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Abstract

While Pre-trained Language Models (PLMs)001
internalize a great amount of world knowledge,002
they have been shown incapable of recalling003
these knowledge to solve tasks requiring com-004
plex & multi-step inference procedures. Simi-005
lar to how humans develop a “train of thought”006
for these tasks, how can we equip PLMs with007
such abilities? In this work, we explore an iter-008
ative prompting framework, a new prompting009
paradigm which progressively elicits relevant010
knowledge from PLMs for multi-step inference011
tasks. We identify key limitations of existing012
prompting methods, namely they are either re-013
stricted to queries with a single identifiable re-014
lation/predicate, or being agnostic to input con-015
texts, which makes it difficult to capture vari-016
abilities across different inference steps. We017
propose an iterative context-aware prompter,018
which addresses these limitations by learning019
to dynamically synthesize prompts conditioned020
on the current step’s contexts. Experiments on021
three datasets involving multi-step inference022
show the effectiveness of the iterative scheme023
and the context-aware prompter design.1024

1 Introduction025

Humans can develop a “train of thought” for com-026

plex decision making. For example, when asked027

the question (Q) shown in Figure 1, which involves028

composition, an important type of multi-step infer-029

ence, humans apply two consecutive steps to derive030

the final answer: 1) find “father” of the topic entity031

“Gwilym Lloyd George” (E1); 2) find “birthplace”032

of the entity returned in the first step (E2).033

Recently, large-scale pre-trained language mod-034

els (PLMs) have been shown capable of internal-035

izing a great amount of simple factual knowledge036

such as E1 and E2, yielding competitive perfor-037

mance on a range of knowledge-intensive tasks038

without resorting to any external knowledge source039

(Petroni et al., 2019; Shin et al., 2020; Zhong et al.,040

1Our source code will be released upon acceptance.

Figure 1: Our Iterative Prompting approach for deriving
a “train of thoughts” with a PLM (on the right), com-
pared with standard knowledge probing (on the left).

2021; Roberts et al., 2020; Lee et al., 2020). How- 041

ever, work such as (Talmor et al., 2020a; Kassner 042

et al., 2020; Rae et al., 2021) reveals that PLMs 043

face difficulties in complex, multi-step inferences. 044

For example, they struggle with answering complex 045

questions like Q without using external sources, no 046

matter whether they are fine-tuned based on QA 047

pairs or simply prompted to produce the answer 048

(where even if they have memorized E1 and E2). 049

In this paper, we study the following question: 050

How to shepherd a PLM to recall a series of stored 051

knowledge (e.g., E1 and E2) that is necessary for 052

multi-step inference (e.g., answering Q), analogous 053

to how humans develop a “train of thought” for 054

complex decision making? 055

A direct way would be to fine-tune the PLM to 056

generate the series of knowledge all at once (as- 057

suming such supervision is available), but soon one 058

realizes the practical issue in this approach: PLMs 059

which internalize a great amount of knowledge are 060

inevitably large in scale, and fine-tuning all their 061

parameters would become more and more costly 062

as they keep scaling up. There’s also the potential 063

concern that fine-tuning PLMs may interfere with 064

their implicit knowledge storage, a phenomenon 065

observed in (Wang et al., 2021) which is more gen- 066

erally related to the catastrophic forgetting problem 067

of deep learning models (McCloskey and Cohen, 068
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1989; Kirkpatrick et al., 2017; Howard and Ruder,069

2018). Therefore, lightweight methods such as070

prompting (Liu et al., 2021) which keep a PLM’s071

parameters intact would be more preferable for our072

purpose of eliciting knowledge. However, we find073

that no matter whether it is fine-tuned or prompted074

to generate the series of knowledge all at once, the075

PLM tends to lose its “train of thought” during076

the process, generating irrelevant facts or suffering077

from hallucination.078

Motivated by the iterative nature of multi-step079

inference problems, we explore an iterative prompt-080

ing framework in this paper, which elicits knowl-081

edge from PLMs step by step for a given inference082

task. We have two desiderata in iterative prompting:083

(1) At different inference steps, the prompts need084

to focus on different components of the complex085

query. (2) The prompts should appropriately inte-086

grate knowledge gathered in previous steps into the087

current step; for instance, during the 2nd step in the088

example in Figure 1, the prompts need to combine089

the entity “David Lloyd George” (from knowledge090

recalled in the 1st step) with the unresolved part091

“What is the place of birth of” in the query.092

A natural thought is to directly apply existing093

prompting methods in an iterative fashion. Un-094

fortunately, their prompts are either restricted to095

queries with a single, identifiable relation/predicate096

(Jiang et al., 2020; Petroni et al., 2019; Zhong et al.,097

2021; Shin et al., 2020; Qin and Eisner, 2021), or098

being agnostic and insensitive to step-wise inputs099

(Lester et al., 2021; Li and Liang, 2021; Brown100

et al., 2020), and hence not ideal for our desiderata.101

We design a novel iterative prompting method102

towards that end. We augment the PLM with an103

iterative Context-Aware Prompter, a model which104

learns to dynamically synthesize prompts based on105

the current step context. At each step, the Prompter106

learns to process the query and previously gathered107

evidence, and composes a prompt which steers the108

PLM to recall the next piece of knowledge. Like109

other prompting methods, the PLM is kept fixed110

throughout the learning process. In addition, as111

the PLM size increases, the number of trainable112

parameters in our method scales comparably with113

or slower than previous prompting methods.114

We conduct experiments on three datasets in-115

volving multi-step inference, including two recent116

multi-hop Question Answering datasets: 2Wiki-117

MultiHopQA (Ho et al., 2020) and R4C (Inoue118

et al., 2020), and a scientific dataset (Talmor et al.,119

2020b) for reasoning over taxonomic relations. Our 120

experimental results show (1) effectiveness of the 121

iterative scheme; (2) our proposed Context-Aware 122

Prompter design outperforms existing prompting 123

methods by notable margins; (3) quantitative and 124

qualitative analysis which reveal the faithfulness of 125

our learned prompter. 126

2 Methodology 127

In this section, we first formalize our problem setup 128

(§2.1), and then introduce our iterative prompting 129

framework (§2.2), followed by our context-aware 130

prompter design (§2.3) which addresses key limita- 131

tions of previous prompting methods when applied 132

in this iterative scheme. 133

2.1 Problem Setup 134

Given a complex query q, our goal is to drive a 135

PLM M to recall a sequence of simple knowledge 136

statements Cq = [c1, ..., cnq ] which is sufficient 137

for deciding the response to q. In particular, we 138

focus on developing prompting methods, where the 139

parameters of M are fixed and we aim to construct 140

prompt T which steer M to recall Cq. Note that 141

here we treat T as a variable, which may or may 142

not depend on other variables based on different 143

modellings. Writing MT as M augmented with 144

prompt T , our training objective is to learn how to 145

find T which could maximize the log likelihood: 146

L(T ) =
N∑
i=1

logP (Cqi |qi;MT )

with a set of training data {qi, Cqi}Ni=1. 147

Our formulation here is general and applicable 148

to all prompting based methods, where the settings 149

in previous work such as (Zhong et al., 2021; Shin 150

et al., 2020; Lester et al., 2021; Li and Liang, 2021; 151

Qin and Eisner, 2021) correspond to the reduced 152

case where |Cq| = 1 for any query q. In our ex- 153

periments we also consider PLM fine-tuning, in 154

which case there’s no prompt T in the pipeline and 155

instead the parameters of M are optimized. 156

2.2 Iterative Prompting Framework 157

Inspired by the sequential nature of multi-step infer-
ence tasks, we approach the problem in an iterative
way:

P (Cq|q;MT ) =

nq∏
j=1

P (cj |q, c1, ..., cj−1;MT )
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where at each step j, MT recalls the next piece of158

knowledge cj conditioned on the query q and all159

previously gathered knowledge c1, ..., cj−1 (con-160

catenated with q).161

2.3 Context-Aware Prompter162

Previous prompting methods which take single-
relation inputs clearly fail to apply in this iterative
setting due to the complexity of the input context
q, c1, ..., cj−1. Task-level prompting methods such
as Prompt-Tuning (Lester et al., 2021) and Prefix-
Tuning (Li and Liang, 2021) are applicable here,
where T is treated as a static parameter. However,
as described earlier, this modelling is not ideal for
T to fully capture variabilities across different infer-
ence steps. In this work, we model T as the output
of our Prompter, a learnable function mapping fW
which dynamically synthesizes T w.r.t. the current
step input context:

T = fW (q, c1, ..., cj−1),∀j

Prompter Instantiation. While there are many163

plausible design choices for the Prompter fW , here164

we instantiate it with a transformer-based language165

model (shown in Figure 2). The prompts are de-166

signed to be contextualizations (by the Prompter)167

of a set of special tokens w.r.t. the current step input168

context, linearly projected into the PLM’s embed-169

ding space by a trainable matrix (omitted in the170

figure due to space limit). In this work, we adopt171

an Encoder-Decoder PLM and use prefix-prompts172

in the implementation; hence we have prompts that173

are prepended to both the PLM’s encoder inputs174

and decoder inputs. Note that our design could175

be easily adapted to other types of PLMs (e.g.,176

encoder-only/decoder-only models) and different177

prompt positionings (e.g., infix, postfix).178

Comparison with Prompt/Prefix-Tuning. Both179

Prompt-Tuning (Lester et al., 2021) and Prefix-180

Tuning (Li and Liang, 2021) model the prompt T181

as a context-agnostic parameter. In Prompt-Tuning,182

T has the same identity as in our approach which183

is a set of virtual input tokens (Encoder Prompts184

& Decoder Prompts in Figure 2). In Prefix-Tuning,185

T is modelled to be the set of activations (keys &186

values in the transformer attention blocks) of the187

virtual prompt tokens across all PLM layers. Let188

D be the embedding dimension of the PLM, h be189

the number of layers in the PLM, d be the embed-190

ding dimension of the Prompter (d ≤ D) and l be191

the length of the prompt tokens (both encoder &192

Figure 2: Our context-aware prompter design. The
prompter contextualizes a set of special tokens w.r.t. the
current step context q, c1, ..., cj−1 to get the resulting
prompts, which steers the PLM to recall the next piece
of knowledge cj .

decoder prompts). Then the number of trainable pa- 193

rameters is Θ(d ·(D+ l)) for our proposed method, 194

Θ(l · D) for Prompt-Tuning and Θ(l · h · D) for 195

Prefix-Tuning. It can thus be seen that our proposed 196

method scales comparatively with Prompt-Tuning, 197

slower than Prefix-Tuning, and overall maintains 198

a manageable amount of trained parameters as the 199

PLM scales up (which increases D and h). 200

Continuous v.s. Discrete Prompts. While mod- 201

elling T as discrete tokens in the PLM’s vocabulary 202

could increase the readability of the prompts, a dis- 203

crete space is much less expressive than its contin- 204

uous counterpart, and optimization over a discrete 205

space could be highly inefficient. Also, despite 206

being inside the vocabulary, the searched discrete 207

prompts could still have low interpretabilities as 208

seen by the given examples in (Shin et al., 2020). 209

Hence, we follow prior work (Zhong et al., 2021; 210

Li and Liang, 2021; Lester et al., 2021; Qin and Eis- 211

ner, 2021) and model the prompts to be continuous 212

virtual tokens instead of discrete tokens. 213

2.4 Learning and Inference 214

We use teacher-forcing for model training, namely 215

at each step, the ground truth contexts at that step 216

(query and previous knowledge pieces) are pre- 217

sented to the model. We maximize L(T ) using 218

standard sequence-to-sequence (seq2seq) learning 219

objectives. During inference, we proceed autore- 220

gressively by feeding the recalled knowledge at 221

step t − 1 as the additional context at step t, and 222

execute for some predefined number of steps. 223
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3 Experimental Setup224

3.1 Datasets & Preprocessing225

We conduct experiments on three datasets involv-226

ing multi-step reasoning which include annotations227

for knowledge statements relevant to the queries:228

2WikiMultiHopQA (abbreviated as 2Wiki) (Ho229

et al., 2020), R4C (Inoue et al., 2020), and a scien-230

tific commonsense reasoning dataset (abbreviated231

as LoT2) constructed by (Talmor et al., 2020b).232

2WikiMultiHopQA (Ho et al., 2020). 2Wiki is233

a recent large scale multi-hop QA dataset, which234

contains in total over 192k (167k train, 12.5k devel-235

opment and 12.5k test) samples constructed jointly236

from Wikipedia and Wikidata. Since the test set237

is private, we randomly split the original devel-238

opment set into our development & test set (6k239

samples each). The dataset format largely follows240

HotpotQA (Yang et al., 2018), but includes more241

diverse reasoning types of questions and detailed242

annotations of evidence paths for each question.243

Here, an evidence path is an ordered list of (sub-244

ject entity, relation, object entity) knowledge base245

triplets. We use the question as the query q, and246

use a simple template to convert each triplet in the247

evidence path into a natural language statement,248

forming Cq. Due to the large training set size and249

limited computing budget, we randomly sample250

10% of the training data to form our final training251

set, which has the side benefit of largely reducing252

the test/train overlap (more details in §4.2).253

R4C (Inoue et al., 2020). R4C is another re-254

cent multi-hop QA dataset containing annotated255

evidence paths. The dataset contains 4.6k exam-256

ples (2.4k train, 2.2k development) constructed on257

top of HotpotQA, where the authors used crowd-258

sourcing efforts to collect the evidence paths in259

the form of simple subject-verb-object natural lan-260

guage sentences. Again, we randomly split the261

development set (there’s no test set given) into our262

development and test set (1.1k samples each). We263

use the question as our query q and use the anno-264

tated evidence sentences as Cq.265

LoT (Talmor et al., 2020b). The dataset involves266

reasoning over a set of taxonomic relations, con-267

structed from ConceptNet and WordNet. Each ex-268

ample consists of a hypothesis (e.g., “A whale has269

a belly button”) which we treat as query q, and a set270

of simple facts including hypernym rules (e.g., “A271

whale is a mammal”, “A whale is a vertebrate”) and272

2The abbreviation here comes from the phrase “Leap-of-
Thought” in the paper title of (Talmor et al., 2020b).

properties (e.g., “A mammal has a belly button”, “A 273

vertebrate has a tail”). By reasoning over the facts 274

and selecting the correct chain of hypernym rule & 275

property (“A whale is a mammal”, “A mammal has 276

a belly button”), one could verify or deny the given 277

hypothesis. One subtle issue of directly using the 278

gold hypernym rule and property as Cq is, during 279

the first step, it would be difficult to directly iden- 280

tify the correct object entity without looking ahead 281

on the properties in the second step. Therefore, for 282

the first step, we concatenate all the hypernymic 283

objects appearing in the dataset w.r.t. to the same 284

subject to form c1. We drop samples from the orig- 285

inal training set where the relevant facts are not (or 286

only partially) provided, and obtain 9.4k/1.2k/1.2k 287

samples for training/development/testing. 288

For 2Wiki and R4C, the number of steps during 289

inference is set to be 4 since over 99% of the sam- 290

ples have less or equal than 4 inference steps. For 291

LoT, we set the number of inference steps to be 2. 292

Overall, we regard 2Wiki as our “major” evaluation 293

dataset due to its largest scale (despite our down- 294

sampling) and diverse types of queries, and use it to 295

conduct a faithfulness study of prompting in §4.2. 296

Some examples of the processed data samples are 297

shown in Appendix A.4. 298

3.2 Evaluation Metric 299

We use both intrinsic and extrinsic metrics to eval- 300

uate the PLM recalled knowledge. 301

Intrinsic Evaluation. Here, we directly measure 302

the quality of recalled knowledge. While there are 303

standard metrics for evaluating text generation such 304

as BLEU and ROUGE, these metrics generally fail 305

to capture the entity-centric nature of the recalled 306

knowledge we wish to examine. Therefore, we pro- 307

pose a set of measures which are better suited for 308

the tasks in our experiments. For 2Wiki and R4C, 309

we evaluate the ratio where the recalled knowledge 310

contains the answer entity (Ans.R); we also com- 311

pute the ratio among only those samples where the 312

answer entity does not appear in the query (Ans.R̂). 313

For 2Wiki, since the annotated evidence are KB 314

triples, we additionally evaluate the entity coverage 315

of recalled contexts by computing the average ratio 316

of gold entities appearing in the recalled contexts 317

(Ent.R) and the ratio of samples where all gold en- 318

tities are recalled (Ent.R∗) as a more strict measure. 319

For LoT, at the first step, we deem the hypernym 320

rule as correct if the gold object is recalled, and use 321

exact match for the recalled property at the second 322

4



step. We compute the ratio of correctly recalled323

hypernym rule/property (Cont.R) and the percent-324

age of samples where the recalled hypernym rule325

& property are both correct (Cont.R∗).326

Extrinsic Evaluation. We also conduct extrin-327

sic evaluation by measuring how much the recalled328

knowledge help find the response to the query. Sim-329

ilar to reading comprehension, we concatenate all330

recalled knowledge as the contexts, and use a reader331

which tries to infer the answer given the query and332

contexts. For 2Wiki and R4C, we first pre-train the333

reader using the ground truth contexts, and then334

fine-tune it on the recalled contexts3; for LoT, we335

use a rule-based reader directly4. We report Exact336

Match (EM) and Answer F1 scores for 2Wiki &337

R4C, and EM score for LoT where the answer is338

restricted to yes/no.339

3.3 Compared Methods340

We compare our proposed iterative Context-Aware341

Prompter (iCAP) along with Prompt Tuning342

(Prompt-T), Prefix Tuning (Prefix-T) and PLM343

fine-tuning (PLM-FT) under both non-iterative344

and iterative setting. The iterative setting is de-345

scribed in §2.2 and for the non-iterative setting, we346

simply concatenate all the knowledge statements in347

Cq to form one single piece of knowledge for each348

query. In extrinsic evaluation, we also compare349

with fine-tuning the PLM on (query, answer) pairs350

without knowledge recall (PLM-QA), which mea-351

sures how much the PLM can solve these multi-step352

inference problems directly, a skill which PLMs353

are poor at as shown by previous work. We addi-354

tionally report final inference results when feeding355

ground truth contexts to the reader (Oracle-RD) as356

an upper bound for extrinsic evaluation. Relation-357

specific prompting methods such as (Shin et al.,358

2020; Zhong et al., 2021; Petroni et al., 2019) are359

not included since they’re not directly applicable360

in our problem setup as discussed earlier.361

Our focus in this work is on knowledge elici-362

tation from PLMs, and hence we do not aim to363

compare with previous dataset-specific methods364

which typically have different problem formula-365

tions & focus than ours and utilize other attributes366

in the datasets which we do not use (e.g., gold &367

distractor evidence paragraphs).368

3We found in our preliminary experiments that this ap-
proach gives the best results across different methods.

4LoT is constructed using templates, and therefore a rule-
based reader can perfectly solve the inference task (100%
accuracy when ground truth contexts are given, see Table 2).

3.4 Implementation Details 369

Architectures & hyperparameters. We use 370

BART-large (Lewis et al., 2020) for our PLM and 371

RoBERTa-base (Liu et al., 2019) for our prompter, 372

which is several times smaller than the PLM5. We 373

also include some results & discussion for different 374

prompter scales in Appendix A.5. We use another 375

BART-large for the reader in extrinsic evaluation6. 376

Our implementation is based on the Hugging 377

Face Transformer library (Wolf et al., 2020). We 378

use AdamW optimizer (Loshchilov and Hutter, 379

2019) and a linear learning rate scheduler with 380

warmup ratio 0.06 for optimization. For hyperpa- 381

rameters, we use a batch size of 32, 128, 32 for 382

2Wiki, LoT and R4C respectively, and tune the 383

learning rate from {4e-5, 8e-5, 4e-4, 8e-4, 4e-3, 384

8e-3, 4e-2} & length of encoder/decoder prompts7 385

from {15, 30, 45, 60, 80, 100}; more details are in- 386

cluded in Appendix A.1. We run most experiments 387

with three random seeds, and report the average 388

scores with standard deviations in the subscripts. 389

Knowledge Enhancement for PLM. Since our fo- 390

cus is on how to make PLMs better at recalling rel- 391

evant knowledge for multi-step inference, we need 392

to make sure the PLM actually memorizes all the 393

relevant knowledge in the first place, so that the re- 394

sults can be attributed solely to the effectiveness of 395

knowledge recall. Hence, we conduct knowledge 396

enhancement for the PLM, where we additionally 397

pre-train the PLM to recover separately masked 398

elements in the triplets which form the knowledge 399

statements, a strategy similar to salient span mask- 400

ing (Roberts et al., 2020; Guu et al., 2020). More 401

details could be found in Appendix A.2. Note the 402

same PLM after knowledge enhancement is used 403

across different compared methods. 404

4 Results 405

4.1 Effectiveness of iCAP 406

The results for intrinsic & extrinsic evaluation are 407

summarized in Table 1 and 2 respectively, which 408

are highly consistent. We elaborate the results in 409

what follows. 410

5While our prompter is also initialized using a Pre-trained
Language Model, we’ll use the term “PLM” to refer only to
the larger & more knowledgeable one.

6For the reader, we intentionally choose the same architec-
ture with the PLM for fair comparison with PLM-QA.

7We set the length of encoder & decoder prompts to be
the same, as we do not observe improvements otherwise in
preliminary experiments.
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PLM-FT
PLM-FT (Iter)

Prompt-T
Prompt-T (Iter)

Prefix-T
Prefix-T (Iter)

iCAP

2Wiki
Ent.R∗ Ent.R Ans.R̂ Ans.R
10.3±0.6 33.8±1.4 12.3±1.4 45.3±1.6

26.3±0.7 48.9±0.6 35.4±0.7 60.6±0.3

5.5±0.1 22.3±0.4 6.6±0.1 41.3±0.6

10.8±0.4 27.5±0.5 16.7±0.7 46.2±0.8

6.7±0.1 25.9±0.2 7.6±0.1 44.2±0.1

14.8±0.4 33.9±0.5 22.5±0.4 53.2±0.3

22.0±1.7 42.1±2.2 28.6±2.7 54.6±1.6

LoT
Cont.R∗ Cont.R
41.8±1.2 70.8±0.8

41.3±1.6 70.1±1.2

35.3±1.6 62.8±1.9

33.3±1.5 63.4±1.8

31.8±0.2 64.0±0.1

31.6±0.3 64.9±0.3

34.1±0.7 65.0±0.2

R4C
Ans.R̂ Ans.R
38.1±1.2 43.9±1.1

43.1±1.2 48.5±1.0

28.2±0.9 33.4±0.4

30.6±2.2 36.0±2.4

27.2±0.4 33.9±0.3

33.7±0.6 39.8±0.6

36.8±0.7 41.5±0.6

Table 1: Intrinsic Evaluation Results. “(Iter)” indicates the iterative setting of a method. All metrics are defined
in §3.2 and overall measure the gold (answer) entity/object coverage of the recalled knowledge from different
perspectives.

Oracle-RD
PLM-QA
PLM-FT

PLM-FT (Iter)
Prompt-T

Prompt-T (Iter)
Prefix-T

Prefix-T (Iter)
iCAP

2Wiki
EM F1
97.8 98.9

24.1±0.2 29.3±0.4

33.6±0.6 37.8±0.5

45.5±1.4 50.9±1.7

26.9±0.6 31.0±0.6

25.0±0.6 30.2±0.2

31.6±0.1 35.6±0.2

31.1±0.7 36.4±0.4

42.8±2.5 47.9±2.3

LoT
EM

100.0
68.3±0.4

76.0±0.6

77.8±0.3

65.9±1.1

68.8±1.1

69.0±0.2

72.6±0.3

73.8±0.3

R4C
EM F1
75.7 86.8

22.6±0.7 28.8±1.0

25.3±1.2 36.8±0.9

32.2±0.0 42.5±0.5

16.6±2.9 25.9±2.8

22.4±2.3 30.4±2.7

19.2±0.4 29.2±0.5

24.0±0.3 34.2±0.4

25.7±1.9 35.2±1.9

Table 2: Results for Extrinsic Evaluation, where the
recalled knowledge of each method is used for final
inference, except for Oracle-RD and PLM-QA.

Effectiveness of Iterative Scheme & Context-411

Aware Prompter. Across different datasets, it412

can be seen that most compared methods bene-413

fit from the iterative setting (Iter) over the non-414

iterative setting. Moreover, our proposed itera-415

tive Context-Aware Prompter (iCAP) further out-416

performs Prompt/Prefix Tuning by notable gains417

across different datasets and metrics, approaching418

the performance of PLM fine-tuning (PLM-FT);419

in particular, on the 2Wiki dataset which has the420

largest scale and diversity of reasoning types, iCAP421

achieves more than 15% and 10% absolute gains422

in F1 over Prompt-Tuning & Prefix-Tuning respec-423

tively. Overall, the results clearly show the effec-424

tiveness of the iterative scheme and our proposed425

context-aware prompter design. However, we note426

that even the best results (prompting based or fine-427

tuning based) still far lag behind Oracle-RD which428

uses ground truth contexts as input, which suggests429

a large room for improvements with better methods430

for knowledge elicitation from PLMs. Some failure431

cases of iCAP are included in Appendix A.4.432

Helpfulness of Knowledge Recall for Multi-step433

Inference. The result obtained by fine-tuning the434

PLM on (query, answer) directly without knowl-435

edge recall (PLM-QA) is outperformed by almost436

all other compared methods, verifying the previous 437

findings that PLMs face difficulties on using their 438

stored knowledge to perform multi-step inference 439

tasks. The large gain obtained from methods based 440

on knowledge recall shows the helpfulness of de- 441

riving a “train of thought” (especially iteratively) 442

from PLMs for multi-step inference. 443

4.2 Faithfulness of Prompting 444

(Zhong et al., 2021) raised and studied some im- 445

portant questions in optimization-based prompting 446

methods: Are the prompts “really” doing prompt- 447

ing? Is it possible that they capture dataset regular- 448

ities too? The issue is related to the notion of test- 449

train overlap (Lewis et al., 2021), where the dataset 450

may contain some underlying spurious patterns that 451

the model exploits, and thus standard evaluations 452

could not truthfully measure their generalization 453

behaviors. Here, we take this concern seriously and 454

conduct a series of analysis to more faithfully in- 455

terpret the results we obtained. We focus on 2Wiki 456

under iterative setting for our analysis. 457

Test-Train Overlap. For each development & test 458

sample, we compute the ratio of knowledge state- 459

ments in Cq that also appear in training set, mean- 460

ing that during certain step for some training sam- 461

ple, the model has “seen” the exact same piece of 462

knowledge. Note that this is a rather strict measure: 463

even if all the knowledge pieces in Cq are seen 464

during training, they may come from completely 465

different samples & steps and hence organized in 466

different ways. We summarize the overlapping ra- 467

tios of development & test set samples in Table 468

5 in Appendix A.3. It can be seen that the down- 469

sampling has the side benefit of greatly reducing 470

the test-train overlap; in particular, the percentage 471

of examples where all knowledge statements are 472

seen during training is reduced from almost 30% 473

6



Random Model Random Embedding

Ent.R∗ Ent.R Ans.R̂ Ans.R Ent.R∗ Ent.R Ans.R̂ Ans.R

PLM-FT 1.77 5.20 3.76 37.48 4.10 11.47 6.52 37.18
Prompt-T 0.0 0.0 0.0 0.0 0.006 0.013 0.003 0.002
Prefix-T 0.001 0.0 0.0 0.0 0.009 0.014 0.004 0.002

iCAP 0.001 0.001 0.0 0.0 1.49 2.83 0.98 0.59

Table 3: Intrinsic Evaluation Results on Random Control Experiments. Here we only focus on the iterative setting
using the 2Wiki dataset.

to less than 2%, and more importantly, over 70%474

of the samples have no overlap. This suggests a475

rather low risk for the existence of strong spurious476

regularities in our setup.477

Random Control Experiments. Examining the478

data-level statistics are helpful, but still not suffi-479

cient in terms of revealing the spurious regularities480

that different methods may capture. Hence, we481

follow (Zhong et al., 2021) to conduct two random482

control experiments. In the Random Model exper-483

iment, we re-initialize all parameters of the PLM484

to clean out its internal knowledge, and proceed485

with the same training procedure as earlier. In this486

way, any positive signal obtained could only be487

attributed to dataset regularities captured by the488

method. In the Random Embedding experiment,489

we re-initialize only the input embeddings of the490

PLM, a setting analogous to the control task intro-491

duced in (Hewitt and Liang, 2019) (more discus-492

sions can be found in (Zhong et al., 2021)). Here493

we only proceed with the iterative setting and con-494

duct intrinsic evaluation, where the results are sum-495

marized in Table 3. It can be seen that 1) PLM496

fine-tuning captures significantly more regularities497

in the dataset than prompting-based methods; 2)498

While our proposed method captures a bit more499

regularities than Prompt/Prefix Tuning, they still500

remain at a very small level. Overall, our random501

control experiments show that the exploitation of502

spurious dataset patterns by the evaluated prompt-503

ing methods is rather mild, and that by PLM fine-504

tuning could potentially be larger.505

Prompter Attention Visualization. To see506

whether our proposed iCAP behaves in the way we507

expect, one direct approach is to examine the inner508

workings of the prompter. Towards this end, we vi-509

sualize the attentions during the prompter forward510

pass at different steps. We randomly choose exam-511

ples in the development/test set, and use BertViz512

(Vig, 2019) to visualize the attentions within the for-513

ward pass of the prompter after the following pro- 514

cessing steps: 1) we aggregate the attention weights 515

of different attention heads within the same trans- 516

former layer; 2) to better view the prompt tokens as 517

one single unit, we average the attentions across dif- 518

ferent prompt tokens to form one “master” prompt 519

token; 3) we drop all special tokens (BOS, EOS) for 520

cleaner visualization. One example (the same ex- 521

ample which we use in Figure 1) is in Figure 3, and 522

we include more examples in Appendix A.6. As 523

briefly illustrated earlier in §1, during the 1st step 524

towards solving this query, the prompter should 525

focus on the part concerning “father” of “Gwilym 526

Lloyd George”; during the 2nd step, the prompter 527

should integrate the answer “David Lloyd George” 528

from the 1st step evidence and the “place of birth” 529

part in the query to synthesize the prompt. We can 530

see that the attention distributions at different steps 531

accord well with our expectations. However, we 532

note that attention visualization is only a qualitative 533

approach; more systematic ways for examining the 534

inner working behaviors of transformers remains 535

an open challenge. 536

5 Related Work 537

Memorization and Reasoning in PLMs. With the 538

recent success of large-scale pre-trained language 539

models (PLMs), there has been growing interest in 540

investigating what is captured by these PLMs dur- 541

ing pre-training (Talmor et al., 2020a; Rogers et al., 542

2020; Kassner et al., 2020). Studies have shown 543

that in addition to learning linguistic knowledge 544

about language use, PLMs are capable of memo- 545

rizing a great amount of world knowledge (Rogers 546

et al., 2020), yielding competitive performance on 547

knowledge probing (Petroni et al., 2019; Shin et al., 548

2020; Zhong et al., 2021) and other knowledge- 549

intensive tasks such as question answering (Roberts 550

et al., 2020) and fact checking (Lee et al., 2020), 551

without resorting to any external knowledge source. 552

7



Figure 3: Prompter Attention Visualization. Attentions
during the forward pass for the 1st & 2nd step are shown
in the left & right respectively. Different colors corre-
spond to different transformer layers. More examples of
different reasoning types are included in Appendix A.6.

On the other hand, other work such as (Talmor553

et al., 2020a; Kassner et al., 2020; Rae et al., 2021)554

reveals that PLMs face difficulties in recalling their555

stored knowledge for multi-step inferences (such as556

answering complex, multi-hop questions), which557

is also verified in our experiments.558

Prompt Learning. One type of methods for elicit-559

ing knowledge from PLMs is prompting (Liu et al.,560

2021), which is gaining increasing research inter-561

ests & potential recently. Prompting methods seek562

to re-frame queries into prompts which accord with563

the PLM’s input format, and extract useful informa-564

tion from the predicted results. The benefit of not565

needing to tune PLMs makes prompting especially566

appealing as PLMs scale up in size. In this work,567

we are interested in developing prompting meth-568

ods which could enable PLMs to recall a series of569

relevant knowledge for multi-step inference. Pre-570

vious work along this direction mainly use manu-571

ally designed prompts/templates suited for specific572

datasets (Paranjape et al., 2021; Mishra et al., 2021;573

Shwartz et al., 2020; Wei et al., 2022); instead, we574

seek to develop a general method which can learn575

to construct appropriate prompts automatically.576

For existing work on learning-based prompting,577

(Shin et al., 2020) proposes to use gradient-guided578

search to find appropriate discrete prompt tokens579

in the PLM’s vocabulary to form prompt templates.580

While the resulting prompts are readable, most of581

them have very low fluency and interpretability. 582

(Zhong et al., 2021; Qin and Eisner, 2021) pro- 583

pose to optimize the prompts in continuous space 584

instead, which shows large benefits in both effec- 585

tiveness and optimization efficiency. (Zhong et al., 586

2021) also raises and studies the question about 587

whether learning-based prompting could exploit 588

spurious dataset regularities which would weaken 589

the validity of standard evaluation results, a con- 590

cern we seriously address in our work. (Lester et al., 591

2021; Li and Liang, 2021) follow the continuous 592

prompting paradigm, and tune task-level prompts 593

for lightweight adaptation of PLMs. Overall, exist- 594

ing prompt learning methods are either restricted 595

to cases where there exists a single & identifiable 596

relation/predicate within the query (Zhong et al., 597

2021; Qin and Eisner, 2021; Shin et al., 2020), or 598

being static and not sensitive to sample-wise inputs 599

(Lester et al., 2021; Li and Liang, 2021). 600

Iterative Knowledge Retrieval. We are also in- 601

spired by methods that iteratively retrieve knowl- 602

edge from explicit knowledge sources for multi- 603

step reasoning, such as (Xiong et al., 2021; Qi 604

et al., 2019; Khattab et al., 2021). Our problem 605

setting could be viewed as iterative retrieval over 606

implicit knowledge in PLMs, instead of from ex- 607

plicit knowledge sources. 608

6 Conclusion & Future Work 609

We explore an iterative prompting framework to- 610

wards driving a “train of thought” from PLMs for 611

multi-step reasoning tasks. We show the superior- 612

ity of this iterative scheme, and also effectiveness 613

of our proposed context-aware prompter design, 614

which addresses key limitations of previous prompt- 615

ing methods when applied in this new scheme. In 616

addition, we conduct both quantitative & quali- 617

tative analysis on the faithfulness of the learned 618

prompting behaviors. In the future, we aim to fur- 619

ther extend and apply our ideas to language model 620

pretraining, with the hope that PLMs can be inher- 621

ently equipped with stronger multi-step reasoning 622

capabilities. The iterative framework we explore 623

here also opens the possibility of human interven- 624

tion and interaction during inference; namely a hu- 625

man can track along the PLM’s train of thought and 626

make edits and corrections at different steps, which 627

improves the transparency and trustworthiness of 628

inference and also helps reduce error propagation 629

along the reasoning process. We leave these inves- 630

tigations as future work. 631
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A Appendix890

A.1 Hyperparameters891

We set the batch size to be 32, 128, 32 and train for892

70, 50, 40 epochs for 2Wiki, LoT & R4C respec-893

tively. Table 4 summarizes other hyperparameters894

used in our experiments.895

Prompt-T
Prefix-T
PLM-FT
PLM-QA

Ours

2Wiki
lr pt_len

8e-3 80
8e-4 80
4e-5 -
4e-5 -
8e-5 30

LoT
lr pt_len

4e-3 80
4e-4 60
4e-5 -
8e-5 -
8e-5 60

R4C
lr pt_len

4e-3 60
4e-4 80
4e-5 -
4e-5 -
8e-5 30

Table 4: Hyperparameter settings for all compared meth-
ods. lr: learning rate, pt_len: prompt length.

A.2 More details on PLM Knowledge896

Enhancement897

To make sure the PLM knows all the relevant898

knowledge for subsequent recall, we further pre-899

train the PLM to recover separately masked ele-900

ments in the triplets which form the knowledge901

statements. For 2Wiki and LoT, we also addition-902

ally include knowledge statements that are not used903

in the dataset to make the setting more challenging;904

one can think of these extra knowledge statements905

as “distractors”. For 2Wiki, we filter from the pro-906

cessed Wikidata triples provided by (Agarwal et al.,907

2021) by keeping those with subject entities appear-908

ing in the original knowledge statements, and in the909

end we obtain 383k extra knowledge statements v.s.910

240k original ones (note that while we downsam-911

ple the training set during our main experiment, the912

knowledge enhancement step is performed on the913

full dataset). For LoT, we directly use the provided914

distractor knowledge in the original dataset. We915

don’t add distractors for R4C because the provided916

knowledge statements are in natural language and917

it’s hard to retrieve high quality knowledge state-918

ments as such. We verified that the PLM after919

knowledge enhancement can indeed recover the920

masked elements in the knowledge statements in921

near-perfect accuracy.922

A.3 Test-Train Overlap923

Table 5 shows the 2Wiki Test-Train knowledge924

statement overlap, where 2Wiki (full) corresponds925

to the statistics using the full training set, and926

2Wiki (down-sampled) corresponds to the down-927

sampled training set that we used in our actual ex-928

periment. The inference steps in 2Wiki are mostly 929

2 or 4, so overall there’re higher chances for the 930

coverage ratio to be 50%. 931

A.4 Examples of processed data samples & 932

failure cases of iCAP 933

Table 7 shows examples of our processed data sam- 934

ples for each dataset and each sub-category, along 935

with some failure cases of our proposed method. 936

A.5 Variants of Prompter Scales 937

While we used RoBERTa-base to instantiate the 938

prompter in our main experiments, it is also inter- 939

esting to see how the performance varies along dif- 940

ferent scales of the prompter. Towards this end, we 941

conducted experiments on 2Wiki with two smaller 942

scale prompters: BERT-small (28.8 million param- 943

eters) & BERT-tiny (4.4 million parameters). The 944

intrinsic evaluation results are shown in Table 6. 945

It can be seen that the performance grows as the 946

prompter scale grows; in addition, BERT-small can 947

also achieve an impressive performance (under- 948

performing RoBERTa-base used in our main ex- 949

periments by just a small gap) while BERT-tiny 950

basically fails. This suggests that the prompter 951

still needs to be larger than a certain scale for our 952

method to work well. 953

A.6 More Examples on Prompter Attention 954

Visualizations 955

Figure 4, 5, 6, 7 show additional example prompter 956

attention visualizations in the 2Wiki dataset, each 957

corresponding to a different reasoning type as indi- 958

cated in the captions. 959

Figure 4: Prompter attention visualization. Reasoning
type: Composition.
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2wiki (full)
2wiki (down-sampled)

0% 1%-20% 21%-40% 41%-60% 61%-80% 81-99% 100%
36.0% 0.0% 0.5% 28.4% 5.2% 0.0% 29.8%
71.4% 0.1% 8.1% 16.2% 2.6% 0.0% 1.6%

Table 5: Test/Train simple knowledge overlap on 2Wiki. The horizontal bar represents the percentage range of
simple knowledge statements appearing in the training set, and the content values are the percentages of development
& test set examples that fall into the corresponding range.

BERT-tiny BERT-small

Ent.R∗ Ent.R Ans.R̂ Ans.R Ent.R∗ Ent.R Ans.R̂ Ans.R

6.0 17.7 9.0 35.3 21.4 41.2 29.1 54.2

Table 6: 2Wiki intrinsic evaluation results with two smaller-scale prompter instantiations.

Figure 5: Prompter attention visualization. Reasoning
type: Comparison.

Figure 6: Prompter attention visualization. Reasoning
type: Inference.
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Figure 7: Prompter attention visualization. Reasoning type: Bridge-comparison.
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Query (2Wiki[Composition]) What is the place of birth of the performer of song La Terre Est Ronde?
Gold Knowledge Orelsan is performer of La terre est ronde; Alençon is place of birth of Orelsan
Recalled Knowledge Basshunter is performer of La Terre est ronde; Havana is place of birth of

Basshunter

Query (2Wiki[Comparison]) Who was born first out of Emma Kealy and Viktor Podloucký?
Gold Knowledge 29 May 1977 is date of birth of Emma Kealy; December 3, 1950 is date of birth

of Viktor Podloucký
Recalled Knowledge 30 March 1977 is date of birth of Emma Kealy; 9 October 1964 is date of birth

of Viktor Podloucký

Query (2Wiki[Inference]) Who is the maternal grandfather of Vyacheslav Yaroslavich?
Gold Knowledge Ingegerd Olofsdotter of Sweden is mother of Vyacheslav Yaroslavich; Olof

Skötkonung is father of Ingegerd Olofsdotter of Sweden
Recalled Knowledge Yaroslavlava of Avidia is mother of Vyacheslav Yaroslavich; Sovatoslav is

father of Yaroslavlava of Avidia

Query (2Wiki[Bridge comparison]) Which film has the director died later, One Day In The Life Of Andrei Ar-
senevich or Wolves Of The Range?

Gold Knowledge Chris Marker is director of One Day in the Life of Andrei Arsenevich; Sam
Newfield is director of Wolves of the Range; 29 July 2012 is date of death of
Chris Marker; November 10, 1964 is date of death of Sam Newfield

Recalled Knowledge Chris Marker is director of One Day in the Life of Andrei Arsenevich; Wallace
Fox is director of Wolves of the Range; 21 January 2013 is date of death of
Chris Marker; March 30, 1999 is date of death of Andrei Arsenevich

Query (LoT) A evergreen is a important food source.
Gold Knowledge A evergreen is a plant; A plant is not a important food source
Recalled Knowledge A evergreen is a material, tree; A tree is a important food source

Query (R4C[Comparison]) Which documentary was filmed first, Almost Sunrise or Hail! Hail! Rock ’n’
Roll?

Gold Knowledge Almost Sunrise was filmed in 2016; Hail! Hail! Rock ’n’ Roll was filmed in
1986

Recalled Knowledge Almost Sunrise (album) is credited to American singer-songwriter Taylor Swift;
Rock ’n’ Roll is filmed in the 1990s

Query (R4C[Bridge]) Who was the chief executive officer of the second largest US car rental company
by sales?

Gold Knowledge The Hertz Corporation is the second-largest US car rental company; Robert L.
Stone was chief executive officer of The Hertz Corporation

Recalled Knowledge The Hertz Corporation is the second-largest US car rental company; Enterprise
Rent-A-Car founder Jack Taylor was chief executive officer of Hertz

Table 7: Examples of our processed data samples for each dataset and sub-category (indicated in brackets), along
with failure cases of our method.
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