
Learning Multimodal Behaviors from Scratch with
Diffusion Policy Gradient

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep reinforcement learning (RL) algorithms typically parameterize the policy as a1

deep network that outputs either a deterministic action or a stochastic one modeled2

as a Gaussian distribution, hence restricting learning to a single behavioral mode.3

Meanwhile, diffusion models emerged as a powerful framework for multimodal4

learning. However, the use of diffusion policies in online RL is hindered by the5

intractability of policy likelihood approximation, as well as the greedy objective6

of RL methods that can easily skew the policy to a single mode. This paper7

presents Deep Diffusion Policy Gradient (DDiffPG), a novel actor-critic algorithm8

that learns from scratch multimodal policies parameterized as diffusion models9

while discovering and maintaining versatile behaviors. DDiffPG explores and10

discovers multiple modes through off-the-shelf unsupervised clustering combined11

with novelty-based intrinsic motivation. DDiffPG forms a multimodal training12

batch and utilizes mode-specific Q-learning to mitigate the inherent greediness13

of the RL objective, ensuring the improvement of the diffusion policy across all14

modes. Our approach further allows the policy to be conditioned on mode-specific15

embeddings to explicitly control the learned modes. Empirical studies validate16

DDiffPG’s capability to master multimodal behaviors in complex, high-dimensional17

continuous control tasks with sparse rewards, also showcasing proof-of-concept18

dynamic online replanning when navigating mazes with unseen obstacles.19

1 Introduction20

Reinforcement learning (RL) for continuous control has experienced significant advancements during21

the last decade, reshaping its applicability to domains like game playing [65, 27, 4], robotics [26, 33],22

and autonomous driving [72, 12]. However, most RL algorithms choose to parameterize policies as23

deep neural networks with deterministic outputs [47, 21] or Gaussian distributions [62, 25], limiting24

learning to a single behavior mode. Moreover, the standard exploration-exploitation schemes can25

easily make a policy greedy towards one mode, in which the algorithm keeps exploiting to maximize26

its objective. The aforementioned issues hinder the possibility of training agents that successfully27

solve a task while showcasing versatility of behaviors—a property intuitive to intelligent systems like28

humans, who can exhibit resourcefulness for completing a task, even amidst unprecedented events.29

Learning a multimodal policy has several practical applications. First, such a policy that learns many30

solutions to a task is useful when acting in non-stationary environments. Imagine that a routine path31

from the office to home is unexpectedly blocked; one needs to choose an alternate route. A policy32

that encompasses multiple solutions can better navigate such changing conditions, offering flexibility33

for replanning or serving as prior for hierarchical RL. Second, while searching for diverse solutions, a34

multimodal policy continues exploring even after finding a viable solution, thereby facilitating agents35

to escape local minima. Additionally, multimodal policies hold great promise for continual learning36

Submitted to the 18th European Workshop on Reinforcement Learning (EWRL 2025). Do not distribute.

Figure 1: We design (Top) four AntMaze tasks; AntMaze-v1, AntMaze-v2, AntMaze-v3, AntMaze-v4, and (Below)
four robotic tasks Reach, Peg-in-hole, Drawer-close, and Cabinet-open that have a high degree of multimodality.

scenarios; they can effectively parameterize complex action distributions when new skills or solutions37

are introduced, potentially mitigating the issue of catastrophic forgetting [59].38

Recently, Diffusion Models [30, 68], a novel class of generative models acclaimed for impressive39

image generation results [38, 60], have been proposed as a powerful parameterization for policy40

learning. They have been extensively applied in the areas of learning from demonstrations [15, 58],41

offline RL [73, 71], and learning for trajectory optimization [34, 46]. One advantage of training diffu-42

sion policies offline is its ability to model multimodal datasets, which usually comprise trajectories43

stemming from suboptimal policies or various human demonstrations. However, only a few studies44

explored these models for online RL, which focus on the formulation of the training objectives for45

policy optimization via diffusion and showcase improved sample efficiency [55, 74, 17]. Notably,46

none of them studied the inherent multimodality within diffusion policies, nor have they explicitly47

tackled the challenge of exploration for discovering and learning multiple behavioral modes online.48

In this paper, we introduce Deep Diffusion Policy Gradient (DDiffPG), a novel actor-critic algorithm49

for training multimodal policies parameterized as diffusion models from scratch. Specifically, we50

aim to learn a policy that is capable of employing various strategies to accomplish a task. Unlike51

existing multimodal methods that condition on latent variables, DDiffPG emphasizes the explicit52

discovery, preservation, and improvement of behavioral modes, and for that, we decouple exploration53

and exploitation. For exploration, we apply novelty-based intrinsic motivation and utilize an unsu-54

pervised hierarchical clustering approach to discover modes, being a priori agnostic to the possible55

number of modes. For exploitation, we introduce mode-specific Q-functions to ensure independent56

improvements across modes and construct multimodal data batches to preserve the multimodal57

action distribution. We empirically evaluate our method on high-dimensional and continuous control58

tasks with sparse rewards, comparing to SoTA baselines, verifying DDiffPG’s capbility to master59

multimodal behaviors. Additionally, we demonstrate the usability of our multimodal policies in an60

online replanning application in non-stationary mazes with unseen obstacles.61

Our paper makes four contributions. First, we introduce diffusion policy gradient, a novel way to62

train diffusion models following the RL objective. Second, we present DDiffPG, a new actor-critic63

algorithm for training diffusion policies from scratch while discovering and preserving multimodal64

behaviors. Third, we achieve explicit mode control by policy conditioning on a mode-specific latent65

embedding during training, shown to be beneficial for online replanning. Finally, we design a series66

of new challenging robot navigation and manipulation tasks with a high degree of multimodality,67

serving as a testbed for multimodal policy learning, as shown in Fig. 1.68

2 Related Work69

Policy learning via reinforcement learning for continuous control has exploded thanks to improved70

algorithms learning complex skills with online RL [25, 5], while significant effort has been made to71

provide improved methods for offline RL to take advantage of demonstrations and fixed datasets [40,72

2

44]. However, the policy parameterization in both settings considers policies that can only model73

a single behavioral mode, e.g., by having a deterministic output [66, 5] or by learning a Gaussian74

distribution. Recently, the use of transformer models enabled learning for control through offline75

data as sequence modelling [14, 57, 31], which, through language conditioning [7, 23], can handle76

multi-goal behavior generation; though, it is unclear if these models can explicitly exhibit behavior77

diversity per goal. Similarly, goal-conditioned RL methods condition policies to various goals, but78

each goal-conditioned policy suffers from the single-mode modeling, prevalent in typical deep RL79

algorithms [2, 52, 10, 53].80

Diffusion policy as universal skill representation Diffusion models [30] have recently emerged as81

a promising parameterization for robust and multimodal robot learning. Early works used diffusion82

models for trajectory optimization [34, 69, 46], and as a policy for behavioral cloning [15]. Diffusion83

policy has soon shown its power as a universal skill representation [76] that allows learning complex84

landscapes of multimodal behaviors [11, 28], goal-conditioned [58, 61] or language-conditioned85

ones [24, 13]. Further, the expressivity of diffusion models has proven beneficial for offline RL [73,86

71]. Nevertheless, the approaches for online RL with diffusion policy optimization are scarce [55, 74,87

17], while these works do not study multimodality preservation within diffusion models, nor have88

they explicitly tackled the challenge of learning multimodal policies online. In this work, we present89

a new framework that takes advantage of diffusion policy as a universal skill representation model90

and introduces an algorithm that allows multimodal policy learning from scratch.91

Unsupervised skill discovery Multimodal behavior learning has been addressed through skill92

discovery approaches [9, 42, 32, 54, 36], either from offline data [64] or through unsupervised93

RL [19, 41], which usually exploit variational inference for mode/skill discovery [43] with policy94

conditioning on latent vectors, or by forming rewards or goals to be achieved by different low-level95

policies [39, 49]. Hierarchical learning methods, e.g., relying on options learning [3, 1], usually96

depend on state-specific mode discovery that conditions a low-level policy or triggers different97

skills [45, 35]; but the policy usually reaches each goal greedily without exhibiting versatile behaviors.98

3 Diffusion Policy Gradient99

It is not straightforward to apply training approaches of popular deep RL methods to train a diffusion100

policy online. First, it is practically intractable to approximate the policy likelihood [37]. Second,101

directly backprogating Q-values to the diffusion policy, like Q-learning methods [25, 47], is not102

viable—the Markov chain may lead to vanishing gradients [55].103

To solve these issues, we first present diffusion policy gradient, a novel approach to training diffusion104

policies with the RL objective that is also suitable for learning multimodal behaviors. Similarly to105

DPG [66], we compute∇aQ(s, a) given a state s and action a. However, we choose not to directly106

use the action gradient to optimize the policy, as this leads to vanishing gradients and instability. We107

rather obtain a target action atarget via atarget ← a+ η∇aQ(s, a), η being a suitable learning rate.108

We can, then, train the diffusion policy based on the transitions in the datasets D using a behavioral109

cloning (BC) objective110

L(θ) = E
t∼[1,T],(atarget

0 ,s)∼D,ϵ∼N (0,I)

∥ϵ− ϵθ(a
target
t , s, t)∥, (1)

where t ∼ [1, T] refer to the diffusion step, and ϵ is the diffusion noise — see Appx. A for a brief111

introduction to Diffusion Models.112

Implementation For every data collection, we store the transition (s, a, atarget, r, s′) in the bufferD,113

where atarget is initialized as a. For every policy update, we sample the state-action pair (s, atarget),114

obtain a new atarget via gradient ascent, update the policy with equation 1 and replace the new atarget115

in the buffer. Thus, our policy update does not change the training objective of the diffusion model116

and avoids the vanishing-gradient problem. Note that the action atarget that is used to update the117

policy is not inferred from the current policy, which provides an opportunity to control the behaviors118

of the policy in an off-policy fashion and lay the foundation for learning multimodal behaviors later.119

Interpretation The conventional diffusion model is trained using a dataset with supervised la-120

bels [30]. In offline decision-making, a diffusion policy predicts actions given states with the dataset121

providing both the state and the corresponding ground-truth action as the target (label). In contrast,122

our online setting does not provide a predefined ground-truth action but requires the discovery of good123

3

+ atargetsmode embed

3 Learning with mode-specific Qs

threshold

...
...

Hierarchical clustering

Bellman update

Distance mat.

Trajectories

...

4 Multimodal training
Clustered trajectories

Mode discovery21 Data collection

DTW distance

+ atargetsmode embed

+ atargetsmode embed

With BC loss

Figure 2: Overview of DDiffPG: (1) the agent interacts with the environment and collects a set of trajectories
{τi}. (2) Given a set of goal-reached trajectories, a DTW distance matrix is computed and used for hierarchical
clustering to discover modes. (3) Each mode is associated with a set of trajectories, which is used exclusively to
train mode-specific Q-functions and an exploration-specific Qexplore. (4) A multimodal batch is constructed by
concatenating (s, atarget) pairs sampled from every mode and used for the diffusion policy update.

actions. To adapt without altering the supervised training framework of conventional diffusion models,124

we generate atarget and consider it as the target. The action atarget, derived through gradient ascent,125

represents an improved choice based on the current Q-function. During training, we additionally126

store atarget in the replay buffer and continuously update it based on its preceding values, ensuring a127

continuity of learning. Intuitively, we are chasing the target by replacing it with the newly computed128

atarget in this online RL setting rather than learning a static target as in the offline setting.129

Relation to related works Our formulation is most closely related to DIPO [74] but has two key130

differences. First, while DIPO also performs gradient ascent on the action, it replaces atarget with131

the original a from the buffer rather than retaining an additional atarget. Therefore, the transition132

no longer aligns with the current MDP dynamics and reward function due to the replacement of133

the original a. Given that DIPO is an off-policy algorithm, the reuse of these replaced transitions134

for training the Q-function could be problematic, as the agent is training values of actions that have135

not been actually played out in the environment and their true outcome (reward and next state) are136

unknown. Second, DIPO uses different batches for Q-learning and policy updates, which does not137

guarantee coherent updates. Q-score matching (QSM) [55] also computes∇aQ(s, a) and matches138

vector fields of∇a log π(a|s) and∇aQ(s, a). Therefore, QSM is optimizing on the score level while139

ours focuses on the action level.140

4 Learning Multimodal Behaviors from Scratch141

We consider the problem of learning multimodal behaviors with online continuous RL, i.e., in the142

absence of initial demonstrations. In this section, we introduce Deep Diffusion Policy Gradient143

(DDiffPG), which builds off of three main ideas. First, we want to explicitly discover behavior modes144

and master them. Different modes should act differently at certain states and then diverge, therefore145

being distinguishable from trajectories/sequences of states. Second, we must prevent mode collapse146

once modes have been discovered, a common issue where the RL policy favors the mode with higher147

Q-values due to its inherent greediness. Finally, we expect the diffusion policy to capture and control148

the multimodal actions during evaluation. Fig. 2 provides an overview of the proposed method, and149

the pseudocode is available in Alg. 1.150

4.1 Unsupervised Mode Discovery151

Novelty-based Exploration In multimodal learning, it is necessary to explore diverse behaviors (i.e.,152

modes). Effective exploration is important especially when considering challenging high-dimensional153

continuous control tasks with sparse rewards (cf. Fig. 1). We adopt a simple yet effective approach,154

4

namely using the difference between states’ novelty as intrinsic motivation [75] to prompt exploration155

beyond already visited state-space regions. Following [8], we define the following intrinsic reward156

rintr(s, a, s′) = max(novelty(s′)− α · novelty(s), 0), where novelty is parameterized as a Random157

Network Distillation (RND) [8] and α is a scaling factor. Note that while this intrinsic reward158

has been effectively verified for discrete state spaces, here we extend this exploration method to159

continuous domains, demonstrating its effectiveness for training diffusion policies.160

Hierarchical Trajectory Clustering Our method explicitly identifies modes and masters them,161

unlike existing latent-conditioned approaches [32]. Given a collection of goal-reached trajectories,162

each consisting of a sequence of state-action pairs, we categorize them into clusters and consider163

each a behavior mode. In practice, we use an unsupervised hierarchical clustering approach [51]: as164

shown in Fig. 2(2), in the beginning, each trajectory is considered as a single cluster; then clusters165

within a small distance are progressively merged, continuing until a singular, unified cluster is formed.166

Figure 3: Hierarchical clustering on AntMaze-v3
(Left) and AntMaze-v4 (Right). Each color repre-
sents a mode.

Differently from clustering approaches like K-167

means [48] that require a predefined number of clus-168

ters (modes), we determine clusters using a distance169

threshold. Fortunately, given that the distance be-170

tween different modes is usually large, hierarchical171

clustering is not as hyperparameter-sensitive as K-172

means. We show the clustering performance in Fig. 3173

and the robust clustering threshold in Tab. 2. For174

distance metric, we utilize Dynamic Time Warping175

(DTW) [50] with task-prior information, e.g., robot176

positions [32]. An advantage is its applicability to177

variant-length trajectories, which removes the burden178

of padding or stitching trajectories. Note that our179

method is agnostic to the particular clustering approach used, and it can be adapted to different (learn-180

ing) approaches [63, 16]. For example, in Fig. 9(a), we provide an alternative clustering approach by181

training a VQ-VAE [70] to learn trajectory representations and using the codevectors for clustering,182

which learns meaningful representations suitable for our approach.183

4.2 Mode Learning with Mode-specific Q-functions184

To master multi-modes and improve them all together, we train a different Q-function per mode and185

construct multimodal data batches for policy learning.186

Learning mode-specific Q-functions In RL, the objective to maximize expected return can skew187

the policy, leading to single-mode collapse. Let us consider the AntMaze-v1 in Fig. 1; there are two188

viable paths to reach the goal. If the goal position is reached via the top path, the success bonus189

will propagate through the TD updates, meaning that the Q-values for the top path will increase190

and guide the policy to the top. Even though a simple diffusion RL [74, 73] method might initially191

explore both sides altogether, it will eventually end with a unimodal behavior determined by which192

side was explored first (cf. Fig. 11b & Fig. 12b). To address this issue, we propose training a193

mode-specific Q-function per discovered mode, allowing for parallel policy improvements across194

all modes. As shown in Fig. 2(3), trajectories that, for example, are categorized into two modes195

M1 and M2, will have two Q-functions Q1 and Q2, respectively. One needs to notice that such196

mode-specific Q-functions may capture suboptimal modes, which achieve the goal but require more197

steps hence yielding lower discounted returns. However, these suboptimal solutions may prove198

valuable in practical scenarios where the optimal action is infeasible, e.g., the routine path problem199

discussed in Sec. 1 and Sec. 5.5.200

We additionally train a Q-function dedicated to exploration, which can be considered as an exploratory201

mode. This Q-function is trained exclusively with the intrinsic rewards and transitions from all202

trajectories, e.g., M1 ∪M2 in Fig. 2(3), regardless of which behavioral mode they represent. Such203

decoupling of exploration-exploitation on the Q-function level ensures that we continue exploring204

even after certain modes are well-learned, since our intrinsic reward only considers state novelty.205

Constructing a multimodal batch The diffusion model’s multimodality stems from the underlying206

multimodal distribution of the data. An intuitive strategy to obtain multimodality is to construct a207

multimodal training batch and feed it to the policy — each batch contains data from different modes.208

While the mode clustering is on the goal-reached trajectory level, it is essential to include data from209

5

unsuccessful trajectories as well. Practically, this is achieved by computing the distance between an210

unsuccessful trajectory and N goal-reached trajectories randomly sampled from each cluster. The211

cluster with the smallest average distance is then designated as the final cluster for the unsuccessful212

trajectory (lines 8-14 in Alg. 2).213

Re-clustering We perform re-clustering over trajectories at every F iterations (see Tab. E). During214

this process, for each newly formed cluster, we assess its overlap with clusters identified in the previous215

clustering iteration. The new cluster then inherits Q-functions and atarget from the preceding cluster216

that has the most overlap with. This ensures a continuity of learning and adaptation across successive217

re-clustering stages. The pseudocode is in Alg. 2, and implementation details are in Appx.C.218

4.3 Mode Control via Latent Embeddings219

Controlling the learned multimodal policy to exhibit specific behaviors rather than random generation220

is beneficial, especially in non-stationary test environments where certain modes may become221

nonviable. To achieve this, we propose conditioning the diffusion policy on mode-specific embeddings222

during training. As shown in Fig. 2(4), our method generates a unique latent embedding for each223

mode, which is then incorporated into the state information. Throughout the training process, we224

selectively include or mask (zero-out) these embeddings with a probability of p. By providing specific225

embeddings, we can, therefore, explicitly control the execution of desired modes or, alternatively,226

mask them to enable random mode selection. This technique affords several benefits:227

• In non-stationary environments, planning approaches can empower the agent to navigate around228

undesirable modes through controlled mode selection, improving their success rate. We demonstrate229

an application for online replanning in Section 5.5.230

• Our method learns multiple modes, some of which may be suboptimal, e.g., longer paths in the231

navigation problem. Given our knowledge of each mode’s trajectories, we can estimate the expected232

return of each mode and select the one with the highest return to optimize performance.233

• Since the exploratory mode has its unique embedding, we can control the exploration-exploitation234

tradeoff during training by adjusting the proportion of exploratory mode used in action generation at235

the data collection phase. Note that we exclude the exploratory mode to eliminate noisy exploratory236

behaviors at test time, leading to an increased success rate.237

5 Experiments238

In this section, we present a comprehensive evaluation of our method against SoTA baselines. First,239

we verify that DDiffPG can learn multimodal behaviors and discuss the performance compared to240

baselines. We then highlight the advantages of learning a multimodal policy in encouraging explo-241

ration and overcoming local minima. Finally, we provide ablations on important hyperparameters242

and showcase a practical application of replanning with such a multimodal policy. We run each243

experiment with five random seeds and plot their mean and standard error.244

5.1 Setup245

Tasks We evaluate our method on four AntMaze tasks [20] and four robotic control tasks [22], as246

shown in Fig. 1. Note that all tasks (1) are high-dimensional and continuous control tasks, e.g., in247

all AntMaze versions, the objective is to control the leg joints of an ant to reach the goal position;248

(2) contain multiple possible solutions, either with multiple goals or multiple ways that solve the249

task, e.g., in the Reach task, the robot arm can bypass the obstacle from four different directions;250

(3) are trained with sparse rewards, alleviating the need for engineering and reward shaping. The251

environment description is in Appx. D.252

Baselines We consider the following baselines: (1) DIPO [74], which we have adapted to include253

the additional target action in replay buffer to ensure consistency in MDP dynamics and the reward254

function, as detailed in Section 3; (2) Diffusion-QL [73] and (3) Consistency-AC [17], which use255

diffusion model and consistency model for policy parameterization; (4) Reparameterized Policy256

Gradient (RPG) [32], which uses a model-based approach with multimodal policy parameterization;257

(5) TD3 [21]; (6) SAC [25]. For fair comparisons, we use double Q-learning [29] and distributional258

RL [6] for all baselines. Additionally, all baselines except RPG use the same intrinsic rewards as259

6

Figure 4: Performance of DDiffPG and baseline methods in the four AntMaze and robotic manipulation
environments.

ours, while RPG has a similar built-in RND-based intrinsic reward as introduced in their paper.260

Hyperparameters are available in Tab. E.261

5.2 DDiffPG Masters Multimodal Behaviors262

We investigate whether DDiffPG can learn multimodal behaviors from scratch. We first perform263

observational evaluations and count the number of different modes over 20 episodes. As shown in264

Tab. 3 and Tab. 4, DDiffPG demonstrates consistent exploration and acquisition of multiple behaviors.265

For instance, in AntMaze-v3, multiple paths exist within the maze, but not all are the same length;266

DDiffPG is capable of learning and freely executing all these paths, including the suboptimal one267

— note that we call suboptimal a path with lesser discounted return than the shortest optimal one.268

However, assuming a goal-reaching success indicator all paths are successful. Nonetheless, the269

suboptimal issue can be mitigated given our ability to control the agent’s behavior through the270

mode embeddings, as we discuss in Section 5.5. In Cabinet-open, the agent can move the arm to271

either layer and subsequently pull the door open. This contrasts with other methods, which fail272

to exhibit multimodal behavior. We observe that even policies parameterized as diffusion-based273

models, namely DIPO, Diffusion-QL, and Consistency-AC, can quickly collapse to a single mode274

and thereafter follow the greedy solution. This verifies the significance of our proposed method in275

capturing multimodality.276

In Fig. 4, we see that DDiffPG has comparable performance to the baselines on all eight tasks277

while acquiring multimodal behaviors. In the AntMaze tasks, the sample efficiency of DDiffPG,278

DIPO, TD3 and SAC are similar: in AntMaze-v1 and AntMaze-v3, TD3 and DDiffPG surpass the279

performance of others; in AntMaze-v2 and AntMaze-v4, TD3 and DIPO are the most sample-efficient.280

In the manipulation tasks, a similar pattern emerges: DDiffPG leads Peg-in-hole, DIPO excels281

in Reach, and TD3 leads both Drawer-close and Cabinet-open. DDiffPG generally demonstrates282

lower sample efficiency than baselines in tasks that pose significant exploration challenges — this is283

expected since our method strives to discover multiple solutions. For example, in AntMaze-v2, the284

route to the top-left goal is more extended, and in Reach, the robotic dynamics make it difficult to285

explore the bottom paths. For simple exploration tasks, DDiffPG can achieve similar or even superior286

performance, as DDiffPG simultaneously explores the environment from multiple directions and the287

design of mode-specific Q-function effectively narrows the scope, facilitating faster convergence.288

Diffusion-QL and Consistency-AC tend to lag behind as shown in Fig. 4. Both methods optimize the289

diffusion policy by backpropagating directly through the diffusion model, and we observed that their290

actor gradient may remain zero throughout the training in some seeds, resulting in a high variance291

(shadow area). In contrast, our diffusion policy gradient approach, which turns the training objective292

into minimizing the MSE loss w.r.t. the action target, demonstrates significantly greater stability. For293

RPG, its performance illustrates that policy learning remains challenging despite demonstrating good294

exploration. One potential reason is that VAEs condition the policy on a latent variable, which offers295

7

Figure 5: Exploration maps of DDiffPG and baselines in AntMaze-v3.

Figure 6: (a)-(d) Q-value maps of baselines and DDiffPG and (Right) the state coverage in AntMaze-v3.

a pathway to multimodality but sometimes leads to non-existing modes. This consideration led us to296

adopt a more straightforward yet effective clustering approach for explicit mode discovery.297

5.3 Seeking of Multimodality Encourages Exploration and Overcomes Local Minima298

Observation 1. DDiffPG encourages exploration.299

We demonstrate the potential of DDiffPG in exploration using the exploration density maps and state300

coverage rates in the AntMaze environments. We discretize the maze and track the cell visitation.301

To avoid the dominance of high-density areas such as the starting positions, we set a max density302

threshold of 100, which means the cell has been visited at least 100 times. As shown in Fig. 5, in303

selected results for AntMaze-v3, DDiffPG explores multiple paths to the two separate goal positions,304

contrasting sharply with baselines that typically discover only a single path. For state coverage in305

Fig. 6, we measure the binary coverage of each cell and find that DDiffPG achieves a much higher306

coverage rate than baselines except RPG, verifying that the continuous exploration capability307

of DDiffPG helps exploration. While RPG achieves good exploration, it fails to solve the task as308

shown in Fig. 4. The maps for all AntMaze tasks and baselines are available in Appx. F.309

Observation 2. DDiffPG can overcome local minima.310

We showcase that DDiffPG effectively overcomes local minima when learning a multimodal policy.311

The key intuition is that unlike other methods that explore the first solution and collapse into it,312

DDiffPG continuously explores and seeks different solutions, enabling it to escape suboptimal local313

minima. As illustrated in Fig.1, we present two tasks, each posing distinct local minima challenges.314

In AntMaze-v1, an ant must circumvent a central obstacle to reach its goal, with two possible routes:315

over the top or beneath the bottom. The optimal path depends on the ant’s randomized starting316

position since there is only one shortest path. As shown in Fig. 11, DDiffPG discovers both routes317

and learns to select the shortest one based on the starting location, while baselines struggle to adjust318

their paths adaptively. In AntMaze-v2, the ant faces two goals: the top-left goal offers a higher reward,319

while the right-hand goal is easier to reach. Baseline models often get trapped going for the easier,320

lower-reward goal. However, we plot the Q-value density maps in Fig. 13, and we find that DDiffPG321

locates both goals and learns to go either one of them, effectively overcoming the local minima and322

reaching a higher cumulative return. On the other hand, RPG also explores the top-left goal and323

overcomes the local minima. However, it cannot consistently solve the task.324

5.4 Ablation Studies325

We investigate the impact of the number of diffusion steps, batch size, action gradient learning rate,326

and number of Updates-To-Data (UTD) ratio. These hyperparameters are of particular interest given327

8

the diffusion policy and our learning procedure. For batch sizes in Fig. 7(a), we observe that larger328

batches enhance sample efficiency. Due to the mixed multimodal batch, a larger batch-size helps329

smooth the learning. In Fig. 7(b), we find that the number of diffusion steps appears to have minimal330

impact on performance, with 5 steps being sufficient to acquire and maintain multimodal behaviors,331

aligning with the findings of other diffusion policy learning methods [73, 17].332

Figure 7: Abaltion studies for key parameters of DDiffPG: (a) batch size, (b) diffusion steps, (c) update-to-data
(UTD) ratio, and (d) action gradient learning rate.

In Fig. 7(c), the UTD ratio indicates that more frequent updates can accelerate learning; however, a333

very large number would lead to increased computational demands and wall-clock time. In terms of334

the action-gradient learning rate (Fig.7(d)), while a higher rate initially aids learning, it may introduce335

increased variance due to the larger step sizes in updating target actions. An adaptive approach to the336

learning rate might be beneficial. Finally, our computational time analysis in Fig.8 reveals that our337

DDiffPG method is approximately five times slower than both TD3 and SAC, primarily due to the338

overhead associated with updating target actions. However, we trust that continuous developments on339

diffusion models will allow much faster training and inference in the future [18].340

5.5 Online Replanning with a Multimodal Policy341

We present a practical application of a trained multimodal policy in online replanning, particularly342

in nonstationary environments. We replicate the routine path problem described in Sec. 1 in our343

maze experiments by introducing random obstacles that obstruct certain paths. As discussed in344

Sec. 4.3, our policy can selectively execute different modes by conditioning the mode’s embedding.345

To capitalize on this feature, we developed a proof-of-concept planner, which iteratively tests different346

modes until a successful route is found. Specifically, if the ant remains stationary at a location for347

10 consecutive steps, the planner initiates an alternative mode. As shown in Tab. 3, while baseline348

methods tend to fail, becoming stuck in front of newly introduced obstacles until the end of an episode,349

our proof-of-concept planner demonstrates a significantly higher success rate. This demonstrates the350

adaptability and efficacy of our multimodal policy in performing in nonstationary environments.351

6 Conclusions, Limitations & Future Work352

In this work, we presented a novel algorithm, DDiffPG, for learning multimodal behaviors from353

scratch. We parameterized the policy as diffusion model and proposed diffusion policy gradient to354

enable training diffusion models with RL objectives in online settings. Unlike existing methods that355

rely on latent conditioning to retain multimodality, we emphasized explicitly discovering, preserving,356

and improving multimodal behaviors. First, we employed a novelty-based intrinsic motivation to357

explore different modes and used an unsupervised hierarchical clustering approach over trajectories358

to identify them. Nevertheless, the RL objective can skew the policy toward a single mode. We359

addressed the issue by introducing mode-specific Q-functions to optimize each mode, providing360

the diffusion policy with a multimodal batch to train on. We further achieved explicit mode control361

by conditioning the policy on a mode-specific latent embedding, which was shown to be useful for362

online replanning. Our evaluation demonstrated the algorithm’s effectiveness in learning multimodal363

behaviors in complex control scenarios, such as AntMazes and robotic tasks, and showcased the364

potential of the multimodal policy to encourage exploration and overcome local minima.365

References366

[1] Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option367

discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.368

9

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,369

Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience370

replay. Advances in neural information processing systems, 30, 2017.371

[3] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings372

of the AAAI conference on artificial intelligence, volume 31, 2017.373

[4] Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon374

Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching375

unlabeled online videos. ArXiv, abs/2206.11795, 2022.376

[5] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan,377

TB Dhruva, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional378

deterministic policy gradients. In International Conference on Learning Representations, 2018.379

[6] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-380

ment learning. In International Conference on Machine Learning, 2017.381

[7] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,382

Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics383

transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.384

[8] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random385

network distillation. ArXiv, abs/1810.12894, 2018.386

[9] Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i Nieto, and387

Jordi Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In388

International Conference on Machine Learning, pages 1317–1327. PMLR, 2020.389

[10] Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning390

with imagined subgoals. In International Conference on Machine Learning, pages 1430–1440.391

PMLR, 2021.392

[11] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement393

learning via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548,394

2022.395

[12] Li Chen, Peng Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li.396

End-to-end autonomous driving: Challenges and frontiers. ArXiv, abs/2306.16927, 2023.397

[13] Lili Chen, Shikhar Bahl, and Deepak Pathak. Playfusion: Skill acquisition via diffusion from398

language-annotated play. ArXiv, abs/2312.04549, 2023.399

[14] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter400

Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning401

via sequence modeling. Advances in neural information processing systems, 34:15084–15097,402

2021.403

[15] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and404

Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings405

of Robotics: Science and Systems (RSS), 2023.406

[16] Shripad Vilasrao Deshmukh, Arpan Dasgupta, Balaji Krishnamurthy, Nan Jiang, Chirag Agar-407

wal, Georgios Theocharous, and Jayakumar Subramanian. Explaining rl decisions with trajecto-408

ries. In The Twelfth International Conference on Learning Representations, 2023.409

[17] Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement410

learning. In The Twelfth International Conference on Learning Representations, 2023.411

[18] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,412

Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transform-413

ers for high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.414

10

[19] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you415

need: Learning skills without a reward function. In International Conference on Learning416

Representations, 2018.417

[20] Justin Fu, Aviral Kumar, Ofir Nachum, G. Tucker, and Sergey Levine. D4rl: Datasets for deep418

data-driven reinforcement learning. ArXiv, abs/2004.07219, 2020.419

[21] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error420

in actor-critic methods. In International conference on machine learning, pages 1587–1596.421

PMLR, 2018.422

[22] Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-gym:423

Open-Source Goal-Conditioned Environments for Robotic Learning. 4th Robot Learning424

Workshop: Self-Supervised and Lifelong Learning at NeurIPS, 2021.425

[23] Huy Ha, Pete Florence, and Shuran Song. Scaling up and distilling down: Language-guided426

robot skill acquisition. In Conference on Robot Learning, pages 3766–3777. PMLR, 2023.427

[24] Huy Ha, Peter R. Florence, and Shuran Song. Scaling up and distilling down: Language-guided428

robot skill acquisition. ArXiv, abs/2307.14535, 2023.429

[25] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-430

policy maximum entropy deep reinforcement learning with a stochastic actor. In International431

conference on machine learning, pages 1861–1870. PMLR, 2018.432

[26] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,433

Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms434

and applications. arXiv preprint arXiv:1812.05905, 2018.435

[27] Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with436

discrete world models. ArXiv, abs/2010.02193, 2020.437

[28] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey438

Levine. Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint439

arXiv:2304.10573, 2023.440

[29] H. V. Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double441

q-learning. In AAAI Conference on Artificial Intelligence, 2015.442

[30] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances443

in neural information processing systems, 33:6840–6851, 2020.444

[31] Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and Dacheng Tao. On transforming reinforce-445

ment learning with transformers: The development trajectory. IEEE Transactions on Pattern446

Analysis and Machine Intelligence, 2024.447

[32] Zhiao Huang, Litian Liang, Z. Ling, Xuanlin Li, Chuang Gan, and Hao Su. Reparameterized448

policy learning for multimodal trajectory optimization. In International Conference on Machine449

Learning, 2023.450

[33] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How451

to train your robot with deep reinforcement learning: lessons we have learned. The International452

Journal of Robotics Research, 40(4-5):698–721, 2021.453

[34] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion454

for flexible behavior synthesis. In International Conference on Machine Learning, pages455

9902–9915. PMLR, 2022.456

[35] Snehal Jauhri, Jan Peters, and Georgia Chalvatzaki. Robot learning of mobile manipulation with457

reachability behavior priors. IEEE Robotics and Automation Letters, 7(3):8399–8406, 2022.458

[36] Pierre-Alexandre Kamienny, Jean Tarbouriech, Alessandro Lazaric, and Ludovic Denoyer.459

Direct then diffuse: Incremental unsupervised skill discovery for state covering and goal460

reaching. ArXiv, abs/2110.14457, 2021.461

11

[37] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies462

for offline reinforcement learning. Advances in Neural Information Processing Systems, 36,463

2024.464

[38] Ayush Karn, Shubham Kumar, Sonu K Kushwaha, and Rahul Katarya. Image synthesis using465

gans and diffusion models. 2023 IEEE International Conference on Contemporary Computing466

and Communications (InC4), 1:1–6, 2023.467

[39] Seongun Kim, Kyowoon Lee, and Jaesik Choi. Variational curriculum reinforcement learning468

for unsupervised discovery of skills. In International Conference on Machine Learning, 2023.469

[40] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for470

offline reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–471

1191, 2020.472

[41] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang,473

Lerrel Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. In474

Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks475

Track (Round 2), 2021.476

[42] Sang-Hyun Lee and Seung-Woo Seo. Unsupervised skill discovery for learning shared structures477

across changing environments. In International Conference on Machine Learning, pages 19185–478

19199. PMLR, 2023.479

[43] Sang-Hyun Lee and Seung-Woo Seo. Unsupervised skill discovery for learning shared structures480

across changing environments. In International Conference on Machine Learning, 2023.481

[44] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:482

Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.483

[45] Chengshu Li, Fei Xia, Roberto Martin-Martin, and Silvio Savarese. Hrl4in: Hierarchical484

reinforcement learning for interactive navigation with mobile manipulators. In Conference on485

Robot Learning, pages 603–616. PMLR, 2020.486

[46] Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline487

decision making. In International Conference on Machine Learning, 2023.488

[47] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,489

David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv490

preprint arXiv:1509.02971, 2015.491

[48] J. MacQueen. Some methods for classification and analysis of multivariate observations.492

Mathematics, 1967.493

[49] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Dis-494

covering and achieving goals via world models. ArXiv, abs/2110.09514, 2021.495

[50] Meinard Müller. Dynamic time warping. Information retrieval for music and motion, pages496

69–84, 2007.497

[51] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley498

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.499

[52] Soroush Nasiriany, Vitchyr H. Pong, Ashvin Nair, Alexander Khazatsky, Glen Berseth, and500

Sergey Levine. Disco rl: Distribution-conditioned reinforcement learning for general-purpose501

policies. 2021 IEEE International Conference on Robotics and Automation (ICRA), pages502

6635–6641, 2021.503

[53] Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-504

conditioned rl with latent states as actions. In Thirty-seventh Conference on Neural Information505

Processing Systems, 2023.506

[54] Seohong Park, Kimin Lee, Youngwoon Lee, and P. Abbeel. Controllability-aware unsupervised507

skill discovery. In International Conference on Machine Learning, 2023.508

12

[55] Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model509

policy from rewards via q-score matching. ArXiv, abs/2312.11752, 2023.510

[56] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.511

John Wiley & Sons, 2014.512

[57] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,513

Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.514

A generalist agent. Transactions on Machine Learning Research, 2022.515

[58] Moritz Reuss, Maximilian Xiling Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned516

imitation learning using score-based diffusion policies. ArXiv, abs/2304.02532, 2023.517

[59] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experi-518

ence replay for continual learning. In Neural Information Processing Systems, 2018.519

[60] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-520

resolution image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on521

Computer Vision and Pattern Recognition (CVPR), pages 10674–10685, 2021.522

[61] Vaibhav Saxena, Yotto Koga, and Danfei Xu. Constrained-context conditional diffusion models523

for imitation learning. ArXiv, abs/2311.01419, 2023.524

[62] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust525

region policy optimization. In International conference on machine learning, pages 1889–1897.526

PMLR, 2015.527

[63] Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State en-528

tropy maximization with random encoders for efficient exploration. In International Conference529

on Machine Learning, pages 9443–9454. PMLR, 2021.530

[64] Tanmay Shankar and Abhinav Gupta. Learning robot skills with temporal variational inference.531

In International Conference on Machine Learning, pages 8624–8633. PMLR, 2020.532

[65] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den Driessche,533

Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander534

Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,535

Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the536

game of go with deep neural networks and tree search. Nature, 529:484–489, 2016.537

[66] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.538

Deterministic policy gradient algorithms. In International conference on machine learning,539

pages 387–395. Pmlr, 2014.540

[67] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-541

vised learning using nonequilibrium thermodynamics. In International conference on machine542

learning, pages 2256–2265. PMLR, 2015.543

[68] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data544

distribution. Advances in neural information processing systems, 32, 2019.545

[69] Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se (3)-diffusionfields: Learning546

smooth cost functions for joint grasp and motion optimization through diffusion. In 2023 IEEE547

International Conference on Robotics and Automation (ICRA), pages 5923–5930. IEEE, 2023.548

[70] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in549

neural information processing systems, 30, 2017.550

[71] Siddarth Venkatraman, Shivesh Khaitan, Ravi Tej Akella, John Dolan, Jeff Schneider, and551

Glen Berseth. Reasoning with latent diffusion in offline reinforcement learning. ArXiv,552

abs/2309.06599, 2023.553

[72] Sen Wang, Daoyuan Jia, and Xinshuo Weng. Deep reinforcement learning for autonomous554

driving. ArXiv, abs/1811.11329, 2018.555

13

[73] Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive556

policy class for offline reinforcement learning. ArXiv, abs/2208.06193, 2022.557

[74] Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting558

Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for559

reinforcement learning. ArXiv, abs/2305.13122, 2023.560

[75] Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E. Gonzalez, and561

Yuandong Tian. Noveld: A simple yet effective exploration criterion. In Neural Information562

Processing Systems, 2021.563

[76] Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Yong Yu, and Weinan564

Zhang. Diffusion models for reinforcement learning: A survey. ArXiv, abs/2311.01223, 2023.565

14

A Preliminaries566

567

Diffusion Model Diffusion models [30, 67, 68] is a class of generative models that deploys568

a stochastic denoising process for learning to generate samples from a probability distribution569

p(x) by mapping Gaussian noise to the target distribution through an iterative process, assuming570

pθ(x0) :=
∫
pθ(x0:T)dx1:T , where x0, . . . ,xT are latent variables of the same dimensionality as the571

data x0 ∼ p(x0). A diffusion model approximates the posterior q(x1:T |x0) through a forward diffu-572

sion process, i.e., a fixed Markov chain, which adds gradually Gaussian noise to the data x0 ∼ q(x0)573

according to a variance schedule β1, . . . , βT , defined as q(x1:T |x0) :=
∏T

t=1 q(xt|xt−1), with574

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). Diffusion models learn to sample from the target dis-575

tribution p(xT) by sampling noise from a Gaussian p(xT) ∼ 0, I and iteratively denoising the576

noise to generate in-distribution samples, through a reverse diffusion process pθ(xt−1|xt), de-577

fined as p(x0:T) := p(xT)
∏T

t=1 pθ(xt−1|xt), with pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t).578

The reverse diffusion process is optimized by minimizing a surrogate loss-function [30] L(θ) =579

Et∼[1,T],x0∼q(x0),ϵ∼N (0,I)∥ϵ − ϵθ(xt, t)∥. After training, we sample the diffusion model by580

xT ∼ p(xT) and run the reversed diffusion chain to go from t = T to t = 0.581

Markov Decision Process A Markov Decision Process (MDP) is the tupleM = ⟨S,A,R,P, γ⟩582

[56], where S is the state space, A is the action space,R : S ×A× S → R is the reward function,583

P : S × A → S is the transition kernel, and γ ∈ [0, 1) is the discount factor. We define a policy584

π ∈ Π : S × A → R as the probability distribution of the event of executing an action a in a585

state s. A policy π induces a value function corresponding to the expected cumulative discounted586

reward collected by the agent when executing action a in state s, and following policy π thereafter:587

Qπ(s, a) ≜ E
[∑∞

k=0 γ
kri+k+1|si = s, ai = a, π

]
, where ri+1 is the reward obtained after the i-th588

transition. Solving an MDP means finding the optimal policy π∗, i.e., the one maximizing the589

expected discounted return. In this paper, we are particularly interested in tasks where there are590

multiple goals or there is only one goal but with multiple solutions to it.591

B Pseudoalgorithm592

Algorithm 1 Deep Diffusion Policy Gradient

1: Input: initial policy parameters θ, initial Q-function parameters ϕ, replay buffer D, diffusion
iteration N

2: for each iteration do
3: for t = 1, · · · , T do
4: Observe state st and sample action a0t ∼ πθ(at|st) via reverse diffusion process
5: Execute action at = a0t + ϵ, where ϵ ∼ N
6: Initialize atargett = at
7: Store (st, at, a

target
t , rt, st+1) in D

8: end for
9: for g = 1, · · · , G do

10: Sample M batch Bi = {(s, a, atarget, r, s′)} from replay buffer D, where M is the number
of modes discovered

11: Get Qϕi
, i = 1, 2, ...,M from Algo. 2

12: for each mode do
13: Update Qϕi

with Bellman Equation on Bi

14: for k = 1, · · · ,K do
15: Compute target action atarget by one step of gradient ascent following

atarget ← atarget + η∇aQϕi
(s, atarget)

16: end for
17: Replace atarget in D
18: end for
19: Concatenate {(s, atarget)i}|Mi=1 and update diffusion policy πθ following (1)
20: end for
21: end for

15

Algorithm 2 Mode Discovery via Clustering

1: Input: goal-reached trajectories {τs}, unsuccessful trajectories {τu}, previous cluster Cold

2: Compute distance matrix D of {τs} with DTW metric [50]
3: Obtain cluster C via hierarchical clustering with matrix D
4: for c in C do
5: Find the cluster cold with the largest overlap between c and Cold

6: Assign Qϕ and atarget from cold to c
7: end for
8: for τu in {τu} do
9: for c in C do

10: Sample N trajectories from cluster c
11: Compute average distance between τu and {τsn}|Nn=1
12: end for
13: Find the cluster c with the smallest average distance
14: Add τu to c
15: end for

C Implementation details593

Our approach includes a high-performance implementation of the proposed algorithm. First, each594

trajectory is assigned a unique identifier (ID), where clusters group many such IDs representing595

distinct modes. All trajectory elements, including states, actions, target actions, and rewards, are596

tagged with this ID. This allows storing all trajectories in one replay buffer, enabling efficient batch597

sampling. Second, computing distances between trajectories can be computationally demanding. To598

address this, we implement a hashmap for storing these distances, keyed by the trajectory IDs. This599

strategy ensures that distance computation between any two specific trajectories is performed only600

once.601

D Environment details602

The AntMaze environments are implemented based on the D4RL benchmark [20]. The AntMaze is a603

navigation task, in which the agent controls the movement of a complex 8-DOF “Ant" quadruped604

robot. The objective is to reach goal positions represented by the red ball(s). The robotic manipulation605

environments with Franka are based on [22]. The agent controls a 7-DOF Franka arm in joint space606

for different manipulation tasks.607

For the above environments, we designed to contain multiple possible solutions to show the608

multimodality, either with multiple goals or multiple ways that solve the task. Note that the goal609

position is static and invisible to the agent, meaning that the agent has to explore the goal first. We610

use a sparse reward 0-1 reward for all environments, which is activated upon reaching the goal.611

We describe each environment and its multimodal solutions as follows:612

613

AntMaze-v1: it contains one goal in the maze. The ant is expected to
bypass a central obstacle to reach the goal position, with two possible
routes, either over the top or beneath the bottom of the obstacle. The
optimal path varies depending on the ant’s randomized starting position,
as there is only one shortest path. The episode length is 500.

614

AntMaze-v2: it contains two goals in the maze, with the top-left goal
offering a higher reward than the right-hand goal. Due to the higher
reward, the optimal path is to reach the top-left goal, however, the ant
may get trapped in the right goal as it is much easier to explore. The
episode length is 500.

615

16

AntMaze-v3: it contains two goals in the maze, each accessible via
multiple routes. For the goal in the top-left, three routes are viable: (1)
go upwards to the end and then turn left; (2) move diagonally towards
the top-left until encountering the left border, then head upwards, and
(3) move towards the bottom-left, circumvent the left obstacle, and
then go upwards. The distances of the first two paths are comparable,
whereas the third is much longer. For the goal in the right-bottom,
there are two comparable routes: (1) moving right and then downwards
or (2) going downwards and then right. Possible solutions are shown
in the visualization of clusetering performance in Fig. 3. The episode
length is 700.

616

AntMaze-v4: it contains two goals in the maze, each accessible through
two routes. For the top goal, the agent can bypass the obstacle by going
up, then has the option to either go up or down to reach it. The routes
to the bottom goal is symmetrical. Possible solutions are shown in
Fig. 3. The episode length is 700.

617

Reach: the agent controls the Franka arm to reach the red ball, navigat-
ing around a fixed cross-shaped obstacle that lies in the path. Despite
the presence of a single goal position, the agent can bypass the obsta-
cle in four distinct ways, offering multiple solutions to the task. The
episode length is 100.

618

Peg-in-hole: the agent controls the Franka arm to perform a peg-
insertion task. With two holes available on the desk, the agent can
successfully complete the task by inserting the peg into either hole.
The episode length is 100.

619

Drawer-close: the agent controls the Franka arm to close drawers.
There are four drawers on the desk, and the agent can close either
drawer to finish the task. The episode length is 100.

620

Cabinet-open: the agent controls the Franka arm to open a cabinet.
The cabinet has two layers therefore the agent can move the arm to
either layer and subsequently pull the door open to finish the task. The
episode length is 100.

621

E Hyperparameters622

Here, we list the hyperparameters used for all baselines and tasks.623

17

Table 1: Hyperparameter setup for all tasks. For RPG, we use the default hyperparameters for sparse reward.

Hyperparameter DDiffPG/DIPO/Diffusion-QL/Consistency-AC/TD3/SAC

Num. Environments 256
Critic Learning Rate 5× 10−4

Actor Learning Rate 3× 10−4

Action Learning Rate 3× 10−2 (DDiffPG/DIPO)
Alpha (α) Learning Rate 5× 10−3 (SAC)
V_min (distributional RL) 0
V_max (distributional RL) 5
Num. Atoms (distributional RL) 51
Optimizer Adam
Target Update Rate (τ) 5× 10−2

Batch Size 4,096
UTD ratio 8
Discount Factor (γ) 0.99
Gradient Clipping 1.0
Replay Buffer Size 2, 000 trajectories ≈ 1× 106 (DDiffPG)

1× 106 (baselines)
Reclustering Frequency 100 (DDiffPG)
Mode Embedding Dim. 5 (DDiffPG)

Table 2: Clustering threshold. The default threshold is set to 0.7max(Z[:, : 2]) corresponding with MAT-
LAB(TM) behavior, where Z is the linkage matrix.

Clustering threshold
AntMaze-v1 50
AntMaze-v2 70
AntMaze-v3 70
AntMaze-v4 50

Reach default
Peg-in-hole default

Drawer-close default
Cabinet-open default

18

F Additional experimental results.624

Table 3: Number of modes discovered, success rate (S.R.), and episode length (E.L.) for AntMazes and the maze
with randomly initialized obstacles, averaged over 20 random seeds per case.

DDiffPG RPG TD3 SAC DIPO Diff-QL Con-AC

#modes 2 1 1 1 1 1 0
AntMaze-v1 S.R. 1.0 0.2 1.0 0.98 0.98 0.63 0.0

E.L. 75.7 450.1 59.2 89.1 75.3 241.7 500
#modes 2 1.5 1 1 1 1 0

AntMaze-v2 S.R. 1.0 0.5 0.75 0.53 0.75 0.59 0.0
E.L. 66.8 259.4 35.6 222.3 34.6 225.7 500
#modes 4.3 1 1 1 1 1 1

AntMaze-v3 S.R. 0.98 0.1 1.0 0.8 1.0 0.77 0.25
E.L. 142.5 642.1 83.4 207.8 99.3 226.6 545.1
#modes 3.8 0 1 1 1 1 0

AntMaze-v4 S.R. 1.0 0.0 1.0 1.0 1.0 0.75 0.0
E.L. 151.1 700 88.1 92.8 86.9 249.5 700
#modes N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Randomized S.R. 1.0 0.0 0.5 0.45 0.5 0.45 0.1
E.L. 162.3 700 310.2 342.1 293.5 421.4 582.3

Table 4: Number of modes, success rate (S.R.), and episode length (E.L.) for robotic tasks, averaged over 20
random seeds.

DDiffPG TD3 SAC DIPO Diff-QL Con-AC

#modes 2.8 1 1 1 1 1
Reach S.R. 1.0 1.0 0.95 1.0 0.75 0.5

E.L. 23.8 18.0 20.5 18.6 40.5 60.5
#modes 2 1 1 1 1 1

Peg-in-hole S.R. 1.0 1.0 1.0 1.0 1.0 0.2
E.L. 5.9 4.7 4.7 5.1 4.92 80.91
#modes 3.5 1 1 1 1 1

Drawer-close S.R. 1.0 1.0 1.0 1.0 0.8 0.2
E.L. 23.6 22.0 24.7 22.8 34.5 80.74
#modes 2 1 1 1 1 1

Cabinet-open S.R. 1.0 0.98 1.0 1.0 0.75 0.5
E.L. 21.1 14.3 24.3 19.6 42.1 59.5

We provide an evaluation of computational time compared with baselines. We use NVIDIA GeForce625

RTX 4090 for all experiments. However, given the intense research landscape in diffusion models,626

we hope to make the training and inference more time-efficient in our future work.627

• For data collection, DDiffPG needs more wall-clock time than others, which is due to the trajectory628

processing, clustering, etc. We note that DIPO has a similar wall-clock time with the time of TD3629

and SAC, implying that the impact of inference speed of diffusion model is not significant.630

• For policy updates, DDiffPG and DDiffPG (v) require less computational time. This is because631

TD3 and SAC need to estimate the Q-value during policy updates, while DDiffPG and DIPO only632

need to minimize the MSE loss.633

• For critic update, DDiffPG requires more wall-clock time due to multiple Q-functions.634

• For target action update, only DDiffPG and DIPO needs to compute the target action. DDiffPG635

requires more wall-clock time because it has multimodal batches and needs to compute the target636

action for each sub-batch.637

19

Figure 8: Comparison on wall-clock time.

We implement an alternative clustering approach on the high-dimensional state space by training638

a vector-quantized variational autoencoder (VQ-VAE) to learn trajectory representations. We then639

performed clustering using the codevectors. The visualized cluster performance and projected640

embedding space verify that VQ-VAE learns meaningful representations and can be used in our641

approach, as an alternative clustering approach. We would like to point that any unsupervised642

clustering method can be coupled with our approach.643

((a)) Clustering performance of VQ-VAE. ((b)) Projected embedding space.

Figure 9: Comparison of VQ-VAE clustering and projected embedding space.

Figure 10: The rest of exploration maps and density maps in Antmaze-v3.

20

Figure 11: (a)-(d) Q-value maps of baselines and DDiffPG in Antmaze-v1.

Figure 12: Exploration maps of DDiffPG and baselines in AntMaze-v1.

Figure 13: (a)-(d) Q-value maps of baselines and DDiffPG in Antmaze-v2.

Figure 14: Exploration maps of DDiffPG and baselines in AntMaze-v2.

21

Figure 15: (a)-(d) Q-value maps of baselines and DDiffPG in Antmaze-v4.

Figure 16: Exploration maps of DDiffPG and baselines in AntMaze-v4.

Figure 17: State coverage in Antmaze-v1, Antmaze-v2, and Antmaze-v4

22

	Introduction
	Related Work
	Diffusion Policy Gradient
	Learning Multimodal Behaviors from Scratch
	Unsupervised Mode Discovery
	Mode Learning with Mode-specific Q-functions
	Mode Control via Latent Embeddings

	Experiments
	Setup
	DDiffPG Masters Multimodal Behaviors
	Seeking of Multimodality Encourages Exploration and Overcomes Local Minima
	Ablation Studies
	Online Replanning with a Multimodal Policy

	Conclusions, Limitations & Future Work
	Preliminaries
	Pseudoalgorithm
	Implementation details
	Environment details
	Hyperparameters
	Additional experimental results.

