
Under review as a conference paper at ICLR 2024

ASYNCHRONOUS GRAPH GENERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the asynchronous graph generator (AGG), a novel graph neural net-
work architecture for multi-channel time series which models observations as
nodes on a dynamic graph and can thus perform data imputation by transduc-
tive node generation. Completely free from recurrent components or assump-
tions about temporal regularity, AGG represents measurements, timestamps and
metadata directly in the nodes via learnable embeddings, to then leverage atten-
tion to learn expressive relationships across the variables of interest. This way,
the proposed architecture implicitly learns a causal graph representation of sen-
sor measurements which can be conditioned on unseen timestamps and metadata
to predict new measurements by an expansion of the learnt graph. The proposed
AGG is compared both conceptually and empirically to previous work, and the
impact of data augmentation on the performance of AGG is also briefly discussed.
Our experiments reveal that AGG achieved state-of-the-art results in time series
data imputation, classification and prediction for the benchmark datasets Beijing
Air Quality, PhysioNet Challenge 2012 and UCI localisation.

1 INTRODUCTION

Incomplete time series data are ubiquitous in a number of applications (Miao et al., 2019), includ-
ing medical logs, meteorology records, traffic monitoring, financial transactions and IoT sensing.
Missing records may be due to various reasons which include failures either in the acquisition or
transmission systems, privacy protocols, or simply because the data are collected asynchronously in
time. Missing data is an issue in itself but also hinders applications, for example, the public dataset
PhysioNet (Silva et al., 2012) has a 78% average missing rate which makes it challenging to extract
useful information from the dataset for, e.g., for predicting mortality. In this setting, imputation
refers to filling in the missing values using the available sparse observations (Little & Rubin, 2019),
and can be achieved by methods that exploit both temporal and spatial dependencies (Yoon et al.,
2017; Yi et al., 2016).

Existing approaches (Cao et al., 2018) to imputation in multi-sensor time series often assume tem-
poral regularity of the data, which is a consequence of representing the values of the series through a
matrix with missing entries as shown in Fig. 1a. This representation implicitly produces two critical
assumptions: i) the notion of order (causality), e.g., x1 precedes x2, and ii) a fixed sampling rate
implying synchronous data acquisition. We assert that this representation is detrimental to success-
fully learn latent dynamics generating the (sparse) observations, therefore, we propose to relax these
stringent assumptions and represent observations as nodes in an asynchronous directed graph, such
as that depicted in Fig. 1b. This approach is robust to the occurrence of missing data and exploits the
permutation invariance of multiple sensors to perform imputation as a transductive node generation
operation over graph embeddings as depicted in Fig. 1c. We refer to the proposed representation as
asynchronous graph generator (AGG).

Deep-learning-based approaches to imputation of missing data have become increasingly popular
in the last five years (Yoon et al., 2018b;a; Liu et al., 2019; Cao et al., 2018). However, in general
these methods rely on slight modifications of standard neural architectures tailored for discrete-time
complete data and are thus unable to fully incorporate available relational information related to,
e.g., temporal, spatial or operating conditions (Bai et al., 2018; Chung et al., 2014). We argue that
continuous-time graphs are a promising resource for incorporating stronger inductive biases in the
analysis of multivariate signals, in particular with applications to data imputation. We assume no
data regularity beyond what is explicitly observed through each sensor, all with the aim to learn the

1



Under review as a conference paper at ICLR 2024

(a) (b) (c)

Figure 1: (a) Matrix time-series representation (Cao et al., 2018). (b) Asynchronous directed graph
representing observations and causal relationships through directed edges; colours represent differ-
ent metadata encoding. (c) Imputation performed by generating a new nodes, in this case, node h̄6

latent dynamics as agnostically as possible. Using an asynchronous graph is pivotal to fulfil this
aim as it allows us to identify expressive relationships among measurements in large and incomplete
sensor networks, as those found in real-world applications.

2 RELATED WORK

The literature addressing missing value imputation in time series is vast. Enormous work has been
dedicated to attempting imputation using classical (non-deep learning) approaches (Beretta & San-
taniello, 2016; Troyanskaya et al., 2001; Ghahramani & Jordan, 1993; Nelwamondo et al., 2007;
Durbin & Koopman, 2012; Kihoro et al., 2013; Cichocki & Phan, 2009; Cai et al., 2011; Rao et al.,
2015; Mei et al., 2017; Yu et al., 2016; Yi et al., 2016).

More recently, deep learning models have been successfully developed for multi-sensor time series
imputation, in particular, using recurrent neural networks (RNNs) (Cao et al., 2018; Yoon et al.,
2018b; Lipton et al., 2016; Che et al., 2018; Luo et al., 2018). Notably, GRU-D (Che et al., 2018)
analyses sequences with missing data by controlling the decay of the hidden states of a gated RNN,
while BRITS (Cao et al., 2018) implements a bidirectional GRU-D that incorporates cross-channel
correlation to perform spatial imputation. These RNN-based methods assume temporal regularity
of data, i.e., a fixed sampling rate.

Adversarial strategies have also been applied to imputation. GAIN (Yoon et al., 2018a) uses GANs
(Goodfellow et al., 2020) to perform imputation in the i.i.d. setting where dependencies among
sensors are neglected, while Luo et al. (2018; 2019) trains models to generate realistic synthetic
sequences. Miao et al. (2021) used an approach similar to GAIN but conditioned the generator on
the predicted label to reconstruct missing values. Lastly, Liu et al. (2019) addressed the imputation
problem for multi-scale highly-sparse series using hierarchical models.

Concurrently, graph neural networks (GNN) have found applications in spatio-temporal forecasting,
where the idea underpinning most methods is the extension of RNN architectures to the graph do-
main. For instance, Seo et al. (2018) implemented GRU cells as nodes combined with spectral GNN
operations (Defferrard et al., 2016), while Li et al. (2018) replaced spectral GNNs with a diffusion-
convolutional network (Atwood & Towsley, 2016). Scarselli et al. (2008); Li et al. (2016); Yu
et al. (2017); Wu et al. (2019; 2020) propose, instead, spatio-temporal graph convolutional networks
that alternate convolutions on temporal and spatial dimensions. Similar approaches have focused
on spatio-temporal data by combining Transformer-like architectures with RNNs (Cai et al., 2020;
Zhang et al., 2018). Temporal graph networks (Rossi et al., 2020; Cini et al., 2022) learn node
embeddings in dynamical graphs but again heavily relying on RNNs to extract temporal encodings.
Lastly, recent works used GNNs for imputation of missing features in the i.i.d. case: Spinelli et al.
(2020) trained GNNs for the data reconstruction task, while You et al. (2020) proposed a bipartite
graph representation for feature imputation.

To the best of our knowledge, no previous GNN-based method approaches the imputation problem
from the perspective of an asynchronous graph. They rely on RNNs in some form and thus implicitly
adopt the strong assumptions about sample regularity as a consequence.

2



Under review as a conference paper at ICLR 2024

3 THE AGG ARCHITECTURE

Asynchronous graphs are a subclass of continuous-time dynamic graphs (CTDG) and are generally
represented as a timed list of events, i.e., operations over edges and nodes including addition, dele-
tion or feature transformations (Rossi et al., 2020). The proposed AGG considers each new sensor
measurement as an expansion of the graph—or node additions—with the directed edges represent-
ing the temporal (causal) relationship among new and past measurements. Being a sequence of
time-stamped events, we denote the graph by G = {x1, x2, . . .}.
The main objective of AGG is to perform transductive node generation, that is, given a set of ob-
servations composed of values, timestamps and additional measurements referred to as metadata,
AGG generates the value for a set of new nodes conditional on any timestamp and metadata. We
emphasise the timestamps need not be uniformly sampled or even ordered.

Transductive node generation, as seen in Fig. 1c, is a node addition to the existing asynchronous
graph. When a node is added to a graph—which is permutation invariant (Bronstein et al., 2021)—it
has no notion of position but only relationship to other nodes via edges. It is through the temporal
encoding that we condition the node to have the idea of order within the graph. If the encoding
places the new node within the temporal “neighbourhood” of the other nodes in the graph, we
refer to data imputation, whereas if the new node comes after the known temporal encodings we
refer to prediction. Furthermore we can condition the graph to generate nodes with continuous
values (regression) or discrete values (classification). We can see that the class of node generation
is arbitrary and, given a flexible notion of encoding, allows the AGG to used for a wide variety of
tasks from imputation to anomaly detection.

Data imputation can also be seen as a type of self-supervised pre-training through masked data
augmentation (Balestriero et al., 2022). After performing imputation, the graph embeddings can
leverage their expressive representation for regression, classification and even anomaly detection
in the same way that masked pre-training is leveraged in architectures like BERT (Devlin et al.,
2019). Our self-supervised approach splits observations into inputs and targets—see Fig. 2—to then
organise them into batches for training a graph attention-based architecture. We next present the
data treatment and the proposed architecture.

3.1 PROBLEM FORMULATION AND DATA PREPARATION

For clarity of presentation, we assume the existence of continuous-time latent signals which are only
measured through a finite set of observations D = {xn}Nn=1. The i-th measurement is given by

xn = [yn, tn,mn] ∈ Rdy+1+dm , (1)

where yn ∈ Rdy is the value, tn ∈ R is the timestamp and mn ∈ Rdm is all the available metadata
including—but not limited to—type, location and operating conditions of the measurement. Our
aim is to extract knowledge from D to predict values corresponding to a set of timestamps and
metadata previously unseen. To exemplify the role of this notation consider the Beijing dataset,
where metadata captures the measurements’ type (e.g., PM2.5, pressure, temperature) as well as
their location. Our formulation stems from the assumption that values across the graph are related
not only by their timestamps but also by additional features such as channel id and sensor location.
Explicitly encoding this metadata in the nodes allows the graph to learn in a way that exploits the
interactions among the relevant variables, e.g., sensors of different types should interact differently
as should different physical locations. Our hypothesis is that by encoding this metadata the graph
can be fully context aware and thus performant.

The process of leveraging the data to train AGG is described next, refer to Fig. 2 for an illustration
of a particular case. First, the dataset D in equation 1 is obtained via an acquisition system (Fig. 2a)
and each measurement is considered as a node in a graph. Then, we order the nodes wrt their
timestamps and randomly split the dataset into input and target samples (blue and red in Fig. 2b).
Lastly, the dataset is divided into samples of L inputs and 1 output by sequentially passing through
the observations with a stride of ∆ (Fig. 2c).

3



Under review as a conference paper at ICLR 2024

a) Data collection (colour-coded per channel) b) Random split: input (colours) and targets (red)

c) Prepare batches for training (stride:2, length:3 -> 6 samples)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 160

1

2

30

4

5

73

6

8

9

107 11

12

1310

15

14

1613

Figure 2: Illustration of the data preparation process to train AGG for a 3-channel signals (colour-
coded) with n = 17 observations, ≈ 35% of samples removed (red), block length L = 3 and stride
∆ = 2. There are 6 samples in this batch, where the targets 5 and 6 constitute 2 separate samples.

3.2 LEARNABLE EMBEDDINGS FOR VALUE, TIME-STAMPS AND METADATA

Temporal embedding. Graphs are naturally permutation invariant so in order to learn flexible
representations of temporal differences, such as periodicities and long-range dynamics, we must
encode the temporal position along with nodes features. Following Kazemi et al. (2019), we use
the learnable temporal encoding t2v and then use these learnt representation in a similar vein as
positional encoding in Vaswani et al. (2017). For a xn as defined in equation 1, this embedding is
parametrised as

t2v(τn) = [ω0τ + ϕ0,F (ω1τn + ϕ1) ,F (ω2τn + ϕ2) , . . . ,F (ωDt−1τn + ϕDt−1)]> ∈ RDt ,
(2)

where τn is the temporal difference between xn and last-observed node xN , i.e., τn = tN − tn ≥ 0;
{ωk}k and {ϕk}k are learnable parameters; and F is a periodic function. Inspired by Kazemi et al.
(2019), we choose F(·) = sin (·) in all implementations of AGG.

Metadata embedding. In order to utilise measurements of different nature (defined by the meta-
data) one could be tempted to represent all interactions via a heterogeneous graph and build specific
models for each interaction of nodes and edges. However, this would require us to cater for all pos-
sible relationships among nodes with minimal weight sharing throughout the model. To circumvent
this challenge, AGG is modelled as a homogeneous graph instead, where a single learnable form
of interaction operates over values yn, time stamps tn and metadata mn provided by the sensor
measurement. In the same vein as the temporal embedding, the metadata is represented by a set
of learnable embeddings, a practice that has become prevalent in the field of natural language pro-
gramming for learnable word embeddings beginning with Bengio et al. (2000). This way, we aim to
include all available information as a form of inductive bias (Bronstein et al., 2021) into the model,
and leave the graph structure to exploit rich relationships among features and values via an attention
mechanism.

AGG builds metadata embeddings based on whether they are discrete or continuous: discrete meta-
data (e.g. categorical data) are embedded via hashing, that is, a matrix of learnable weights is sliced
at the index of the relevant category. Similarly, continuous metadata is embedded into higher dimen-
sions through a learnable projection matrix. The complete embedding of the metadata (considering
both discrete and continuous parts) is denoted embed(mn) ∈ RDm

To enhance the representation power of the overall architecture, we follow Veličković et al. (2018)
and also include a learnable projection for the value denoted embed(yn) ∈ RDy . Thus the AGG is a
heterogeneous graph G with n-th node containing

h0 = Concat [embed(yn), t2v(τn), embed(mn)] ∈ RDy+Dt+Dm , (3)

where the explicit dependence on the index n is dropped unless necessary.

Observe that we denoted the original dimensions in lowercase (dy and dm) and the embedded ones
in uppercase (Dy , Dt and Dm). Also, following equation 3 we define dencoder = dim(h0) = Dy +
Dt +Dm, where the notation h0 will be clarified in the next section.

4



Under review as a conference paper at ICLR 2024

+

Inputs

Targets
t2v

Metadata 
embedding

weights

Value 
embedding

weights

Temporal 
embedding

weights

embed

t2v

embed

embed

Minibatches Learnable embeddings Concat

masked multi-
head attention norm MLP norm

multi-head 
attention norm MLP

2x

embed headerror

Graph encoder

Graph generator

norm

+ +

+<latexit sha1_base64="KuMdSDBMUBRjISGS5mx1Q8768xI=">AAACE3icfVDLSgMxFL3js9ZX1aWbwVZwUcpMF9plwY3LCvaB7VAyaaYNTTJDkhHKMH+hS/0Rd+LWD/A//AAz7SxsCx4IOZxzbzg5fsSo0o7zbW1sbm3v7Bb2ivsHh0fHpZPTjgpjiUkbhyyUPR8pwqggbU01I71IEsR9Rrr+9Dbzu09EKhqKBz2LiMfRWNCAYqSN9FgZ+DwZp0OnMiyVnZozh71O3JyUIUdrWPoZjEIccyI0ZkipvutE2kuQ1BQzkhYHsSIRwlM0Jn1DBeJEeck8cWpfGmVkB6E0R2h7rv7dSBBXasZ9M8mRnqhVLxP/86rmzl5WVZ+nxeUsOmh4CRVRrInAiyhBzGwd2llB9ohKgjWbGYKwpOY3Np4gibA2NRZNTe5qKeukU6+51zX3vl5uNvLCCnAOF3AFLtxAE+6gBW3AIOAZXuHNerHerQ/rczG6YeU7Z7AE6+sXHq+eAw==</latexit>g0

<latexit sha1_base64="H29LQw/vh1vvOjxDdeBhy9Mq2R0=">AAACFHicfVDLSgMxFM3UVx1fVZdugq3gopSZLrTLghuXFewD2qFk0kwbmseQZIQy9DN0qT/iTty69z/8ADPtLGwLHgg5nHNvODlhzKg2nvftFLa2d3b3ivvuweHR8Unp9KyjZaIwaWPJpOqFSBNGBWkbahjpxYogHjLSDad3md99IkpTKR7NLCYBR2NBI4qRsVLfrQxCnk7mQ68yLJW9mrcA3CR+TsogR2tY+hmMJE44EQYzpHXf92ITpEgZihmZu4NEkxjhKRqTvqUCcaKDdBF5Dq+sMoKRVPYIAxfq340Uca1nPLSTHJmJXvcy8T+vau/sZV0N+dxdzWKiRpBSESeGCLyMEiUMGgmzhuCIKoINm1mCsKL2NxBPkELY2B5dW5O/Xsom6dRr/k3Nf6iXm428sCK4AJfgGvjgFjTBPWiBNsBAgmfwCt6cF+fd+XA+l6MFJ985Bytwvn4BVlGeGA==</latexit>

h0

Figure 3: AGG architecture: The sections of the network are indicated at the top of the figure. Inputs
and target are represented as blue and red circles respectively, fixed operations are denoted by white
blocks and learnable transformations in green blocks.

Fig. 3 illustrates the embedding procedure under the title learnable embeddings. The embeddings
then enter a sequence of encoder and decoder blocks comprising attention and fully connected layers
with layer-norms and skip connections through addition. The next two sections present the encoder
and the generator stages.

3.3 ASYNCHRONOUS GRAPH ENCODING

Towards improved performance and expressibility (Brody et al., 2022; Veličković et al., 2018;
Vaswani et al., 2017), the encoder features a multi-head self-attention layer representing the in-
teractions among values, timestamps, and metadata.

Following equation 3, for a single node we denote hi−1 and hi the input and output of the i-th
encoder block respectively (i ≥ 1). However, recall from Sec. 3.1 that AGG takes L nodes simulta-
neously, thus, we denote hi as the concatenation of the hi’s coming from these L nodes. Therefore,
each hi ∈ RL×dencode is a tensor comprising L node embeddings.

The j-th head of the i-th attention layer is thus given by:

Attention(Qij ,Kij ,Vij) = softmax(M ◦Eij)Vij ∈ RL×dv , (4)

where ◦ is the Hadamard (or element-wise) product and

• Qij = hi−1W
Q
j ∈ RL×dq , Kij = hi−1W

K
j ∈ RL×dk , Vij = hi−1W

V
j ∈ RL×dv are

the query, key and value embeddings respectively.

• WQ
i ∈ Rdencoder×dq , WK

i ∈ Rdencoder×dk , W V
i ∈ Rdencoder×dv are the projection matrices.

• [M ]qk = 1tq≤tk is a temporal mask ensuring the operation of AGG is over causal graphs.
Dropout (Hinton et al., 2012) is applied to the mask during training to promote sparsity and
redundancy in the graphs representation by randomly severing connections.

• Eij = d
1/2
k QijK

>
ij ∈ RL×L is the dot product attention Vaswani et al. (2017) matrix

which is equivalent to a fully connected weighted graph (Veličković, 2023) pruned via M .
Under the graph interpretation, E is the weighted adjacency matrix for the L nodes in the
asynchronous graph, where the weight represents the relevance of neighbouring nodes in
determining the features of any other node.

Then, the i-th multihead attention layer is simply the weighted concatenation of its attention heads:

MultiHeadi = Concat [Attention(Qi1,Ki1,Vi1), . . . ,Attention(Qil,Kil,Vil)]W
O ∈ RL×dencode .

(5)

Lastly, the output of the i-th multi-head attention is normalised via a layer normalisation (Ba et al.,
2016) followed by a multi-layer perceptron (MLP). The MLP consists of a 2-layer feed forward

5



Under review as a conference paper at ICLR 2024

network with a LeakyReLU (Maas et al., 2013) activation and Dropout (Hinton et al., 2012) in
the hidden layer, followed by a linear activation layer. The MLP has layer sizes of [dencode, l ×
dencode, dencode], with l is the number of heads. Throughout each block there is extensive use of
skip connections following inspiration from the Transformer (Vaswani et al., 2017) and the original
introduction of the residual connections, ResNet (He et al., 2016).

The output of the i-th block is then calculated by:

ui = hi−1 + MultiHeadi (6)
hi = LayerNorm [ui + MLP (LayerNorm [ui])] . (7)

Therefore, equations 4 - 7 completely define the sequence of outputs from the asynchronous graph
encoder blocks h0, . . . ,hl.

3.4 ASYNCHRONOUS GRAPH GENERATION

AGG leverages cross attention—see Fig. 3—between the output of the last asynchronous encoder
block hl and the concatenation of (target) temporal/metadata embeddings for conditional generation,
the latter denoted by

g0 = Concat[t2v(τt), embed(mt))] ∈ Rdg , (8)
where dg = Dm +Dt. Transductive node generation, conditioned on the timestamps and metadata,
defines where in the graph the new node should be located.

Conditional generation also leverages multiple attention heads, which, akin to equations 4 & 5, is
given by

CrossMultiHead = Concat [Attention(Q1,K1,V1), . . . ,Attention(Ql,Kl,Vl)]W
O ∈ RL×dencode ,

(9)
where

• Qj = ḡ0W
Q

j ∈ Rdq̄ ,Kj = h̄lW
K

j ∈ RL×dk ,Vj = h̄lW
V

j ∈ RL×dv are the query, key
and value respectively, and ḡ0 = LayerNorm[g0] and h̄l = LayerNorm[hl].

• W
Q

j ∈ Rdg×dq̄ ,W
K

j ∈ Rdencode×dk ,W
V

j ∈ Rdencode×dv ,WO ∈ RL×dg are the projection
matrices.

• Ej = d
1/2
k QjK

T
j ∈ RL.

Remark. The cross attention block does not include a causal mask, it implements a fully connected
attention graph over all embeddings; M = 1; Dropout is applied during training.

Additionally, similar to the asynchronous encoder block, the generator follows the cross attention
layer with a set of LayerNorms, skip connections and an MLP, such that:

ū = g0 + CrossMultiHead (10)
g1 = LayerNorm [ū + MLP (LayerNorm [ū])] . (11)

Lastly, depending on the task, we use the generated decoding g1 and fit a trainable head to purpose,
e.g., a classification head or a regression head, which consists of an MLP that projects g1 to the
desired value ŷn, such that:

ŷn = MLP(g1). (12)
Remark. Preliminary experimental evaluation of AGG using a single generator block as presented
here provided satisfactory results. The choice to maintain this architecture follows Occam’s razor.

Fig. 3 shows a diagram of the entire AGG architecture identifying the connections, inputs, targets,
as well as fixed and trainable blocks.

4 RELATIONSHIP TO PREVIOUS METHODS

Our work is conceptually closer to those of Cini et al. (2022); Rossi et al. (2020) albeit with some
key differences. They propose bidirectional RNNs encapsulated in GNNs, where a series of RNNs

6



Under review as a conference paper at ICLR 2024

are interconnected through gates controlled by message passing NNs. These works consider the
time series as a sequence of weighted directed graphs, thus assuming each node to be identified and
labelled with a unique id and consistently available at all evenly-sampled timestamps. Therefore,
their graphs have a fixed topology over time and thus the methods operate mainly by exploiting of
network homophily. Furthermore, the temporal dynamics are firmly delegated to the RNN, as a
consequence, the known drawbacks of RNNs hinder the applicability of the methods for imputa-
tion, namely long-term memory retention and temporal dependencies, vanishing gradients, memory
staleness, hidden-state bottleneck, to name a few (Rossi et al., 2020).

The proposed AGG does not use recurrent architectures and learns long-term dependencies directly
via a graph over the nodes features (measurements). The node features are embedded into a high-
dimensional space to represent their position in space and time, then their relationships are captured
by a learnable graph whose connections are defined via conditional dot product attention. Addi-
tionally, the causal relationship of the nodes is enforced through the masked attention mechanism.
The AGG has no recurrence so memory staleness (Rossi et al., 2020) is inherently avoided and, as a
consequence, the range of temporal dependencies that can be learnt are only limited by the context
window of the AGG input sequence and not the model. A critical feature of AGG that should not
be overlooked is its ability to leverage past measurements of adjacent sensors, which we believe to
be a significant shortcoming of recurrent message-passing neural networks proposed by Rossi et al.
(2020), then expanded by Cini et al. (2022). The AGG, on the other hand, is able to look at past
measurements of adjacent sensors in order to compute each node embedding, this is a key compo-
nent to encoding both the coherence and phase relationship (Granger, 1969), which quantify the
similarity and delay between a pair of time series. We argue that models that consider time series as
a set of sequential graphs ignore the coherence and phase components of a dynamic system, while
by leveraging attention over past measurements of adjacent nodes the AGG is able to effectively
capture the phase and coherence dynamics of the system as a whole.

5 EXPERIMENTAL EVALUATION

Benchmark models and datasets. AGG was compared against state-of-the-art models SSGAN
(Miao et al., 2021), BRITS (Cao et al., 2018), NAOMI (Liu et al., 2019), GP-VAE (Fortuin et al.,
2020) on three datasets for imputation: the Beijing Air Quality (Yi et al., 2016), PhysioNet Chal-
lenge 2012 (Silva et al., 2012) and UCI Localization Data for Person Activity (Kaluža et al., 2014).
The first two datasets were also used for classification and regression of mortality and PM2.5 re-
spectively. All data were standardised per channel. See Appendix A.1 for additional details.

Implementation details. A common AGG architecture was implemented without hyper-parameter
tuning for all datasets. We considered two encoder layers (Sec. 3.3) and one generator layer
(Sec. 3.4), followed by a regression or classification head depending on the task. All embeddings
were 16 dimensions per feature with 8 attention heads. The MLPs in equations 7 and 11 featured
2 layers: an input layer of dimension 5 × 16 = 80 and a hidden layer of dimension equal to
number of heads × embedding dimension = 8 × 80 = 640, which was then reduced back to the
embedding dimension (80). During training, we used a Dropout rate of 0.2 for both the MLP layers
and the attention masking. As a result, the model has 378k trainable parameters with a standard
context length of L = 100 nodes, which are padded if the context length exceeds the dataset such as
some samples in the Physionet dataset. Refer to Fig. 3 for more details of the AGG architecture.

Infrastructure. AGG was implemented on PyTorch (Paszke et al., 2019) using an Nvidia RTX
Titan GPU with 24GB of VRAM and 4608 CUDA Cores, and an Intel Core i9-9900K with 16 cores
and 32GB of RAM running Ubuntu 22.04 64bit. Code is available1.

5.1 DATA IMPUTATION

Following Miao et al. (2021), we addressed the unsupervised imputation task by randomly splitting
the data into r% for targets and (1− r)% for inputs (see Figs. 2 and 3), with the targets split again in
80%−20% for training and validation respectively. We chose r ∈ {10, 30, 50, 70, 90} and evaluated
the imputation performance using the Root Mean Square Error (RMSE). This setting replicates an

1https://github.com/

7



Under review as a conference paper at ICLR 2024

Table 1: Time series imputation performance (RMSE) for all models considered under different
percentage of removed data (r). Improvement denotes (as a percentage): AGG vs SSGAN.

Dataset Removed (r) Mean GP-VAE NAOMI BRITS SSGAN AGG Improvement

UCI

10% 0.813 0.670 0.641 0.621 0.600 0.195 67.5%
30% 0.873 0.726 0.724 0.686 0.666 0.221 66.8%
50% 0.933 0.796 0.794 0.786 0.759 0.222 70.8%
70% 0.943 0.846 0.854 0.836 0.803 0.234 70.9%
90% 0.963 0.882 0.897 0.867 0.841 0.241 71.3%

PhysioNet

10% 0.799 0.677 0.632 0.611 0.598 0.494 17.4%
30% 0.863 0.707 0.703 0.672 0.670 0.535 20.1%
50% 0.916 0.787 0.783 0.779 0.762 0.532 30.2%
70% 0.936 0.837 0.835 0.809 0.782 0.589 24.7%
90% 0.952 0.879 0.865 0.850 0.818 0.702 14.2%

Beijing

10% 0.763 0.522 0.522 0.531 0.435 0.176 59.5%
30% 0.806 0.562 0.558 0.561 0.461 0.157 65.9%
50% 0.866 0.602 0.602 0.581 0.490 0.197 59.8%
70% 0.898 0.709 0.701 0.641 0.603 0.225 62.7%
90% 0.919 0.771 0.762 0.720 0.660 0.329 50.2%

Table 2: Performance of pre-trained models on classification (left) & regression (right)

Method PhysioNet ICU mortality (AUC) Beijing PM2.5 regression (MAE)
GRIN N/A 10.23
BRITS 0.850± 0.002 11.56
AGG 0.862± 0.0075 3.64

extremely-sparse imputation scheme, to be addressed via transductive node generation (Fig. 1c). See
Appendices A.1.1 for details about the Beijing dataset and A.2 for data removal and batching.

Table 1 shows the performance of the methods considered, alongside the baseline Mean imputation
method and AGG’s performance improvement over current state-of-the-art SSGAN. Across all val-
ues of removed data (r), AGG outperformed all benchmarks and exhibited an average improvement
of 21.3% on PhysioNet, 59.6% on Beijing PM2.5 dataset, and 69.5% on UCI (wrt SSGAN). A keen
observer would note that unlike past methodologies the AGG does not decrease its performance
monotonically with r, in fact under some circumstances it improves with r (note the improvement
of r = 30% vs r = 10% on the Beijing dataset). We attribute this behaviour to two key characteris-
tics of the AGG, the first being the invariance of the architecture to sparsity of the data, such that the
model sees little change in the underlying signal with r ≤ 50%. The second is the sensitivity of the
AGG to data augmentation (see Sec. 6): it seems that r = 30% is an inflection point whereby there
has been sufficient data removed to properly train AGG but not enough that the information (in an
information theoretic (Shannon, 1949) sense) of the underlying dynamics has been diminished.

5.2 CLASSIFICATION AND REGRESSION

Following the methodologies of Cao et al. (2018); Miao et al. (2021), the model pretrained on
the imputation task was used to predict in-hospital mortality on Physionet. Specifically, we fine-
tuned the model pretrained with 10% of data removed as explained above and, similarly to BRITS,
we performed k-fold (k = 5) cross validation with the entire dataset. AGG achieved an average
AUC = 0.862, thus improving over BRITS which reported AUC = 0.850 (Silva et al., 2012).
Though SSGAN did not report an exact performance index for this experiment, from Fig.4a in Miao
et al. (2021) SSGAN appeared to perform on par with BRITS with AUC ' 0.85.

AGG was then used to predict PM2.5 (Beijing dataset) and compared against the two best-scoring
methodologies encountered in the literature following the setting in Yi et al. (2016) regarding the
test/train split and the use of MAE. AGG scored a PM2.5 prediction MAE = 3.64 thus outperform-
ing both BRITS (Cao et al., 2018) and GRIN (Cini et al., 2022) as showed in Table 2. We conjecture
that the considerable improvement of AGG (64.4%) wrt GRIN can be explained by its strong in-

8



Under review as a conference paper at ICLR 2024

ductive bias resulting from the spatial encoding, which captures the inner dynamics of spatially and
temporally correlated data, thus effectively learning the phase shift among locations.

6 DISCUSSION: ON THE EFFECTIVENESS OF DATA AUGMENTATION

101 102 103

Augmented Samples per Block

0.175

0.200

0.225

0.250

0.275

0.300

0.325

RM
SE

Augmentation Sensitivity: KDD with 10% Missing Data

Figure 4: AGG performance (RMSE) vs num-
ber of training samples produced from the same
dataset through augmentation.

Conceptually, the distinguishing features of the
AGG are its invariance to sparsity (missing
data) and its ability to exploit translation equiv-
ariance of the signal. It is widely accepted that
data augmentation regularises a model towards
the transformations that are applied (Balestriero
et al., 2022; Neyshabur, 2017; Neyshabur et al.,
2014). If these transforms align with the geo-
metric priors (Bronstein et al., 2021) they can
be exploited to can create a much more ex-
pressive representation of features in the signal
space. This would allow the model to capture
relevant interacting dynamics between chan-
nels, while ignoring superfluous information. It
is expected that this inductive bias introduces some form of capacity control (Neyshabur, 2017)
which in turn allows for successful generalisation.

Data augmentation should then emphasise geometric priors in our model to fully learn a gener-
alisable representation of the signal of interest. Our choice of augmentation is inspired by self
supervised learning (SSL) (Misra & Maaten, 2020; Zbontar et al., 2021) in computer vision, where
augmentations exploit the translation equivariance in images through shift operations. In the same
vein, we randomly remove samples from the training set to promote sparsity in our dataset and shift
the inputs (relative to targets) in order to leverage the translation equivariance.

We studied the effect of this approach to data augmentation on the imputation task with 10% of the
data removed (as defined in Sec. 5). To this end, we varied the stride length of each sample: the
finer the stride, the more data samples are generated from the same training data—more details in
Appendices A.2 and A.3. Fig. 4 shows the effect of the number of augmented samples of each block
on the imputation performance via RMSE over the validation set, as defined by Yi et al. (2016).

The validation RMSE of AGG decreased sharply up to approximately 60x augmented samples, thus
confirming the existence of a threshold for data augmentation in AGG after which complexity cost
increases without gain in performance. This is consistent with Balestriero et al. (2022) who found
empirically that 50x augmented samples were required to estimate their closed form of the loss. In
general cases this threshold should be determined based on the sampling theorem (Shannon, 1949),
which relates the observation rate with the dynamic content of the signals (for the stationary case).

7 CONCLUSIONS

We have presented asynchronous graph generators (AGGs), a family of attention-based models for
multichannel time series that represents observations as nodes of a dynamic graph without assuming
temporal regularity or recurrence. Using data-augmentation techniques inspired from computer vi-
sion and learnable embeddings from language models, we have shown that AGG can be successfully
trained under missing-data regimes to discover rich relationships among variables of interest. Once
trained, AGG can be used for data imputation—and as a consequence classification and prediction—
by means of a conditional transductive node generation operation, that is, by generating a new node
in the graph at a given timestamp (and metadata). We have experimentally validated the superiority
of AGG against the state of the art on three relevant datasets and different rates of missing values.
Our simulations confirm the robustness of AGG to sparsity and sample asynchronicity, thus making
it well suited for real-world applications involving incomplete multi-channel time-series data.

9



Under review as a conference paper at ICLR 2024

REFERENCES

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 29. Curran Associates, Inc., 2016. URL
https://proceedings.neurips.cc/paper_files/paper/2016/file/
390e982518a50e280d8e2b535462ec1f-Paper.pdf.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Randall Balestriero, Ishan Misra, and Yann LeCun. A data-augmentation is worth a thou-
sand samples: Analytical moments and sampling-free training. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 19631–19644. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/7c080cab957edab671ac49ae11e51337-Paper-Conference.pdf.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.
In T. Leen, T. Dietterich, and V. Tresp (eds.), Advances in Neural Information Processing Sys-
tems, volume 13. MIT Press, 2000. URL https://proceedings.neurips.cc/paper_
files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf.

Lorenzo Beretta and Alessandro Santaniello. Nearest neighbor imputation algorithms: a critical
evaluation. BMC medical informatics and decision making, 16(3):197–208, 2016.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=F72ximsx7C1.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Deng Cai, Xiaofei He, Jiawei Han, and Thomas S. Huang. Graph regularized nonnegative ma-
trix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(8):1548–1560, 2011. doi: 10.1109/TPAMI.2010.231.

Ling Cai, Krzysztof Janowicz, Gengchen Mai, Bo Yan, and Rui Zhu. Traffic transformer: Capturing
the continuity and periodicity of time series for traffic forecasting. Transactions in GIS, 24(3):
736–755, 2020.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent im-
putation for time series. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):6085,
2018.

Song Chen. Beijing PM2.5 Data. UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C5JS49.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale nonnegative matrix and
tensor factorizations. IEICE transactions on fundamentals of electronics, communications and
computer sciences, 92(3):708–721, 2009.

10

https://proceedings.neurips.cc/paper_files/paper/2016/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7c080cab957edab671ac49ae11e51337-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7c080cab957edab671ac49ae11e51337-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf


Under review as a conference paper at ICLR 2024

Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the g ap s: Multivariate time series imputation
by graph neural networks. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=kOu3-S3wJ7.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Cur-
ran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/
paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

James Durbin and Siem Jan Koopman. Time Series Analysis by State Space Methods. Oxford
University Press, 05 2012. ISBN 9780199641178. URL https://doi.org/10.1093/
acprof:oso/9780199641178.001.0001.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Raetsch, and Stephan Mandt. Gp-vae: Deep proba-
bilistic time series imputation. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of
the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108
of Proceedings of Machine Learning Research, pp. 1651–1661. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/fortuin20a.html.

Zoubin Ghahramani and Michael Jordan. Supervised learning from incomplete data via
an em approach. In J. Cowan, G. Tesauro, and J. Alspector (eds.), Advances in
Neural Information Processing Systems, volume 6. Morgan-Kaufmann, 1993. URL
https://proceedings.neurips.cc/paper_files/paper/1993/file/
f2201f5191c4e92cc5af043eebfd0946-Paper.pdf.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica: journal of the Econometric Society, pp. 424–438, 1969.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors.
arXiv:1207.0580, 2012.

Boštjan Kaluža, Božidara Cvetković, Erik Dovgan, Hristijan Gjoreski, Matjaž Gams, Mitja Luštrek,
and Violeta Mirchevska. A multi-agent care system to support independent living. International
journal on artificial intelligence tools, 23(01):1440001, 2014.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay
Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a
vector representation of time. arXiv preprint arXiv:1907.05321, 2019.

J Kihoro, K Athiany, W KH, et al. Imputation of incomplete nonstationary seasonal time series data.
Mathematical Theory and Modeling, 3(12):142–154, 2013.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=SJiHXGWAZ.

11

https://openreview.net/forum?id=kOu3-S3wJ7
https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1093/acprof:oso/9780199641178.001.0001
https://doi.org/10.1093/acprof:oso/9780199641178.001.0001
https://proceedings.mlr.press/v108/fortuin20a.html
https://proceedings.neurips.cc/paper_files/paper/1993/file/f2201f5191c4e92cc5af043eebfd0946-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/f2201f5191c4e92cc5af043eebfd0946-Paper.pdf
https://openreview.net/forum?id=SJiHXGWAZ


Under review as a conference paper at ICLR 2024

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated
graph sequence neural networks. In Proceedings of ICLR’16, April 2016.
URL https://www.microsoft.com/en-us/research/publication/
gated-graph-sequence-neural-networks/.

Zachary C Lipton, David Kale, and Randall Wetzel. Directly modeling missing data in sequences
with rnns: Improved classification of clinical time series. In Machine learning for healthcare
conference, pp. 253–270. PMLR, 2016.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John
Wiley & Sons, 2019.

Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. Naomi: Non-autoregressive mul-
tiresolution sequence imputation. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/50c1f44e426560f3f2cdcb3e19e39903-Paper.pdf.

Yonghong Luo, Xiangrui Cai, Ying ZHANG, Jun Xu, and Yuan xiaojie. Multi-
variate time series imputation with generative adversarial networks. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/96b9bff013acedfb1d140579e2fbeb63-Paper.pdf.

Yonghong Luo, Ying Zhang, Xiangrui Cai, and Xiaojie Yuan. E2gan: End-to-end generative adver-
sarial network for multivariate time series imputation. In Proceedings of the 28th international
joint conference on artificial intelligence, pp. 3094–3100. AAAI Press Palo Alto, CA, USA, 2019.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proceedings of the International Conference on Machine Learning,
volume 30, pp. 3. Atlanta, GA, 2013.

Jiali Mei, Yohann De Castro, Yannig Goude, and Georges Hébrail. Nonnegative matrix factorization
for time series recovery from a few temporal aggregates. In International conference on machine
learning, pp. 2382–2390. PMLR, 2017.

Xiaoye Miao, Yunjun Gao, Su Guo, Lu Chen, Jianwei Yin, and Qing Li. Answering skyline queries
over incomplete data with crowdsourcing. IEEE Transactions on Knowledge and Data Engineer-
ing, 33(4):1360–1374, 2019.

Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, and Jianwei Yin. Generative
semi-supervised learning for multivariate time series imputation. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 8983–8991, 2021.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6707–6717, 2020.

Fulufhelo V Nelwamondo, Shakir Mohamed, and Tshilidzi Marwala. Missing data: A comparison
of neural network and expectation maximization techniques. Current Science, pp. 1514–1521,
2007.

Behnam Neyshabur. Implicit regularization in deep learning. arXiv preprint arXiv:1709.01953,
2017.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

12

https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/
https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/
https://proceedings.neurips.cc/paper_files/paper/2019/file/50c1f44e426560f3f2cdcb3e19e39903-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/50c1f44e426560f3f2cdcb3e19e39903-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/96b9bff013acedfb1d140579e2fbeb63-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/96b9bff013acedfb1d140579e2fbeb63-Paper.pdf


Under review as a conference paper at ICLR 2024

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. Collabora-
tive filtering with graph information: Consistency and scalable methods. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 28. Curran Associates, Inc., 2015. URL
https://proceedings.neurips.cc/paper_files/paper/2015/file/
f4573fc71c731d5c362f0d7860945b88-Paper.pdf.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In Neural Information Processing: 25th
International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Pro-
ceedings, Part I 25, pp. 362–373. Springer, 2018.

C.E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
jan 1949. doi: 10.1109/jrproc.1949.232969. URL https://doi.org/10.1109/jrproc.
1949.232969.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In 2012 Com-
puting in Cardiology, pp. 245–248. IEEE, 2012.

Indro Spinelli, Simone Scardapane, and Aurelio Uncini. Missing data imputation with adversarially-
trained graph convolutional networks. Neural Networks, 129:249–260, 2020.

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani,
David Botstein, and Russ B Altman. Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520–525, 2001.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Petar Veličković. Everything is connected: Graph neural networks. Current opinion in struc-
tural biology, 79:102538, April 2023. ISSN 0959-440X. doi: 10.1016/j.sbi.2023.102538. URL
https://arxiv.org/pdf/2301.08210.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
spatial-temporal graph modeling. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, IJCAI’19, pp. 1907–1913. AAAI Press, 2019.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

13

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf
https://doi.org/10.1109/jrproc.1949.232969
https://doi.org/10.1109/jrproc.1949.232969
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/pdf/2301.08210


Under review as a conference paper at ICLR 2024

KDD ’20, pp. 753–763, New York, NY, USA, 2020. Association for Computing Machinery. URL
https://doi.org/10.1145/3394486.3403118.

Xiuwen Yi, Yu Zheng, Junbo Zhang, and Tianrui Li. St-mvl: filling missing values in geo-sensory
time series data. In Proceedings of the 25th International Joint Conference on Artificial Intelli-
gence, 2016.

Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Multi-directional recurrent neural
networks: A novel method for estimating missing data. In Time series workshop in international
conference on machine learning, 2017.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing data imputation using
generative adversarial nets. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 5689–5698. PMLR, 10–15 Jul 2018a. URL https://proceedings.mlr.
press/v80/yoon18a.html.

Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Estimating missing data in temporal
data streams using multi-directional recurrent neural networks. IEEE Transactions on Biomedical
Engineering, 66(5):1477–1490, 2018b.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Han-
dling missing data with graph representation learning. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 19075–19087. Curran Associates, Inc., 2020. URL
https://proceedings.neurips.cc/paper_files/paper/2020/file/
dc36f18a9a0a776671d4879cae69b551-Paper.pdf.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (IJCAI-18), 2017.

Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factorization
for high-dimensional time series prediction. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Cur-
ran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/
paper/2016/file/85422afb467e9456013a2a51d4dff702-Paper.pdf.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Marina Meila and Tong Zhang (eds.), Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, pp. 12310–12320. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/zbontar21a.html.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated
attention networks for learning on large and spatiotemporal graphs. Proceedings for The Associ-
ation for Uncertainty in Artificial Intelligence Conference, 2018.

14

https://doi.org/10.1145/3394486.3403118
https://proceedings.mlr.press/v80/yoon18a.html
https://proceedings.mlr.press/v80/yoon18a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/dc36f18a9a0a776671d4879cae69b551-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/dc36f18a9a0a776671d4879cae69b551-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/85422afb467e9456013a2a51d4dff702-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/85422afb467e9456013a2a51d4dff702-Paper.pdf
https://proceedings.mlr.press/v139/zbontar21a.html
https://proceedings.mlr.press/v139/zbontar21a.html


Under review as a conference paper at ICLR 2024

A APPENDIX: ASYNCHRONOUS GRAPH GENERATORS

A.1 EXPERIMENTAL DATASETS

In this section the reader can find more information regarding the three widely used benchmarks for
multivariate time-series datasets that where used to compare the Asynchronous Graph Generator to
other state-of-the-art works in Section 5.

A.1.1 BEIJING AIR QUALITY DATASET

The air quality dataset, consists of PM2.5 measurements from 36 monitoring stations in Beijing.
The measurements are hourly collected from 2014/05/01 to 2015/04/30. Overall, there are 13.3%
values are missing. For this dataset, we do pure imputation task with varying data removal and for
the prediction task we do 6 hour prediction. Unlike the other datasets there is an explicit train/test
split used in all prior works, which we followed as well in order to maintain comparable results (Cao
et al., 2018; Chen, 2017; Luo et al., 2018; 2019; Silva et al., 2012; Yi et al., 2016), i.e., we use the
3rd , 6th , 9th and 12th months as the test data and the other months as the training data as outlined
in Yi et al. (2016).

A.1.2 PHYSIONET 2012 ICU DATASET

The ICU mortality prediction health-care data used in the PhysioNet Challenge 2012 (Silva et al.,
2012), consists of 4000 multivariate clinical time series from intensive care unit (ICU). Each time
series contains 35 measurements such as Albumin, heart-rate etc., which are irregularly sampled
at the first 48 hours after the patient’s admission to ICU. We stress that this dataset is extremely
sparse. There are up to 78% missing values in total. We performed the imputation task with varying
additional data removed as well as the post-imputation classification task.

A.1.3 UCI LOCALIZATION FOR HUMAN ACTIVITY DATASET

The UCI localization data for human activity (Kaluža et al., 2014) contains records of five people
performing different activities such as walking, falling, sitting down etc (there are 11 activities).
Each person wore four sensors on her/his left/right ankle, chest, and belt. Each sensor recorded a
3-dimensional coordinates for about 20 to 40 millisecond. The dataset was used for the imputation
task as well as post-imputation activity classification.

A.2 ENCODER INPUT BLOCK CONSTRUCTION

In this section the reader can find more detailed instructions on how the data was deconstructed
for data imputation as well as more detailed information regarding how the stride length affects the
sample construction, which is directly related to data augmentation which is discussed in Section 6.

10 2 3 4 5 6 7 8 9 10 11 1312 14 15 16 17 18 19 20 21 22 23

2 7 15

Original

Target

Input 10 3 4 5 6 8 9 10 11 12

Input Block
Stride Length = 2

Figure 5: A pictographic representation of how the time series data is converted into an input block
and a imputation target after data is randomly removed. The stride, as depicted in the image is
defined as the number of steps the block is moved before it is considered the next input to the AGG.
In this image the stride has value of 2 and input block a size of 11.

When building the imputation training dataset for the AGG we use the following procedure:

15



Under review as a conference paper at ICLR 2024

1. Randomly remove r% of the data, where r ∈ {10, 30, 50, 70, 90}
2. For the inductive imputation (KDD) all removed data that falls in the validation range

defined by Yi et al. (2016) is considered validation targets, the rest is considered training,
similarly for the input data. For transductive imputation (Physionet and UCI datasets)
randomly select from the removed data 20% for the validation targets, the rest is considered
the training targets.

3. The remaining data that was not removed is considered as the inputs and is sorted tempo-
rally.

4. As depicted in Figure 5, given a predefined context length (input block length), if there is
a target (e.g. value at t = 2) within the range of the input block, 0 ≤ t ≤ 12 then it is
considered a valid target for imputation, relative time value τ is based on the largest value
in the input block (t = 12 =⇒ τ = 12 − t = 0). The input along with that single target
is considered one sample with τ = 12− 2 = 10. Samples are generated for the same input
block for all targets in the input range e.g. t = 7, where each target and input constitute an
independent sample.

5. Once all targets have been coupled with inputs the block is shifted by the stride length and
the process is repeated until the end of the original input is reached.

A.3 SENSITIVITY

In this section the reader can find more information regarding why in the stride value elaborated in
Appendix A.2 will directly affect the proportion of samples generated by the augmentation as seen
in Figure 6a.

We can see in Figure 6b, that the smaller the stride value the better the performance because, as
we can see in Figure 6a, the smaller the step the greater the training size. This large set of training
examples will improve the performance up to limit, which is discussed in Section 6 in more detail.

104 105 106

Augmented Training Size

0

20

40

60

80

100

St
rid

e 
Le

ng
th

 (%
 o

f b
lo

ck
)

Augmented Size vs Stride: KDD with 10% Missing Data

(a)

0 20 40 60 80 100
Stride Length (% of block)

0.175

0.200

0.225

0.250

0.275

0.300

0.325

RM
SE

KDD 10% Step Sensitivity

(b)

Figure 6: (a) Augmented training size vs stride as a percentage of block size. (b) Stride sensitivity.

16



Under review as a conference paper at ICLR 2024

Table 3: Validation performance for PM2.5 (Beijing dataset)

Prediction horizon (hours ahead) PM2.5 RMSE (over validation set)
1 0.387
2 0.409
3 0.455
4 0.453

Figure 7: PM2.5 {1, 2, 3, 4}-hour ahead PM2.5 prediction. Coloured dots indicate channel inputs
for the given context window, squares indicate predicted values by AGG for various hours ahead,
and stars indicate the ground-truth PM2.5 values.

A.4 PREDICTION

We evaluated the prediction performance of the pre-trained model (30% data removed imputation
task) on the Beijing validation set. Table 3 shows the RMSE for the n-hour ahead prediction task
with n ∈ {1, 2, 3, 4} for the entire validation set. All setting remains the same as in the impu-
tation task in Sec. 5. Figure 7 shows the PM2.5 prediction for the particular case of the Dongsi
station, where dots indicate input channels, green stars are the hidden values of PM2.5 and the blue
squares denote the predicted PM2.5 values. We emphasise that, as shown here, prediction is straight-
forwardly achieved by conditioning the generation on a future time value that succeeds that of the
input; furthermore, this required no modification or update of the trained AGG described in the main
body of the paper.

In the same line as the general imputation results shown in Sec. 5, AGG as outperformed the bench-
marks in this prediction setup too. Based on the results reported by (Miao et al., 2021, Fig. 4), AGG
provides lower prediction error (RMSE) than SSGAN (Miao et al., 2021) , BRITS (Cao et al., 2018),
GP-VAE (Fortuin et al., 2020) and NAOMI (Liu et al., 2019).

17


	Introduction
	Related Work
	The AGG Architecture
	Problem formulation and data preparation
	Learnable embeddings for value, time-stamps and metadata
	Asynchronous Graph Encoding
	Asynchronous Graph Generation

	Relationship to previous methods
	Experimental Evaluation
	Data imputation
	Classification and Regression

	Discussion: On the effectiveness of data augmentation
	Conclusions
	Appendix: Asynchronous Graph Generators
	Experimental Datasets
	Beijing Air Quality Dataset
	Physionet 2012 ICU dataset
	UCI localization for Human Activity Dataset

	Encoder Input Block Construction
	Sensitivity
	Prediction


