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ABSTRACT

In this work we study how diffusion-based generative models produce high-
dimensional data, such as an image, by implicitly relying on a manifestation of a
low-dimensional set of latent abstractions, that guide the generative process. We
present a novel theoretical framework that extends Nonlinear Filtering (NLF), and
that offers a unique perspective on SDE-based generative models. The development
of our theory relies on a novel formulation of the joint (state and measurement)
dynamics, and an information-theoretic measure of the influence of the system
state on the measurement process. According to our theory, diffusion models can
be cast as a system of SDE, describing a non-linear filter in which the evolution of
unobservable latent abstractions steers the dynamics of an observable measurement
process (corresponding to the generative pathways). In addition, we present an em-
pirical study to validate our theory and previous empirical results on the emergence
of latent abstractions at different stages of the generative process.

1 INTRODUCTION

Generative models have become a cornerstone of modern machine learning, offering powerful
methods for synthesizing high-quality data across various domains such as image and video synthesis
(Dhariwal & Nichol, 2021; Ho et al., 2022; He et al., 2022), natural language processing (Li et al.,
2022b; He et al., 2023; Gulrajani & Hashimoto, 2023; Lou et al., 2024), audio generation (Kong
et al., 2021; Liu et al., 2022), and molecular structures and general 3D shapes (Trippe et al., 2022;
Hoogeboom et al., 2022; Luo & Hu, 2021; Zeng et al., 2022), to name a few. These models transform
an initial distribution, which is simple to sample from, into one that approximates the data distribution.
Among these, diffusion-based models designed through the lenses of Stochastic Differential Equations
(SDEs) (Song et al., 2021; Ho et al., 2020; Albergo et al., 2023) have gained popularity due to their
ability to generate realistic and diverse data samples through a series of stochastic transformations.

In such models, the data generation process, as described by a substantial body of empirical research
(Chen et al., 2023; Linhardt et al., 2024; Tang et al., 2023), appears to develop according to distinct
stages: high-level semantics emerge first, followed by the incorporation of low-level details, cul-
minating in a refinement (denoising) phase. Despite ample evidence, a comprehensive theoretical
framework for modeling these dynamics remains underexplored. Indeed, despite recent work on
SDE-based generative models (Berner et al., 2022; Richter & Berner, 2023; Ye et al., 2022; Raginsky,
2024) shed new lights on such models, they fall short of explicitly investigating the emergence of ab-
stract representations in the generative process. We address this gap by establishing a new framework
for elucidating how generative models construct and leverage latent abstractions, approached through
the paradigm of NLF (Bain & Crisan, 2009; Van Handel, 2007; Kutschireiter et al., 2020).

NLF is used across diverse engineering domains (Bain & Crisan, 2009), as it provides robust
methodologies for the estimation and prediction of a system’s state amidst uncertainty and noise.
NLF enables the inference of dynamic latent variables that define the system state based on observed
data, offering a Bayesian interpretation of state evolution and the ability to incorporate stochastic
system dynamics. The problem we consider is the following: an unobservable random variable X
is measured through a noisy continuous-time process Yt, wherein the influence of X on the noisy
process is described by an observation function H , with the noise component modeled as a Brownian
motion term. The goal is to estimate the a-posteriori measure πt of the variable X given the entire
historical trajectory of the measurement process Yt.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, we establish a connection between SDE-based generative models and NLF by observing
that they can be interpreted as simulations of NLF dynamics. In our framework, the latent abstraction,
which corresponds to certain real-world properties within the scope of classical nonlinear filtering
and remains unaffected in a causal manner by the posterior process πt, is implicitly simulated and
iteratively refined. We explore the connection between latent abstractions and the a-posteriori process,
through the concept of filtrations – broadly defined as collections of progressively increasing infor-
mation sets – and offer a rigorous theory to study the emergence and influence of latent abstractions
throughout the data generation process. Our theoretical contributions unfold as follows.

In § 2 we show how to reformulate classical NLF results such that the measurement process is the
only available information, and derive the corresponding dynamics of both the latent abstraction and
the measurement process. These results are summarized in Theorem 2 and Theorem 3.

Given the new dynamics, in Theorem 4 we show how to estimate the a-posteriori measure of the NLF
model, and present a novel derivation to compute the mutual information between the measurement
process and random variables derived from a transformation of the latent abstractions in Theorem 5.
Finally, we show in Theorem 6, that the a-posteriori measure is a sufficient statistics for any random
variable derived from the latent abstractions, when only having access to the measurement process.

Building on these general results, in § 3 we present a novel perspective on continuous-time score-
based diffusion models, which is summarised in Equation (10). We propose to view such generative
models as NLF simulators that progress in two stages: first our model updates the a-posteriori
measure representing a sufficient statistics of the latent abstractions, second, it uses a projection
of the a-posteriori measure to update the measurement process. Such intuitive understanding is
the result of several fundamental steps. In Theorem 7 and Theorem 8, we show that the common
view of score-based diffusion models by which they evolve according to forward (noising) and
backward (generative) dynamics is compatible with the NLF formulation, in which there is no need
to distinguish between such phases. In other words, the NLF perspective of Equation (10) is a valid
generative model. In Appendix H, we provide additional results (see Lemma 1), focusing on the
specific case of linear diffusion models, which are the most popular instance of score-based generative
models in use today. In § 4, we summarize the main intuitions behind our NLF framework.

Our results explain, by means of a theoretically sound framework, the emergence of latent abstractions
that has been observed by a large body of empirical work (Bisk et al., 2020; Bender & Koller, 2020;
Li et al., 2022a; Park et al., 2023; Kwon et al., 2023; Chen et al., 2023; Linhardt et al., 2024; Tang
et al., 2023; Xiang et al., 2023; Haas et al., 2024). The closest research to our findings is discussed
in (Sclocchi et al., 2024), albeit from a different mathematical perspective. To root our theoretical
results in additional empirical evidence, we conclude our work in § 5 with a series of experiments on
score-based generative models (Song et al., 2021), where we 1) validate existing probing techniques
to measure the emergence of latent abstractions, 2) compute the mutual information as derived in our
framework, and show that it is a suitable approach to measure the relation between the generative
process and latent abstractions, 3) introduce a new measurement protocol to further confirm the
connections between our theory, and how practical diffusion-based generative models operate.

2 NONLINEAR FILTERING

Consider two random variables Yt and X , corresponding to a stochastic measurement process
(Yt) of some underlying latent abstraction (X). We construct our universe sample space Ω as the
combination of the space of continuous functions in the interval [0, T ] (T ∈ R+) and of a complete
separable metric space S , i.e., Ω = C([0, T ],RN )×S . On this space, we consider the joint canonical
process Zt(ω) = [Yt, X] = [ωy

t , ω
x] for all ω ∈ Ω, with ω = [ωy, ωx]. In this work we indicate

with σ(·) sigma-algebras. Consider the growing filtration naturally induced by the canonical process
FY,X

t = σ(Y0≤s≤t, X) (a short-hand for σ(σ(Y0≤s≤t) ∪ σ(X))), and define F = FY,X
T .We build

the probability triplet (Ω,F ,P), where the probability measure P is selected such that the process
{Z0≤t≤T ,FY,X

0≤t≤T } has the following SDE representation

Yt = Y0 +

∫ t

0

H(Ys, X, s)ds+Wt, (1)
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where {W0≤t≤T ,FY,X
0≤t≤T } is a Brownian motion with initial value 0 and H : Ω× [0, T ] → RN is

an observation process. All standard technical assumptions are available in Appendix A.

Next, we provide the necessary background on NLF, to pave the way for understanding its connection
with the generative models of interest. The most important building block of the NLF literature is
represented by the conditional probability measure P[X ∈ A | FY

t ] (notice the reduced filtration
FY

t ⊂ FY,X
t ), which summarizes, a-posteriori, the distribution of X given observations of the

measurement process until time t, that is, Y0≤s≤t.
Theorem 1. [Thm 2.1 (Bain & Crisan, 2009)] Consider the probability triplet (Ω,F ,P), the metric
space S and its Borel sigma-algebra B(S). There exists a (probability measure valued P(S)) process
{π0≤t≤T ,FY

0≤t≤T }, with a progressively measurable modification, such that for all A ∈ B(S), the
conditional probability measure P[X ∈ A | FY

t ] is well defined and is equal to πt(A).

The conditional probability measure is extremely important, as the fundamental goal of nonlinear
filtering is the solution of the following problem. Here, we introduce the quantity ϕ, which is a
random variable derived from the latent abstractions X .
Problem 1. For any fixed ϕ : S → R bounded and measurable, given knowledge of the measurement
process Y0≤s≤t, compute EP[ϕ(X) | FY

t ]. This amounts to computing

⟨πt, ϕ⟩ =
∫
S
ϕ(x)dπt(x). (2)

In simple terms, Problem 1 involves studying the existence of the a-posteriori measure and the imple-
mentation of efficient algorithms for its update, using the flowing stream of incoming information Yt.
We first focus our attention on the existence of an analytic expression for the value of the a-posteriori
expected measure πt. Then, we quantify the interaction dynamics between observable measurements
and ϕ, through the lenses of mutual information I(Y0≤s≤t;ϕ), which is an extension of the problems
considered in (Newton, 2008; Duncan, 1970; 1971; Mitter & Newton, 2003).

2.1 TECHNICAL PRELIMINARIES

We set the stage of our work by revisiting the measurement process Yt, and express it in a way that
does not require access to unobservable information. Indeed, while Yt is naturally adapted w.r.t. its
own filtration FY

t , and consequently to any other growing filtration Rt such FY,X
t ⊇ Rt ⊇ FY

t , the
representation in Equation (1) is in general not adapted, letting aside degenerate cases.

Let’s consider the family of growing filtrations Rt = σ(R0 ∪ σ(Y0≤s≤t − Y0)), where σ(Y0) ⊆
R0 ⊆ σ(X,Y0). Intuitively R0 allows to modulate between the two extreme cases of knowing only
the initial conditions of the SDE, that is Y0, to the case of complete knowledge of the whole latent
abstraction X , and anything in between. As shown hereafter, the original process Yt associated to the
space (Ω,F ,P) which solves Equation (1), also solves Equation (4), that is adapted on the reduced
filtration Rt. This allows us to reason about the partial observation of the latent abstraction (R0

vs σ(X,Y0)), without incurring in the problem of the measurement process Yt being statistically
dependent of the whole latent abstraction X .

Armed with such representation, we study under which change of measure the process Yt − Y0
behaves as a Brownian motion (Theorem 3). This serves the purpose of simplifying the calculation
of the expected value of ϕ given Yt, as described in Problem 1. Indeed, if Yt − Y0 is a Brownian
motion independent of ϕ, its knowledge does not influence our best guess for ϕ, i.e. the conditional
expected value. Moreover, our alternative representation is instrumental for the efficient and simple
computation of the mutual information I(Y0≤s≤t;ϕ), where the different measures involved in the
Radon-Nikodym derivatives will be compared against the same reference Brownian measures.

The first step to define our representation is provided by the following
Theorem 2. [Proof]. Consider the the probability triplet (Ω,F ,P), the process in Equation (1)
defined on it, and the growing filtration Rt = σ(R0 ∪ σ(Y0≤s≤t − Y0)). Define a new stochastic
process

WR
t

def
= Yt − Y0 −

∫ t

0

EP(H(Ys, X, s) |Rs)ds. (3)

Then, {WR
0≤t≤T ,R0≤t≤T } is a Brownian motion. Notice that if Rt = FY,X

t , then WR
t =Wt.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Following Theorem 2, the process {Y0≤t≤T ,R0≤t≤T } has SDE representation

Yt = Y0 +

∫ t

0

EP(H(Ys, X, s) |Rs)ds+WR
t . (4)

Next, we derive the change of measure necessary for the process W̃t
def
= Yt − Y0 to be a Brownian

motion w.r.t to the filtration Rt. To do this, we apply the Girsanov theorem (Øksendal, 2003) to W̃t

which, in general, admits a R – adapted representation
∫ t

0
EP(H(Ys, X, s) |Rs)ds+WR

t .

Theorem 3. [Proof]. Define the new probability space (Ω,RT ,Q
R) via the measure QR(A) =

EP

[
1(A)(ψR

T )−1
]
, for A ∈ RT , where

ψR
t

def
= exp

(∫ t

0

EP[H(Ys, X, s) |Rs]dYs −
1

2

∫ t

0

∥EP[H(Ys, X, s) |Rs]∥2ds
)
, (5)

and
QR |Rt = EP

[
1(A)EP[(ψ

R
T )−1 |Rt]

]
= EP

[
1(A)(ψR

t )−1
]
.

Then, the stochastic process {W̃0≤t≤T ,R0≤t≤T } is a Brownian motion on the space (Ω,RT ,Q
R).

A direct consequence of Theorem 3 is that the process W̃t is independent of any R0 measurable
random variable under the measure QR. Moreover, it holds that for all R′

t ⊆ Rt, QR |R′
t
= QR′ |R′

t
.

2.2 A-POSTERIORI MEASURE AND MUTUAL INFORMATION

As we did in § 2 for the process πt, here we introduce a new process πR
t which represents the

conditional law of X given the filtration Rt = σ(R0 ∪ σ(Y0≤s≤t − Y0)). More precisely, for all
A ∈ B(S), the conditional probability measure P[X ∈ A |Rt] is well defined and is equal to πR

t (A).
Moreover, for any ϕ : S → R bounded and measurable, EP[ϕ(X) |Rt] = ⟨πR

t , ϕ⟩. Notice that if
R = FY then πR reduces to π.

Armed with Theorem 3, we are ready to derive the expression for the a-posteriori measure πR
t and

the mutual information between observable measurements and the unavailable information about the
latent abstractions, that materialize in the random variable ϕ.
Theorem 4. [Proof]. The measure-valued process πR

t solves in weak sense (see Appendix D for a
precise definition), the following SDE

πR
t = πR

0 +

∫ t

0

πR
s

(
H(Ys, ·, s)− ⟨πR

s , H(Ys, ·, s)⟩
) (

dYs − ⟨πR
s , H(Ys, ·, s)⟩ds

)
, (6)

where the initial condition π0 satisfies πR
0 (A) = P[X ∈ A |R0] for all A ∈ B(S).

When R = FY , Equation (6) is the well-know Kushner-Stratonovitch (or Fujisaki-Kallianpur-Kunita)
equation (see e.g. Bain & Crisan (2009)). A proof for uniqueness of the solution of Equation (6) can
be approached by considering the strategies in (Fotsa-Mbogne & Pardoux, 2017), but is outside the
scope of this work. The (recursive) expression in Equation (6) is particularly useful for engineering
purposes since, in general, it is usually not known in which variables ϕ(X), representing latent
abstractions, we could be interested in. Keeping track of the whole distribution πR

t at time t is the
most cost-effective solution, as we will show later.

Our next goal is to quantify the interaction dynamics between observable measurements and latent
abstractions that materialize through the variable ϕ(X) (from now on we write only ϕ for the sake of
brevity): in Theorem 5 we derive the mutual information I(Y0≤s≤t;ϕ).
Theorem 5. [Proof] The mutual information between observable measurements Y0≤s≤t and ϕ is
defined as:

I(Y0≤s≤t;ϕ)
def
=

∫
log

dP#Y0≤s≤t,ϕ

dP#Y0≤s≤t
dP#ϕ

dP#Y0≤s≤t,ϕ. (7)

It holds that such quantity is equal to EP

[
log

dP |Rt

dP |FY
t

dP | σ(ϕ)

]
, which can be simplified as follows:

I(Y0;ϕ) +
1

2
EP

[∫ t

0

∥∥EP[H(X,Ys, s) | FY
s ]− EP[H(X,Ys, s) |Rs]

∥∥2ds] . (8)
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The mutual information computed by Equation (8) is composed by two elements: first, the mutual
information between the initial measurements Y0 and ϕ, which is typically zero by construction. The
second term quantifies how much the best prediction of the observation function H is influenced by
the extra knowledge of ϕ, in addition to the measurement history Y0≤s≤t. By adhering to the premise
that the conditional expectation of a stochastic variable constitutes the optimal estimator given the
conditioning information, the integral on the r.h.s quantifies the expected square difference between
predictions, having access to measurements only (EP[· | FY

t ]) and those incorporating additional
information (EP[· |Rt]).

Even though a precise characterization for general observation functions and and variables ϕ is
typically out of reach, a qualitative analysis is possible. First, the mutual information between ϕ and
the measurements depends on i) how much the amplitude of H is impacted by knowledge of ϕ and ii)
the number of elements of H which are impacted (informally, how much localized vs global is the
impact of ϕ). Second, it is possible to define a hierarchical interpretation about the emergence of the
various latent factors: a variable with a local impact can “appear”, in an information theoretic sense,
only if the impact of other global variables is resolved, otherwise the remaining uncertainty of the
global variables makes knowledge of the local variable irrelevant. In classical diffusion models, this
is empirically known (Chen et al., 2023; Linhardt et al., 2024; Tang et al., 2023), and corresponds to
the phenomenon where semantics emerges before details (global vs local details in our language).

Now, consider any FY
t measurable random variable Ỹt, defined as a mapping to a generic measurable

space (Ψ,B(Ψ)), which means it can also be seen as a process. The data processing inequality
states that the mutual information between such Ỹ and ϕ will be smaller than the mutual information
between the original measurement process and ϕ. However, it can be shown that all the relevant
information about the random variable ϕ contained in FY

t is equivalently contained in the filtering
process at time instant t, that is πt. This is not trivial, since πt is a FY

t -measurable quantity, i.e.,
σ(πt) ⊂ FY

t . In other words, we show that πt is a sufficient statistic for any σ(X) measurable
random variable when starting from the measurement process.
Theorem 6. [Proof] For any FY

t measurable random variable Ỹt : Ω → Ψ, the following inequality
holds:

I(Ỹ ;ϕ) ≤ I(Y0≤s≤t;ϕ). (9)

For a given t ≥ 0, the measurement process Y0≤s≤t and X are conditionally-independent given
πt. This implies that P(A |σ(πt)) = P(A | FY

t ), ∀A ∈ σ(X). Then I(Y0≤s≤t;ϕ) = I(πt;ϕ) (i.e.
Equation (9) is attained with equality).

While πt contains all the relevant information about ϕ, the same cannot be said about the conditional
expectation, i.e. the particular case Ỹ = ⟨πt, ϕ⟩. Indeed, from Equation (2), ⟨πt, ϕ⟩ is obtained as a
transformation of πt and thus can be interpreted as a FY

t measurable quantity subject to the constraint
of Equation (9). As a particular case, the quantity ⟨πt, H⟩, of central importance in the construction
of generative models § 3, carries in general less information about ϕ than the un-projected πt.

3 GENERATIVE MODELLING

We are interested in generative models for a given σ(X)-measurable random variable V .

An intuitive illustration of how data generation works according to our framework is as follows.
Consider, for example, the image domain, and the availability of a rendering engine that takes as an
input a computer program describing a scene (coordinates of objects, textures, light sources, auxiliary
labels, etc ...) and that produces an output image of the scene. In a similar vein, a generative model
learns how to use latent variables (which are not explicitly provided in input, but rather implicitly
learned through training) to generate an image. For such model to work, one valid strategy is to
consider an SDE in the form of Equation (1) where the following holds1.
Assumption 1. The stochastic process Yt satisfies YT = V, P− a.s.

Then, we could numerically simulate the dynamics of Equation (1) until time T . Indeed, starting from
initial conditions Y0, we could obtain YT that, under Assumption 1, is precisely V . Unfortunately,

1From a strict technical point of view, Assumption 1 might be incompatible with other assumptions in
Appendix A, or proving compatibility could require particular effort. Such details are discussed in Appendix G.
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such a simple idea requires explicit access to X , as it is evident from Equation (1). In mathematical
terms, Equation (1) is adapted to the filtration FY,X

t . However, we have shown how to reduce the
available information to account only for historical values of Yt. Then, we can combine the result in
Theorem 4 with Theorem 2 and re-interpret Equation (4), which is a valid generative model, as{

πt = π0 +
∫ t

0
πs (H − ⟨πs, H⟩) (dYs − ⟨πs, H⟩ds) ,

Yt = Y0 +
∫ t

0
⟨πs, H⟩ds+WFY

t ,
(10)

where H denotes H(Ys, ·, s). Explicit simulation of Equation (10) only requires knowledge of the
whole history of the measurement process: provided Assumption 1 holds, it allows generation of a
sample of the random variable V .

Although the discussion in this work includes a large class of observation functions, we focus on
the particular case of generative diffusion models (Song et al., 2021). Typically, such models are
presented through the lenses of a forward noising process and backward (in time) SDEs, following
the intuition of Anderson (1982). Next, according to the framework we introduce in this work, we
reinterpret such models under the perspective of enlargement of filtrations.

Consider the reversed process Ŷt
def
= YT−t defined on (Ω,F ,P) and the corresponding filtration

F Ŷ
t

def
= σ(Ŷ0≤s≤t). The measure P is selected such that the process Ŷt has F Ŷ

t –adapted expression

Ŷt = V +

t∫
0

F (Ŷs, s)ds+ Ŵt, (11)

where {Ŵt,F Ŷ
t } is a Brownian motion. Then, Assumption 1 is valid since YT = Ŷ0 = V . Note that

Equation (11), albeit with a different notation, is reminiscent of the forward SDE that is typically
used as the starting point to illustrate score-based generative models (Song et al., 2021). In particular,
F (·) corresponds to the drift term of such a diffusion SDE.

Equation (11) is equivalent to Yt = V +
T∫
t

F (Ys, T − s)ds+ ŴT−t, which is an expression for the

process Yt, which is adapted to F Ŷ . This constitutes the first step to derive an equivalent backward
(generative) process according to the traditional framework of score-based diffusion models. Note
that such an equivalent representation is not useful for simulation purposes: the goals of the next
steps is to transform it such that it is adapted to FY . Indeed, using simple algebra, it holds that

Yt = Y0 −
t∫

0

F (Ys, T − s)ds+

−Y0 + V +

T∫
0

F (Ys, T − s)ds+ ŴT−t

 ,

where the last term in the parentheses is equal to −ŴT + ŴT−t.

Note that FY
t = σ(ŶT−t≤s≤T ). Since σ(ŶT−t≤s≤T ) = σ(ŴT−t≤s≤T )∪σ(ŶT−t), we can apply the

result in (Pardoux, 2006) (Thm 2.2) to claim the following: −ŴT +ŴT−t−
∫ t

0
∇ log p̂(Ys, T −s)ds

is a Brownian motion adapted to FY
t , where this time P(Ŷt ∈ dy) = p̂(y, t)dy. Then (Pardoux,

2006)
Theorem 7. Consider the stochastic process Yt which solves Equation (11). The same stochastic
process also admits a FY

t –adapted representation

Yt = Y0 +

∫ t

0

−F (Ys, T − s) +∇ log p̂(Ys, T − s)︸ ︷︷ ︸
In Theorem 8,we call this F ′(Ys,s)

ds+Wt. (12)

Equation (12) corresponds to the backward diffusion process from (Song et al., 2021) and, because it
is adapted to the filtration FY , it represents a valid, and easy to simulate, measurement process.

By now, it is clear how to go from an FY,X–adapted filtration to a FY –adapted one. We also showed
that a FY –adapted filtration can be linked to the reverse, F Ŷ –adapted process induced by a forward

6
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diffusion SDE. What remains to be discussed is the connection that exists between the FY –adapted
filtration, and its enlarged version FY,X . In other words, we have shown that a forward, diffusion
SDE admits a backward process which is compatible with our generative model that simulates a NLF
process having access only to measurements, but we need to make sure that such process admits a
formulation that is compatible the standard NLF framework in which latent abstractions are available.

To do this, we can leverage existing results about Markovian bridges (Rogers & Williams, 2000;
Ye et al., 2022) (and further work (Aksamit et al., 2017; Ouwehand, 2022; Grigorian & Jarrow,
2023; Çetin & Danilova, 2016) on filtration enlargement). This requires assumptions about the
existence and well-behavedness of densities p(y, t) of the SDE process, defined by the logarithm of
the Radon-Nikodym derivative of the instantaneous measure P(Yt ∈ dy) w.r.t. the Lebesgue measure
in RN , P(Yt ∈ dy) = p(y, t)dy2.
Theorem 8. Suppose that on (Ω,F ,P) the Markov stochastic process Yt satisfies

Yt = Y0 +

∫ t

0

F ′(Ys, s)ds+Wt, (13)

where {W0≤t≤T ,FY
0≤t≤T } is a Brownian motion and F satisfies the requirements for existence and

well definition of the stochastic integral (Shreve, 2004). Moreover, let Assumption 1 hold. Then, the
same process admits Rt = σ(Y0≤s≤t, YT )–adapted representation

Yt = Y0 +

∫ t

0

F ′(Ys, s) +∇Ys log p(YT |Ys)ds+ βt, (14)

where p(YT |Ys) is the density w.r.t the Lebesgue measure of the probability P(YT |σ(Ys)), and
{β0≤t≤T ,R0≤t≤T } is a Brownian motion.

The connection between time reversal of diffusion processes and enlarged filtrations is finalized
with the result of Al-Hussaini & Elliott (1987), Thm. 3.3, where it is proved how the βt term of
Equation (14) is a Brownian motion, using the techniques of time reversals of SDEs.

Since p̂(y, T − t) = p(y, t), the enlarged filtration version of Equation (12) reads

Yt = Y0 +

∫ t

0

−F (Ys, T − s) +∇Ys
log p(Ys |YT )ds︸ ︷︷ ︸

Equivalent to H(Yt,X,t)=−F (Ys,T−s)+∇Ys log p(Ys | g(X))

+Wt. (15)

Note that the dependence of Yt on the latent abstractions X is implicitly defined by conditioning the
score term ∇Ys log p(Ys |YT ) by YT , which is the “rendering” of X into the observable data domain.

Clearly, Equation (15) can be reverted to the starting generative Equation (12) by
mimicking the results which allowed us to go from Equation (1) to Equation (4),
by noticing that EP[∇Ys

log p(YT |Ys) | FY
t ] = 0 (informally, this is obtained since∫

∇ys log p(yt | ys)p(yt | ys)dyt =
∫
∇ysp(yt | ys)dyt = 0).

It is also important to notice that we can derive the expression for the mutual information between
the measurement process and a sample from the data distribution, as follows

I(Y0≤s≤t;V ) = I(Y0;V ) +
1

2
EP

[∫ t

0

∥∇Ys
log p(Ys)−∇Ys

log p(Ys |YT )∥2ds
]
. (16)

Mutual information is tightly related to the classical loss function of generative diffusion models.

Furthermore, by casting the result of Equation (8) according to the forms of Equations (12) and (15),
we obtain the simple and elegant expression

I(Y0≤s≤t;V ) = I(Y0;V ) +
1

2
EP

[∫ t

0

∥∇Ys log p(YT |Ys)∥2ds
]
. (17)

In Appendix H, we present a specialization of our framework for the particular case of linear diffusion
models, recovering the expressions for the variance-preserving and variance-exploding SDEs that are
the foundations of score-based generative models (Song et al., 2021).

2Similarly to what discussed in footnote 1, the analysis of the existence of the process adapted to FY
t is

considered in the time interval [0, T ) (Haussmann & Pardoux, 1986). See also Appendix G.
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X

Y0 Y1 Y2 Y3

π0 π1 π2 π3

⟨π0, ϕ⟩ ⟨π1, ϕ⟩ ⟨π2, ϕ⟩ ⟨π3, ϕ⟩

dπt = πt (H − ⟨πt, H⟩) (dYt − ⟨πt, H⟩dt)
⟨πt, ϕ⟩ =

∫
S ϕdπt

dYt = H(Yt, X, t)dt+ dWt
X

Y0 Y1 Y2 V

π0 π1 π2 π3

⟨π0, H⟩ ⟨π1, H⟩ ⟨π2, H⟩ ⟨π3, H⟩

dYt = ⟨πt, H⟩dt+ dWFY

t

I
(Y

0≤
s≤

t ,ϕ
)=

I
(π

t ;ϕ
)≥

I
(⟨π

t ,H
⟩,ϕ

)

Figure 1: Graphical intuition for our results: nonlinear filtering (left) and generative modelling (right).

4 AN INFORMAL SUMMARY OF THE RESULTS

We shall now take a step back from the rigour of this work, and provide an intuitive summary of our
results, using Figure 1 as a reference. We begin with an illustration of NLF, shown on the left of the
figure. We consider an observable latent abstraction X and the measurement process Yt, which for
ease of illustration we consider evolving in discrete time, i.e. Y0, Y1, . . . , and whose joint evolution
is described by Equation (1). Such interaction is shown in blue: Y3 depends on its immediate past Y2
and the latent abstraction X .

The a-posteriori measure process πt is updated in an iterative fashion, by integrating the flux of
information. We show this in green: π1 is obtained by updating π0 with Y1 − Y0 (the equivalent of
dYt). This evolution is described by Kushner’s equation, which has been derived informally from the
result of Equation (6). The a-posteriori process is a sufficient statistic for the latent abstraction X: for
example, π3 contains the same information about ϕ as the whole Y0, . . . , Y3 (red boxes). Instead, in
general, a projected statistic ⟨πt, ϕ⟩ contains less information than the whole measurement process
(this is shown in orange, for time instant 2). The mutual information between all these variables is
proven in Theorem 6, whereas the actual value of I(Y0≤s≤t;ϕ) is shown in Theorem 5.

Next, we focus on generative modelling. As by our definition, any stochastic process satisfying
Assumption 1 (Y3 = V , in the figure) can be used for generative purposes. Since the latent abstraction
is by definition not available, it is not possible to simulate directly the dynamics using Equation (1)
(dashed lines from X to Yt). Instead, we derive a version of the process adapted to the history of Yt
alone, together with the update of the projection ⟨πt, H⟩, which amounts to simulating Equation (10).

The update of the upper part of Equation (10), which is a particular case of Equation (6), can be
interpreted as the composition of two steps: 1) (green) the update of the a-posteriori measure given
new available measurements, and, 2) (orange) the projection of the whole πt into the statistic of
interest. The update of the measurement process, i.e. the lower part of Equation (10), is color-coded
in blue. This is in stark contrast to the NLF case, as the update of e.g. Y3 = V does not depend
directly on X . The system in Equation (10) and its simulation describes the emergence of latent
world representations in SDE-based generative models:

We interpret the FY
t measurable quantity ⟨πt, H⟩ as the cascade of mappings trough the spaces

⟨πt, H⟩ : C([0, t],RN ) → P(S)× RN → RN

Y0≤s≤t → (πt, Yt) → ⟨πt, H⟩

We consider it as a mapping that first transforms the whole Y0≤s≤t into the condensed (in terms of
sufficient statistics Theorem 6) πt, keep also Yt, and second uses these two to construct ⟨πt, H⟩.

The theory developed in this work guarantees that the mutual information between measurements
and any statistics ϕ, grows as described by Theorem 5. Our framework offers a new perspective,
according to which, the dynamics of SDE-based generative models (Song et al., 2021) implicitly
mimic the two steps procedure described in the box above. We claim that this is the reason why

8
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it is possible to dissect the parametric drift of such generative models and find a representation of
the abstract state distribution πt, encoded into their activations. Next, we set to root our theoretical
findings in experimental evidence.

5 EMPIRICAL EVIDENCE

We complement existing empirical studies (Park et al., 2023; Kwon et al., 2023; Chen et al., 2023;
Linhardt et al., 2024; Tang et al., 2023; Xiang et al., 2023; Haas et al., 2024; Sclocchi et al., 2024)
that first measured the interactions between the generative process of diffusion models and latent
abstractions, by focusing on a particular dataset that allows for a fine grained assessment of the
influence of latent factors.

Dataset. We use the Shapes3D (Kim & Mnih, 2018) dataset, which is a collection of 64× 64 ray-
tracing generated images, depicting simple 3D-scenes, with an object (a sphere, cube, ...) placed in a
space, described by several attributes (color, size, orientation). Attributes have been derived from the
computer program that the ray-tracing software executed to generate the scene: these are transformed
into labels associated to each image. In our experiments, such labels are the materialization of the
latent abstractions X we consider in this work (see Appendix J.1 for details).

Measurement Protocols. For our experiments, we use the base NCSPP model described by Song
et al. (2021): specifically, our denoising score network corresponds to a U-NET (Ronneberger et al.,
2015). We train the unconditional version of this model from scratch, using score-matching objective.
Detailed hyper-parameters and training settings are provided in Appendix J.2. Next, we summarize
three techniques to measure the emergence of latent abstractions through the lenses of the labels
associated to each image in our dataset. For all such techniques, we use a specific “measurement”
subset of our dataset, which we partition in 246 training, 150 validation, and 371 test examples. We
use a multi-label stratification algorithm (Sechidis et al., 2011; Szymański & Kajdanowicz, 2017) to
guarantee a balanced distribution of labels across all dataset splits.

Figure 2: Versions of an image corrupted by different values of noise for different times τ .

Linear probing. Each image in the measurement subset is perturbed with noise, using a variance-
exploding schedule (Song et al., 2021), with noise levels decreasing from τ = 0 to τ = 1.0 in steps
of 0.1, as shown in Figure 2. Intuitively, each time value τ can be linked to a different Signal to
Noise Ratio (SNR), ranging from SNR(τ = 1) = ∞ to SNR(τ = 0) ≃ 0. We extract several
feature maps from all the linear and convolutional layers of the denoising score network, for each
perturbed image, resulting in a total of 162 feature map sets for each noise level. This process yields
11 different datasets per layer, which we use to train a linear classifier (our probe) for each of these
datasets, using the training subset. In these experiments, we use a batch size of 64 and adjust the
learning rate based on the noise level (see Appendix J.3). Classifier performance is optimized by
selecting models based on their log-probability accuracy observed on the validation subset. The final
evaluation of each classifier is conducted on the test subset. Classification accuracy, measured by the
model log likelihood, is a proxy of latent abstraction emergence (Chen et al., 2023).

Mutual information estimation. We estimate mutual information between the labels and the outputs
of the diffusion model across varying diffusion times, using Equation (39) (which is a specialized
version of our theory for linear diffusion models, see Appendix H) and adopt the same methodology
discussed by Franzese et al. (2024) to learn conditional and unconditional score functions, and to
approximate the mutual information. The training process uses a randomized conditioning scheme:
33% of training instances are conditioned on all labels, 33% on a single label, and the remaining 33%
are trained unconditionally. See Appendix J.4 for additional details.

Forking. We propose a new technique to measure at which stage of the generative process, image
features described by our labels emerge. Given an initial noise sample, we proceed with numerical
integration of the backward SDE (Song et al., 2021) up to time τ . At this point, we fork k replicas

9
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of the backward process, and continue the k generative pathways independently until numerical
integration concludes. We use a simple classifier (a pre-trained ResNet50 (He et al., 2016) with
an additional linear layer trained from scratch) to verify that labels are coherent across the k forks.
Coherency is measured using the entropy of the label distribution output by our simple classifier on
each latent factor for all the k forks. Intuitively: if we fork the process at time τ = 0.6, and the k
forks all end up displaying a cube in the image (entropy equals 0), this implies that the object shape
is a latent abstraction that has already emerged by time τ . Conversely, lack of coherence implies that
such a latent factor has not yet influenced the generative process. Details of the classifier training and
sampling procedure are provided in Appendix J.5.

Figure 3: Mutual information, Entropy across forked generative pathways, and Probing results as functions of τ .

Results. We present our results in Figure 3. We note that some attributes like floor hue, wall hue and
shape emerge earlier than others, which corroborates the hierarchical nature of latent abstractions,
a phenomenon that is related to the spatial extent of each attribute in pixel space. This is evident
from the results of linear probing, where we evaluate the performance of linear probes trained on
features maps extracted from the denoiser network, and from the mutual information measurement
strategy and the measured entropy of the predicted labels across forked generative pathways. Entropy
decreases with τ , which marks the moment in which the generative process proceeds along k forks.
When generative pathways converge to a unique scene with identical predicted labels (entropy reaches
zero), this means that the model has committed to a specific set of latent factors. This coincides with
the same noise level corresponding to high accuracy for the linear probe, and high-values of mutual
information. Further ablation experiments are presented in Appendix J.6.

6 CONCLUSION

Despite their tremendous success in many practical applications, a deep understanding of how
SDE-based generative models operate remained elusive. A particularly intriguing aspect of several
empirical work was to uncover the capacity of generative models to create entirely new data by
combining latent factors learned from examples. To the best of our knowledge, there exist no
theoretical framework that attempted at describing such phenomenon.

In this work, we closed this gap, and presented a novel theory — that builds on the framework of
NLF — to describe the implicit dynamics allowing SDE-based generative models to tap into latent
abstractions and guide the generative process. Our theory, that required advancing the standard NLF
formulation, culminates in a new system of joint SDEs that fully describe the iterative process of data
generation. Furthermore, we derived an information-theoretic measure to study the influence of latent
abstractions, which provides a concrete understanding of the joint dynamics.

To root our theory into concrete examples, we collected experimental evidence by means of novel
(and established) measurement strategies, that corroborates our understanding of diffusion models.
Latent abstractions emerge according to an implicitly learned hierarchy, and can appear early on in the
data generation process, much earlier than what is visible in the data domain. Our theory is especially
useful as it allows analyses and measurements of generative pathways, opening up opportunities for a
variety of applications, including image editing, and improved conditional generation.
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René Haas, Inbar Huberman-Spiegelglas, Rotem Mulayoff, Stella Graßhof, Sami S. Brandt, and
Tomer Michaeli. Discovering interpretable directions in the semantic latent space of diffusion
models, 2024. URL https://arxiv.org/abs/2303.11073.

11

https://arxiv.org/abs/2306.05720
https://www.sciencedirect.com/science/article/pii/S0019995871901355
https://www.sciencedirect.com/science/article/pii/S0019995871901355
https://openreview.net/forum?id=0kWd8SJq8d
https://openreview.net/forum?id=e2MCL6hObn
https://openreview.net/forum?id=e2MCL6hObn
https://arxiv.org/abs/2303.11073


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

U. G. Haussmann and E. Pardoux. Time Reversal of Diffusions. The Annals of Probability, 14
(4):1188 – 1205, 1986. doi: 10.1214/aop/1176992362. URL https://doi.org/10.1214/
aop/1176992362.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion models
for high-fidelity video generation with arbitrary lengths. arXiv preprint arXiv:2211.13221, 2022.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffu-
sionBERT: Improving generative masked language models with diffusion models. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High
definition video generation with diffusion models, 2022. URL https://arxiv.org/abs/
2210.02303.

Emiel Hoogeboom, Vı́ctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3D. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 8867–8887.
PMLR, 17–23 Jul 2022.

Olav Kallenberg. Foundations of modern probability. Probability and its Applications (New
York). Springer-Verlag, New York, second edition, 2002. ISBN 0-387-95313-2. doi: 10.1007/
978-1-4757-4015-8. URL https://doi.org/10.1007/978-1-4757-4015-8.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International conference on machine
learning, pp. 2649–2658. PMLR, 2018.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

Anna Kutschireiter, Simone Carlo Surace, and Jean-Pascal Pfister. The hitchhiker’s guide to nonlinear
filtering. Journal of Mathematical Psychology, 94:102307, 2020.

Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent
space, 2023. URL https://arxiv.org/abs/2210.10960.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.
arXiv preprint arXiv:2210.13382, 2022a.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022b. URL
https://openreview.net/forum?id=3s9IrEsjLyk.

Bryson Lingenfelter, Sara R. Davis, and Emily M. Hand. A quantitative analysis of labeling issues in
the celeba dataset. In Advances in Visual Computing: 17th International Symposium, ISVC 2022,
San Diego, CA, USA, October 3–5, 2022, Proceedings, Part I, pp. 129–141, Berlin, Heidelberg,
2022. Springer-Verlag. ISBN 978-3-031-20712-9. doi: 10.1007/978-3-031-20713-6 10. URL
https://doi.org/10.1007/978-3-031-20713-6_10.

12

https://doi.org/10.1214/aop/1176992362
https://doi.org/10.1214/aop/1176992362
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2210.02303
https://doi.org/10.1007/978-1-4757-4015-8
https://arxiv.org/abs/2210.10960
https://openreview.net/forum?id=3s9IrEsjLyk
https://doi.org/10.1007/978-3-031-20713-6_10


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lorenz Linhardt, Marco Morik, Sidney Bender, and Naima Elosegui Borras. An analysis of human
alignment of latent diffusion models. arXiv preprint arXiv:2403.08469, 2024.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffsinger: Singing voice synthesis
via shallow diffusion mechanism. Proceedings of the AAAI Conference on Artificial Intelligence,
36(10):11020–11028, Jun. 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In International conference on machine learning, 2024.

Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2837–2845,
June 2021.

Alain Mazzolo. Constraint ornstein-uhlenbeck bridges. Journal of Mathematical Physics, 58(9),
2017.

Sanjoy K Mitter and Nigel J Newton. A variational approach to nonlinear estimation. SIAM journal
on control and optimization, 42(5):1813–1833, 2003.

Nigel J Newton. Interactive statistical mechanics and nonlinear filtering. Journal of Statistical
Physics, 133(4):711–737, 2008.

Bernt Øksendal. Stochastic differential equations. Springer, 2003.

Peter Ouwehand. Enlargement of filtrations–a primer. arXiv preprint arXiv:2210.07045, 2022.

E Pardoux. Grossissement d’une filtration et retournement du temps d’une diffusion. In Séminaire de
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A ASSUMPTIONS

Assumption 2. Whenever we mention a filtration, we assume as usual that it is augmented with the
P− null sets, i.e. if the set N is such that P(N) = 0, then all A ⊆ N should be in the filtration.
Assumption 3.

EP[

∫ t

0

∥H(Ys, X, s)∥ds] <∞. (18)

Assumption 4.

P(

∫ t

0

∥∥EP[H(Ys, X, s) | FY
s ]
∥∥2ds <∞) = 1. (19)

Eq 2.5 Fundamentals of Stochastic Filtering. Necessary for validity of Equation (3).
Assumption 5.

EP[

∫ t

0

∥H(Ys, X, s)∥2ds] <∞. (20)

Note: this assumption implies Assumption 3 and Assumption 4. Despite it is more restrictive, it turns
out that it is often easier to check.

Eq 3.19 Fundamentals of Stochastic Filtering. Necessary for validity of Theorem 3.
Assumption 6.

EP[exp

{
1

2

∫ t

0

∥H(Ys, X, s)∥2ds
}
] <∞, (21)

and

EP[exp

{
1

2

∫ t

0

∥EP[H(Ys, X, s) |Rs]∥2ds
}
] <∞, (22)

Note: Assumption 6, as well as Assumption 5, are trivially verified when H is bounded.

B PROOF OF THEOREM 2

We start by combining Equation (3) and Equation (1)

WR
t = Y0 +

∫ t

0

H(Ys, X, s)ds+Wt − Y0 −
∫ t

0

EP(H(Ys, X, s) |Rs)ds

=

∫ t

0

H(Ys, X, s)ds+Wt −
∫ t

0

EP(H(Ys, X, s) |Rs)ds.

We begin by showing that it is a martingale. For any 0 ≤ τ ≤ t it holds

EP[W
R
t |Rτ ] = EP[

∫ t

0

H(Ys, X, s)ds |Rτ ] + EP[Wt |Rτ ]

− EP[

∫ t

0

EP(H(s, Ys, X) |Rs)ds |Rτ ]

=

∫ t

0

EP[H(Ys, X, s) |Rτ ]ds+ EP[EP[Wt | FY,X
τ ] |Rτ ]

−
∫ τ

0

EP[H(Ys, X, s) |Rs]ds−
∫ t

τ

EP[H(Ys, X, s) |Rτ ]ds

=

∫ τ

0

EP[H(Ys, X, s) |Rτ ]ds+ EP[Wτ |Rτ ] +WR
τ + Y0 − Yτ

= EP[

∫ τ

0

H(Ys, X, s)ds+Wτ + Y0 − Yτ |Rτ ] +WR
τ =WR

τ .

Moreover, it is easy to check that the cross-variation of WR
t is the same as the one of Wt. Then, we

can conclude the proof by Levy’s characterization of Brownian motion (WR
0 = 0).
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C PROOF OF THEOREM 3

First, by combining the definition of ψR
t and the fact that dYt = EP[H(Yt, X, t) |Rt] + dWR

t we
obtain

(ψR
t )−1 = exp

(
−
∫ t

0

EP[H(Ys, X, s) |Rs]dW
R
s − 1

2

∫ t

0

∥EP[H(Ys, X, s) |Rs]∥2ds
)
. (23)

Notice that by Assumption 6 (which is actually the usual Novikov’s condition), the local martin-
gale (ψR

t )−1 is a real-valued martingale starting from (ψR
0 )−1 = 1. Then, we can apply Gir-

sanov theorem and conclude that dQR = ψR
T dP is a probability measure under which the process

{W̃0≤t≤T ,R0≤t≤T }, with

W̃t =WR
t +

∫ t

0

EP[H(Yt, X, s) |Rt]ds,

is a Brownian motion on the space (Ω,RT ,Q
R).

D PROOF OF THEOREM 4

First, let us give a precise meaning to being a weak solution of Equation (6). We say that πR
t solves

(6) in a weak sense in, for any for any ϕ : S → R bounded and measurable, it holds

⟨πR
t , ϕ⟩ = ⟨πR

0 , ϕ⟩

+

∫ t

0

(
⟨πR

s , H(Ys, ·, s)ϕ⟩ − ⟨πR
s , ϕ⟩⟨πR

s , H(Ys, ·, s)⟩
) (

dYs − ⟨πR
s , H(Ys, ·, s)⟩ds

)
.

(24)
Let us recall that, on (Ω,F ,P), the process Yt has the SDE representation (1), where
{W0≤t≤T ,FY,X

0≤t≤T } is a Brownian motion. Moreover, by Theorem 3 with Rt = FY,X
t , it

holds that {(Y − Y0)0≤t≤T ,FY,X
0≤t≤T } is a Brownian motion on the space (Ω,F ,QFY,X

), where

dQFY,X

= (ψFY,X

T )−1dP and

ψFY,X

t = exp

(∫ t

0

H(Ys, X, s)dYs −
1

2

∫ t

0

∥H(Ys, X, s)∥2ds
)
. (25)

For notation simplicity, in this subsection ψFY,X

t and QFY,X

are simply indicated as πt, ψt and Q
respectively.

Since we aim at showing that (24) holds, let us fix ϕ and let us start from EP[ϕ(X) |Rt] = ⟨πR
t , ϕ⟩.

Bayes Theorem provides us with the following

⟨πR
t , ϕ⟩ = EP[ϕ(X) |Rt] =

EQ[
dP
dQϕ(X) |Rt]

EQ[
dP
dQ |Rt]

=
EQ[ψTϕ(X) |Rt]

EQ[ψT |Rt]

def
=

⟨π̂R
t , ϕ⟩

⟨π̂R
t , 1⟩

. (26)

Starting from the numerator ⟨π̂R
t , ϕ⟩, we involve the tower property of conditional expectation and

the fact that ψt is FY,X
t measurable to write

⟨π̂R
t , ϕ⟩ = EQ[ψTϕ(X) |Rt] = EQ

[
EQ

[
ψTϕ(X) | FY,X

t

]
|Rt

]
= EQ

[
EQ

[
ψT | FY,X

t

]
ϕ(X) |Rt

]
= EQ [ψtϕ(X) |Rt] . (27)

Recalling the definition of ψt (see Equation (25)), we have

dψt = ψtH(Yt, X, t)dYt, (28)

from which it follows

ψt = 1 +

∫ t

0

ψsH(Ys, X, s)dYs. (29)
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We continue processing Equation (27), using Equation (29), as

EQ [ψtϕ(X) |Rs] = EQ

[(
1 +

∫ t

0

ψsH(Ys, X, s)dYs

)
ϕ(X) |Rt

]
= EQ [ϕ(X) |Rt] + EQ

[∫ t

0

ψsH(Ys, X, s)ϕ(X)dYs |Rt

]
= EQ [ϕ(X) |Rt] +

∫ t

0

EQ [ψsH(Ys, X, s)ϕ(X) |Rs] dYs,

where to obtain the last equality we used Lemma 5.4 in Xiong (2008). We also recall that, under
Q, the process (Yt − Y0) is independent of X . Thus, since Rt = σ(R0 ∪ σ(Y0≤s≤t − Y0)) and
dP
dQ |FY,X

0
= 1, we obtain EQ [ϕ(X) |Rt] = EP[ϕ(X) |R0]. Concluding and rearranging:

⟨π̂R
t , ϕ⟩ = ⟨π̂R

0 , ϕ⟩+
∫ t

0

⟨π̂R
s , ϕH(Ys, ·, s)⟩dYs.

Obviously by the same arguments ⟨π̂R
t , 1⟩ = EQ[

dP
dQ |Rt] = EQ [ψt |Rt], and

⟨π̂R
t , 1⟩ = 1 +

∫ t

0

⟨π̂R
s , H(Ys, ·, s)⟩dYs. (30)

From now on, for simplicity we assume that all the processes involved in our computations are
1-dimensional. The extension to the multidimensional case is trivial. First, let us notice that, by (30)
and Itô’s lemma, it holds

d
(
⟨π̂R

t , 1⟩−1
)
= −⟨π̂R

t , H(Yt, ·, t)⟩
⟨π̂R

t , 1⟩2
dYs +

⟨π̂R
t , H(Yt, ·, t)⟩2

⟨π̂R
t , 1⟩3

dt. (31)

Then, by the stochastic product rule,

d⟨πR
t , ψ⟩ = d

(
⟨π̂R

t , ϕ⟩⟨π̂R
t , 1⟩−1

)
= ⟨π̂R

t , ϕ⟩d
(
⟨π̂R

t , 1⟩−1
)
+ ⟨π̂R

t , 1⟩−1d⟨π̂R
t , ϕ⟩ − ⟨π̂R

t , ϕH(Yt, ·, t)⟩
⟨π̂R

t , H(Yt, ·, t)⟩
⟨π̂R

t , 1⟩2
dt

= −⟨π̂R
t , ϕ⟩

⟨π̂R
t , H(Yt, ·, t)⟩
⟨π̂R

t , 1⟩2
dYt + ⟨π̂R

t , ϕ⟩
⟨π̂R

t , H(Yt, ·, t)⟩2

⟨π̂R
t , 1⟩3

dt

+
⟨π̂R

t , ϕH(Yt, ·, t)⟩
⟨π̂R

t , 1⟩
dYt − ⟨π̂R

t , ϕH(Yt, ·, t)⟩
⟨π̂R

t , H(Yt, ·, t)⟩
⟨π̂R

t , 1⟩2
dt.

Recalling (26) and rearranging the terms lead us to

d⟨πR
t , ψ⟩ = −⟨πR

t , ϕ⟩⟨πR
t , H(Yt, ·, t)⟩dYt + ⟨πR

t , ϕ⟩⟨πR
t , H(Yt, ·, t)⟩2dt

+ ⟨πR
t , ϕH(Yt, ·, t)⟩dYt − ⟨πR

t , ϕH(Yt, ·, t)⟩⟨πR
t , H(Yt, ·, t)⟩dt

=
(
⟨πR

t , ϕH(Yt, ·, t)⟩ − ⟨πR
t , ϕ⟩⟨πR

t , H(Yt, ·, t)⟩
) (

dYt − ⟨πR
t , H(Yt, ·, t)⟩dt

)
.

E PROOF OF THEOREM 5

The proof of this Theorem involves two separate parts. First, we should show the second equality in

Equation (7), i.e.
∫
log

dP#Y0≤s≤t,ϕ

dP#Y0≤s≤t
dP#ϕ

dP#Y0≤s≤t,ϕ = EP

[
log

dP |Rt

dP |FY
t

dP | σ(ϕ)

]
. Then, we should

prove that the r.h.s of Equation (7) is equal to Equation (8).

E.1 PART 1

We overload in this Section the notation adopted in the rest of the paper for sake of simplicity
in exposition. A random variable X on a probability space (Ω,F ,P) is defined as a measurable

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

mapping X : Ω → Ψ, where the measure space (Ψ,G) satisfies the usual assumptions. To be precise,
X is measurable w.r.t. F if ∀E ∈ G, X−1(E) ∈ F , where X−1(E) = {ω ∈ Ω : X(ω) ∈ E}.
Equivalently, ∀E ∈ G,∃S ∈ F : X(S) = E. Of all the possible sigma-algebras which allow
measurability, the sigma algebra induced by the random variable, σ(X), is the smallest one. It can be
shown that σ(X) = X−1(G) = {A = X−1(B)|B ∈ G}. We also denote by P#X : G → [0, 1] the
push-forward measure associated to X (i.e. the law), which is defined by the relation P#X(E) =
P(X−1(E)) for any E ∈ G. Moreover, for any G-measurable ϕ, the following integration rule holds∫

Ψ

φ(x)dP#X(x) =

∫
Ω

φ(X(ω))dP(ω). (32)

Let us focus on (Ω, σ(X),P) and let us consider a new measure Q absolutely continuous w.r.t. P.
Radon-Nikodym theorem guarantees existence of a σ(X)-measurable function Z : Ω → [0,+∞)

(the “derivative” dQ
dP = Z) such that Q(A) =

∫
A
ZdP, for all A ∈ σ(X). Moreover, by Doob’s

measurability criterion (see e.g. Lemma 1.13 in Kallenberg (2002)), there exists a G-measurable map
f : Ψ → [0,+∞) such that Z = f(X). Then, for any E ∈ G,

Q#X(E) = Q(X−1(E)) =

∫
X−1(E)

f(X)dP(ω) =

∫
Ω

1X−1(E)(ω)f(X(ω))dP(ω)

=

∫
Ω

1E(X(ω))f(X(ω))dP(ω) =

∫
Ψ

1E(x)f(x)dP#X(x) =

∫
E

f(x)dP#X(x).

In summary, we have that dQ#X

dP#X
= f , with f : Ψ → [0,+∞).

Finally, then,∫
Ψ

log

(
dP#X

dQ#X

)
dP#X = −

∫
Ψ

log(f)dP#X = −
∫
Ω

log(f(X))dP =

∫
Ω

log
dP

dQ
dP = EP[log

dP

dQ
].

(33)

What discussed so far, allows to prove that
∫
log

dP#Y0≤s≤t,ϕ

dP#Y0≤s≤t
dP#ϕ

dP#Y0≤s≤t,ϕ =

EP

[
log

dP |Rt

dP |FY
t

dP | σ(ϕ)

]
. Indeed:

• Consider on the space (Ω,Rt,P |Rt
) the random variable T = (Y0≤s≤t, ϕ). By construc-

tion, σ(T ) = Rt.
• Suppose that P |Rt

is absolutely continuous w.r.t P |FY
t

× P | σ(ϕ) (proved in the next
subsection).

• Then the desired equality follows from Equation (33).

E.2 PART 2

Before proceeding, remember that the following holds: for all R′
t ⊆ Rt, QR |R′

t
= QR′ |R′

t
.

We restart from the r.h.s. of Equation (7). Thanks to the chain rule for Radon-Nykodim derivatives

log
dP |Rt

dP |FY
t
dP | σ(ϕ)

= log
dP |Rt

dQR |Rt

dQR |Rt

dP |FY
t
dP | σ(ϕ)

= log
dP |Rt

dQR |Rt

dQR |FY
t

dP |FY
t

dQR |Rt

dQR |FY
t
dP | σ(ϕ)

= log
dP |Rt

dQR |Rt

dQFY |FY
t

dP |FY
t

dQR |Rt

dQR |FY
t
dP | σ(ϕ)

= logψR
t (ψFY

t )−1
dQR |FY

t

dQR |FY
t
dP | σ(ϕ)

= logψR
t − logψFY

t + log
dQR |Rt

dQR |FY
t
dQR | σ(ϕ)

,

18
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where we used Theorem 3 to make ψR
t and ψFY

t appear, and the fact that dQR | σ(ϕ) = dP | σ(ϕ).
Consequently

EP

[
log

dP |Rt

dP |FY
t
dP | σ(ϕ)

]
= EP

[
logψR

t − logψFY

t

]
+ I(Y0;ϕ)

= EP

[∫ t

0

EP[h(Ys, X, s) |Rs]dW
R
s +

1

2

∫ t

0

∥EP[h(Ys, X, s) |Rs]∥2ds
]

− EP

[∫ t

0

EP[h(Ys, X, s) | FY
s ]dWFY

s +
1

2

∫ t

0

∥∥EP[h(Ys, X, s) | FY
s ]
∥∥2ds]+ I(Y0;ϕ)

=
1

2
EP

[∫ t

0

∥EP[h(Ys, X, s) |Rs]∥2 −
∥∥EP[h(Ys, X, s) | FY

s ]
∥∥2ds]+ I(Y0;ϕ).

Actually, the result in the main is in a slightly different form. To show equivalence, it is necessary to
prove that

EP

[∥∥EP[h(Ys, X, s) | FY
s ]
∥∥2]− 2EP

[
EP[h(Ys, X, s) | FY

s ]EP[h(Ys, X, s) |Rs]
]

= −EP

[∥∥EP[h(Ys, X, s) | FY
s ]
∥∥2]

which is trivially true since EP

[
· | FY

t

]
= EP

[
EP [· |Rs] | FY

t

]
.

F PROOF OF THEOREM 6

F.1 PROOF OF EQUATION (9)

The inequality is proven considering that: i)

I(Y0≤s≤t;ϕ) = EP |FY
t

×P | σ(ϕ)

[
η

(
dP |Rt

dP |FY
t
dP | σ(ϕ)

)]
and

I(Ỹt;ϕ) = EP | σ(Ỹt)
×P | σ(ϕ)

[
η

(
dP | σ(Ỹt,ϕ)

dP | σ(Ỹt)
dP | σ(ϕ)

)]
= EP |FY

t
×P | σ(ϕ)

[
η

(
dP | σ(Ỹt,ϕ)

dP | σ(Ỹt)
dP | σ(ϕ)

)]
,

with η(x) = x log x, ii) that
dP | σ(Ỹt,ϕ)

dP | σ(Ỹt)
dP | σ(ϕ)

= EP |FY
t

×P | σ(ϕ)

[
dP |Rt

dP |FY
t

dP | σ(ϕ)
|σ(Ỹt, ϕ)

]
and iii)

that Jensen’s inequality holds (η is convex on its domain)

EP |FY
t

×P | σ(ϕ)

[
η

(
dP | σ(Ỹt,ϕ)

dP | σ(Ỹt)
dP | σ(ϕ)

)]

= EP |FY
t

×P | σ(ϕ)

[
η

(
EP |FY

t
×P | σ(ϕ)

[
dP |Rt

dP |FY
t
dP | σ(ϕ)

|σ(Ỹt, ϕ)

])]

≤ EP |FY
t

×P | σ(ϕ)

[
EP |FY

t
×P | σ(ϕ)

[
η

(
dP |Rt

dP |FY
t
dP | σ(ϕ)

)
|σ(Ỹt, ϕ)

]]

= EP |FY
t

×P | σ(ϕ)

[
η

(
dP |Rt

dP |FY
t
dP | σ(ϕ)

)]
.

F.2 PROOF OF CONDITIONAL INDEPENDENCE AND MUTUAL INFORMATION EQUALITY

Formally the condition of conditional independence given π is satisfied if for any a1, a2 posi-
tive random variables which are respectively σ(X) and FY

t measurable, the following holds:
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EP[a1a2 |σ(πt)] = EP[a1 |σ(πt)]EP[a2 |σ(πt)] (see for instance Van Putten & van Schuppen
(1985)).

The sigma-algebra σ(πt) is by definition the smallest one that makes πt measurable. Since
πt is FY

t measurable, clearly σ(πt) ⊆ FY
t . By the very definition of conditional expecta-

tion, EP[a1 | FY
t ] = ⟨πt, a1⟩, which is an σ(πt) measurable quantity. Then EP[a1a2 |σ(πt)] =

EP[EP[a1a2 | FY
t ] |σ(πt)] = EP[EP[a1 | FY

t ]a2 |σ(πt)] = EP[EP[⟨πt, a1⟩a2 |σ(πt)] =
⟨πt, a1⟩EP[a2 |σ(πt)]. Since ⟨πt, a1⟩ = EP[⟨πt, a1⟩ |σ(πt)] = EP[EP[a1 | FY

t ] |σ(πt)] =
EP[a1 |σ(πt)], the proof of conditional independence is concluded.

In summary, σ(X) and FY
t are conditionally independent given σ(πt) (⊂ FY

t ). This im-
plies that P(A |σ(πt)) = P(A | FY

t ), ∀A ∈ σ(X), or equivalently EP[1(A) |σ(πt)] =
EP[1(A) | FY

t ]. To prove this, it is sufficient to show that for any B ∈ FY
t ,

EP[EP[1(A) |σ(πt)]1(B)] = EP[1(A)1(B)]. By standard properties of conditional ex-
pectation EP[EP[1(A) |σ(πt)]1(B)] = EP[EP[1(A) |σ(πt)]EP[1(B) |σ(πt)]]. Due to con-
ditional independence EP[1(A) |σ(πt)]EP[1(B) |σ(πt)] = EP[1(A)1(B) |σ(πt)]. Then,
EP[EP[1(A) |σ(πt)]EP[1(B) |σ(πt)]] = EP[EP[1(A)1(B) |σ(πt)]] = EP[1(A)1(B)].

The mutual information equality is then proved considering that dP |Rt

dP |FY
t

dP | σ(ϕ)
=

dP(ωx | FY
t )

dP(ωx) , since

the conditional probabilities exist, and that P(ωx | FY
t ) = P(ωx |σ(πt)).

G A TECHNICAL NOTE

As anticipated in the main, Assumption 1 might be incompatible with the other technical assumptions
in Appendix A. The problem might arise for singularities in the drift term at time t = T , which
are usually present in the construction of dynamics satisfying Assumption 1 like stochastic bridges.
This mathematical subtlety can be more clearly interpreted by noticing that when Assumption 1 is
satisfied the evolution of the posterior process πt at time T can occupy a portion of the space of
dimensionality lower than at any T − ϵ, ϵ > 0. Or, we can notice that if Assumption 1 is satisfied,
I(Y0≤s≤T ;V ) = I(V ;V ) which can be equal to infinity depending on the actual structure of S
and the mapping V . In many cases, a simple technical solution is to consider in the analysis only
dynamics of the process in the time interval [0, T )3.In the reduced time interval [0, T ), the technical
assumptions are generally shown to be satisfied. For the practical purposes explored in this work this
restriction makes no difference, and consequently neglect it for the rest of our discussion.

H LINEAR DIFFUSION MODELS

Consider the particular case of linear generative diffusion models Song et al. (2021), which are
widely adopted in the literature and by practitioners. We consider the particular case of Equation (11),
where the function F has linear expression

Ŷt = Ŷ0 − α

t∫
0

Ŷsds+ Ŵt, (34)

for a given α ≥ 0. We assume of course again that Assumption 1 holds, which implies that we
should select Ŷ0 = YT = V . Now, α dictates the behavior of the SDE, which can be cast to the so
called Variance-Preserving and Variance Exploding schedules of diffusion models Song et al. (2021).
In diffusion models jargon, Equation (34) is typically referred to as a noising process. Indeed, by
analysing the evolution of Equation (34), Ŷt evolves to a noisier and noisier version of V as t grows.
In particular, it holds that

Ŷt = exp(−αt)V + exp(−αt)
∫ t

0

exp(αs)dŴs.

3This is akin to the discussion of arbitrage strategies in finance when the initial filtration is augmented with
knowledge of the future value at certain time instants, and the fact that while the new process adapted w.r.t the
new filtration is also a martingale w.r.t. a given new measure for all t ∈ [0, T ), it fails to do so for t = T (thus
giving an arbitrage opportunity).
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The next result is a particular case of Theorem 7.
Lemma 1. Consider the stochastic process Yt which solves Equation (34). The same stochastic
process also admits a FY

t –adapted representation

Yt = Y0 +

∫ t

0

αYs + 2α
exp(−α(T − s))EP[V |σ(Ys)]− Ys

1− exp(−2α(T − s))
ds+Wt, (35)

where Y0 = exp(−αT )V +
√

1−exp(−2αT )
2α ϵ, with ϵ a standard Gaussian random variable indepen-

dent of V and Wt.

As discussed in the main paper, we can now show that the same generative dynamics can be obtained
under the NLF framework we present in this work, without the need to explicitly defining a backward
and a forward process. In particular, we can directly select a observation function that corresponds to
an Orstein-Uhlenbeck bridge (Mazzolo, 2017; Corlay, 2013), consequently satisfying Assumption 1,
and obtain the generative dynamics of classical diffusion models. In particular we consider the
following about H4:
Assumption 7. The function H in Equation (1) is selected to be of the linear form

H(Yt, X, t) = mtV − d logmt

dt
Yt, (36)

with mt =
α

sinh (α(T−t)) , where α ≥ 0. When α = 0, mt =
d logmt

dt = 1
T−t . Furthermore, Y0 is

selected as in Theorem 7. Under this assumption, YT = V, P− a.s., i.e. Assumption 1 is satisfied
[Proof].

In summary, the particular case of Equation (1) (which is FY,X adapted) under Assumption 7, can be
transformed into a generative model leveraging Theorem 2, since Assumption 1 holds. When doing
so, we obtain that the process Yt has FY adapted representation equal to

Yt = Y0 +

∫ t

0

msEP(V | FY
s )ds−

∫ t

0

d logms

ds
Ysds+WFY

t , (37)

which is nothing but Equation (35) after some simple algebraic manipulation. The only relevant detail
worth deeper exposition is the clarification about the actual computation of expectation of interest. If
P is selected such that Ŷt solves Equation (34), we have that

EP(V | FY
t ) = EP(YT |σ(Y0≤s≤t)) = EP(Ŷ0 |σ(ŶT−t≤s≤T )) = EP(Ŷ0 |σ(ŶT−t)) = EP(V |σ(Yt)),

(38)
where the second to last equality is due to the Markov nature of Ŷt.

Moreover, in this particular case we can express the mutual information I(Y0≤s≤t;ϕ) = I(Yt;ϕ) (
where we removed the past of Y since the following Markov chain holds ϕ→ Ŷ0 → Ŷt>0) can be
expressed in the simpler form

I(Yt;ϕ) = I(Y0;ϕ) +
1

2
EP

[∫ t

0

m2
s∥EP[V |σ(Ys)]− EP[V |σ(Ys, ϕ)]∥2ds

]
(39)

matching the result described in Franzese et al. (2023), obtained with the formalism of time reversal
of SDEs.

I DISCUSSION ABOUT ASSUMPTION 7

This is easily checked thanks to the following equality

Yt = Y0
m0

mt
+ V

m0

mT−t
+

∫ t

0

ms

mt
dWs. (40)

4Notice that with H selected as in Assumption 7 the validity of the theory considered is restricted to the time
interval [0, T ), see also Appendix G.
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To avoid cluttering the notation, we define ft = d logmt

dt . To show that Equation (40) is true, it is
sufficient to observe i) that initial conditions are met and ii) that the time differential of the process is
the correct one. We proceed to show that indeed the second condition holds (the first one is trivially
observed to be true).

dYt = −αY0
cosh(α(T − t))

sinh(αT )
+ αr(X)

cosh(αt)

sinh(αT )
− α cosh(α(T − t))

∫ t

0

1

sinh(α(T − s))
dWs + dWt

= −αcosh(α(T − t))

sinh(α(T − t))

(
Y0

sinh(α(T − t))

sinh(αT )
+

∫ t

0

sinh(α(T − t))

sinh(α(T − s))
dWs

)
+ αr(X)

cosh(αt)

sinh(αT )
+ dWt

= −α coth(α(T − t))

(
Yt − r(X)

sinh(αt)

sinh(αT )

)
+ αr(X)

cosh(αt)

sinh(αT )
+ dWt

= −ftYt + αr(X)

(
coth(α(T − t)) sinh(αt)

sinh(αT )
+

cosh(αt)

sinh(αT )

)
+ dWt

= −ftYt + αr(X)

(
coth(α(T − t)) sinh(αt) + cosh(αt)

sinh(αT )

)
+ dWt

= −ftYt + αr(X)

(
coth(α(T − t)) sinh(αt) + cosh(αt)

sinh(αT )

)
+ dWt

= −ftYt +mtr(X) + dWt

where the result is obtained considering that

coth(α(T − t)) sinh(αt) + cosh(αt)

sinh(αT )
=

eα(T−t)+e−α(T−t)

eα(T−t)−e−α(T−t) (e
αt − e−αt) + (eαt + e−αt)

eαT − e−αT

=

eαT+e−α(T−2t)−eα(T−2t)−e−αT

eα(T−t)−e−α(T−t) + (eαt + e−αt)

eαT − e−αT

=
eαT + e−α(T−2t) − eα(T−2t) − e−αT + eαT − e−α(T−2t) + eα(T−2t) − e−αT(

eα(T−t) − e−α(T−t)
)
(eαT − e−αT )

=
2

eα(T−t) − e−α(T−t)
.

J EXPERIMENTAL DETAILS

J.1 DATASET DETAILS

The Shapes3D dataset (Kim & Mnih, 2018) includes the following attributes and the number of
classes for each, as shown in Table 1.

Table 1: Attributes and class counts in the Shapes3D dataset.

Attribute Number of Classes
Floor hue 10
Object hue 10
Orientation 15
Scale 8
Shape 4
Wall hue 10

J.2 UNCONDITIONAL DIFFUSION MODEL TRAINING

We train the unconditional denoising score network using the NCSN++ architecture (Song et al.,
2021), which corresponds to a U-NET (Ronneberger et al., 2015). The model is trained from scratch
using the score-matching objective. The training hyperparameters are summarized in Table 2.
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Table 2: Hyperparameters for unconditional diffusion model training.

Parameter Value
Epochs 100
Batch size 256
Learning rate 1× 10−4

Optimizer AdamW (Loshchilov & Hutter, 2019)
β1 0.95
β2 0.999
Weight decay 1× 10−6

Epsilon 1× 10−8

Learning rate scheduler Cosine annealing with warmup
Warmup steps 500

Gradient clipping 1.0
EMA decay 0.9999
Mixed precision FP16
Scheduler Variance Exploding (Song et al., 2021)
σmin 0.01
σmax 90

Loss function Denoising score matching (Song et al., 2021)

J.3 LINEAR PROBING EXPERIMENT DETAILS

In the linear probing experiments, we train a linear classifier on the feature maps extracted from the
denoising score network at various noise levels τ . The training details are provided in Table 3.

Table 3: Hyperparameters for linear probing experiments.

Parameter Value
Batch size 64
Loss function Cross-Entropy Loss
Optimizer Adam (Kingma & Ba, 2015)

Learning rate 1× 10−6 for τ = 0.9 or τ = 0.99
1× 10−4 for other τ values

Number of epochs 30

Inputs Feature maps (used as-is in the linear layer)
Noisy images (scaled to [−1,+1])

J.4 MUTUAL INFORMATION ESTIMATION EXPERIMENT DETAILS

For mutual information estimation, we train a conditional diffusion model using the same NCSN++
architecture as before. The conditioning is incorporated by adding a distinct class embedding for each
label present in the input image, added to the input embedding along with the timestep embedding.
The hyperparameters are the same as those used for the unconditional diffusion model (see Table 2).

To calculate the mutual information, we use Equation 39, estimating the integral using the midpoint
rule with 999 points uniformly spaced in [0, T ].

J.5 FORKING EXPERIMENT DETAILS

In the forking experiments, we use a ResNet50 (He et al., 2016) model with an additional linear layer,
trained from scratch, to classify the generated images and assess label coherence across forks. The
training details for the classifier are summarized in Table 4.

During the sampling process of the forking experiment, we use the settings summarized in Table 5.
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Figure 4: Visualization of the forking experiment with num forks = 4 and one initial seed. The image at
time τ = 0.4 is quite noisy. In the final generations after forking, the images exhibit coherence in the labels
shape, wall hue, floor hue, and object hue. However, there is variation in orientation and scale.

Table 4: Hyperparameters for the classifier in forking experiments.

Parameter Value
Image size 224 (resized with bilinear interpolation)
Image scaling [−1,+1]

Dataset split
Training set: 72%
Validation set: 8%
Test set: 20%

Early stopping Stop when validation accuracy exceeds 99%
Evaluated every 1000 steps

Number of epochs 1
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 1× 10−4

Table 5: Sampling settings for the forking experiments.

Parameter Value
Stochastic predictor Euler-Maruyama method with 1000 steps
Corrector Langevin dynamics with 1 step
Signal-to-noise ratio (SNR) 0.06
Number of forks (k) 100
Number of seeds 10 (independent initial noise samples)
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J.6 LINEAR PROBING ON RAW DATA

In Figure 5, we evaluate the performance of linear probes trained on features maps extracted from
the denoiser network, and show compare their log probability accuracy with a linear probe trained
on the raw, noisy input and a random guesser. Throughout the generative process, linear probes
obtain higher accuracy than the baselines: for large noise levels, a linear probe on raw input data fails,
whereas the inner layers of the denoising network extract features that are sufficient to discern latent
labels.

Figure 5: Log-probability accuracy of linear classifiers at τ . ’Feature map’ classifiers are trained on network
features; ’Noisy Image’ trained on noisy images; ’Random Guess’ is the baseline for random guessing.

J.7 ADDITIONAL EXPERIMENTS ON CELEBA DATASET

We present our results conducted on the CelebA dataset (Liu et al., 2015), consisting of over 200000
celebrity images with 40 binary attributes. Next, we focus our analysis on the attributes “Male” and
“Eyeglasses” as these are i) among the most reliable and objectively labeled features in the CelebA
dataset5 and ii) significant examples of attributes which can be mapped to more global and local
features respectively. The unconditional and conditional diffusion models were trained using the
identical architectural, optimization, and training hyperparameters as in Song et al. (2021). Both
models employed a variance-exploding diffusion process with a U-Net backbone for the denoising
score network. Training details, including the learning rate, batch size, and noise schedules, are
the same as of Song et al. (2021). We present a comprehensive analysis of the results derived from
probing experiments, mutual information (MI) estimation, and the rate of increase of MI across the
generative process.

Figure 6: Probing accuracy and mutual information (MI) as a function of the noise intensity parameter τ .

Probing vs. MI. Our results, as shown in Figure 6, illustrate a coherent growth between classifier
accuracy (probing performance) and mutual information as a function of the noise intensity parameter
τ . For both attributes, probing accuracy increases steadily, mirroring the growth of MI.

Mutual Information Across Labels Figure 7 compares MI growth across the “Male” and “Eye-
glasses” attributes. A key observation is that the MI for “Male” rises earlier than for “Eyeglasses”,
beginning at τ = 0.2, compared to τ = 0.3. This aligns with the intuition that some latent abstrac-
tions emerge earlier in the generative process than others, given that the average number of pixels
impacted by the global features is larger than the local ones.

5This is supported by previous work, which highlights significant labeling issues for many other attributes,
making them less suitable for consistent analysis (Lingenfelter et al., 2022).
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Figure 7: Mutual information (MI) growth for “Male” and “Eyeglasses” attributes across the generative process.

Figure 8: Rate of change of mutual information (MI) for “Male” and “Eyeglasses” attributes as a function of τ .

Rate of Increase of MI To further investigate the dynamics, we plot ∆(MI)
∆τ , the rate of change of

MI, for the two attributes (Figure 8). This reveals that “Male” exhibits a significantly faster initial
growth rate compared to “Eyeglasses”, peaking around τ = 0.4. This confirms the earlier emergence
of “Male” as a latent abstraction, with a sharp rise in MI during the early stages. In contrast, the MI
for “Eyeglasses” grows more gradually, reflecting a slower but steady emergence of this attribute.
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