-precision approach (Micikevicius et al., 2018), i.e., parts of the model
are saved in a reduced format using only 16 bits compared to the traditional training that
uses 32 bits. We used the Huggingface library for this training (Wolf et al., 2020), and a
single core of NVIDIA RTX A6000 48GB.
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A.3.1 Validators Dataset

We trained a classifier for each property, e.g., one classifier is trained to classify protein
sequences into different categories of subcellular localization (multiclass). To train these val-
idator classifiers, we extracted sequences and their corresponding properties from UniProt.
Specifically, we sampled the training data for the generator and the validator from the same
pool. Because these are trained in parallel, the testing data for the entire pipeline were not
used for training the generator or the validators.

Subcellular localization: We extracted 19,225,898 and 40, 000 proteins that included sub-
cellular localization attributes in their description, for the training set and the test set,
respectively.

Higher taxonomic level: Each protein in the UniProt dataset, has a taxonomy lineage
attribute. The first level divides the proteins into four categories: “viruses”, “bacteria”,
“archaea” and “eukaryota”. We extracted 35,632,741 and 40, 000 proteins with taxonomic
level attributes, for the training and test datasets, respectively.

Enzyme: We extracted proteins that belong to an enzyme family, as well as proteins that
have catalytic activities. We also extracted the same number of proteins, which do not show
any enzymatic activity. The training data contained 51, 681, 180 proteins with half tagged
as enzymes and half tagged as non-enzymes. The test data included 20, 000 proteins with
enzymatic/catalytic activity and 20, 000 proteins without.

A.4 Supplementary Information S4: Judge Prompts

Rejecting unlikely descriptions comprises two parts. First, we wrote a Python script to verify
that those proteins that the validator determined are enzymes, have enzymatic activity in
their description and vice versa: non-enzyme proteins do not include the term enzymatic
activity in their description. Specifically, if either the string “catalytic activity” (this string is
one of the fields in the UniProt database) or the string “belongs to” followed by “enzyme
family” are in the description, we determine the description to be of an enzyme. Otherwise,
we determined the description to be of non-enzyme. If the validator and the description are
congruent, we accept that description and continue to the next checks by the judge. While
this enzymatic activity test was rule-based, the following checks are prompt-based.

We utilize GPT4 to implement the judge. It receives as input an English description from
the generator and an English text describing the results from the validators. It uses this
information to reject unlikely descriptions. The input to the judge is provided as a prompt.
In fact, for each description, the judge is executed up to three times. We first provide a
description and the validator prediction regarding the subcellular localization. Specifically,
we provide the following prompt:

You're a biology expert, and you can answer only yes or no. No explanation is needed.

The protein subcellular localization is probably in one or more of the following locations: (pre-
dicted_cell_locations)

Do you think the following function is possible? please answer yes or no only. (pro-
tein_function_prediction)

If GPT4 returns a “yes”, the description will be tested against additional validator properties.
Otherwise, it is rejected. Similarly to the above test, we next ask the judge about the
congruence between the description and the validator’s higher taxonomy level prediction:

You're a biology expert, and you can answer only yes or no. No explanation is needed.
We think that the following protein belongs to the (predicted_higher_taxonomy_level).
Do you think the following function is possible? please answer yes or no only.
(protein_function_prediction)

Lastly, if the description is valid given the previous prompt, the judge determines whether
the description is possible by both properties, i.e., the higher taxonomy level and the
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subcellular localization combined (we combine these two properties because the subcellular
localization highly depends on the taxonomy level classification):

You're a biology expert, and you can answer only yes or no. No explanation is needed.
We think that the following protein belongs to the (predicted_higher_taxonomy_level).

In addition, the protein subcellular localization is probably in one or more of the following
locations: (predicted_cell_locations)

Do you think the following function is possible? please answer yes or no only. (pro-
tein_function_prediction)

A.5 Supplementary Information S5: Evaluation Metrics

A.5.1 ChrF

Character n-gram F-score (ChrF) is an evaluation metric for strings, particularly useful in
the context of text translation (Popovi¢, 2015). It quantifies the level of substring sharing
between two strings. ChrF values range from 0 (low similarity) to 1 (identical strings). ChrF
captures finer nuances of the text by considering substrings (unlike word-based metrics),
making it more sensitive. Formally, ChrF extracts n-grams (substrings of length n) from the
reference and the hypothesis strings. Then, it calculates the precision (number of matching
n-grams divided by the total number of n-grams in the hypothesis string) and the recall
(number of matching n-grams divided by the total number of n-grams in the reference).
Next, the F-score is computed, which in this case is called ChrF:

(1+ B?)(Precision x Recall)
ChrF = -
(B? x Precision + Recall)

We used the default values of n and $ from the Huggingface library (Wolf et al., 2020): n = 6
and B = 2.

A.5.2 SacreBLEU

SacreBLEU (Post, 2018) is a metric for evaluating the quality of machine-translated text
by comparing it to a reference translation. It is a more standardized and reproducible
version of the Bilingual Evaluation Understudy (BLEU) score, which measures the overlap
of n-grams (contiguous sequences of words) between two strings (Papineni et al., 2002). The
metric range is between 0 to 1, with higher values indicating higher similarity. In machine
translation, e.g., English to Spanish, a high-quality translation tends to have scores between
0.2 to 0.5. We compute this metric using the Huggingface library (Wolf et al., 2020).

A.5.3 Cosine Similarity Score

The cosine similarity score measures the similarity between two strings by computing the
cosine of the angle between their vector representations (embeddings) in a multidimensional
space. To compute this score, we embed the strings with our generator (embeddings from
the last hidden layer). The cosine similarity score is then calculated as the dot product of
these vectors divided by the product of their magnitudes. The range is from —1 to 1, where
a value of —1 indicates strings that are diametrically opposed, 0 indicates orthogonal strings
with no common terms, and 1 indicates identical strings. Cosine similarity is particularly
useful in text analysis and information retrieval since the metric does not focus on the strings
themselves but on their numeric representation. Thus, this metric quantifies the distance
between the meanings of strings and not the characters or substrings that make up these
strings.

A.5.4 Manual Evaluation

We randomly sampled 30 proteins, 10 from each of the three categories. For each protein,
we gathered BetaDescribe (first option) and BlastP predictions. Since BlastP does not
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Table 4: Average scores of ChrF, SacreBLEU, and cosine similarity, and the count for exact
matches, for Category 1. Here, we include the 38 proteins that had identical sequences in
the training set.

Prediction 1 (170) Prediction 2 (126) Prediction 3 (102)

Exact match (count) 27 10 2
ChrF 0.43 £0.29 0.36 £0.25 0.3+£0.19
SacreBLEU 0.27 £0.35 0.18 £0.27 0.12+0.19
Cosine similarity 0.66 =0.21 0.61 +0.18 0.59 +0.14

return results for Category 1, the final evaluation dataset consisted of 50 descriptions. The
evaluation was conducted in a blind setting, i.e., the experts were unaware of the source of
the prediction (whether it was BlastP or BetaDescribe). The experts’ results are provided as
part of the Supplementary Data 1. Experts were provided with the reference description
and a link to the corresponding UniProt page. They graded the predicted description using
the following scale: 1 - inadequate match, 2 - poor match, 3 - acceptable match, or 4 - perfect
match. The evaluation was conducted by three senior biologists, each with over 30 years of
experience. Grades were determined by majority vote. In most cases, all experts agreed on
the assigned grade.

A.6 Supplementary Information S6: Categories 1, 2 and 3 Protein Data

A.6.1 Identical Sequences in Training and Test Sets

The first prediction of BetaDescribe had an exact match to the true description for 27 out
of the 189 Category 1 proteins (14.3%; Table 4). These exact descriptions were surprising
because we demanded that no protein be shared between the training and the test datasets.
To gain further insights into such cases, we inspected specific cases. An example of such a
case is protein BOM8U4 in the test set, which corresponds to the short peptide of “TDRN-
FLRL". We found that a different protein in the training set, BOM3DO0, shares the exact same
sequence as well as the same description: “FMRFamides and FMRFamide-like peptides
are neuropeptides”. The reason that BlastP failed in this case is that BlastP searches for
significant hits, and these peptides are too short to yield any E-values. Altogether, we found
38 cases of Category 1 proteins with identical sequences (and identical or nearly identical
descriptions) for a protein in the training set and another one in the test set. For Category 2,
we found 21 test proteins that have identical sequences in the train. The proteins that have
an exact match in the training set, have been removed.

A.7 Supplementary Information S7: Low-Complexity Regions

In low-complexity regions, the variability in the number of different amino acids is reduced
compared to typical protein regions. In most of these regions, there is a repeated motif, such
as, a single amino acid, or a specific pattern (Mier et al., 2020). To identify such regions, we
used the PlaToLoCo webserver (Jarnot et al., 2020), which computes such regions based
on five programs: SEG (Wootton & Federhen, 1993), CAST (Promponas et al., 2000), fLPS
(Harrison, 2017), SIMPLE (Alba et al., 2002), and GBSC (Jarnot et al., 2020). Figure 5
provides the low complexity regions computed by PlaToLoCo for proteins AOASCOXGCO
and AOATE3Q8Q4. As can be seen, all programs identified low-complexity regions in these
proteins.

A.8 Supplementary Information S8: Detailed Performance on Categories 2 and 3
Table 5 provides detailed scores of ChrF, SacreBLEU, and cosine similarity and the number

of exact matches (cases in which the output description perfectly matches the true one) for
Category 2 (proteins with insignificant hits) and Category 3 (proteins with significant hits).
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Figure 5: Low complexity regions of proteins AOASCOXGCO (a) and AOA1E3Q8Q4 (b) as
computed by the PlaToLoCo webserver. The first row displays the amino acids, the last
row reports the entropy, and other rows correspond to the program results: a thin line
corresponds to a normal region, and a bold line corresponds to a low complexity region.

For Category 2 proteins, we compared BetaDescribe’s top predictions (prediction 1), and
the yielded by the BlastP hit. This comparison shows a higher cosine similarity score for
BetaDescribe (0.58 vs. 0.48) but lower ChrF (0.27 vs. 0.28) and SacreBLEU (0.09 vs. 0.1)
scores. When testing the differences using a paired t-test, only the cosine similarity score
was statistically significant (p-values: cosine similarity j 0.0001; ChrF = 0.62; SacreBLEU =
0.84). The hit provided by BlastP performed significantly better than BetaDescribe on all
metrics when comparing the performance of Category 3 proteins. In addition, we compared
our results to PSI-Blast (Altschul et al., 1997) and (Eddy, 2011) for retrieving the nearest
descriptions. Since PSI-Blast and HHMER rely on initial hits from BlastP, they did not
produce any results for Category 1. PSI-Blast improved upon BlastP’s performance in
Category 2 (cosine similarity of 0.52 vs. 0.48) but not in Category 3 (cosine similarity of
0.89 vs. 0.92). HMMER showed no improvement over BlastP in Category 2 or Category
3. Finally, we compared two additional GO predictors, DeepFRI (Gligorijevi¢ et al., 2021)
and GPSFun (Yuan et al., 2024). The results show that BetaDescribe is superior to GO-based
predictors (see below).

Table 5: Average scores of ChrF, SacreBLEU, and cosine similarity, and the count for exact
matches, for Categories 2 (a) and 3 (b). Predictions 1, 2, and 3 are top predictions generated
by BetaDescribe.

(a)
Prediction 1 (147) Prediction 2 (108) Prediction 3 (87) BlastP (147) PSI-Blast (1477 HMMER (140/147)
Exact Match (count) 2 3 0 5 6 2
ChrF 0.27+£0.17 0.30£0.18 024 +£0.15 028 £0.19 03+02 0.26 £0.16
SacreBLEU 0.09 £0.16 0.11+£0.19 0.07 £0.11 0.1£0.20 0.11+0.22 0.08 £0.15
Cosine similarity 0.58 +0.15 0.57 +£0.16 0.55+0.14 0.48 +0.18 0.52+0.19 0.46 £0.16
(b)
Prediction 1 (910) Prediction 2 (443) Prediction 3 (285) BlastP (910) PSI-Blast (910) HMMER (910)
Exact Match (count) 383 104 12 627 560 449
ChrF 0.65 £ 0.35 0.52+0.33 0.4 +0.26 0.85 +0.27 0.81+0.3 0.73 +0.34
SacreBLEU 0.54 £+ 0.44 037 +04 0.21£0.29 0.79 £ 0.36 0.74 £ 0.38 0.64 +0.42
Cosine similarity 0.78 £0.23 0.7+0.23 0.63 £0.18 092+0.17 0.89 £0.2 0.83+0.24
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A.8.1 Evaluation under Stricter Sequence Similarity Filtering

Since BlastP E-values may not be reliable for short sequences, we introduced an additional
filtering criterion based on sequence identity and alignment coverage. Specifically, we
excluded test proteins that shared more than 30% sequence identity or more than 80%
alignment coverage with any protein in the training set. This filtering was applied to
Categories 2 and 3 (as Category 1 lacks BlastP hits), resulting in a subset of 30 proteins,
of which 24 from Category 2 and 6 from Category 3. We then compared BetaDescribe’s
predictions (option 1) with those of BlastP on this filtered subset. BetaDescribe achieved
significantly higher cosine similarity scores than BlastP (0.56 vs. 0.46; paired t-test, p <
0.003), although differences in ChrF (0.27 vs. 0.23; p = 0.23) and SacreBLEU (0.06 vs. 0.05;
p = 0.44) were not statistically significant. These findings underscore BetaDescribe’s ability
to generate meaningful and functionally relevant descriptions, even in the absence of close
sequence homologs.

A.8.2 PSI-Blast and HMMER implementation

We used PSI-Blast (version 2.14.0+; Altschul et al. (1997)), and HHMER (version 3.3.2;
Eddy (2011)). We kept all parameters at their default values except for the maximum
number of iterations which we set to ten in PSI-Blast configuration (the default maximum
number of iterations is one). Running an HHMER search requires a profile built from
a multiple-sequence alignment. To generate this profile, we first identified homologous
sequences using BlastP, and then aligned them with MAFFT (Katoh & Standley, 2013). We
selected HMMER hits that were not part of the initial BlastP results to ensure they were
truly novel. Including the best HMMER hit, even if it was originally identified by BlastP,
slightly improved performance in Category 2 (cosine similarity of: 0.48 vs 0.46; ChrF of:
0.29 vs. 0.26; SacreBLEU of: 0.09 vs 0.08).

A.8.3 Comparing BetaDescribe to GO predictors

To further contextualize BetaDescribe’s performance, we conducted an approximate com-
parison with two recent GO-based protein function predictors: DeepFRI (Gligorijevi¢ et al.,
2021), a deep-learning model that processes the protein sequence, and predicts GO an-
notations and GPSFun (Yuan et al., 2024), a deep-learning model that classifies the GO
annotation based on the structure of the protein. Since these models output sets of GO
terms rather than rich English descriptions, we converted their predictions into free-text by
concatenating the predicted GO terms ordered by their scores (we used the suggested score
of 0.5 as the cutoff for the GO annotations predicted by DeepFRI). We then evaluated the
resulting text using the same metrics applied to BetaDescribe: cosine similarity, ChrF and
SacreBLEU. To perform the comparison, we used the GPSFun webserver, and downloaded
the code and model of DeepFRI.

For this comparison, we evaluated Categories 1, 2 and randomly sampled 100 proteins from
Category 3. The results, summarized below, show that GO-based methods underperform
relative to BetaDescribe, particularly in Categories 1 and 3. In Category 1, the cosine similar-
ity scores for DeepFRI, GPSFun, and BetaDescribe were 0.53, 0.52, and 0.58, respectively. In
Category 2, the scores were 0.61 for DeepFRI, 0.56 for GPSFun, and 0.58 for BetaDescribe.
Notably, DeepFRI generated GO predictions (with scores > 0.5), for 91 out of 151 proteins
in Category 1 (60.2%, and for only 23 out of 151 proteins in Category 2 (15.2%, highlighting
a coverage limitation. On the 100 proteins from Category 3, DeepFRI and GPSFun achieved
cosine similarities of 0.47 and 0.51, respectively, while BetaDescribe reached a significantly
higher score of 0.75. Additionally, on ChrF and SacreBLEU metrics, GO-based predictions
performed poorly due to their limited string-level similarity with the natural language
descriptions.
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A.9 Supplementary Information S9: Evaluating Category 2 Proteins

A.9.1 Evaluation Using Cosine Similarity Cutoff

Based on our empirical assessment, a threshold of 0.6 generally corresponds to meaningful
and biologically relevant descriptions. Using this cutoff, we analyzed the overlap in accurate
predictions across the three BetaDescribe predictions and BlastP (Figure 6). Among the
147 proteins evaluated, Prediction 1 from BetaDescribe was the most frequently accurate,
with 55 descriptions surpassing the similarity threshold. Prediction 2 and Prediction 3
each contributed additional unique accurate predictions not captured by Prediction 1,
suggesting that the ensemble of predictions offers complementary perspectives. In contrast,
BlastP produced 27 descriptions with similarity scores above 0.6. Interestingly, nine of
these BlastP descriptions were judged to be more accurate and biologically appropriate
than those generated by BetaDescribe (see Supplementary Information S16), highlighting
cases where sequence similarity methods retain an edge. Figure 6 reveals several notable
trends: first, while there is some overlap between BetaDescribe predictions and BlastP
(e.g., 5 cases shared by all methods), a substantial portion of the accurate descriptions are
uniquely identified by individual predictions, especially Prediction 1 (20). This suggests
that BetaDescribe is not simply recapitulating what traditional sequence alignment tools
like BlastP provide, but is capturing distinct and potentially novel semantic relationships.
Furthermore, the diversity of accurate predictions across the three BetaDescribe outputs
underscores the value of generating multiple hypotheses. The non-overlapping accurate
predictions (e.g., 20 unique to Prediction 1, 9 to Prediction 2) imply that different generations
from the model can offer unique insights, possibly due to different pathways of semantic
generalization. Overall, these results support the utility of BetaDescribe in producing high-
quality functional descriptions that both complement and, in some cases, exceed those
derived from traditional sequence-based methods.

A.9.2 Benefits of Multiple Candidate Descriptions

The following example highlights the benefits of providing several alternative descriptions.
In the test set, the description of protein C6Y4A7 is:

‘“FUNCTION$ The EMC seems to be required for efficient folding of proteins in the
endoplasmic reticulum (ER), SUBCELLULAR LOCATION$ Endoplasmic reticulum membrane,
SUBUNIT$ Component of the ER membrane protein complex (EMC), SIMILARITY$ Belongs
to the membrane magnesium transporter (TC 1.A.67) family.’’

In this specific case, the third prediction of BetaDescribe was the most accurate (cosine
similarity of 0.79):

‘“FUNCTIONS$ Part of the endoplasmic reticulum membrane protein complex (EMC) that
enables the energy-independent insertion into endoplasmic reticulum membranes
of newly synthesized membrane proteins. May be involved in Mg(2+) transport,

SUBCELLULAR LOCATION$ Endosome membrane, SIMILARITY$ Belongs to the membrane
magnesium transporter (TC 1.A.67) family.’’

The first and second predictions captured some aspects of the “true” protein description
(ER-related function). The first (cosine score of 0.72) was:

‘‘FUNCTION$ Involved in the early part of the secretory pathway, SUBCELLULAR
LOCATIONS$ Golgi apparatus membrane, SIMILARITY$ Belongs to the KISH family.’’,

and the second (cosine score of 0.78):

‘ ‘FUNCTION$ Required for the assembly of the V@ complex of the vacuolar ATPase
(V-ATPase) in the endoplasmic reticulum, SUBCELLULAR LOCATION$ Endoplasmic
reticulum membrane, SIMILARITY$ Belongs to the VMA21 family.’’

The BlastP-based prediction (best hit had an E-value of 6.5) had a lower cosine score (0.45)
and substantially deviated from the provided descriptions:
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Cosine similarity score > 0.6
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Figure 6: The Venn diagram displays the count and overlap of proteins with high cosine
similarity scores (above 0.6). For example, five proteins achieved high cosine similarity
scores for the three BetaDescribe predictions and the BlastP-based description. Additionally,
20,9, 2, and 9 proteins had high cosine similarity scores exclusively in predictions 1, 2, 3, or
using BlastP, respectively. After normalization, these counts correspond to 37.4%, 40.7%,
34.5%, and 18.3%, respectively.

‘ ‘FUNCTION$ Catalyzes the deamination of dCTP to dUTP, CATALYTIC ACTIVITY$ dCTP
+ H(+) + H20 = dUTP + NH4(+), PATHWAY$ Pyrimidine metabolism; dUMP biosynthesis;
dUMP from dCTP (dUTP route): step 1/2, SUBUNIT$ Homotrimer,SIMILARITY$ Belongs
to the dCTP deaminase family.’’

A.10 Supplementary Information S10: BlastP Accuracy Increases if Congruent with
BetaDescribe

We divided the Category 3 proteins by their E-value score into ten categories (one category
of 235 proteins with a hit E-value of 0, and nine other bins with an equal number of proteins,
75 or 76). For each category, we divided the proteins into high and low values based on
the cosine similarity score between the BlastP prediction and Prediction 1 of BetaDescribe.
Figure 7 reports the average cosine similarity score of the BlastP hit. When the BlastP and
BetaDescribe predictions are congruent, i.e., a cosine similarity score above the median for

29



LM4Sci Workshop at COLM 2025 (Non-Archival)

Effect of BetaDescribe agreement with BlastP result

1.04 I incongruent with BetaDescribe

| congruent with BetaDescribe

Cosine similarity score
o o o
IS o ®

e
N

0.0

QO N /%b'\ /o,‘c\ N o JCaN 0;b\ 0)4)\ . ~
R D 0 © N N o & &
¥ + + + + + o o §
A . v o ° o2 0¥ 52 A Ul o
& I & b Pl o s R A
K +'\9 +'\9 +\9 +\,° 4 At
ot o Q 9 & N a

BlastP E-value

Figure 7: BlastP-based predictions are more accurate when they are congruent with BetaDe-
scribe’s predictions. BlastP scores on Category 3 proteins, as a function of their E-value
score as yielded by BlastP. In each bin, we divided the BlastP predictions into two groups:
those that are congruent with BetaDescribe’s prediction 1 (cosine similarity score above the
median) and those not.

that bin, the BlastP predictions are more accurate compared to the case where BlastP and
BetaDescribe predictions are incongruent (t-test; p < 0.001).

A11 Supplementary Information S11: Ablation Tests

A.11.1 Effect of Pretraining on Performance

The final training of our generator is termed Stage 3 (See main text and Supplementary
Information S1). The Preliminary Stage, Stage 1, and Stage 2 are pretraining used to
incorporate English and protein knowledge within our model. Here, we evaluated whether
such pretraining contributed to performance. Specifically, we evaluated the performance
of the model if instead of using pretraining, we initiated Stage 3 with randomly initialized
weights. This model was trained on approximately 8.3 billion tokens, equivalent to 2,000
steps. The model struggled to generate any properly structured descriptions and had a
failure rate of 98.5% (no function predicted in the description). Among the 24 validation
proteins for which the model successfully predicted the function, eight had the exact protein
sequence in the training set. In contrast, the model that was trained on Stages 1 and 2, using
the same 2, 000 steps, failed to predict only 34.3% of the test set, clearly demonstrating the
importance of pretraining.

A.11.2 The Validators Performance

We evaluated the performance of the validators on a validation set comprising 40,000
proteins. Table 6 reports the precision error rate (1 minus precision) for the subcellular
localization validator and the error rate for the higher taxonomy and enzymatic activity
validators. The subcellular localization prediction is a multi-label classification task and
thus, the accuracy is extremely high (0.99993). Hence, we report the precision error for that
validator. As can be seen, the validators’ error reaches a plateau, and stabilizes around 0.011,
0.0035, and 0.027 for the subcellular localization, higher taxonomy level, and enzymatic ac-
tivity predictions, respectively. This indicates that enzyme classification is more challenging
than the higher taxonomy level classification. These low error rates explain the importance
of including the validator as part of the pipeline: the low error rates allow the judge, relying
on the validator’s predictions, to reliably reject unlikely generated descriptions.
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Table 6: Performance of the different validators as a function of the number of training steps.
For subcellular localization, we report the precision error rate (one minus precision). For
the two other categories, we report error rates (one minus accuracy). Values are calculated
using a validation set of 40,000 proteins.

Steps 120K 240K 360K 480K 600K 720K 840K 960K 1,080K 1,200k

Subcellular localization ~ 0.023 0.02 0.017 0.015 0.014 0.014 0.013 0.012 0.012 0.012
Higher taxonomy level 0.0133 0.0091 0.0077 0.0063 0.0057 0.005 0.0046 0.004 0.0037 0.0035
Enzymatic activity 0.049 0.042 0.035 0.034 0.033 0.031 0.034 0.028 0.029 0.027

Table 7: Comparing the evaluation of our subcellular localization validator to MULocDeep.
The validation set contains 36, 101, and 122, proteins from fungi, viridiplantae, and metazoan
species, respectively.

Metric  BetaDescribe Validator MULocDeep

F1 0.37 0.38
Precision 0.37 0.35
Recall 0.4 0.42
Accuracy 0.31 0.26

Next, we compared the performance of our subcellular localization validator to MULocDeep
(Jiang et al., 2021; 2023b). While our validator can predict 388 locations, MULocDeep predicts
94 classes. Thus, we chose to use their dataset for the comparison, while manually mapping
our label set to their label set. For example, if our model predicted “trans-golgi network”
we used the “golgi apparatus” class (as “trans-golgi network” was not part of the validation
set). We used the MULocDeep webserver to receive the predictions (Jiang et al., 2023b).
Overall, the performance is similar, where MULocDeep receives slightly higher F1 and
recall, and our validator receives slightly higher precision and accuracy (Table 7).

A.11.3 The Judge Performance

To evaluate the judge, we manually curated the following dataset. First, we randomly
sampled 200 descriptions from the training dataset, each with a subcellular localization.
Each description is matched with a pair of properties, which mimic the validator output. An
example of such a pair of properties is “viruses” and “endoplasmic reticulum”. We manually
modified the properties of some of these pairs, so that 100 descriptions are matched with
“true” properties, i.e., the properties match the description provided by UniProt. For the
remaining 100 descriptions we modified at least one of the properties so that the validator
and the descriptions are incongruent. We expect the judge to correctly accept the first 100
samples and reject the others. For example, consider the following description:

FUNCTIONS Inhibits post-transcriptional processing of cellular pre-mRNA, by binding and
inhibiting two cellular proteins that are required for the 3'-end processing of cellular pre-mRNAs:
the 30 kDa cleavage and polyadenylation specificity factor/CPSF4 and the poly(A)-binding
protein 2/PABPN1. In turn, unprocessed 3" end pre-mRNAs accumulate in the host nucleus
and are no longer exported to the cytoplasm. [...], SUBUNITS$ Homodimer. Interacts with
host TRIM25 (via coiled coil); this interaction specifically inhibits TRIM25 multimerization and
TRIM25-mediated RIGI CARD ubiquitination. Interacts with human EIF2AK2/PKR, CPSF4,
IVNS1IABP and PABPN1, SUBCELLULAR LOCATIONS Host nucleus, DOMAINS The
dsRNA-binding region is required for suppression of RNA silencing, SIMILARITYS Belongs to
the influenza A viruses NS1 family.

With the real properties of “viruses” and the subcellular localization of the “host nucleus”,
we except the judge to correctly accept the description. We expect the judge to reject the
description with false properties, such as, a higher taxonomy level of “eukaryote” and a
subcellular location of “endoplasmic reticulum”. Out of the 100 descriptions with the correct
properties from the training set, GPT4 and Claude (3.5 Sonnet), correctly classified 81 and
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Figure 8: Evaluation of predictions accepted and rejected by the judge. We divided the
descriptions generated for Categories 1, 2, and 3 based on the verdict from the judge. We
then evaluated the cosine similarity, ChrF, and SacreBLEU scores compared to the true
labels.

97, respectively. Out of the 100 descriptions with erroneous (altered) properties, GPT4 and
Claude correctly rejected 87 and 68, respectively. Thus, the accuracy of GPT4 is 0.84, with an
F1 score of 0.84, while the accuracy of Claude is 0.83 with an F1 score of 0.85.

A.11.4 Effect of Rejecting Description on Overall Performance

To evaluate the effect of the rejection step by the judge, we conducted the following analysis,
which uses the predictions from the validators. We used the generated descriptions for our
validation set (Categories 1, 2, and 3), and split the descriptions into two groups based on the
verdict given by our judge (passed / rejected). Then, we calculated our evaluation metrics
on each group independently (Figure 8). In all tested cases, the performance of the passed
descriptions was significantly better compared to the rejected ones (t-test; p < 0.00001).
This suggests that the judge, combined with the validators, effectively filters out incorrect
descriptions.

A.11.5 Effect of Diverse Set of Descriptions

To evaluate the effectiveness of selecting a subset of diverse descriptions using community
detection, we compared the performance of descriptions within the top three options
compared to those outside. We divided the descriptions for our validation set (Categories 1,
2, and 3) into two groups: those chosen to the top three options and those outside them. We
then calculated our evaluation metrics on each group independently (Figure 9). The results
demonstrate that descriptions within the top three communities achieved significantly
higher performance across all metrics compared to descriptions outside these communities
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Figure 9: Evaluation of descriptions within and outside the top three options. We divided
the descriptions based on their membership in the top three options. We then evaluated the
cosine similarity, ChrF, and SacreBLEU scores compared to the true labels.

(t-test; p < 0.015) on Categories 1 and 3. This is particularly evident in Category 3, where
the differences in cosine similarity, ChrF, and SacreBLEU scores are most pronounced. For
Category 2, the results are mixed. The cosine similarity of descriptions outside the top-
ranked options is higher than that of those within the top options, whereas the ChrF and
SacreBLEU scores show the opposite trend (t-test; p < 0.015). These results suggest that for
a small subset of proteins, our approach does not improve the provided descriptions.

A.12 Supplementary Information S12: A Strong Correlation Between the Manual
Evaluation Results and the Cosine Similarity Metric

Figure 10 shows the linear regression between cosine similarity and the manual grades. The

results show a highly significant correlation (p < 0.0001), with an R? of 0.827. Recognizing
that linear regression can be sensitive to outliers, we repeated the analysis excluding predic-
tions with cosine similarity above 0.95. Even under this constraint, the correlation remained
significant (p < 0.001), with an R? of 0.613.

A.13 Supplementary Information S13: Public LLMs Predictions of the Function of
Proteins Given a Protein Sequence as Input

A.13.1 Public LLM Predictions for Protein Functions

We next evaluated the performance of predicting protein functions using public LLMs. We
tested three LLMs trained on general knowledge: GPT4 (OpenAl et al., 2024), Gemini (Gem-
ini Team et al.), and Claude (https://www.anthropic.com/news/claude-3-5-sonnet). We
asked these LLMs to predict the function of 30 test proteins from Category 3. In the prompt,
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Figure 10: The linear regression between cosine similarity scores (x-axis) and manual grades
(y-axis). Cosine similarity measures the distance between the embeddings of predicted and
reference descriptions (ranging from -1 to 1). Manual grades were assigned by domain
experts where: 1 indicates an inadequate match, 2 indicates a poor match, 3 indicates an
acceptable match, and 4 indicates a perfect match.

we provided the protein sequence, as well as three examples for the required output (see be-
low). The cosine similarity score of the prediction and the true description was comparable
among the three LLMs, with Claude, GPT4, and Gemini values of 0.49, 0.45, and 0.43, respec-
tively. GPT4 and Gemini scores were not significantly different from scores obtained when
the description for a given protein was randomly sampled from the training set (p = 0.37,
0.89, respectively). For comparison, BetaDescribe’s cosine similarity score was 0.86. For only
two proteins, the public LLMs provided a cosine similarity score above 0.6: AOA0D2C110
and AOAOD6M674. The highest cosine similarity score was predicted by Claude for protein
AO0A0D2C110, with the “true” description: ¢ ‘FUNCTION$ Has a role in the initiation of
DNA replication. Required at S-phase checkpoint, SUBCELLULAR LOCATION$ Nucleus,
SIMILARITY$ Belongs to the SLD2 family.’’ For this protein Claude provided the fol-
lowing description: ¢ ‘FUNCTION$ Transcriptional regulator involved in chromatin
remodeling and gene expression regulation, particularly during development and
cellular differentiation, SUBCELLULAR LOCATION$ Nucleus, SIMILARITY$ Belongs to
the ARID (AT-rich interaction domain) family of DNA-binding proteins’’

A.13.2 Specific Prompts used to Evaluate Public LLMs

We tested how public LLMs perform compared to BetaDescribe, i.e., how well they can
describe the function of a given protein when provided its sequence as input. We used the
public versions as of October 2024 of the following models: GPT4 (OpenAl et al., 2024),
Gemini 1.5 Flash (Gemini Team et al., 2024), and Claude 3.5 Sonnet. The following prompt
was used for this experiment:

“What is the function of the protein with the following sequence:
(amino_acid_chain)
Use the following output format.

Example 1 of the output format:
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FUNCTIONS Catalyzes the reduction of fatty acyl-CoA to fatty alcohols, CATALYTIC AC-
TIVITYS a long-chain fatty acyl-CoA + 2 H(+) + 2 NADPH = a long-chain primary fatty
alcohol + CoA + 2 NADP(+), SIMILARITYS$ Belongs to the fatty acyl-CoA reductase family.

Example 2 of the output format:

FUNCTIONS Nuclease required for the repair of DNA interstrand cross-links (ICL). Acts as a
5'-3" exonuclease that anchors at a cut end of DNA and cleaves DNA successively at every third
nucleotide, allowing to excise an ICL from one strand through flanking incisions, CATALYTIC
ACTIVITYS Hydrolytically removes 5'-nucleotides successively from the 3'-hydroxy termini of 3'-
hydroxy-terminated oligonucleotides., COFACTORS Mg(2+), SUBCELLULAR LOCATIONS
Nucleus, SIMILARITYS$ Belongs to the FAN1 family.

Example 3 of the output format:

FUNCTIONS Directs RNA polymerase Il nuclear import, SUBCELLULAR LOCATIONS
Cytoplasm, SIMILARITYS Belongs to the IWR1/SLC7A60S family.”

Supplementary Data 5 provides the resulting prediction for each protein. We note that
some of their answers contain unrelated information (such as suggestions to use bioinfor-
matics tools). Thus, we manually processed their answers to extract only the meaningful
descriptions for the evaluation metrics.

A.14 Supplementary Information S14: Descriptions Provided by BetaDescribe and
BlastP Search for Unknown Proteins

A.14.1 SnRV-Env (UniProt ID: UPI000010DFE3)

The envelope (Env) protein of the snakehead retrovirus (SnRV). The genome of this fish
virus was sequenced about 30 years ago (Hart et al., 1996) but no experimental data support
the functionality of this protein. The SnRV-Env functionally is predicted by the genomic
localization of the env gene, typical to retroviruses (downstream to the gag-pol ORF) and
the presence of a predicted leader peptide and a transmembrane domain (Hart et al., 1996).
The Env protein is targeted to the plasma membrane, and plays essential roles in receptor
binding, membrane fusion, and viral entry into the host cells, and thus elucidating its func-
tion is important for understanding virus-cell interactions. Querying the protein sequence
against the training set yielded a hit with an E-value of 0.5 to a protein, AOAOR1ZY]7 with
an unrelated function of pseudouridine synthesis. BetaDescribe provided two predictions:
the first inferred functions related to viral envelope proteins and the second predicted
membranal localization (Table 9).

A.14.2 Descriptions for Three TiLV Proteins (UniProt IDs: UPI0007A102A5,
UPI0007A10278, UPI0007A0F427)

TiLV (Tilapia lake virus) is a negative-stranded RNA virus first identified in 2014 in northern
Israel (Eyngor et al., 2014). The virus infects both wild and farmed tilapia populations.
Since its discovery, TiLV has been detected in various regions across Asia, Africa, and
South America, threatening the food security of millions of people (Jansen et al., 2009).
By and large, when discovered, TiLV’s ten main proteins showed no significant sequence
similarity to other known viral proteins (Bacharach et al., 2016). Among these ten, proteins
1 - 3, were predicted to serve as subunits of TiLV polymerase (Abu Rass et al., 2022), a
prediction that was recently validated experimentally and structurally (Arragain et al.,
2023). These sequences and their associated functions are not included in the training
or the test data. Among these three proteins, the predictions based on BlastP correctly
identified only Protein 1 as polymerase (see Tables 10). In contrast, BetaDescribe correctly
assigned polymerase activity for all three proteins. For Protein 1, the top prediction of
BetaDescribe correctly assigned RNA-depended RNA polymerase (RARP) activity, while
for proteins 2 and 3, BetaDescribe top predictions inaccurately assigned the polymerase
activity to be DNA-depended. Of note, some of BetaDescribe’s alternative predictions are
likely to be false, e.g., the proteasome connection in the second prediction for Protein 1
(see below). Interestingly, an endonuclease-like domain was identified in Protein 3, but
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its functionality remains elusive (Arragain et al., 2023); such activity is included in an
alternative BetaDescribe prediction.

A.14.3 H5TRPO

To further demonstrate the utility of BetaDescribe’s ability in analyzing non-viral proteins,
we provided a query for the bacterial protein H5TRPO. We selected this protein because
its function was described only recently after the training and test datasets were created.
This protein, termed Cas12m, operates within the Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) system (Bigelyte et al., 2024), which is an adaptive immune
system in prokaryotes that targets foreign DNA or RNA sequences with high specificity
(Ishino et al., 1987). Searching for the most related protein in the training set yielded
an insignificant hit to an unrelated protein with serine protease activity (AOA916UE1Q,
E-value of 1; Table 13). In contrast, BetaDescribe generated two out of three predictions
that correctly linked it to CRISPR activity (Table 13). Although the third description is
not directly Cas-associated, recent studies reveal that the RNA-guided DNA binding and
cleavage activity of Cas12 originates from transposon-encoded nuclease TnpB. This nuclease
promotes transposon survival and spread and performs similar reactions to Cas12 (Wiegand
et al., 2024).

A.14.4 Predictions Generated by BetaDescribe and BlastP-based descriptions

Below are the predictions generated by BetaDescribe as well as the BlastP-based prediction
for six proteins for which the function was not experimentally validated: TGV-S (Table
8), SnRV-Env (Table 9), protein 1 (Table 10), protein 2 (Table 11), protein 3 (Table 12) and
H5TRPO (Table 13).

A.15 Supplementary Information S15: Quantifying the Functionally Importance of
Protein Regions

We employed in-silico alanine scanning mutagenesis, using a sliding-window approach,
with a window size of ten amino acids and a shift of one amino acid, i.e., overlapping
windows. To quantify the importance of substituting the residues in a specific sequence
window to alanine, we used the negative log-likelihood metric, which provides a fit between
a sequence and a description (see below). Thus, for each amino acid, there are ten values
(except the ones in the edges of the protein sequence) of negative-log likelihood scores (one
for each participation in a window). We averaged the negative-log likelihood for each amino
acid, and normalized the scores via a power transformation (Yeo & Johnson, 2000), which
averages the scores to zero. Next, we subtracted the normalized value of the wild-type
protein sequence, such that the average score of the wild-type sequence becomes zero. We
note that we did not train a model to predict the impact of mutagenesis experiments instead,
we used an unsupervised approach that relies on the previous training of BetaDescribe
generator to analyze the mutated sequences.

A.15.1 Negative Log-Likelihood

In NLP, negative log-likelihood (NLL) is a measurement of how well a model predicts text. It
is commonly used to evaluate language models by determining how “surprised” the model
is by specific tokens. A lower negative log-likelihood indicates the model is more confident
in its predictions, assigning higher probabilities to the actual next tokens in the sequence.
Models are trained to minimize this value, and thus improve language understanding and
generation accuracy. For the following n tokens: wy, w», ..., wy, the negative log-likelihood is
defined as:

1 n
NLL = —= Z log(p(w;)
i

Where p(w;) is the probability to generate the token w; given the previous tokens: wy...w;_1.
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Table 8: Prediction for the TGV-S protein by: BetaDescribe (predictions 1 and 2), and BlastP.

BetaDescribe “FUNCTIONS Envelope glycoprotein that forms spikes at the surface of

(Prediction 1) virion envelope. Essential for the initial attachment to heparan sulfate
moities of the host cell surface proteoglycans. Involved in fusion of viral
and cellular membranes leading to virus entry into the host cell. Follow-
ing initial binding to its host receptors, membrane fusion is mediated
by the fusion machinery composed at least of gB and the heterodimer
gH/gL. May be involved in the fusion between the virion envelope
and the outer nuclear membrane during virion egress, SUBCELLULAR
LOCATIONS$ Virion membrane, SUBUNIT$ Homotrimer; disulfide-
linked. Binds to heparan sulfate proteoglycans. Interacts with gH/gL
heterodimer, SIMILARITY$ Belongs to the herpesviridae glycoprotein
B family.”

BetaDescribe “FUNCTIONS$ The surface protein (SU) attaches the virus to the host

(Prediction 2) cell by binding to its receptor. This interaction triggers the refolding of
the transmembrane protein (TM) and is thought to activate its fusogenic
potential by unmasking its fusion peptide. Fusion occurs at the host
cell plasma membrane, & The transmembrane protein (TM) acts as a
class I viral fusion protein. Under the current model, the protein has
at least 3 conformational states: pre-fusion native state, pre-hairpin
intermediate state, and post-fusion hairpin state. During viral and target
cell membrane fusion, the coiled coil regions (heptad repeats) assume
a trimer-of-hairpins structure, positioning the fusion peptide in close
proximity to the C-terminal region of the ectodomain. The formation of
this structure appears to drive apposition and subsequent fusion of viral
and target cell membranes. Membranes fusion leads to delivery of the
nucleocapsid into the cytoplasm, SUBCELLULAR LOCATIONS$ Cell
membrane. SUBUNIT$ The mature envelope protein (Env) consists of a
trimer of SU-TM heterodimers attached by noncovalent interactions or
by a labile interchain disulfide bond”

BlastP (pro- “FUNCTIONS Binds to oocyte zona pellucida in vivo. May play a role

tein 28042, in the fertilization process and/or early embryonic development, SUB-

E — value < CELLULAR LOCATIONS Cytoplasmic vesicle, secretory vesicle, SIMI-

107°) LARITYS$ Belongs to the glycosyl hydrolase 18 family.”

A.15.2 Additional Example for Identifying Functionally Important Protein Regions

RecA of Escherichia coli (POA7G6), the founding member of the bacterial RecA protein family,
is essential for initiating DNA break repair, activating the SOS response, enabling translation
synthesis, and promoting the spread of antibiotic resistance genes. For its various roles,
RecA has a few functional regions: N-terminal domain, “Make ATP Work” (MAW) motif, A
site, B site, and DNA binding sites (McGrew & Knight, 2003). Previous studies showed that
mutating these regions may lead to severe defects in RecA function (Lee & Wang, 2009; Leite
et al., 2019; McGrew & Knight, 2003). As reported in Figure 11, BetaDescribe indicated that
mutations in some of the functional sites, such as the N-terminal domain, MAW motif, and
A site, increase the negative log-likelihood of the description. In other words, BetaDescribe
was mainly influenced by mutations in certain functional regions, and significantly less so
by mutations in non-functional regions. However, not all functional regions were identified
as important. The B site as well as some binding sites were not classified as important. This
analysis suggests that the BetaDescribe model can be used in an unsupervised approach to
identify regions of importance.

A.15.3 Rigorous in-silico Mutagenesis Analysis

To further investigate whether BetaDescribe’s description generation relies on known func-
tional regions, we analyzed 165 well-characterized proteins from ProteinGym (Notin et al.,
2023) and retrieved their annotated domains from UniProt. Of the 165 proteins, 110 had
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Table 9: Prediction for the SnRV-Env protein by: BetaDescribe (predictions 1 and 2), and
BlastP.

BetaDescribe FUNCTIONS The leader peptide is a component of released, infectious

(Prediction 1) virions and is required for particle budding, & The transmembrane pro-
tein (TM) acts as a class I viral fusion protein. Under the current model,
the protein has at least 3 conformational states: pre-fusion native state,
pre-hairpin intermediate state, and post-fusion hairpin state. During
viral and target cell membrane fusion, the coiled coil regions (heptad
repeats) assume a trimer-of-hairpins structure, positioning the fusion
peptide in close proximity to the C-terminal region of the ectodomain.
The formation of this structure appears to drive apposition and sub-
sequent fusion of viral and target cell membranes. Membranes fusion
leads to delivery of the nucleocapsid into the cytoplasm, SUBCELLU-
LAR LOCATIONS Endoplasmic reticulum membrane.

BetaDescribe FUNCTIONS$ Acts as a ligand for KLRK1, SUBCELLULAR LOCA-

(Prediction 2) TIONS$ Cell membrane, SIMILARITYS$ Belongs to the NKG2D ligand
family.

BlastP (protein FUNZZTION$ Responsible for synthesis of pseudouridine from uracil,

AOAOR1ZY]7,E- CATALYTIC ACTIVITYS$ a uridine in RNA = a pseudouridine in RNA,

value of 0.5) SIMILARITYS$ Belongs to the pseudouridine synthase RIuA family.

Mutation makes the _ _ Mutation makes the

description more likely [ description less likely

Mutation does not affect the description

Figure 11: Functionally Important regions within the RecA protein as identified by Be-
taDescribe. The importance of each region is computed by a window-sliding, in-silico
mutagenesis approach. The negative log-likelihood of each residue is evaluated to quantify
functional importance. The values are normalized such that zero represents the average
conservation score of the wild-type protein.

at least one annotated domain (e.g., “CN hydrolase”, “PDZ1”, “SH3” or “DRBM1”). For
each protein, we identified the important positions by calculating if the position increases
or decreases the fit of the descriptions (measured by BetaDescribe’s negative-log likelihood)
and examined whether the positions are located within the annotated domains. Our results
indicate that mutating positions in known domains affects the fit significantly more than
mutating positions outside of these domains (Chi-Square test; p = 1.986 x 10712°). To
further examine how this effect varies with model confidence, we divided proteins into
three equally-sized categories based on BetaDescribe’s wild-type fit, i.e., the negative-log
likelihood of the original description. If BetaDescribe is confident in a description for a
specific protein, it should have a low negative-log likelihood. Significant association was
observed across the low and medium categories: p = 2.487 x 10711, and p = 9.127 x 10~ %,
respectively, while the high negative-log likelihood category did not show significant
association (p = 1.0). This lack of signal at high negative-log likelihood suggests that Be-
taDescribe’s negative-log likelihood score is a meaningful proxy for the biological relevance
of its outputs. These findings indicate that BetaDescribe learned to identify functionally
relevant regions despite not being explicitly trained on domain annotations or mutation
data, highlighting the capacity of the model to capture biologically meaningful features
from sequence-description pairs. Supplementary Information S15, also discuss the effect of
tokenization on our mutagenesis analysis.
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Table 10: Prediction for the protein 1 by: BetaDescribe (predictions 1, 2 and 3), and BlastP.

BetaDescribe
(Prediction 1)

BetaDescribe
(Prediction 2)

BetaDescribe
(Prediction 3)

BlastP (protein
041353, E-value
of 0.000871)

FUNCTIONS$ Probably involved in the RNA silencing pathway and
required for the generation of small interfering RNAs (siRNAs), CAT-
ALYTIC ACTIVITYS$ a ribonucleoside 5-triphosphate + RNA(n) =
diphosphate + RNA(n+1), SIMILARITY$ Belongs to the RARP fam-
ily.

F%NCTION$ Hydrolase that can remove 'Lys-48’-linked conjugated
ubiquitin from proteins, CATALYTIC ACTIVITY$ Thiol-dependent hy-
drolysis of ester, thioester, amide, peptide and isopeptide bonds formed
by the C-terminal Gly of ubiquitin (a 76-residue protein attached to
proteins as an intracellular targeting signal)., SIMILARITY$ Belongs to
the MINDY deubiquitinase family. FAM188 subfamily.

FUNCTIONS$ The proteasome is a multicatalytic proteinase complex
which is characterized by its ability to cleave peptides with Arg, Phe,
Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly
basic pH. The proteasome has an ATP-dependent proteolytic activity.
This subunit is involved in antigen processing to generate class I binding
peptides, CATALYTIC ACTIVITYS$ Cleavage of peptide bonds with
very broad specificity,, SUBCELLULAR LOCATIONS$ Nucleus.
FUNCTIONS$ RNA-dependent RNA polymerase which is responsible
for replication and transcription of virus RNA segments. The transcrip-
tion of viral mRNAs occurs by a unique mechanism called cap-snatching.
5" methylated caps of cellular mRNAs are cleaved after 10-13 nucleotides
by PA. In turn, these short capped RNAs are used as primers by PB1
for transcription of viral mRNAs. During virus replication, PB1 initi-
ates RNA synthesis and copy vRNA into complementary RNA (cRNA)
which in turn serves as a template for the production of more vRNAs,
CATALYTIC ACTIVITYS$ a ribonucleoside 5'-triphosphate + RNA(n) =
diphosphate + RNA(n+1), SUBUNIT$ RNA polymerase is composed
of three subunits: PA, PB1 and PB2, SIMILARITYS$ Belongs to the in-
fluenza viruses polymerase PB1 family.

Table 11: Prediction for the protein 2 by: BetaDescribe (prediction 1), and BlastP.

BetaDescribe
(Prediction 1)

BlastP (protein
AQ0A357NC89,
E-value of 3.4)

FUNCTIONS$ DNA-dependent RNA polymerase catalyzes the transcrip-
tion of DNA into RNA using the four ribonucleoside triphosphates as
substrates, CATALYTIC ACTIVITYS$ a ribonucleoside 5’-triphosphate
+ RNA(n) = diphosphate + RNA(n+1), SIMILARITYS$ Belongs to the
RNA polymerase beta’ chain family.

FUNCTIONS Synthesizes alpha-1,4-glucan chains using ADP-glucose,
CATALYTIC ACTIVITYS [(1- 4)-alpha-D-glucosyl](n) + ADP-alpha-D-
glucose = [(1- 4)-alpha-D-glucosyl](n+1) + ADP + H(+), PATHWAY$
Glycan biosynthesis; glycogen biosynthesis, SIMILARITY$ Belongs
to the glycosyltransferase 1 family. Bacterial /plant glycogen synthase
subfamily.

A.15.4 Discussing the Effect of the Tokenization on the Mutagenesis Analysis

We analyzed the tokenization of the 165 protein sequences used in our mutagenesis analysis.
We found that the average token length (the number of amino acids per token) is 1.54,
indicating that on average, tokens are only slightly longer than single amino acids. This sug-
gests that although some multi-letter groupings do occur, the tokenizer generally maintains
relatively fine-grained resolution over the sequences. When fine-tuning pretrained language
models on a new domain, it is a standard and effective practice to reuse the original tokenizer
rather than retrain it. In practice, this means that the model can learn to associate existing
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Table 12: Prediction for the protein 3 by: BetaDescribe (predictions 1, 2 and 3), and BlastP.

BetaDescribe FUNCTIONS$ DNA-dependent RNA polymerase catalyzes the transcrip-

(Prediction 1) tion of DNA into RNA using the four ribonucleoside triphosphates as
substrates. Specific core component of RNA polymerase III which syn-
thesizes small RN As, such as 55 rRNA and tRNAs, SUBCELLULAR
LOCATIONS$ Nucleus, SUBUNIT$ Component of the RNA polymerase
I (Pol III) complex consisting of 17 subunits, SIMILARITY$ Belongs to
the eukaryotic RPC3/POLR3C RNA polymerase subunit family.

BetaDescribe FUNCTIONS$ Interacts with EME1 to form a DNA structure-specific

(Prediction 2) endonuclease with substrate preference for branched DNA structures
with a 5’-end at the branch nick. Typical substrates include 3’-flap struc-
tures, D-loops, replication forks and nicked Holliday junctions. May
be required in mitosis for the processing of stalled or collapsed repli-
cation fork intermediates. May be required in meiosis for the repair of
meiosis-specific double strand breaks subsequent to single-end invasion
(SEI), SUBCELLULAR LOCATIONS Nucleus, COFACTORS$ Mg(2+),
SUBUNITS$ Interacts with EME1, SIMILARITY$ Belongs to the XPF
family.

BetaDescribe FUNCTIONS$ Decapping enzyme for NAD-capped RNAs: specifically

(Prediction 3) hydrolyzes the nicotinamide adenine dinucleotide (NAD) cap from
a subset of RNAs by removing the entire NAD moiety from the 5’-
end of an NAD-capped RNA, SUBCELLULAR LOCATIONS Nucleus,
COFACTORS a divalent metal cation, SIMILARITY$ Belongs to the
DXO/Dom3Z family.

BlastP (protein FUNCTIONS Associates with the EF-Tu.GDP complex and induces the

AO0A1F6CNSS5, exchange of GDP to GTP. It remains bound to the aminoacyl-tRNA.EF-

E-value of 1.8) Tu.GTP complex up to the GTP hydrolysis stage on the ribosome, SUB-
CELLULAR LOCATIONS$ Cytoplasm, SIMILARITY$ Belongs to the
EF-Ts family.

tokens with new meanings (in this case, amino acid fragments) during training, without
needing to completely retrain the tokenizer. Research supports the idea that models can
repurpose tokens semantically even when tokenizers were originally optimized for other
modalities like English text. For instance, domain-adaptation studies in biomedical and
clinical settings have shown that tokenizers trained on general English corpora work well in
new domains without retraining (Gururangan et al., 2020; Lee et al., 2025). Finally, although
the tokenizer’s subword grouping might affect granularity, the important regions identified
by BetaDescribe are much longer than the average number of amino acids per token. This
suggests that the model is effectively capturing meaningful sequence-level perturbations,
and that tokenization is not obscuring position-level importance in a significant way:.

A.16 Supplementary Information S16: An example in which the BlastP-based
Description is More Accurate than that of BetaDescribe

In nine out of the 147 Category 2 proteins, the BlastP-based description had a higher cosine
similarity score (above 0.6) than all predictions by BetaDescribe. Protein AOA3G3C7WO0
exemplifies such a case. The description from UniProt is as follows:

‘‘FUNCTION$ Probable toxin that inhibits ion channels, SUBCELLULAR LOCATION$
Secreted, DOMAIN$ The cysteine framework is VI/VII (C-C-CC-C-C), & The presence
of a ’disulfide through disulfide knot’ structurally defines this protein as a
knottin, PTM$ Mostly non-hydroxylated.’’

The BlastP-based description in the training set is: ¢ ‘FUNCTION$ Insecticidal toxin
that reversibly and voltage-independently blocks both mid-low- (M-LVA) and
high-voltage-activated (HVA) calcium channels (Cav) in cockroach DUM neurons. Also
causes a modest block of insect sodium channel currents (Nav). Induces potent
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Table 13: Prediction for the HSTRPO by: BetaDescribe (predictions 1, 2 and 3), and BlastP.

BetaDescribe FUNCTIONS$ CRISPR (clustered regularly interspaced short palin-
(Prediction 1) dromic repeat) is an adaptive immune system that provides protection
against mobile genetic elements (viruses, transposable elements and
conjugative plasmids). CRISPR clusters contain spacers, sequences com-
plementary to antecedent mobile elements, and target invading nucleic
acids. CRISPR clusters are transcribed and processed into CRISPR RNA

(crRNA).
BetaDescribe FUNCTIONS$ CRISPR (clustered regularly interspaced short palin-
(Prediction 2) dromic repeat) is an adaptive immune system that provides protection

against mobile genetic elements (viruses, transposable elements and
conjugative plasmids). CRISPR clusters contain sequences complemen-
tary to antecedent mobile elements and target invading nucleic acids.
CRISPR clusters are transcribed and processed into CRISPR RNA (cr-
RNA), COFACTORS Mg(2+) or Mn(2+) required for ssDNA cleavage
activity., & iron-sulfur cluster, SIMILARITY$ Belongs to the CRISPR-
associated exonuclease Cas4 family.

BetaDescribe FUNCTIONS Involved in the transposition of the insertion sequence

(Prediction 3) IS5, SIMILARITYS$ Belongs to the transposase 11 family.

BlastP (protein FUNCTIONS$ ATP-dependent serine protease that mediates the selec-

A0A916UE10, tive degradation of mutant and abnormal proteins as well as certain

E —valueof1) short-lived regulatory proteins. Required for cellular homeostasis and
for survival from DNA damage and developmental changes induced
by stress. Degrades polypeptides processively to yield small peptide
fragments that are 5 to 10 amino acids long. Binds to DNA in a double-
stranded, site-specific manner, CATALYTIC ACTIVITY$ Hydrolysis of
proteins in presence of ATP., SUBUNIT$ Homohexamer. Organized in
a ring with a central cavity, SUBCELLULAR LOCATIONS$ Cytoplasm,
INDUCTIONS$ By heat shock, SIMILARITY$ Belongs to the peptidase
S16 family.

excitatory symptoms, followed by flaccid paralysis leading to death in house
crickets (By similarity), SUBCELLULAR LOCATION$ Secreted, DOMAIN$ The presence
of a ’disulfide through disulfide knot’ structurally defines this protein as a
knottin, MISCELLANEOUS$ This toxin comes from a female specimen. It is observed
that propeptide sequences coming from female specimen have only limited homology
with the male paralogs, but the reason is unknown, SIMILARITY$ Belongs to the
neurotoxin @8 (Shiva) family. @1 (omega toxin) subfamily.’’

The descriptions generated by BetaDescribe is: ¢ ‘FUNCTION$ Has antibacterial activity,
SUBCELLULAR LOCATION$ Secreted, SIMILARITY$ Belongs to the beta-defensin
family.”’

‘“FUNCTION$ Involved in gametogenesis and steroidogenesis, SUBCELLULAR LOCATION$
Secreted, SUBUNIT$ Heterodimer of an alpha and a beta chain, SIMILARITY$ Belongs
to the glycoprotein hormones subunit beta family.’’

‘ ‘FUNCTION$ Has antibacterial activity,’’
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