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Abstract

Spatial prediction tasks are key to weather fore-
casting, studying air pollution impacts, and other
scientific endeavors. Determining how much to
trust predictions made by statistical or physical
methods is essential for the credibility of scientific
conclusions. Unfortunately, classical approaches
for validation fail to handle mismatch between lo-
cations available for validation and (test) locations
where we want to make predictions. This mis-
match is often not an instance of covariate shift
(as commonly formalized) because the validation
and test locations are fixed (e.g., on a grid or at
select points) rather than i.i.d. from two distribu-
tions. In the present work, we formalize a check
on validation methods: that they become arbitrar-
ily accurate as validation data becomes arbitrarily
dense. We show that classical and covariate-shift
methods can fail this check. We instead propose
a method that builds from existing ideas in the
covariate-shift literature, but adapts them to the
validation data at hand. We prove that our pro-
posal passes our check. And we demonstrate its
advantages empirically on simulated and real data.

1. Introduction
Researchers are often interested in making predictions in a
spatial setting. For instance, scientists predict sea surface
temperature (SST) for weather forecasting and climate re-
search (Minnett, 2010), predict air pollution at population
centers to better understand the effect of pollution on health
outcomes such as kidney disease (Remigio et al., 2022), or
predict the prevalence of an invasive species for ecological
management (Barbet-Massin et al., 2018). Characterizing
the reliability of these predictions is key to understanding
their suitability for downstream applications; e.g., Minnett
(2010) describes acceptable SST error tolerances for weather
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forecasting. Estimates of prediction accuracy can also be
used to choose between several predictive methods, as in
Shabani et al. (2016).

In the spatial setting, predictive methods need not always
arise from a statistical or machine learning approach built us-
ing training data. The predictive method is often a complex
physical model provided by a third party (Remigio et al.,
2022; Minnett, 2010; Gupta et al., 2018). Or it could com-
bine physics and data-driven models (Banzon et al., 2016;
Werner et al., 2019; Özkaynak et al., 2013).

In any of these cases, it is common to estimate the perfor-
mance of a predictive method by using a set of validation
data. More precisely, we are ultimately interested in pre-
dicting a response at what we call test sites; in the SST
example above (Minnett, 2010), the test sites are points on
a grid (often called a map), or in the air pollution example
(Remigio et al., 2022), the test sites are 28 counties in the
US Northeast. We can make predictions at the test sites, but
we do not have access to direct observations of the responses
there. We do have observed responses in the validation data,
which we assume were not used in forming the predictive
method being evaluated; in the SST example, scientists have
SST observations taken by boats and buoys as validation
data. So our aim is to estimate the average loss (i.e. risk)
at the test sites using the validation data. We will see that
many popular or natural approaches fail at this task.

One widely used approach, called the holdout,1 estimates
the test risk by taking the empirical average of the validation
loss. When the validation and test data are independent
and identically distributed (i.i.d.) from the same distribution,
the holdout has a rigorous justification (Devroye, 1976;
Langford, 2005). But in spatial problems, the validation and
test sites need not be similarly dispersed, all data may be
spatially correlated, and the test sites are often fixed rather
than random; recall the grid or point prediction examples
above. Indeed, Roberts et al. (2017) have observed problems
with the holdout in practice. In the special case where the

1The name originally referred to “holding out” data for valida-
tion, with the remainder of available data going toward training.
While we maintain the naming convention, we emphasize that in
our setup there need not be any training data. Minnett (2010);
Gupta et al. (2018); Duan et al. (2019), among many others, use
this approach.
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predictive method is data-driven, some authors (e.g. Telford
& Birks, 2005) have suggested choosing holdout validation
sites far from the training data sites. But we expect this
proposal to still suffer from the problems just mentioned,
and in fact simulation studies suggest it can misestimate test
risk (Ploton et al., 2020; De Bruin et al., 2022).

Another natural idea is to use covariate-shift approaches
to handle potential mismatch between validation and test
sites (Sarafian et al., 2020; De Bruin et al., 2022). However,
the covariate-shift literature generally assumes validation
sites are drawn i.i.d. from one distribution, test sites are i.i.d.
from another, and the density ratio between these two distri-
butions exists and is bounded. For both the grid and point
examples, these last two assumptions are inappropriate.

In what follows, we lay out a precise formulation of the
prediction validation task in the spatial setting (Section 2).
We formalize a desirable property for test-risk estimators:
that, if arbitrarily dense validation data accrues in a region
including the test points, the test-risk estimate should be-
come arbitrarily accurate (Section 3). We prove that both
the holdout estimator and an estimator advocated in the
covariate-shift literature (Loog, 2012; Portier et al., 2023)
fail to satisfy this spatial consistency property (Section 4).
We propose to build on the k-nearest neighbor estimator
(Loog, 2012). In particular, Loog (2012) and Portier et al.
(2023) advocated fixing k = 1 for covariate-shift problems.
We instead derive an upper bound on the error of the general-
k estimator for estimating test risk (Section 5.1); crucially,
our bound is conditional on the test and validation sites. We
prove that choosing k adaptively by optimizing our upper
bound yields a spatially consistent estimator (Section 5.2).
Unlike covariate-shift results (e.g. Portier et al., 2023), our
results are directly applicable to problems where the test
sites are most reasonably thought of as fixed. We illustrate
the accuracy and practicality of our proposed method in
simulated and real data analyses (Section 6), with tasks in
both grid and point prediction. We discuss further related
work in App. B.

2. Estimating Test Risk in a Spatial Problem
We now formalize risk estimation at test points in a spatial
setting. We assume each data point occurs at a spatial lo-
cation S ∈ S, where the spatial domain (S, dS) is a metric
space. Each data point has observed covariates X ∈ X and
a response Y ∈ Y . The covariates are a fixed spatial field,
χ : S → X ; i.e., the covariates at a point are specified by
evaluating χ at the point’s spatial location.

2.1. Test risk of a spatial predictive method

We assume we have access to a predictive method h :
(S,X ) → Y . We define hχ : S → Y to be the predic-

tion made by h at the location S: hχ(S) = h(S, χ(S)). We
suppose that practitioners would like to use h to predict the
response at a set of test sites where the response is unknown.
We collect the M test test data points, including true (but
unobserved) responses, in Dtest = (Stest

m , X test
m , Y test

m )M
test

m=1.

To quantify quality of a predictive method, we need a loss.
We assume the loss is bounded, as is often the case for
practically-bounded responses; cf. temperature, pressure, or
other physical quantities.2

Assumption 2.1 (∆-bounded Loss). The loss is a non-
negative, bounded function, ℓ :Y ×Y → [0,∆].

Due to practical considerations such as measurement error,
the response at a test point is usefully modeled as random.
To summarize loss over this randomness, it is standard to
consider expected loss (a.k.a. risk) at the testing data. To de-
fine this expectation, we need to make assumptions about the
data-generating process. It is typical in the non-spatial set-
ting to assume responses are i.i.d. conditional on covariates.
In the spatial setting, the i.i.d. assumption is inappropriate
since it ignores spatial location. We instead assume that the
response variable may be a function of the spatial location it
is observed at, the covariates at that location, and i.i.d noise:

Assumption 2.2 (Data Generating Process: Test Data). Let
j = test. Let χ : S → X be a fixed function. For 1 ≤
m ≤ M j , Xj

m = χ(Sj
m) and Y j

m = f(Sj
m, X

j
m, ϵ

j
m) with

f : S × X → Y and ϵjm
iid∼Pϵ real-valued random variables.

Assumption 2.2 implies the response is i.i.d. given the
spatial location. For example, Assumption 2.2 would
cover the case where measurement errors on sensors are
independent, but the locations of the sensors are not. A
widely studied special case of Assumption 2.2 consid-
ers additive, homoskedastic noise: namely, Y ⊂ R and
Y j
m = f(Sj

m, X
j
m) + ϵjm. Assumption 2.2 is more general;

for example, it allows the noise to be scaled by a continuous,
deterministic function of S: Y j

m = f(Sj
m, X

j
m)+g(Sj

m)ϵjm.
Before defining risk, we first define the average loss of
the predictive method at a particular location in space, S:
eh(S) := E[ℓ(f(S, χ(S), ϵ), hχ(S))|S]. Finally, we aver-
age over all spatial locations of interest, which we assume
is a finite set.

Definition 2.3. Given test points (Stest
m )M

test

m=1, let Qtest :=

(1/M test)
∑M test

m=1 δStest
m

, with δS a Dirac measure at S. For
predictive method h, let the test risk of h be RQtest(h) :=
(1/M test)

∑M test

m=1 eh(S
test
m ).

2Loss is also bounded for classification error or robust regres-
sion cases such as Tukey’s biweight loss.
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2.2. Estimating test risk

To estimate test risk, we assume we have access to N val vali-
dation data points, collected inDval = (Sval

n , Xval
n , Y val

n )N
val

n=1.
We assume practitioners did not make use of either the vali-
dation or test response data when constructing the predictive
method. As an example, the common holdout estimator uses
the empirical average of validation loss:

R̂Hold(h) := (1/N val)
∑N val

n=1
ℓ(Y val

n , hχ(Sval
n )). (1)

For validation data to provide information about test risk,
we need regularity assumptions. First, we make a stan-
dard assumption that validation data follows the same data-
generating process as test data. And second, we assume a
form of smoothness across the spatial locations.

Assumption 2.4 (Data Generating Process: Validation
Data). Assumption 2.2 remains true when we take j = val,
with the same f, χ, and Pϵ as for j = test.

Assumption 2.5 (L-Lipschitz). For some L ≥ 0, for all
S, S′ ∈ S, |eh(S)−eh(S′)| ≤ LdS(S, S′).

Assumption 2.5 often arises naturally. For example, consider
Y ⊂ [0, 1], S = (Rd, ∥ · ∥2), squared loss, and homoskedas-
tic and additive noise. Suppose f(S, χ(S)) is LY -Lipschitz
and hχ is Lh-Lipschitz. Then Assumption 2.5 holds with
L = 2(LY + Lh); see Prop. D.1.

3. We Want Consistent Estimators
Once we have an estimator of test risk, it remains to check if
that estimator performs well. We next formalize one natural
check on performance: namely, estimators should become
arbitrarily accurate if given validation data that is arbitrarily
dense in the spatial domain. This check is analogous to
traditional consistency in the i.i.d. data setting.

To that end, note that the fill distance is a measure of dis-
crepancy between two sets of points, Ψ1 and Ψ2.3 It is the
maximum distance from a point in Ψ2 to the nearest point
in Ψ1.

Definition 3.1 (Cressie 2015, §5.8, Wendland 2004, Defini-
tion 1.4). Let (S, dS) be a metric space and Ψ1,Ψ2 ⊂
S. The fill distance of Ψ1 in Ψ2 is ζ(Ψ1; Ψ2) :=
supS2∈Ψ2

infS1∈Ψ1 dS(S1, S2).

In the spatial statistics literature, infill asymptotics describes
cases where data are gathered over a compact spatial domain
in such a way that the fill distance of the data to its domain
tends to 0 (Cressie, 2015, §5.8). We say an estimator is
consistent for the test risk under infill asymptotics if – for

3The fill distance is not a distance in the mathematical sense
since it is asymmetric and can equal 0 in cases when its two
arguments are not exactly equal.

any Qtest, χ, and h satisfying our assumptions above – the
estimator converges in probability to RQtest(h).
Definition 3.2 (Consistency of Test Risk Estimation Un-
der Infill Asymptotics). Fix a predictive method h and a
test measure Qtest. Take Assumptions 2.1, 2.2, 2.4 and 2.5.
Consider an infinite sequence of validation sets of increas-
ing size: (Dval

N )∞N=1, D
val
N = (Sval

n , Xval
n , Y val

n )Nn=1 such that
when N ′ < N , the first N ′ points of Dval

N are Dval
N ′ . Sup-

pose limN→∞ ζ(Sval
1:N ,S) = 0. Let R̂N be an estimator

constructed from the validation dataDval
N . We say that the es-

timator R̂N is consistent for the test risk under infill asymp-
totics if for all ϵ > 0, limN→∞ Pr(|R̂N−RQtest(h)| ≥ ϵ) =
0.

That is, as validation data fills the spatial domain, the estima-
tor should converge to the test risk – no matter the composi-
tion of test sites. Our assumption that fill distance tends to
zero is generally weaker than an assumption that the valida-
tion sites are drawn i.i.d. from a distribution with Lebesgue
density supported on the spatial domain. Reznikov & Saff
(2015, Theorem 2.1) showed an implication relationship
between these assumptions in a much more general setting,
and Vacher et al. (2021, Lemma 12) discuss the special case
for the unit cube. Next, we present a finite-sample version
of this implication, with an advantage relative to past work
that we keep track of all constants.
Proposition 3.3 (Independent and Identically Distributed
Data Satisfies an Infill Assumption). Suppose that S =
[0, 1]d, Sval

n
iid∼P for 1 ≤ n ≤ N val, and P has Lebesgue

density lower bounded by c > 0 over [0, 1]d. Let Bd =
πd/2/Γ(d/2 + 1) be the volume of the d-dimensional Eu-
clidean unit ball. For any δ ∈ (0, 1) there exists an n0 such
that for all N val ≥ n0 with probability at least 1− δ

ζ(Sval
1:N val , [0, 1]

d) ≤
(

4d

cN valBd

(
log 6dN val

Bdδ

))1/d
. (2)

We prove Prop. 3.3 in App. D.2. The right side of this bound
is O((logN val/N val)1/d), and so the fill distance converges
to zero in probability under these assumptions.

Consistency under infill asymptotics is a minimal desir-
able property. Like traditional consistency, we emphasize
that Def. 3.2 is just a single check among many. For instance,
often practitioners will be interested in extrapolation far
from observed data, which is not modelled by infill asymp-
totics and will need to be considered separately. Our only
supposition here is that we will generally prefer test-risk
estimators that satisfy consistency under infill asymptotics
to those that do not.

4. Current Estimators Exhibit Inconsistency
Even though consistency under infill asymptotics is a mini-
mal desirable property, we next prove that principle existing
test-risk estimators fail to satisfy it in realistic problems.

3
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Inconsistency of the Holdout. We state our result and then
discuss the realism of the example.

Proposition 4.1 (Inconsistency of holdout). There exists a
set of test points and a data-generating process satisfying in-
fill asymptotics such that R̂Hold is not a consistent estimator
of the test risk.

While the holdout estimator of test risk is consistent for i.i.d.
test and validation data (Devroye, 1976; Langford, 2005),
we can construct examples showing Prop. 4.1 by observing
that R̂Hold has no dependence on the test task. So unless
all test tasks have the same risk (which will be true only in
unusually simplistic spatial settings), it cannot estimate them
all consistently. The holdout estimator will generally exhibit
non-trivial bias since it averages loss across the validation
sites when we really care about loss at the test sites. See
App. D.3.1 for a formal proof and also an example where
the holdout converges to ∆, the maximum possible error
under the loss bound.

Nearest Neighbor Estimator. Because of the assumed reg-
ularity in the error function (Assumption 2.5), it is natural to
estimate the error at a test site using nearby validation points.
Loog (2012) proposed risk estimators using k-nearest neigh-
bors in the context of covariate shift. Both Loog (2012)
and Portier et al. (2023) advocated for the use of 1-nearest
neighbor (1NN) in the covariate-shift setting, with the latter
providing theoretical justifications under standard covariate-
shift assumptions. However, we show the 1NN estimator
exhibits inconsistency in our spatial setting.

We first review a general k-nearest neighbor estimator,
which we revisit later. Define the k-nearest neighbor ra-
dius of a point S ∈ S as τk(S) := inf{a ∈ R : |Sval

1:N val ∩
B(S, a)| ≥ k}, where B(S, a) is the ball of radius a cen-
tered at S. The k-nearest neighbor set4 of a point S ∈ S
is Ak(S) := {1≤ n≤N val :Sval

n ∈B(S,τk(S))}. As long
as 1 ≤ k ≤ N val, Ak(S) contains at least k points: the k
nearest neighbors to S in the validation set. It may be larger
than k if multiple points are equidistant from S.

Definition 4.2. The k-nearest neighbor (kNN)
test-risk estimator is defined by R̂NN,k(h) :=∑N val

n=1 w
NN,k
n ℓ(Y val

n , hχ(Sval
n )), where wNN,k

n :=

(1/M test)
∑M test

m=1 1{Sval
n ∈Ak(Stest

m )}/|Ak(Stest
m )|.

Loog (2012) proposed weighting the loss function in this
way when training a model under covariate shift. Portier
et al. (2023) analyzed a similar approach, in which valida-
tion points are sampled with probabilities corresponding to
the weights in Def. 4.2, for mean estimation. Portier et al.
(2023) made standard covariate shift assumptions of i.i.d.

4We will state our results for the version of nearest neighbors
where ties are resolved by including all equidistant points. How-
ever, our analysis holds for arbitrary tie-breaking methods.

validation sites, i.i.d. test sites, and a bounded density ratio
between the validation and test distributions.

Inconsistency of 1NN. We again state our result and then
develop intuition.

Proposition 4.3 (Inconsistency of 1NN). There exist a set
of test points and a data-generating process satisfying infill
asymptotics such that R̂NN,1(h) is not a consistent estimator
of the test risk.

For intuition, recall that—unlike in the covariate-shift
setting—test points in the spatial setting are commonly fixed
rather than arising i.i.d. from a distribution. Consider the
simple case where Qtest = δS for some S ∈ S . Using k = 1
leads us to estimate the error using a single validation point,
which is inconsistent due to observation noise at the valida-
tion point. Where the problem with the holdout estimator
was bias, the problem with 1NN is variance. In App. D.3.2
we prove Prop. 4.3 and show 1NN has large error when
applied to classification point prediction tasks.

Inconsistency of Nearest Neighbors When k Is a Func-
tion of the Number of Validation Points. In fact, we
can prove a more general result: that any nearest-neighbor
test-risk estimator where the number of neighbors depends
(only) on the number of validation points is inconsistent
under infill asymptotics, regardless of type of dependence.

Proposition 4.4 (Inconsistency of kNN depending on num-
ber of validation points). Let (kn)∞n=1 be any sequence of
natural numbers. Define the sequence of estimators R̂N val

to be the nearest neighbor risk estimators using N val val-
idation points and kN val neighbors. Then there exists a
data-generating process satisfying infill asymptotics, a test
set containing a single point, a predictive method h resulting
in an error function satisfying the Lipschitz assumption, and
anϵ, δ > 0 such that with probability at least 1−δ, ∀N val,
|R̂N val(h)−RQtest(h)| ≥ ϵ.

See App. D.3.5 for a proof. There are two cases. (1) If
the number of neighbors is bounded, the estimator suffers
from non-vanishing variance as in the 1NN case. Or (2)
the number is unbounded, so there exists a sequence of
validation sites that accumulates slowly enough around each
test site to lead to non-vanishing bias. Inconsistency of both
1NN and the holdout can be seen as corollaries of Prop. 4.4;
for 1NN, choose: ∀n, kn = 1. For the holdout, choose:
∀n, kn = n.

5. A Consistent Estimator
We next provide a novel bound on the test risk estimation
error of kNN. We propose using a kNN estimator with k cho-
sen by optimizing our bound. We show that our proposed
estimator is consistent for test risk under infill asymptotics.
We here focus on error estimation; in App. C we provide

4
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promising results for model selection and discuss open chal-
lenges.

5.1. Our Bound and Estimator

In light of the examples in Section 4, we propose to trade
off the larger variance of small k and larger bias of large
k by optimizing a bound depending on the validation set.
Crucially, we adapt k using the actual locations of the test
and validation sites, as Prop. 4.4 suggests such adaptivity
is necessary. To that end, we first derive a bound on the
test-risk estimation error as a function of k and the locations
of test and validation sites. To state our bound, it will be
useful to define the kth-order fill distance5 of a set Ψ1 in a
set Ψ2 as the maximum distance from a point in Ψ2 to its
kth nearest neighbor in Ψ1:

ζk(Ψ1; Ψ2) = sup
S2∈Ψ2

inf
A⊂Ψ1,|A|=k

sup
S1∈A

dS(S1, S2). (3)

Theorem 5.1 (Bound on Estimation Error in Terms of Fill
Distance). Consider a validation set Dval of size N val and
a test set Dtest of size M test. Take the k-nearest neighbors
test-risk estimator from Def. 4.2. Choose δ ∈ (0, 1) and k
such that 1 ≤ k ≤ N val. Let ρk := ζk(Sval

1:N val , S
test
1:M test) and

βδ := ∆
√

1
2 log

2
δ . Take Assumptions 2.1, 2.2, 2.4 and 2.5.

Then, with probability at least 1− δ,

|RQtest(h)− R̂NN,k(h)| ≤ Lρk + βδ∥wNN,k∥2 (4)

≤ Lρk + βδ

√
max

1≤n≤N val
Qtest(B(Sval

n , ρk))/k, (5)

where B(S, r) denotes the ball of radius r centered at S.
See Assumptions 2.1 and 2.5 and Def. 2.3 for ∆, L, Qtest

respectively.

We prove Thm. 5.1 in App. D.4. We use the right-hand side
of Eqn. (4) algorithmically, and the right-hand side of the
Eqn. (5) to gain intuition for cases under which the bound
is small, as well as in proofs. The first term on the far-right-
hand side in Eqn. (5) is a worst-case upper bound on the
bias of our estimator; it is large if the average loss varies
quickly in space or if validation data is not available near
test data. Larger k may increase the first term. The second
term comes from applying a tail bound; if most of the weight
is put on a few validation points, the resulting estimator has
high variance and this term is large. Sufficiently large k
will decrease the second term. If we can find a k such that
both (a) the distance from each test point to its k nearest
neighbors is small and (b) no validation point has too much
impact on our estimator, R̂NN,k(h) provides a good estimate
for RQtest(h).

5We assume in this definition that all spatial locations are dis-
tinct. If not, Ψ1 should be treated as a multi-set.

Thm. 5.1 is closely related to Portier et al. (2023, Prop. 4).
While there are technical differences in the proof and algo-
rithm (and the risk that is bounded), the substantive distinc-
tion is that we state our bound directly in terms of the fill
distance, instead of upper bounding this distance again as
done in Portier et al. (2023). We can therefore avoid making
assumptions about the distributions of the sites; we instead
highlight the fill distance of the validation set as an essential
quantity in controlling the accuracy of nearest neighbor risk
estimation.

Selection Procedure with Unknown Lipschitz Constant.
If the Lipschitz constant of the average loss, L, can be up-
per bounded, for example by knowledge about how quickly
varying the spatial processes involved in the analysis are,
then k can be selected by minimizing the first upper bound
in Eqn. (5). Since the bound is conditional on the validation
and test sites, the bound still holds with the same probability
for k selected by this minimization. However, it will gen-
erally be the case that the Lipschitz constant is unknown.
We therefore suggest choosing the number of neighbors by
minimizing the upper bound from Thm. 5.1 with 1 in place
of the Lipschitz constant:

k⋆T ∈ argmink∈T ρk + βδ∥wNN,k∥2. (6)

For computational efficiency, we focus on choosing k as a
power of 2: T = T2 := {2i}⌊log2 N val⌋

i=1 . We call the resulting
estimator spatial nearest neighbors (SNN).

5.2. Our Method is Consistent

We show that SNN is consistent under infill asymptotics.

Corollary 5.2 (Our Method is Consistent under Infill
Asymptotics). Let S = [0, 1]d. Take Assumptions 2.1,
2.2, 2.4 and 2.5. Let ρ̃ := ζ(Sval

1:N ,S). Let k⋆T2
∈

argmink∈T2
ρk + βδ∥wNN,k∥2 with δ = min(1, r) and

r ∈ [cρ̃, Cρ̃] for some constants (possibly depending on
dimension) c, C > 0. Then the k⋆T2

-nearest neighbor risk
estimator is consistent under infill asymptotics.

See App. D.5 for a proof of Cor. 5.2. Cor. 5.2 states that
selecting the number of neighbors by minimizing an upper
bound on our error in estimation leads to an estimator that
is consistent regardless of the test data, as long as the vali-
dation data are dense on the unit cube. In App. D.5.4, we
provide a computationally efficient algorithm for calculating
an r satisfying the condition cρ̃ ≤ r ≤ Cρ̃, and we prove
the correctness of this algorithm.

6. Experiments
Our theory suggests the holdout exhibits substantial bias
in many tasks. And we expect 1NN to exhibit substantial
variance in many point prediction tasks. Our experiments

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Consistent Validation for Predictive Methods in Spatial Settings

250 500 1000 2000 4000 8000

Number of Validation Points

0.000

0.025

0.050

0.075

0.100

0.125

0.150
|R̂
Q

t
e
s
t
(h

)
−
R̂

(h
)|

Holdout 1NN SNN

250 500 1000 2000 4000 8000

Number of Validation Points

0.0

0.1

0.2

0.3

0.4

0.5

|R̂
Q

t
e
s
t
(h

)
−
R̂

(h
)|

+1+2 +7 +1+3 +7 +6 +1+5

Holdout 1NN SNN

Figure 1: Error for test risk estimation in the grid prediction task (left) and point prediction task (right) across methods
(holdout in blue, 1NN in orange, our SNN in green); lower values correspond to better performance. The vertical axis shows
the absolute difference between the estimated test risk and empirical test risk. Each box plot shows the median, inter-quartile
range, and outliers based on 100 synthetic datasets. The horizontal axis tracks increasing validation set sizes. Numbers
above the upper box indicate the number of outliers falling above the vertical limit.

confirm these observations. While there exist tasks where
either the holdout or 1NN performs similarly to SNN, there
are also many tasks where each performs much worse than
SNN. Since SNN performs well across all experiments, we
prefer SNN when a new task arises.

Ground Truth. In a traditional machine learning prediction
task, analysts ask how well a predictive method predicts the
observed response at a set of covariates, so the observed
response would form the ground truth. Since here we in-
stead judge evaluation methods, we must ask how well the
evaluation method estimates test risk (Def. 2.3); that is, the
true test risk now forms ground truth. From Assumption 2.4,
the true test risk requires an integral over the (unknown)
noise Pϵ. Accessing ground-truth responses is often easy;
by contrast, it is highly unusual to access even a high-quality
approximation of the integral for test risk (much less the
exact test risk) in a real task. Therefore we devise a se-
ries of workarounds. First, we consider realistic tasks with
simulated data. Second, we consider a realistic task with a
semi-simulated data set, where we control the noise distribu-
tion by constructing it from bootstrapped residuals that arise
from real data. Third, we use fully real data to construct
a ground truth by considering an unrealistic task. Finally,
we consider fully real data and a realistic task by forfeiting
access to ground truth.

6.1. Test Risk Estimation on Fully Synthetic Data

We set up two fully synthetic experiments: a grid prediction
task and a point prediction task. Based on our analyses
above, we expect the holdout to struggle with the former
and 1NN to struggle with the latter; our experiments confirm
this intuition. See App. E.3 for full experiment details.

Validation Data, Test Data, and Ground

Truth. In both experiments, we vary N val ∈
{250, 500, 1000, 2000, 4000, 8000}. We use a trun-
cated squared loss: ℓ(a, b) = max((a − b)2, 1.0). For the
grid task, the test sites comprise a 50× 50 grid of equally
spaced points in [−0.5, 0.5]2 (orange points in Fig. 3).
We generate the validation sites via a sequential process
that leads to clustering (blue points in Fig. 3). For the
point task, there is a single test site at (0, 0). Validation
sites are i.i.d. uniform in [−0.5, 0.5]2. For both tasks, we
generate covariates and responses conditional on the sites:
Y j
i = f(χ1(Sj

i ), χ
2(Sj

i )) + η(Sj
i ) + ϵji , ϵ

j
i

iid∼ N(0, σ2).
We generate η, χ1, χ2, f according to independent Gaussian
processes (GPs); we describe our kernel and parameter
choices in App. E.3.1. We plot examples of the gener-
ated data in Figs. 4 and 6. We make draws from the
data-generating process to form an unbiased Monte Carlo
estimate of the test risk, R̂Qtest(h), and use this estimate as
ground truth; see App. E.3.5 for details.

Spatial Predictive Method. To arrive at our spatial predic-
tive method, we generate training data according to the same
distribution as the validation data. Since real-world analyses
are often missing potentially relevant covariates, we retain
only the first covariate (and not the second) as a realistic
form of misspecification. We fit a GP regression, with zero
prior mean and the same kernel used in data generation; we
predict using the posterior mean.

Results. We expect our SNN estimator to be consistent in
all tasks. In the grid task, we expect the variance of 1NN
to be low since there are many test points spread across the
domain. And we expect the bias of the holdout to be high
since the test and validation points have noticeably different
spatial arrangement. Our results in the grid task (Fig. 1, left)
agree with our intuitions; the errors of 1NN and our SNN
decrease much more rapidly across the values of N val than
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the holdout.

Given the single test point in the point task, we expect
the high variance of 1NN to be an issue with substantial
probability. Fig. 1 (right) agrees with our intuition; the
error of our SNN estimator decreases much more rapidly
across the values of N val than 1NN. In this case, we find
that the holdout errors decrease rapidly as well. We also
plot the (signed) relative difference of each estimator to the
empirical test risk in Figs. 5 and 7 (App. E.3).

In Tables 2 and 3 (App. E.3), we show k, the number of
nearest neighbors selected by SNN for each of the two tasks.
In the grid task, the k selected was at most 4 in all cases
we considered. In the point task, the value of k selected
increased with N val, though it always remained over an
order of magnitude smaller than N val.

6.2. Air Temperature Task with Bootstrapped Residuals

We next consider a real task on a semi-synthetic dataset. We
find that 1NN performs poorly; while the holdout performs
best, SNN performs well. Full details can be found in
App. E.4.

Data and Ground Truth. Our test task is prediction of
monthly average air temperature in January 2023 at the 5
largest urban areas in the United States (New York City,
Los Angeles, Chicago, Miami, and Houston), based on
available weather station data in the same month (Menne
et al., 2018). Loss is truncated absolute error (in °C). To
access ground truth test risk, we create a partially synthetic
response variable. We first fit Gaussian process regression
(GPR) to all the available weather station data. We build
100 synthetic datasets by calculating the residuals of the
posterior mean of this model, sampling a residual value for
each weather station and point we want to predict at and
adding these to the mean prediction of the model. Because
we then have access to samples from the distribution of
response values at the test sites under this data-generating
process, we can obtain a (accurate estimate of) ground truth
test risk of a predictive method on this partially synthetic
response (App. E.4.7).

Spatial Predictive Methods. We train two predictive meth-
ods on this data: GPR and a geographically weighted re-
gression (GWR) based on MODIS-Aqua (Wan et al., 2021)
land surface temperature measurements, inspired by Hooker
et al. (2018). We use 50% of the weather station locations
for training the predictive methods and the remaining 50%
for validation (3211 observations in each).

Results. The error in estimating the predictive performance
of both methods is shown in Fig. 2 (far and mid left) for
100 different datasets with different samples of the residu-
als (but the same training and validation split). Given the
point prediction task, we expect 1NN (orange, middle) to

have a high variance; the figure confirms our intuition. The
estimates given by SNN (green, right) and the holdout (blue,
left) are much closer to the ground truth. In this case, the
holdout has a small bias, and its variance is substantially
lower than SNN. So, in this case, the holdout typically re-
turns slightly better estimates of the error than SNN. If many
more weather stations were used for validation, we expect
that the SNN would eventually outperform the holdout esti-
mate.

6.3. Property Sales in England and Wales

Here and in Section 6.4, we define somewhat unrealistic
tasks to access ground truth on fully real data. Here we find
that 1NN and SNN perform similarly well while the holdout
exhibits a large bias. App. E.5 contains additional details
and figures for this experiment.

Data and Ground Truth. We consider prediction of the
price of a flat in England and Wales based on location,
loosely following Hensman et al. (2013) but using data from
2023 (HM Land Registry, 2023). We make 100 datasets
by sampling a training dataset of 40,000 points from flat
sales outside London, a test set consisting of 1,000 flat sales
within London, and a validation set consisting of the re-
maining sales in 2023 (31,484 outside London, 21,179 in
London). The loss is truncated mean absolute error. In
App. E.5.3, we justify how we can form a high-quality es-
timate of ground-truth test risk by: assuming a form of
independence, using a bounded loss, and applying Hoeffd-
ing’s inequality.

Spatial Predictive Method. We fit a Gaussian process
regression model with variational inference as in Hensman
et al. (2013) with minor modifications; we use a sum of two
Matérn 3/2 kernels. We use the non-stochastic version of
variational inference in GPR (Titsias, 2009) to avoid known
difficulties with tuning hyperparameters in the stochastic
version (Ober et al., 2024), and 2000 inducing points.

Results. Because the model is trained using data only out-
side London, we expect it to make larger errors predicting
flat sales in London than outside London. As a result, we
expect the holdout to have a large bias. We expect both
1NN and SNN to perform similarly: since the test sites
are sampled randomly within London, we expect them to
have different nearest neighbors and so variance of 1NN
should be reasonably small. The mean absolute error of
each method, relative to the estimate of the ground truth,
is shown in Fig. 2 (mid right). As expected, the holdout
substantially underestimates the test risk, while the other
estimators perform reasonably well.
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Figure 2: Signed errors in estimating the test risk for (left to right) the boot-
strapped experiment with geographically weighted regression; the same task with
GP regression; the flat price prediction task; and the wind speed prediction task.
The holdout (blue), 1NN (orange), and SNN (green) appear left to right in each
plot.

Table 1: Test risk estimates for the 5-
metros task. Rows correspond to predic-
tive methods and columns to estimators.
We report two standard error intervals
for holdout. For each estimator, we bold
the predictive method with lower esti-
mated test risk.

GWR Spatial GP

Hold.
0.83
±0.03

0.90
±0.04

1NN 0.61 0.44
SNN 0.53 0.61

6.4. Wind Speed Prediction

In this next experiment with an unrealistic task but fully real
data, we find that both the holdout and 1NN perform poorly
while SNN performs well. Full details are in App. E.6.

Data and ground truth. Our test task is predicting the
average wind speed on a typical day in January at Chicago
O’Hare airport, from daily historical weather station data
(Menne et al., 2012). There are 775 historical weather sta-
tion observations at the Chicago O’Hare site in January
months. We split the remaining weather stations (at a sta-
tion level) into a training and validation set consisting of
962 training stations and 241 validation stations. Each sta-
tion has a different number of observations depending on
how complete the historical record of average daily wind
speed data is at this site. Typically the training set consists
of on the order of 580,000 measurements and the validation
set around 126,000 measurements. We perturb the location
labels of each measurement at each weather station by a tiny
amount to avoid ties when running nearest neighbors. The
test set contains all of January rather than just a particular
date so that we can form a high-quality estimate of ground
truth. To form ground truth, we also assume that average
wind speed decorrelates in time quickly. The loss is trun-
cated (root) mean square error. See App. E.6.3 for more
details.

Spatial Predictive Method. We use LightGBM (Ke et al.,
2017) to make predictions.

Results. We expect 1NN to have a high variance because
the task is point prediction. Fig. 2 (right) confirms this. The
holdout has large bias for this task while SNN exhibits low
bias and low variance.

6.5. Air Temperature Prediction with Real Response

We finally consider a case with real data and a real task.
Although we cannot access ground truth, we show that the
holdout, 1NN, and our SNN give very different estimates
of test risk and can differ in model selection. Given all
the previous results, we suggest using SNN. See App. E.4
for full details and also a grid-prediction task where all
estimators are in agreement.

Data and Models Fit. The data, test task and models consid-
ered are the same as in Section 6.2, but the actual response
values are used for training and validation.

Results. Table 1 shows a large discrepancy in test risk
estimates across estimators. We see that 1NN chooses a
different predictive method (spatial GP) than the holdout or
our SNN does.
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A. Broader Impact Statement
This paper identifies potential failure modes of existing validation techniques in a spatial setting and suggests practical
improvements, with supporting theory and empirics. We hope that our work can play a part in improving the reliability of
prediction assessment and thereby help improve the credibility of scientific analyses.

B. Extended Related Work
B.1. Validation versus Cross-Validation

While we expect our work to have implications for cross validation (CV), we focus on validation here since (1) we do not
assume training data exists or is easy to change (for example in the case of a large physical model) and (2) CV presents
additional subtle challenges. The holdout is broadly applicable to any predictive method (whether data-driven, physical, or a
combination thereof). However, in the cases when data is scarce and a data-driven predictive method is used, cross-validation
is commonly believed to make more efficient use of the data. CV is widely used in spatial analyses; among many examples
are Wang et al. (2022); Valavi et al. (2021); Kianian et al. (2021). However, the interpretation of the error estimates given by
cross-validation is subtle even in the classical i.i.d. setting (Bates et al., 2023). We focus on the validation setting in this
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work due to its broad applicability and clear interpretation, though extensions to cross-validation, as well as a theoretical
understanding of how the resulting error estimate relate to predictive performance is a promising direction for future work.

B.2. Covariate Shift

In covariate shift, it is generally assumed that Sval
n

iid∼ P val, Stest
m

iid∼ Q and U ℓ
i |Sℓ

i
iid∼ µ for ℓ ∈ {val, test}. Moreover, it is

typically assumed the density ratio dQ
dP exists and is bounded, although there is recent work relaxing this assumption in the

context of non-parametric regression (Kpotufe & Martinet, 2021; Pathak et al., 2022). Mean estimation seeks to estimate
E[U test

1 ]. Taking (U test
m |Stest

m ) = ℓ(Y test
m , hχ(Stest

m )), this is the same task we consider, but with the (stronger) assumption
that covariates are independent and identically distributed with a bounded density ratio between the test and validation
distributions. This assumptions is not appropriate for validation with many spatial datasets, with particularly simple examples
being when the task of interest requires prediction at a single spatial location, or on a regular grid. Our assumptions are
essentially a conditional formulation of mean estimation under covariate shift. Many methods proposed for addressing mean
estimation under covariate shift, including all the approaches we describe below, are based on re-weighting validation points,
then applying the holdout approach described earlier with these weights.

The kernel mean matching algorithm provides a solution under standard covariate shift assumptions with a bounded density
ratio and assuming the average loss as a function of space eh lives in a reproducing kernel Hilbert space (RKHS) and has
small norm (Gretton et al., 2009). Yu & Szepesvári (2012) provide a finite sample bound for this method, showing that
under the assumptions outlined above, with high probability kernel mean matching can estimate the RQ(h) with error
Op(

1√
M test +

1√
N val

). Recently, Portier et al. (2023) considered the mean estimation problem under covariate shift, but relaxed
the RKHS assumption to instead assume that the average loss is Lipschitz, the same assumption we take. Their estimator is
built on nearest neighbor regression, and they advocate the use of 1-nearest neighbor. Compared to this work, the primary
advantage of our analysis is that it removes the assumption that the sites are independent and identically distributed, making
it directly relevant to tasks like grid prediction. Moreover, in the more general setting we consider, 1-nearest neighbor is not
always consistent (Prop. 4.3), and using more neighbors can be beneficial. We provide a method for selecting the number of
neighbors that has similar statistical properties as their approach for grid prediction, but retains consistency for a wider class
of problems where using a single neighbor is no longer consistent.

B.2.1. COVARIATE SHIFT IN THE CONTEXT OF SPATIAL VALIDATION

Several recent works have applied the covariate shift framework to spatial problems. Sarafian et al. (2020) considered a
weighted estimator motivated by importance weighting to address covariate shift. This suggests taking the weights to equal
the density ratio of the test sites to the validation sites (which is assumed to exist) (Shimodaira, 2000). The density of the
test sites was assumed to be known and a kernel density estimate was used to estimate the density of the validation sites.
While Sarafian et al. (2020) observe this estimate is unbiased if the density ratio is known, in practice the estimator will be
biased due to error in estimating the density ratio. While this estimator might be consistent with regularity assumptions
on the densities, the assumption that the densities exist and have a bounded ratio is restrictive for many spatial tasks – for
example, if we care about the quality of predictions at a few specific locations. De Bruin et al. (2022) consider a similar
estimator to Sarafian et al. (2020), but normalize the weights to sum to 1 (which may not be the case for the weights given
directly by density estimation).

B.3. Predictive Validation for Spatial Data

While our analysis focuses on variants of the holdout we also discuss methods for spatial cross-validation, as they can often
be adapted to cases with held-out data.

B.3.1. LIMITATIONS OF THE HOLDOUT APPROACH

The holdout has been empirically shown to under-estimate error for models trained with data more similar to the validation
data than to the test data in several works; the review paper of Roberts et al. (2017) provides a detailed description of this
phenomenon in the context of ecological statistics. Despite concerns raised in previous works, the holdout is widely used in
spatial application areas for comparing methods and indicating the reliability of a given method.
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B.3.2. SPATIAL STRATIFICATION APPROACHES

Concerns over the quality of the holdout estimate have led to the development of validation approaches based on evaluating
the loss of a model on held-out data far from the data used to train the model (Telford & Birks, 2005). Cross-validation
strategies for spatial datasets often also focus on evaluating a model on data that are far (in the spatial domain) from the
data used to train the model. Spatially stratified blocking approaches are described in Lieske & Bender (2011) and Roberts
et al. (2017), and several software packages make these cross-validation methods readily accessible in common statistical
programming languages, especially R (Valavi et al., 2019; Mahoney et al., 2023). Similarly, variants of leave-one-out
cross-validation in which points close to the point on which error will be assessed are also held-out during training have been
developed for sequential data (Burman et al., 1994) and adapted to the spatial setting (Telford & Birks, 2009; Le Rest et al.,
2014). Several simulation studies support claims that spatial buffering provides more realistic estimates of model risk than
the standard cross-validation (Roberts et al., 2017; Mahoney et al., 2023). However, other simulation studies have shown
that using spatially disjoint regions to train the model and to validate the model can lead to over-estimation of generalization
error when the available data covers most of the space in which we are interested in making predictions (Ploton et al., 2020;
De Bruin et al., 2022). While simulation studies show the strengths, and some of the limitations, of ensuring validation data
are far in space from training data as a method for validating a predictive method, there is not clear theory establishing under
what assumptions it allows for accurate evaluation of the risk, or consistent model selection. Roberts et al. (2017) offers
some useful heuristics for when spatial stratification is preferable to the holdout. Racine (2000) provides a sketch for the
consistency of the leave-one-out method described above for model selection in linear models with stationary sequential
data, but we are not aware of a detailed proof clarifying the underlying assumptions about mixing of the process, extensions
to non-linear models or extensions to the spatial setting.

B.3.3. OTHER APPROACHES FOR SPATIAL VALIDATION

Other heuristics for estimating the error have emerged in the ecological statistics literature. De Bruin et al. (2022) also
consider model based approaches based on non-parametric regression of the residual with a Gaussian process (kriging) to
estimate the error of the model. The square of this regressor is then used as a plug-in estimator for estimating the squared
loss. This approach is proposed as a heuristic, and it is not clear whether it is consistent, especially if the likelihood of the
model fit to the residuals is misspecified, which will certainly be the case in practice. Milà et al. (2022); Linnenbrink et al.
(2023) considered the distance between each validation site and its k-nearest neighbors in the training sites, and attempted to
make the distribution of these distances similar to the distribution between the test sites and the training sites. However, it is
not clear what assumptions on the data are needed for such a method to reliably estimate the generalization error of a method.
Meyer & Pebesma (2021) emphasized that the validity of estimates of the generalization error of a spatial model depends
on how similar the validation data are to the training data, relative to how similar test data are to the training data, and
suggested only providing error estimates over an area that is judged to not be significantly more different from the training
data than the available validation data are from the training data. The infill assumption we make in this work provides a
particularly simple formalization of this idea, since it means that we have validation data close to every test point, and so
we are able to reasonably estimate the error at each test point. Meyer & Pebesma (2022) provide a recent discussion of
challenges of evaluating predictions made on a regular grid (map prediction) as well as other recent references for proposed
spatial validations approaches. The point prediction problems we consider are analogous to the local error estimates they
advocate for, while the grid prediction problems we consider are a form of global estimate.

B.3.4. ASPECTS OF THE PROBLEM WE DO NOT CONSIDER

If a statistical prediction method is used, there is a question of how to partition data between data used for training and
validation, which is a central consideration in, for example Milà et al. (2022); Linnenbrink et al. (2023). In contrast, we
focus on the case when a validation set is already decided upon. This allows our approach to be applied to physically-driven
prediction methods, statistical methods and combinations thereof. Moreover, this allows our approach to be applied to
models that have already been built when validation data becomes available and rebuilding the predictive method with a new
training set would be expensive.

B.4. Non-exchangeable Conformal Prediction

Tools have been developed for providing confidence intervals for prediction with data that are not exchangeable using
variants of conformal prediction (Tibshirani et al., 2019; Mao et al., 2022; Barber et al., 2023). Particularly relevant to
our work is Mao et al. (2022), who construct confidence intervals at a specific location based on the error at its k-nearest
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neighbors in the validation set. This is conceptually the same as the approach we take in mean estimation, but they focus
on confidence intervals instead of risk estimation. They derive consistency results for the coverage of the intervals under
an infill asymptotic setting, but do not show finite sample bounds which we prove in this work, making our results more
quantitative. Finally, we give a theoretically-grounded method for choosing the number of neighbors by minimizing an
upper bound on the error of the estimator, whereas it is unclear how to choose the number of neighbors in their approach.

C. Error Estimation for Model Selection
A practitioner will commonly select a predictive method within some collection by choosing the method with lowest
estimated test risk. We consider two cases.

(1) Fixed predictive methods. So far we have focused on the setting where predictive methods are fixed in advance. As we
accrue validation data, the consistency of SNN ensures it will eventually choose the predictive method with lowest test risk.
Without consistency, holdout and 1NN cannot be trusted to choose the best predictive method.

(2) Proportional training and validation data. If we consider the special case where the predictive method is fit using
training data (vs., say, a physical model), it is common for a practitioner to have a single set of available data that they then
partition into training data and validation data; for instance, a fixed percentage of the total data may go to training. In this
case, the predictive method changes as the validation set grows. Nonetheless, we can still be sure to eventually choose the
predictive method with the lowest risk if the test-risk estimate has a faster rate of convergence in the number of validation
data points than the convergence rate of the predictive method in the number of training points.

We are not able to formally characterize how SNN performs in model selection. But we provide rigorous results on rates
of convergence of SNN that give suggestive guidance. In particular, (a) we first consider the case of a grid prediction
task, where test sites are arranged on a grid. In this case, we are able to give a rate of convergence for both 1NN and
SNN (Cors. D.16 and D.17). If the validation data are i.i.d. our rate is faster than the minimax optimal convergence rate
for predicting a Lipschitz function in the presence of additive, homoskedastic noise. Our result shows the same rate of
convergence as Portier et al. (2023, Prop. 4), who considered test data that was i.i.d. instead of on a grid. Our result is
suggestive that both nearest neighbor methods may perform well at model selection for validating maps (grid prediction).

(b) Second, we provide finite-sample bounds and asymptotic characterizations for general (non-grid) Qtest (Cor. D.14).
In this case, when validation data is i.i.d., up to logarithmic factors, we show that SNN converges at the optimal rate of
convergence for Lipschitz functions (Cor. D.18). Since in this case, the SNN convergence rate is not strictly faster than the
training convergence rate, it might be difficult to select between statistical methods that converge at the optimal regression
rate. But we would still expect to be able to select between (i) a statistical method that converges at the optimal rate and (ii)
one that does not (for example a misspecified parametric model). Since the holdout and 1NN may not even be consistent,
we could not rely on them to select the better model even in this latter, easier case.

D. Proofs of Claims
We now present results and proofs not included in the main text. We essentially follow the order of results in the main text.
Section App. D.1 gives sufficient conditions for Assumption 2.5 to hold for a homoskedastic, additive noise model and
squared loss for responses taking values in [0, 1], mentioned in Section 2.2. App. D.2 focuses on the proof of Prop. 3.3,
first recalling several properties of covering numbers that will be used in the result. In App. D.3 we restate and prove our
Props. 4.1, 4.3 and 4.4, which show limitations of existing validation methods in the spatial setting we study. In App. D.4
we prove a general result upper bounding the error in estimating the risk using k-nearest neighbors, as well as an upper
bound on the error for k⋆T2

. App. D.5 establishes the consistency of spatial nearest neighbors. App. D.6 discusses issues
related to model selection and proves rates of convergence for spatial nearest neighbors.

D.1. Lipschitz Constant for Lipschitz Response and Predictive Method

While assuming the average loss is Lipschitz continuous as a function of space is mathematically convenient, it is perhaps
more natural to make assumptions about the spatial field we are trying to make predictions about, as well as the predictive
method we are using to make prediction. The following proposition gives an example of how Lipschitz continuity of the
processes involved can imply Assumption 2.5.

Proposition D.1. Consider Y ⊂ [0, 1] and squared loss. Suppose fχ(S) := f(S, χ(S)) is LY -Lipschitz and hχ is Lh-
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Lipschitz. Let (S,X, Y ) be generated as in Assumption 2.2, with Y = f(S,X) + ϵ. Then eh(S) := E[(Y − hχ(S))2|S] is
2(LY + Lh)-Lipschitz.

Proof. Let S, S′ ∈ S and ϵ, ϵ′ be the associated noise random variables. Then,

|eh(S)− eh(S′)| = E[(fχ(S) + ϵ)− hχ(S))2 − (fχ(S′) + ϵ′)− hχ(S′))2] (7)

= fχ(S)2 − fχ(S)2 + hχ(S)2 − hχ(S′)2, (8)

where we have used that E[ϵ] = E[ϵ′] = 0, ϵ, ϵ′ are independent from h and E[ϵ2] = E[(ϵ′)2]. Then,

fχ(S)2 − fχ(S′)2 + hχ(S)2 − hχ(S′)2 = (fχ(S) + fχ(S′))(fχ(S)− fχ(S′)) (9)
+ (hχ(S) + hχ(S′))(hχ(S)− hχ(S′))

≤ 2|fχ(S)− fχ(S′)|+ 2|hχ(S)− hχ(S′)| (10)
≤ 2(LY + Lh)dS(S, S

′). (11)

The first inequality uses that Y ⊂ [0, 1] and the second the Lipschitz assumptions on f and h.

Therefore, at least in the case of squared loss with bounded response and predictive method values and a homoskedastic
additive noise model, smoothness of the average response surface (as a function of space) together with smoothness of the
predictive method imply Assumption 2.5. We expect to hold for other losses that are Lipschitz functions of the response and
prediction.

D.2. Proof that Independent and Identically Distributed Data Implies Infill Asymptotic with High Probability

The purpose of this section is to prove Prop. 3.3. We begin by recalling this proposition:

Proposition 3.3 (Independent and Identically Distributed Data Satisfies an Infill Assumption). Suppose that S = [0, 1]d,
Sval
n

iid∼P for 1 ≤ n ≤ N val, and P has Lebesgue density lower bounded by c > 0 over [0, 1]d. Let Bd = πd/2/Γ(d/2 + 1)
be the volume of the d-dimensional Euclidean unit ball. For any δ ∈ (0, 1) there exists an n0 such that for all N val ≥ n0
with probability at least 1− δ

ζ(Sval
1:N val , [0, 1]

d) ≤
(

4d

cN valBd

(
log 6dN val

Bdδ

))1/d
. (2)

Our proof is similar to earlier proofs in Reznikov & Saff (2015, Section 5.2) and essentially follows the stackoverflow
response (https://mathoverflow.net/users/36721/iosif pinelis) keeping track of numerical constants. Essentially, the idea is
that were the fill distance to be large, there must be a ball of large radius that doesn’t contain any points in the sample of
location. But because the probability of a point in the sample falling in any ball is bounded below in terms of the volume of
the ball, this must be improbable as the sample size grows.

D.2.1. PRELIMINARY DEFINITIONS AND LEMMAS RELATED TO NETS AND COVERING NUMBER

In order to formalize the proof of Prop. 3.3 sketched above idea, we recall the definition of a net and covering number, as
well as some standard properties of covering numbers.

Definition D.2 (Net, Covering Number). Let A ⊂ Rd be a compact set. Any finite set C ⊂ Rd such that

A ⊂
⋃
S∈C

B(S, ϵ) (12)

where B(S, ϵ) denotes the d-dimensional closed Euclidean ball of radius ϵ ≥ 0 centered at S is referred to as an ϵ-net of A.
The ϵ-covering number of A, denoted by N(ϵ, A) is the minimum cardinality of an ϵ-net of A.

Because A is compact for any ϵ the ϵ-covering number of A is finite, and will generally increase as ϵ→ 0.

We now recall how covering number behaves under affine transformations of the underlying space. For sets A,B and a
scalar α, we define A+B = {a+ b : a ∈ A, b ∈ B} and αA = {αa : a ∈ A}.
Proposition D.3. For any compact A ⊂ Rd and c ∈ Rd, N(ϵ, A) = N(ϵ, A+ {c}). For any α > 0, N(ϵ, A) = N(αϵ, αA).
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Proof. The first claim is shown by noting that ifC is an ϵ-net ofA thenC+{c} is an ϵ-net ofA+{c} so that N(ϵ, A+{c}) ≤
N(ϵ, A). Applying a symmetric argument implies the reverse inequality.

For the second claim, let C be an ϵ-net for A. Then,

αA ⊂ α
( ⋃

S∈C

B(S, ϵ)

)
=
⋃
S∈C

B(αS, αϵ) =
⋃

S′∈αC

B(S′, αϵ), (13)

and so αC is an αϵ-net of αA. It follows that N(αϵ, αA) ≤ N(ϵ, A). The opposite inequality is obtained via the same
argument applied with α′ = 1

α , A
′ = αA and ϵ′ = αϵ.

In the proof of Prop. 3.3 we apply a union bound over all elements in a net for the unit cube. We therefore need a result
telling us that this net does not contain too many elements.

Lemma D.4 (Covering number of Unit Cube). Let ϵ ∈ (0, 1]. Then N(ϵ, [−1, 1]d) ≤ 1
Bd

(
6
ϵ

)d
where Bd = πd/2

Γ( d
2+1)

is the volume of the d-dimensional unit sphere.

Proof. By the upper bound in Wainwright (2019, Lemma 5.7),

N(ϵ, [−1, 1]d) ≤ 1

Bd
vol

([
−2

ϵ
,
2

ϵ

]d
+B(0, 1)

)
. (14)

For any S = S1 + S2 ∈ [− 2
ϵ ,

2
ϵ ]

d + B(0, 1) with S1 ∈ [− 2
ϵ ,

2
ϵ ]

d and S2 ∈ B(0, 1), by the triangle inequality for infinity
norm,

∥S∥∞ ≤
2

ϵ
+ 1 ≤ 3

ϵ
, (15)

where we first used that points in the unit ball have infinity norm not more than 1 and then used that ϵ ≤ 1. Therefore,

vol

([
−2

ϵ
,
2

ϵ

]d
+B(0, 1)

)
≤ vol

([
−3

ϵ
,
3

ϵ

]d)
=

(
6

ϵ

)d

. (16)

D.2.2. MAIN PROOF

We again recall Prop. 3.3 for convenience when reading the proof.

Proposition 3.3 (Independent and Identically Distributed Data Satisfies an Infill Assumption). Suppose that S = [0, 1]d,
Sval
n

iid∼P for 1 ≤ n ≤ N val, and P has Lebesgue density lower bounded by c > 0 over [0, 1]d. Let Bd = πd/2/Γ(d/2 + 1)
be the volume of the d-dimensional Euclidean unit ball. For any δ ∈ (0, 1) there exists an n0 such that for all N val ≥ n0
with probability at least 1− δ

ζ(Sval
1:N val , [0, 1]

d) ≤
(

4d

cN valBd

(
log 6dN val

Bdδ

))1/d
. (2)

Proof of Prop. 3.3. For some τ ∈ (0, 1) (to be selected later) let C be a minimal cardinality τ/2-net for [0, 1]d. If B(S, τ/2)
contains a validation point for all S ∈ C, then for any S′ ∈ [0, 1]d, by the triangle inequality,

min
1≤n≤N val

dS(S
′, Sval

n ) ≤ min
1≤n≤N val

(
min
S′∈C

dS(S
′, S) + dS(S

val
n , S)

)
≤ τ. (17)

Therefore the probability that the fill distance is large (> τ) is less than the probability that there exists an element of the net
such that no validation point is close to it (within radius τ/2):

Pr(ζ(Sval
1:N val , [0, 1]

d) > τ) ≤ Pr(∃S ∈ C : Sval
n ̸∈ B(S, τ/2)∀1 ≤ n ≤ N val). (18)
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The probability of any particular validation point falling in a ball centered at any point of radius contained in the τ/2 can’t
be too small since P has density that is bounded below: For any S ∈ [0, 1]d

P (B(S, τ/2)) =

∫
S′∈B(S,τ/2)

dP

dλ
(S′)dλ(S′) ≥

∫
S′∈B(S,τ/2)∩[0,1]d

cdλ(S′) ≥ cvol(B(S, τ/2))

2d
, (19)

where λ denotes Lebesgue measure and in the final inequality we have used that since S ∈ [0, 1]d, at least one quadrant of
B(S, τ/2) is contained in [0, 1]d.

Returning to Eqn. (18) and taking a union over all elements in the net:

Pr(ζ(Sval
1:N val , [0, 1]

d) > τ) ≤ N(τ/2, [0, 1]d)max
a∈A

Pr(Sval
n ̸∈ B(a, τ/2)∀1 ≤ n ≤ N val) (20)

≤ N(τ/2, [0, 1]d)max
a∈A

(1− P (B(a, τ/2)))N
val

(21)

≤ N(τ/2, [0, 1]d)

(
1− c

2d
Bd

(τ
2

)d)N val

, (22)

where Bd = πd/2

Γ( d
2+1)

is the volume of the d-dimensional unit sphere. Eqn. (21) uses Eqn. (19). We now upper bound the
terms in Eqn. (22).

Applying, Prop. D.3 and Lemma D.4

N(τ/2, [0, 1]d) ≤ 1

Bd

(
6

τ

)d

. (23)

Using the inequality (1− x) ≤ e−x,(
1− c

2d
Bd

(τ
2

)d)N val

≤ exp

(
− c

2d
N valBd

(τ
2

)d)
. (24)

Combining Eqns. (22) to (24),

Pr(ζ(Sval
1:N val , [0, 1]

d) > τ) ≤ 1

Bd

(
6

τ

)d

exp

(
− c

2d
N valBd

(τ
2

)d)
(25)

Now choose τd = 4d

cN valBd
log 6dN val

Bdδ
. For all N val larger than some n0, τ < 1 because limN val→∞

4d

cN valBd
log 6dN val

Bdδ
= 0,

and so this choice satisfies our earlier assumption. For this choice of τ

1

Bd

(
6

τ

)d

exp

(
− c

2d
N valBd

(τ
2

)d)
=

1

τdN val δ =
cBdδ

4d log 6dN val

Bdδ

≤ δ c

2d log 3dN val

δ

, (26)

where in the final inequality we use that Bd ≤ 2d since the unit ball is contained in the unit cube. For all N val ≥ δec/2
d

3d
the

right-hand side is less than δ; but δ < 1, c ≤ 1 and so this holds for all N val ≥ 1.

D.3. Proof of Inconsistency of Existing Methods

In this section, we restate and prove our results on limitations of existing methods for validation. These results were stated
in Section 4 in the main text.

D.3.1. INCONSISTENCY OF THE HOLDOUT

We begin by focusing on the holdout. As sketched in the main text, the holdout does not depend on the particular test set, and
therefore cannot approximate the test risk well for point prediction tasks unless the average loss at both points is the same.

Proposition 4.1 (Inconsistency of holdout). There exists a set of test points and a data-generating process satisfying infill
asymptotics such that R̂Hold is not a consistent estimator of the test risk.
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We prove the strong result.

Proposition D.5 (Counterexample to the consistency of holdout). Consider a single test point (S,X, Y ) satisfying Assump-
tion 2.2. Suppose the test risk at such a point (Def. 2.3 with M test = 1) is not constant as a function of S. Then there exists a
test set (of size one) such that R̂Hold is not a consistent estimator of the test risk on that test set.

Proof. Because eh(S) is not a constant S contains at least two elements S, S′ such that eh(S) ̸= eh(S
′). Let Q = δS and

Q′ = δS′ . There there exists some γ > 0 such that

|RQ(h)−RQ′(h)| = |eh(S)− eh(S′)| > 2γ. (27)

If R̂Hold is not consistent for RQ(h), we are done. Otherwise, by the definition of consistency, for all N ≥ N0 with
probability at least 1/2,

|(R̂Hold)
(N)(h)−RQ(h)| < γ. (28)

where we use (R̂Hold)
(N) to denote the estimator constructed using the first N validation points, Dval

N . By the reverse triangle
inequality,

|(R̂Hold)
(N)(h)−RQ′(h)| ≥ |RQ(h)−RQ′(h)| − |(R̂Hold)

(N)(h)−RQ′(h)|. (29)

Combining Eqn. (28) and Eqn. (29), for all N ≥ N0 with probability at least 1/2

|(R̂Hold)
(N)(h)−RQ′(h)| > 2γ − γ = γ, (30)

which implies the holdout is not consistent for RQ′(h).

Proposition D.6. Let ℓ(a, b) = max(1, |a− b|). There exists a data-generating process, test set containing a single site and
predictive method satisfying infill asymptotics such that the holdout converges in probability to 0, while RQtest = 1.

Proof. Consider S = [0, 1], h ≡ 0, Y = S, Stest = 1 and

Sval
m =

{
Um m is prime,
0 m otherwise.

(31)

with Um independent and identically distributed uniform variables. By the infinitude of primes, there are infinitely many m
such that Sval

m is uniformly distributed and, for example by Prop. 3.3, this implies that Sval
m satisfies the infill assumption. On

the other hand, by the prime number theorem, as M test →∞, the density of primes in the natural numbers tends to 0, and so

R̂Hold(h) =
1

M test

M test∑
m=1

Sval
m =

1

M test

M test∑
m=1
prime

Um ≤
|{m : 1 ≤ m ≤M test,m prime}|

M test → 0, (32)

and RQtest(h) = 1.

D.3.2. INCONSISTENCY OF 1-NEAREST NEIGHBOR ESTIMATOR

We now turn to 1-nearest neighbor risk estimation and restate and prove Prop. 4.3:

Proposition 4.3 (Inconsistency of 1NN). There exist a set of test points and a data-generating process satisfying infill
asymptotics such that R̂NN,1(h) is not a consistent estimator of the test risk.

We again actually prove a strong result

Proposition D.7. Assume any test point satisfies Assumption 2.2. Assume there exists a constant c > 0 such that for any
test point (S,X, Y ), Var[ℓ(Y, hχ(S))|S] ≥ c. Next, consider an infinite sequence of validation sets as in Def. 3.2. Suppose
there exists an S′ ∈ S such that for any r > 0 and N val > 0, |{1 ≤ j ≤ N val : dS(Sval

j , S′) = r}| ≤ 1. Choose any Qtest

such that Qtest({S′}) > 0. Then there exists a δ ∈ (3/4, 1) and a C(δ) > 0 such that, for each N val, with probability at
least 1− δ, |RQtest(h)−(R̂NN,1)

(N val)(h)| ≥ C(δ). Here (R̂NN,1)
(N val) denotes the 1NN estimator associated to the first N val

data points and δ. C(δ) and δ do not depend on N val or other properties of the sequence of validation data.
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The technical condition |{1 ≤ n ≤ N val : dS(Sval
j , S′) = r}| ≤ 1 ensures that the 1NN set for each point contains

exactly 1 point. That is, there are no ties. This condition would be satisfied for the infinite sequence of validation sets
with probability one if, for instance, the validation points were chosen i.i.d. from a uniform measure on a compact set;
cf. Prop. 3.3. Alternatively, it can be removed if any form of tie-breaking that selects a single nearest neighbor is used in
defining the estimator.

The idea of the proof is that if the loss has a non-vanishing variance, then the one nearest neighbor procedure results in an
estimator with a non-zero variance for point prediction. Therefore, it cannot converge in probability to the actual risk, which
is deterministic.

D.3.3. PRELIMINARY RESULT

We begin by proving a result that says that if a bounded random variable has a second moment bounded below by C, then it
cannot be close to zero most of the time. We will apply this inequality to the second moment of the difference between the
1-nearest neighbor estimator and the test risk to in our proof of Prop. 4.3.

Proposition D.8. Let U be a random variable with U ∈ [−A,A] almost surely and E[U2] ≥ C > 0. Then for any
δ ∈ (1− C

A2 , 1) with probability 1− δ

|U | ≥ A

√
1− 1− C

A2

δ
. (33)

Proof. Because U ∈ [−A,A], A2 − U2 is a non-negative random variable. Applying Markov’s inequality, for any t > 0,

Pr(A2 − U2 ≥ t) ≤ A2 − E[U2]

t
≤ A2 − C

t
. (34)

Take t = A2−C
δ which is greater than 0 because δ ∈ (1− C

A2 , 1). Then Eqn. (34) becomes,

Pr

(
A2 − U2 ≥ A2 − C

δ

)
≤ δ. (35)

Taking complements, with probability at least 1− δ

A2 − U2 <
A2 − C

δ
. (36)

Rearranging implies that with probability at least 1− δ

U2 > A2 − A2 − C
δ

. (37)

For δ ∈ (1− C
A2 , 1) this bound is non-vacuous (strictly greater than zero). Taking square roots, which is monotone, for any

such δ with probability at least 1− δ

|U | > A

√
1− 1− C

A2

δ
. (38)

D.3.4. PROOF OF INCONSISTENCY OF 1-NEAREST NEIGHBOR

We return to our proof of Prop. 4.3. The idea will be to consider a point prediction task and then apply Prop. D.8 to show
that with some fixed probability, the 1-nearest neighbor estimator is a fixed distance away from the test risk, even as N val

increases.
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Proof of Prop. 4.3. Because expectation minimizes the squared error to a random variable over all constant functions

E|RQtest(h)− (R̂NN,1)
(N val)(h)|2 ≥ E|(R̂NN,1)

(N val)(h)− E[(R̂NN,1)
(N val)(h)]|2. (39)

Because the ϵval
n are independent the variance of (R̂NN,1)

(N val) is additive

E|(R̂NN,1)
(N val)(h)− E(R̂NN,1)

(N val)(h)|2 =

N val∑
n=1

(wNN,1
n )2E[ℓ(Y val

n , hχ(Sval
n ))− eh(Sval

n )] (40)

≥ V
N val∑
n=1

(wNN,1
n )2. (41)

where 0 < V < ∆2/4 is the assumed lower bound on the variance of ℓ(Y val
n , hχ(Sval

n ))− eh(Sval
n ) and we have left implicit

the dependence of the weights on N val. Also, |{1 ≤ n ≤ N val : dS(S′, Sval
n ) = r| ≤ 1, implies S′ has exactly one 1-nearest

neighbor in Sval
1:N val , call the index of this neighbor n(S′). Then

N val∑
n=1

(wNN,1
n )2 ≥ (wNN,1

n(S′))
2 ≥ Qtest({S′})2. (42)

Combining Eqn. (41) and Eqn. (42)

E[|RQtest(h)− (R̂NN,1)
(N val)(h)|2] ≥ V Qtest({S′})2. (43)

We now apply Prop. D.8 with U = |RQtest(h) − (R̂NN,1)
(N val)(h)| to conclude that for δ ∈ (1 − V Qtest({S′})2

∆2 , 1) with
probability at least 1− δ

|RQtest(h)− (R̂NN,1)
(N val)(h)| ≥ ∆

√
1− 1− V Qtest({S′})2

∆2

δ
> 0. (44)

As neither δ nor the right hand side of Eqn. (44) depend on N val, 1-nearest neighbor is not consistent under infill asymptotics.

Proposition D.9. Consider Y = {0, 1} and ℓ(a, b) =

{
0 a = b

1 otherwise
, S = [0, 1]d and Sval

m
iid∼ µ, where µ is any measure

with density with respect to Lebesgue measure. Fix any S ∈ S and any predictive method h and let Qtest = δS . Then,

|R̂NN,1(h)−RQtest(h)| ≥ min(E[Y test], 1− E[Y test]). (45)

In particular, if E[Y test] = 1/2, then one-nearest neighbor risk estimation has error 1/2.

Proof. Because Sval
m

iid∼ µ, and µ has Lebesgue density, the nearest neighbor to S is almost surely unique. This implies that
R̂NN,1(h) ∈ {0, 1}. Therefore,

|R̂NN,1(h)−RQtest(h)| ≥ min
a∈{0,1}

|a− E[Y test]| = min(E[Y test], 1− E[Y test]). (46)

D.3.5. INCONSISTENCY OF NEAREST NEIGHBORS WITH NUMBER OF NEIGHBORS DEPENDING ON NUMBER OF
VALIDATION POINTS

We now restate and prove Prop. 4.4, which states that nearest-neighbor risk estimation with the number of neighbors
depending (only) on the number of validation points is inconsistent under infill asymptotics, regardless of type of dependence.

21



1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Consistent Validation for Predictive Methods in Spatial Settings

Proposition 4.4 (Inconsistency of kNN depending on number of validation points). Let (kn)∞n=1 be any sequence of natural
numbers. Define the sequence of estimators R̂N val to be the nearest neighbor risk estimators using N val validation points
and kN val neighbors. Then there exists a data-generating process satisfying infill asymptotics, a test set containing a single
point, a predictive method h resulting in an error function satisfying the Lipschitz assumption, and anϵ, δ >0 such that with
probability at least 1−δ, ∀N val, |R̂N val(h)−RQtest(h)| ≥ ϵ.

Proof. The idea is that either 1.) (kn)∞n=1 has a bounded sub-sequence, in which case along this sub-sequence, the R̂N val(h)
can have a variance bounded below by 0, and so by Prop. D.8 these estimators are bounded away from the test risk with
fixed probability. Or 2.) the number of neighbors used tends to infinity, in which case we can find a sequence of data that
accumulates more slowly around the test site, leading to many neighbors far from the point being used in the estimator, and
therefore non-negligible bias.

We split into these two cases, and give an example showing in either case R̂N val can be inconsistent.

Case 1: lim infn→∞ kn <∞.
Consider a data-generating process with no covariates, Sval ∼ U(0, 1), Stest = { 12}, Yn|Sn = ϵn ∼ U(−1/2, 1/2),

h = 0 and ℓ(y, y′) = |y − y′|. Because lim infn→∞ kn <∞, there exists a C > 0 such that (kn)∞n=1 contains a bounded
sub-sequence (k̃n)

∞
n=1 with k̃n ≤ C for all C > 0. Since the limit superior of a sub-sequence cannot be larger than of the

full sequence

lim sup
N val→∞

Var(R̂N val(h)) ≥ lim sup
n→∞

Var(R̃n(h)). (47)

where R̃n denotes the sub-sequence of R̂N val where the number of validation points runs along the sub-sequence correspond-
ing to (k̃n)

∞
n=1.

Almost surely, for any N val the test point 1/2 has exactly kN val -nearest neighbors, because the probability that two validation
points are equidistant from 1/2 is 0. Since a countable union of almost sure events is also an almost sure event, with
probability 1 for all N val the test point at 1/2 has exactly kN val neighbors. Therefore, with probability 1, for all N val the
vector of weights wNN,k has exactly kN val non-zero entries, each with value 1/kN val . We condition on this probability 1 event
moving forward. In this case,

Var(R̂N val) = Var(

N val∑
n=1

wNN,k|ϵn|) (48)

=
1

k2
N val

kNval∑
i=1

Var(|ϵ̃i|) (49)

=
1

48kN val
(50)

where (ϵ̃)
kNval

i=1 are the subset of (ϵn)N
val

n=1 corresponding to the kN val nearest neighbors to 1/2. The factor of 48 comes from
the variance of a uniform random variable on [0, 1/2].

For all N val corresponding to the bounded sub-sequence (k̃n)
∞
n=1, we conclude

Var(R̃n(h)) ≥
1

48C
. (51)

Therefore,

lim sup
N val→∞

Var(R̂N val(h)) ≥ 1

48C
. (52)

Applying Prop. D.8 to the random variable |R̂N val(h)−R(h)| we conclude there exists an ϵ, δ such that with probability at
least 1− δ,

lim sup
N val→∞

|R̂N val(h)−R(h)| ≥ ϵ. (53)
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Case 2: lim infn→∞ kn =∞.
Consider the data generating process, Yn|Sn = Sn on [0, 1] with Stest = {0} and ℓ(y, y′) = |y − y′| and h = 0. We

then have R(h) = 0. We will construct a sequence of validation sites Sval such that for each N val less than kN val/2 of the
validation sites fall in the interval [0, 1/4). For any such sequence (supposing such a sequence exists for the moment),

|R̂N val(h)−R(h)| = |R̂N val(h)| ≥ 1

kN val
· kN val

2

1

4
≥ 1

8
. (54)

All that remains is to construct such a sequence that also satisfies infill asymptotics. Define the function ψ : N→ (0, 1) by

ψ(i) =
i− 2⌊log2 i⌋+1

2⌊log2 i⌋+1
. (55)

This corresponds to the dyadic sequence (1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, . . . ). The essential properties of this
function for our application is that the image of the function is dense on (0, 1) and for any i at least i/2 of (ϕ(j))ij=1 are in
the interval (0, 1/2].

Algorithm 1 Algorithm defining (Sval
n )∞n=1

while True: do
if j < kn and n− j > j then
Sval
n = 1

2 − 1
2ψ(j)

j ← j + 1.
else
Sval
n = 1

2 + 1
2ϕ(n− j)

n← n+ 1.
end if

end while

The validation points are defined algorithmically via Algorithm 1. Because kn is unbounded, the first condition must be
called infinitely often, and so j eventually takes on all natural numbers in this loop.

Because n− j > j each time the first condition is called, n− j is incremented if and only if j is not incremented n− j
also takes on all natural numbers in this loop. Therefore, (Sval

n )∞n=1 is a dense set in [0, 1] because 1
2 − 1

2ψ(N) is dense on
[0, 1/2] and 1

2 + 1
2ψ(N) is dense on [1/2, 1]. We conclude this sequence satisfies the infill asymptotics.

For any N val, the number of validation points less than 1/2 is not more than kN val by induction and using the first condition
in the if statement. Of the points placed in (0, 1/2) at most half of them are in (0, 1/4], by our earlier observation that for
any i at least i/2 of (ψ(j))ij=1 are in the interval (0, 1/2]. Therefore, not more than kN val/2 points are in [0, 1/4) for any
N val.

D.4. General Nearest Neighbor Bound and Selecting the Number of Neighbors

In this section, we prove two results giving bounds on the performance of nearest neighbor risk estimation that will be the
basis of later results. The first, already stated in the main text, is a general bound for any k.

Theorem 5.1 (Bound on Estimation Error in Terms of Fill Distance). Consider a validation set Dval of size N val and a test
set Dtest of size M test. Take the k-nearest neighbors test-risk estimator from Def. 4.2. Choose δ ∈ (0, 1) and k such that

1 ≤ k ≤ N val. Let ρk := ζk(Sval
1:N val , S

test
1:M test) and βδ := ∆

√
1
2 log

2
δ . Take Assumptions 2.1, 2.2, 2.4 and 2.5. Then, with

probability at least 1− δ,

|RQtest(h)− R̂NN,k(h)| ≤ Lρk + βδ∥wNN,k∥2 (4)

≤ Lρk + βδ

√
max

1≤n≤N val
Qtest(B(Sval

n , ρk))/k, (5)

where B(S, r) denotes the ball of radius r centered at S. See Assumptions 2.1 and 2.5 and Def. 2.3 for ∆, L, Qtest

respectively.
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The second result we will show is specific to SNN and relates the error incurred by using k⋆T2
to the error of the minimizer

of the bound from Thm. 5.1:
Proposition D.10 (Minimization over Powers of Two). Let T = {1, . . . , N val} and T2 = {2i}⌊log2 N val⌋

i=1 . Fix δ ∈ (0, 1).

Define k⋆T2
∈ argmink∈T2

ρk + βδ∥wNN,k∥2 with βδ = ∆
√

1
2 log

2
δ . Define CL = max(1, L). Under Assumptions 2.1, 2.2

and 2.5 with probability at least 1− δ

|RQtest(h)− R̂NN,k⋆
T2
(h)| ≤

√
2CL

(
min
k∈T

ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
, (56)

where B(S, r) denotes the ball of radius r centered at S.

D.4.1. PRELIMINARY RESULT: HOEFFDING’S INEQUALITY

We begin by recalling Hoeffding’s inequality, which will be used to control tail probabilities of the sum of the weighted
losses being far from its expectation.
Lemma D.11 (Hoeffding’s Inequality, (Hoeffding, 1963, Theorem 2)). Let (Zi)

ℓ
i=1 be independent random variables and

(ai)
ℓ
i=1 and (bi)

ℓ
i=1 be sequences of real numbers such that ai ≤ Zi ≤ bi almost surely. Then for all t > 0

Pr

(∣∣∣∣∣
ℓ∑

i=1

Zi −
ℓ∑

i=1

E[Zi]

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑ℓ

i=1(bi − ai)2

)
. (57)

Equivalently, for any δ ∈ (0, 1) with probability at least 1− δ∣∣∣∣∣
ℓ∑

i=1

Zi −
ℓ∑

i=1

E[Zi]

∣∣∣∣∣ ≤ ∥b− a∥2
√

1

2
log

2

δ
. (58)

where a, b ∈ Rℓ have entries ai and bi respectively.

D.4.2. PROOF OF GENERAL NEAREST NEIGHBOR RISK ESTIMATION BOUND

We again recall and prove Thm. 5.1. The idea is to apply triangle inequality to split the error into a bias term and a sampling
error term. The sampling error term is then controlled with Lemma D.11 since the loss is bounded. The bias term is
controlled using Assumption 2.5.
Theorem 5.1 (Bound on Estimation Error in Terms of Fill Distance). Consider a validation set Dval of size N val and a test
set Dtest of size M test. Take the k-nearest neighbors test-risk estimator from Def. 4.2. Choose δ ∈ (0, 1) and k such that

1 ≤ k ≤ N val. Let ρk := ζk(Sval
1:N val , S

test
1:M test) and βδ := ∆

√
1
2 log

2
δ . Take Assumptions 2.1, 2.2, 2.4 and 2.5. Then, with

probability at least 1− δ,

|RQtest(h)− R̂NN,k(h)| ≤ Lρk + βδ∥wNN,k∥2 (4)

≤ Lρk + βδ

√
max

1≤n≤N val
Qtest(B(Sval

n , ρk))/k, (5)

where B(S, r) denotes the ball of radius r centered at S. See Assumptions 2.1 and 2.5 and Def. 2.3 for ∆, L, Qtest

respectively.

Proof. By the triangle inequality,

|RQtest(h)− R̂NN,k(h)| ≤
∣∣RQtest(h)−

N val∑
n=1

wNN,k
n eh(S

val
n )
∣∣

︸ ︷︷ ︸
τ1

(59)

+
∣∣∣ N val∑
n=1

wNN,k
n (ℓ(f(Sval

n , χ(Sval
n ), ϵval

n ), hχ(Sval
n ))− eh(Sval

n )
∣∣∣︸ ︷︷ ︸

τ2

. (60)
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The first term, τ1 is a bias term, while the second term, τ2 is a sum of N val independent variables with expectation zero.
Using Assumption 2.1, we apply Hoeffding’s inequality (Lemma D.11) to bound τ2: for any δ ∈ (0, 1) with probability at
least 1− δ

τ2 ≤ ∆∥wNN,k∥2
√

1

2
log

2

δ
. (61)

By Hölder’s inequality and because the weights are non-negative and sum to one,

∥wNN,k∥2 ≤
√
∥wNN,k∥1∥wNN,k∥∞ =

√
max

1≤n≤N val
wNN,k

n . (62)

Recalling the definition of wNN,k (Def. 4.2) and that each Ak(s) contains at least k points by construction,

wNN,k
n =

1

M test

M test∑
m=1

1

|Ak(Stest
m )|1{S

val
n ∈ Ak(Stest

m )} ≤ 1

k

1

M test

M test∑
m=1

1{Sval
n ∈ Ak(Stest

m )}. (63)

By the definition of ρk,

Sval
n ∈ Ak(Stest

m )⇒ Stest
m ∈ B(Sval

n , ρk) (64)

and so

1{Sval
n ∈ Ak(Stest

m )} ≤ 1{Stest
m ∈ B(Sval

n , ρk)}. (65)

Substituting this in Eqn. (63) and using Eqn. (62)

∥wNN,k∥2 ≤

√√√√1

k
max

1≤n≤N val

1

M test

M test∑
m=1

1{Stest
m ∈ B(Sval

n , ρk)} =
√

max
1≤n≤N val

Qtest(B(Sval
n , ρk))

k
. (66)

It remains to bound the bias term, τ1. Define αk
nm = 1

|Ak(Stest
m )|1{Sval

n ∈ Ak(Stest
m )}. Recalling the definition of wNN,k and

rearranging the order of summation

τ1 =

∣∣∣∣∣∣ 1

M test

M test∑
m=1

(eh(S
test
m )−

N val∑
n=1

αk
nmeh(S

val
n ))

∣∣∣∣∣∣ (67)

≤ max
1≤m≤M test

∣∣∣∣∣∣eh(Stest
m )−

N val∑
n=1

αk
nmeh(S

val
n )

∣∣∣∣∣∣ . (68)

Because for any 1 ≤ m ≤M test,
∑N val

n=1 α
k
nm = 1∣∣∣∣∣∣eh(Stest

m )−
N val∑
n=1

αk
mneh(S

val
n )

∣∣∣∣∣∣ =
∣∣∣∣∣∣
N val∑
n=1

αk
mn(eh(S

test
m )− eh(Sval

n ))

∣∣∣∣∣∣ (69)

≤ max
n:αk

mn>0
|eh(Stest

m )− eh(Sval
n )|. (70)

Applying Assumption 2.5 and taking the maximum over m as well,

τ1 ≤ max
n,m:αk

nm>0
LdS(S

test
m , Sval

n ). (71)

The constraint αk
nm > 0 implies that dS(Stest

m , Sval
n ) ≤ ρk and so

τ1 ≤ Lρk. (72)

The result follows from combining Eqns. (60), (61), (66) and (72).
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D.4.3. PROOFS RELATED TO SELECTING THE NUMBER OF NEIGHBORS

We now restate and prove a bound that upper bounds the error of risk estimation with SNN (i.e. using k⋆T2
neighbors) to the

minimum of the upper bound from Thm. 5.1 over all k. A key observation is that because Thm. 5.1 is conditional on the test
locations, it can be minimized without the need to take a union bound over all k in the set we minimize over. We first need a
preliminary result, which holds for minimization over any subset of {1, . . . , N val}.
Proposition D.12 (Minimization of Upper Bound). Let T ⊂ {1, . . . , N val}. Fix δ ∈ (0, 1). Define k⋆T ∈ argmink∈T ρk +

βδ∥wNN,k∥2 with βδ = ∆
√

1
2 log

2
δ . Define CL = max(1, L). Under Assumptions 2.1, 2.2 and 2.5 with probability at least

1− δ

|RQtest(h)− R̂NN,k⋆
T
(h)| ≤ CL

(
min
k∈T

ρk + βδ∥wNN,k∥2
)

(73)

≤ CL

(
min
k∈T

ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
, (74)

where B(S, r) denotes the ball of radius r centered at S.

Proof of Prop. D.12. Because the minimization problem does not depend on a quantity that is treated as random in Thm. 5.1,
we may directly apply Thm. 5.1 to k⋆T to conclude with probability at least 1− δ

|R(h)− R̂NN,k⋆
T
(h)| ≤ Lρk⋆

T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ
(75)

We split into cases.

Case 1: L ≤ 1 Because L ≤ 1 and by the minimality of k⋆T ,

Lρk⋆
T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ
≤ ρk⋆

T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ
(76)

= min
k∈T

ρk +∆∥wNN,k∥2
√

1

2
log

2

δ
. (77)

Case 2: L > 1 Because L > 1 and the second term is non-negative,

Lρk⋆
T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ
≤ L

(
ρk⋆

T
+∆∥wNN,k⋆

T ∥2
√

1

2
log

2

δ

)
(78)

= Lmin
k∈T

ρk +∆∥wNN,k∥2
√

1

2
log

2

δ
. (79)

Combining Eqns. (75), (77) and (79) gives the result.

Proposition D.10 (Minimization over Powers of Two). Let T = {1, . . . , N val} and T2 = {2i}⌊log2 N val⌋
i=1 . Fix δ ∈ (0, 1).

Define k⋆T2
∈ argmink∈T2

ρk + βδ∥wNN,k∥2 with βδ = ∆
√

1
2 log

2
δ . Define CL = max(1, L). Under Assumptions 2.1, 2.2

and 2.5 with probability at least 1− δ

|RQtest(h)− R̂NN,k⋆
T2
(h)| ≤

√
2CL

(
min
k∈T

ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
, (56)

where B(S, r) denotes the ball of radius r centered at S.

Proof. Let k⋆T denote a minimizer of the bound on the right hand side, which exists since the minimization is over a finite
set. If k⋆T = 1, we are done since 1 ∈ T2. Otherwise, there exists a k̃ ∈ T2 such that,

k⋆T /2 ≤ k̃ ≤ k⋆T . (80)
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By monotonicity of the kth order fill distance in k,

ρk̃ ≤ ρk⋆
T
. (81)

This also implies,

Qtest(B(Sval
n , ρk̃)) ≤ Qtest(B(Sval

n , ρk⋆
T
)), (82)

since the measure of a subset is never larger than the measure of a set that contains it. Therefore,

min
k∈T2

(
ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
≤ ρk̃ + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk̃)))

k̃
(83)

≤ ρk⋆
T
+ βδ

√
2

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk⋆

T
))

k⋆T
(84)

≤
√
2(ρk⋆

T
+ βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk⋆

T
))

k⋆T
) (85)

=
√
2

(
min
k∈T

ρk + βδ

√
max

1≤n≤N val

Qtest(B(Sval
n , ρk))

k

)
. (86)

The result now follows from Prop. D.12.

D.5. Consistency of our Nearest Neighbor Method under Infill Asymptotics

In this section we prove Cor. 5.2, which establishes the consistency of SNN under infill asymptotics. The idea of the proof is
to upper bound the kth order fill distance of the validation points in the test points to the fill distance of the validation points
in [0, 1]d. This allows together with Thm. 5.1 and Prop. D.10 allows us to derive an upper bound on the error of our method
in terms of the fill distance, from which the result follows.

D.5.1. PRELIMINARY LEMMA: RELATING FILL DISTANCES

Proposition D.13. Let A be an ϵ-net for [0, 1]d. Then for k ≤
(

1
2ϵ

)d
ζk(A, [0, 1]d) ≤ 2k1/dϵ+ ϵ. (87)

Proof. Let S ∈ [0, 1]d and τ ∈ (0, 1]. Then,

|A ∩B(S, τ + ϵ)| ≥ N(ϵ, B(S, τ)) (88)

because for any S′ ∈ B(S, τ) ∩ [0, 1]d, there is a point a ∈ A such that d(S′, a) ≤ ϵ and for any such point, this a must
also be in B(s, τ + ϵ) by the triangle inequality. Let C be an ϵ-net of B(s, τ) ∩ [0, 1]d. Then by the definition of a net and
by subadditivity

vol(B(S, τ) ∩ [0, 1]d) ≤ vol(∪c∈CB(c, ϵ)) ≤ |C|Bd
1

ϵd
(89)

Since S ∈ [0, 1]d and τ ≤ 1, at least one orthant of B(s, τ) is contained in [0, 1]d, so

vol(B(S, τ) ∩ [0, 1]d) ≥ 2−dBd
1

τd
. (90)

Combining the previous estimates,

N(ϵ, B(S, τ) ∩ [0, 1]d) ≥
( τ
2ϵ

)d
(91)

Choose τ = 2ϵk1/d ∈ (0, 1). Then

|A ∩B(S, τ + ϵ)| ≥ k. (92)

As S was arbitrary, this holds for all S ∈ [0, 1]d, and so for all S ∈ [0, 1]d, there are k points in A in B(S, 2ϵk1/d + ϵ).
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D.5.2. BOUND ON LOSS DEPENDING ON FILL DISTANCE

We now present and prove an upper bound on the error of SNN that depends on the fill distance of the validation set in
[0, 1]d. We will derive consistency of the estimator under infill asymptotics as a corollary of this bound. The bound will also
be relevant in later discussion of model selection, where we are also interested in rates of convergence of estimators.

Corollary D.14 (Bound for Dense Validation Data and General Test Data). Suppose that S = [0, 1]d and Assumptions 2.1,

2.2 and 2.5. Let k⋆T2
∈ argmink∈T2

ρk + βδ∥wNN,k∥2 with βδ = ∆
√

1
2 log

2
δ . Then there exists a constant Kd,δ,∆,L such

that with probability at least 1− δ

|RQtest(h)− R̂NN,k⋆
T2
(h)| ≤ Kd,δ,∆,Lρ̃

d
d+2 , (93)

where ρ̃ = ζ(Sval
1:N val , [0, 1]

d).

Proof. For all, ρ̃ ≥ 1, the stated bound holds with K = L
√
d+ βδ . Therefore, moving forward, we assume ρ̃ < 1.

Choose k = min(⌈(γρ̃)− 2d
d+2 ⌉, N val) for some γ ∈ (0, 1/2) to be specified later. Because 2d

d+2 < d and γ ≤ 1
2 , this k

satisfies the conditions of Prop. D.13 so,

ρk ≤ ζk(A, [0, 1]d) ≤ 2min(⌈(γρ̃)− 2d
d+2 ⌉1/d, (N val)1/d)ρ̃+ ρ̃ (94)

≤ 2(1 + γρ̃)−
2

d+2 )ρ̃+ ρ̃ (95)

≤ 4γ−2ρ̃
d

d+2 . (96)

We now apply Thm. 5.1 and Prop. D.10 together with this bound to conclude with probability 1− δ

|RQtest(h)− R̂NN,k⋆
T2
(h)| ≤

√
2CL(4γ

−2ρ̃
d

d+2 +
1√
k
βδ) (97)

≤
√
2CL

(
4γ−2ρ̃

d
d+2 +min

(
γ

d
d+2 ρ̃

d
d+2 ,

1√
N val

)
βδ

)
. (98)

Choosing γ = 1
4 (for example) completes the proof.

D.5.3. CONSISTENCY OF SPATIAL NEAREST NEIGHBORS

We now restate and prove that the spatial nearest neighbor procedure we describe is consistent under infill asymptotics. This
follows as a corollary of Cor. D.14 since the infill assumption means that for any fixed δ, the upper bound in Cor. D.14 tends
to zero with the fill distance.

Corollary 5.2 (Our Method is Consistent under Infill Asymptotics). Let S = [0, 1]d. Take Assumptions 2.1, 2.2, 2.4
and 2.5. Let ρ̃ := ζ(Sval

1:N ,S). Let k⋆T2
∈ argmink∈T2

ρk + βδ∥wNN,k∥2 with δ = min(1, r) and r ∈ [cρ̃, Cρ̃] for some
constants (possibly depending on dimension) c, C > 0. Then the k⋆T2

-nearest neighbor risk estimator is consistent under
infill asymptotics.

Proof. Take δ = min(1, r). Under infill asymptotics, this tends to zero because r ≤ Cρ̃ and ρ̃ tends to 0 by assumption.
Cor. D.14 (or more precisely Eqn. (98) which makes the depend of the bound on δ explicit), with probability at least 1− δ

|RQtest(h)− R̂NN,k⋆
T2
(h)| ≤ Kd,∆,Lρ̃

d/(d+2)

√
log

1

r
(99)

≤ Kd,∆,Lρ̃
d/(d+2)

√
log

1

cρ̃
. (100)

The left hand side of this bound tends to zero with ρ̃, and so R̂NN,k⋆
T2
(h) converges in probability to RQtest(h).
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D.5.4. COMPUTATION OF AN APPROXIMATE FILL DISTANCE

The fill distance can be computed exactly by computing the vertices of a d-dimensional Voronoi diagram with the validation
points, then computing the maximum distance from each of these vertices to a point in the validation set. For problems
in 1 or 2 dimensions, this is feasible even with a large number of validation points, because algorithms for computation
of the Voronoi diagram can be done in nearly linear, O(N val logN val) time in 1 and 2 dimensions (Okabe et al., 2000,
Chapter 4). In higher dimensions, the worst case complexity of algorithms for computing Voronoi diagrams can be
O((N val)⌊d/2⌋ +N val logN val), and so for large number of points in more the computational cost can become quite high.

To avoid this computational cost, we instead use a simple space partitioning algorithm when S = [0, 1]d that is guaranteed
to give an approximation to the fill distance r satisfying ρ̃

2
√
d
≤ r ≤ 2ρ̃. The idea is to split the domain into 2d quadrants

and check if each quadrant contains a validation point. If it does, recurse, otherwise stop and keep track of the side length of
each quadrant, call it r. When the algorithm terminates it must be the case that there exists a partitioning of [0, 1]d into
cubes of side length 2r, with each cube containing at least one validation point. Because this is a partition, each point in the
spatial domain must also be within a cube, and so the fill distance is upper bounded by the maximum distance between two
points in a cube of side length 2r, i.e. ρ̃ ≤ 2r

√
d. Also, when the algorithm stops, a cube of side length r has been found

that does not contain any points. Therefore the fill distance is lower bounded by the distance from the center of this cube to
the closest validation point, which must be at least r/2. That is, ρ̃ ≥ r/2. Rearranging, we see that

ρ̃

2
√
d
≤ r ≤ 2ρ̃ (101)

as claimed. Finally, we address the computational complexity of this approach. The number of times we recurse is log2 r,
which is O(log 1/ρ̃), which is in turn O(logN val), because the fill distance cannot decrease faster than the inverse of the
covering number of [0, 1]d, which certainly does not decrease faster than 1/N val.

It remains to consider the complexity of deciding which orthant all of the validation points lie in, and partioning the points
by orthant. This can be done by looping over each of the dimensions, partitioning the points in the cube based on whether or
not that coordinate is on the left or right hand side of the current cube, which is O(N vald). Therefore, the total computational
complexity of this algorithm is not more than O(N vald logN val), which is nearly linear in N val.

D.6. Model Selection: Rates of Convergence of Spatial Nearest Neighbors

We now present an extended version of earlier discussion in App. C, as well as results on rates of convergence of spatial
nearest neighbors that provides some support to claims regarding model selection. As a special case, we consider grid
prediction (for example for assessing the global performance of a map constructed using a predictive method). We then
discuss rates of convergence in the more general setting earlier addressed in Cor. D.14.

D.6.1. A HEURISTIC DISCUSSION OF MODEL SELECTION WITH INCREASING AMOUNTS OF DATA

Suppose we have a fixed test task, and two data-driven algorithms for making predictions. We also suppose we have allocated
a fixed percentage of data for training, and the remainder for validation. Can we use spatial nearest neighbors to select
between the two method? As the amount of training data increases we would hope that both data-driven algorithms produce
better predictive methods. We therefore do not expect consistency to be sufficient to select between the two sequences of
predictive methods: if both are converging to the optimal estimator at (possibly different) rates as the amount of training
data increases, we want our error in estimating the risk of the two methods to converge to zero faster at a rate faster in the
amount of validation data than the rate that the slower converging method converges to the optimal predictor. This would
suggest we should be able to reliably identify the better sequence of predictive methods as the amount of data increases.

We will assume we are in the additive, homoskedastic error setting so that Y = f(S, χ(S)) + ϵ. We will assume that
the noise is bounded, and that squared loss is used. Finally, we will assume that training data is also generated following
this process. We will also assume that f is Lipschitz continuous. In this setting, minimax pointwise regression rates are
θ((N train)−

1
d+2 ) (cf. Tsybakov (2008, Theorem 2.3, Corollary 2.2) in one-dimension under a fixed grid design and Tibshirani

(2023, Examples 3.1, 3.2) for a multi-dimensional version with both fixed grid and random design. The latter assumes
Gaussian noise instead of bounded noise). Ideally, we would like a method for performing model selection to be able to
distinguish between a sequence of predictive methods converging at slower than the minimax optimal rate and a sequence of
predictive methods converging at the minimax rate and to be able to reliably select between two sequences of predictive
methods both of which are converging at the minimax rate, but with different constants.
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We will now present some finite sample and asymptotic bounds on the convergence of spatial nearest neighbors for a fixed
hypothesis then return to the question of model selection in light of these results.

D.6.2. RATES OF CONVERGENCE FOR GRID PREDICTION

We first consider the grid prediction task specifically, as this is a common problem in spatial analyses. For example, one
might want to reconstruct air temperature across the continental United States on a dense grid (map) based on remotely
sensed covariates observed on this grid and sparsely observed weather station data. We consider a test task grid prediction if
the data falls on a regular d-dimensional grid.

Assumption D.15 (Grid prediction). We say that a task is grid prediction if S = [0, 1]d and Qtest = 1
gd

∑
S∈{i/g:1≤i≤g}d δS

for some g ∈ N.

As long as the resolution of the map is high, both 1-nearest neighbor and spatial nearest neighbors provide reliable estimates
of the error.

Corollary D.16 (Bound on Estimation Error for Grid Prediction). With the same assumptions as Thm. 5.1 and additionally
Assumption D.15, with probability at least 1− δ

|RQtest(h)−R̂NN,1(h)|≤Lρ+βδ
√

max( 2d

M test , (8ρ)d). (102)

Also, with probability at least 1− δ

|RQtest(h)−R̂NN,k⋆
T2
(h)| ≤CL

(
ρ+ βδ

√
max( 2d

M test , (8ρ)d)

)
.

with ρ = ρ1, βδ = ∆
√

1
2 log

2
δ and CL = max(1, L).

See App. D.6.5 for a proof. The right-hand side of the bound is small as long as there is a validation point near each test
point and the resolution of the map is high. If the available data for validation is generated i.i.d. as in Prop. 3.3, then right
hand side becomes, up to logarithmic factors in N val, 1√

M test + (N val)min(−1/2,−1/d)

D.6.3. STATEMENT AND DISCUSSION OF RESULT FOR IID VALIDATION DATA AND GRID PREDICTION

Corollary D.17 (Convergence of Grid Prediction with Independent and Identically Distributed Validation Data). Suppose
that S = [0, 1]d, Sval

n
iid∼ P for 1 ≤ n ≤ N val with N val > 1 and P has Lebesgue density lower bounded by c > 0.

Additionally, take the assumptions of Cor. D.16. Fix δ ∈ (0, 1) and k ∈ {1, k⋆T2
}. Then there exists a constant Kd,δ,L,∆,c

that depends only on d, δ, L, c and ∆ such that with probability at least 1− δ

|R̂NN,k(h)−RQtest(h)| ≤ Kd,δ,L,∆,c

(
( logN val

N val )min( 1
2 ,

1
d ) + 1√

M test

)
.

Proof. From Prop. 3.3, there exists a constant γ depending on d, L, δ, c,∆ such that with probability at least 1− δ/2

ρ ≤ γ
(
logN val

N val

)1/d

. (103)

An upper bound on the bound in Cor. D.16 shows that for k ∈ {1, k⋆T2
} with probability 1− δ/2,

|R̂NN,k(h)−RQtest(h)| ≤ γCL max(βδ/28
d/2, 1)

(
ρ+

1√
M test

+ ρd/2
)
. (104)

Combining Eqn. (103) and Eqn. (104) via a union bound and using that a+ b ≤ 2max(a, b) completes the proof.

This matches the bound proven in Portier et al. (2023, Proposition 3) which assumed that the test data was independent and
identically distributed instead of on a regular grid. This rate of convergence is reasonably fast, particularly in low-dimensions.
In particular ignoring the dependence of the bound on M test, which is reasonable as the number of test points in map
prediction is often far larger than the number of available points for training and validation, it is faster than the minimax
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optimal rate of convergence for Lipschitz functions of θ((N train)−1/(d+2)) discussed earlier. We therefore would expect
both spatial nearest neighbors and 1-nearest neighbors to perform well for model selection for grid prediction tasks if a fixed
percentage of the data is used for training, and the remainder for validation. We emphasize we do not give a formal proof of
this, just a heuristic argument suggesting why this should be the case. To give a formal proof would involve at least ensuring
estimates of the risk estimation procedure hold uniformly over both sequences of predictive methods, and therefore involve
additional assumptions.

D.6.4. GENERAL PREDICTION TASKS

For general Qtest we can combine Cor. D.14 together with Prop. 3.3 to get some sense of the rate of convergence of the
spatial nearest neighbor method if the validation data is independent and identically distributed form a measure with density
lower bounded on [0, 1]d and the test task is fixed.

Corollary D.18 (Convergence of Spatial Nearest Neighbor with Independent and Identically Distributed Validation Data).
Suppose that S = [0, 1]d, Sval

n
iid∼ P for 1 ≤ n ≤ N val with N val > 1 and P has Lebesgue density lower bounded by c > 0.

Additionally, take the assumptions of Cor. D.14. Fix δ ∈ (0, 1). Then there exists a constant Kd,δ,L,∆,c that depends only on
d, δ, L, c and ∆ such that with probability at least 1− δ

|R̂NN,k(h)− R̂NN,k⋆
T2
(h)| ≤ Kd,δ,L,∆,c

(
( logN val

N val )
) 1

d+2

. (105)

Proof. From Prop. 3.3, there exists a constant γ depending on d, L, δ, c,∆ such that with probability at least 1− δ/2

ρ̃ ≤ γ
(
logN val

N val

)1/d

. (106)

Cor. D.14 implies that there exists a constant K ≥ 0 such that with probability at least 1− δ/2

|R̂NN,k(h)− R̂NN,k⋆
T2
(h)| ≤ Kρ̃ d

d+2 . (107)

Combining Eqn. (106) and Eqn. (107) completes the proof.

In this case, again up to logarithmic factors, Cor. D.18 means that SNN converges at the optimal rate of convergence for
Lipschitz functions. This means we do not necessarily expect to be able to distinguish between two sequences of predictive
methods that converge at the minimax rate, but we might expect to distinguish between two sequences of predictive methods
if one converges to the optimal predictor at much slower than the minimax rate. We again emphasize that we do not formally
show this, and to do so would would involve at least ensuring estimates of the risk estimation procedure hold uniformly over
both sequences of predictive methods, and therefore involve additional assumptions.

In contrast, both the holdout and 1-nearest neighbor methods are not even always consistent for risk estimation in this setting,
and therefore cannot be expected to reliably perform model selection.

D.6.5. GRID PREDICTION PROOFS

In order to prove the claimed upper bound on grid prediction Cor. D.16 we use Thm. 5.1 together with an upper bound on
the number of test points that lie within a ball of radius equal to the fill distance around any validation point. In order to do
this, we will use that all the points in a grid are well-separated. We therefore begin by recalling the definition of a packing of
a set, as well as a relationship between covering number and packing number.

Definition D.19 (Packing, Packing Number). Let A ⊂ Rd a compact set. A (finite) set B ⊂ A is called an ϵ-packing of A if
for all b, b′ ∈ B, ∥b− b′∥ > ϵ. The ϵ-packing number of a set A, M(ϵ, A) is the largest cardinality of an ϵ-packing of A.

Proposition D.20 (Packing and Covering Numbers Wainwright 2019, Lemma 5.5). For any A ⊂ Rd and ϵ > 0,

M(2ϵ, A) ≤ N(ϵ, A) ≤M(ϵ, A). (108)

We now restate and prove Cor. D.16.
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Corollary D.16 (Bound on Estimation Error for Grid Prediction). With the same assumptions as Thm. 5.1 and additionally
Assumption D.15, with probability at least 1− δ

|RQtest(h)−R̂NN,1(h)|≤Lρ+βδ
√

max( 2d

M test , (8ρ)d). (102)

Also, with probability at least 1− δ

|RQtest(h)−R̂NN,k⋆
T2
(h)| ≤CL

(
ρ+ βδ

√
max( 2d

M test , (8ρ)d)

)
.

with ρ = ρ1, βδ = ∆
√

1
2 log

2
δ and CL = max(1, L).

Proof. The second inequality follows from the first by Prop. D.12 and because 1 ∈ T2. We therefore focus on proving the
case k = 1.

In light of Thm. 5.1, it suffices to show that for these test location,

M testQtest(B(Sval
n , ρ)) = |B(Sval

n , ρ) ∩ {a/g : 1 ≤ a ≤ g}d| ≤ max
(
2d, 8dρdM test) . (109)

The set {a/g : 1 ≤ a ≤ g}d is a 1
g+ϵ -packing for any ϵ > 0, and so by the first inequality in Prop. D.20 and Prop. D.3

|B(Sval
n , ρ) ∩ {a/g : 1 ≤ a ≤ g}| ≤M( 1

(g+ϵ) , B(Sval
n , ρ)) ≤ N( 1

2ρ(g+ϵ) , B(0, 1)). (110)

Applying Wainwright (2019, Lemma 5.7, Equation 5.9) and taking the limit as ϵ→ 0+

lim
ϵ→0+

N( 1
2(g+ϵ)ρ , B(0, 1)) ≤ lim

ϵ→0+
(1 + 4(g + ϵ)ρ)d = (1 + 4gρ)d. (111)

By the binomial theorem and bounding the sum by the number of terms times the largest term

(1 + 4gρ)d ≤ 2d max(1, 4dgdρd) = max(2d, 8dM testρd). (112)

E. Additional Experimental Details
In this section, we provide additional details about the data, fitting procedures and validation procedures used in
Section 6. Code used in experiments is available anonymously at: https://anonymous.4open.science/r/
ICMLAI4Science-workshop/. Code is almost all implemented in Python3 (Van Rossum & Drake, 2009) (with a
small amount of r). Numpy is also heavily used for data generation and array manipulation (Harris et al., 2020).

In App. E.1 we give an overview of our method for estimating ground truth test risk in all experiments. In App. E.3 we
describe details of the synthetic experiment described in Section 6.1. In App. E.4 we provide additional details on the air
temperature data and tasks in Sections 6.2 and 6.5. In App. E.5 we provide additional details on the UK flat price prediction
experiment described in Section 6.3, while in App. E.6 we provide additional details for the wind speed prediction task
presented in Section 6.4.

E.1. Monte Carlo Estimation of Ground Truth Test Risk

We would like to compute the exact test risk across the M test test points:

RQtest(h) := (1/M test)

M test∑
m=1

E[ℓ(Y test
m , hχ(Stest

m ))
∣∣Stest

m , χ]. (113)

In all our examples where we report test risk, we have access to some sample (Y test
m )M

test

m=1 that we will use to construct an
estimator. Our plan is to instead use the empirical test risk R̂Qtest(h) as ground truth:

R̂Qtest(h) := (1/M test)

M test∑
m=1

ℓ(Y test
m , hχ(Stest

m )). (114)
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We would like to know how far off the empirical test risk is from the exact test risk. To that end, we observe that

R̂Qtest(h)−RQtest(h) = (1/M test)

M test∑
m=1

Zm, where (115)

Zm := ℓ(Y test
m , hχ(Stest

m ))− E[ℓ(Y test
m , hχ(Stest

m ))|Stest
m , χ]. (116)

By construction, if we assume the expectations exist, each random variable Zm has mean zero. We make two additional
assumptions. (1) We assume that the Zm are independent. (2) We assume that (almost surely) ∀m,Zm ∈ (a, b) for finite
a, b ∈ R. If the loss is bounded by ∆, then such an a, b exist satisfying b− a ≤ ∆; following Assumption 2.1, we use this
bound moving forward.

Under these assumptions, we can apply Hoeffding’s inequality to conclude that for any δ ∈ (0, 1), with probability at least
1− δ,

|R̂Qtest(h)−RQtest(h)| ≤ ∆

√
1

2M test log
2

δ
. (117)

If we are willing to make the two assumptions above, we next show that we can reach (high probability) conclusions about
the (true) relative quality of different estimators on a particular task if they pass a check: namely, we check if, for a small δ
(e.g. δ = 0.05), the right-hand side of Eqn. (117) is smaller than twice the difference between how much closer the “good”
estimator is to the estimate of ground truth than the “bad” estimate. To see why this check is sufficient, first observe the
following two applications of the triangle inequality:

|good− true| ≤ |good− t̂rue|+ |true− t̂rue| (118)

|bad− t̂rue| ≤ |bad− true|+ |true− t̂rue|. (119)

Using these two inequalities, we can write

|bad− true| − |good− true| ≥ |bad− t̂rue| − |good− t̂rue| − 2|true− t̂rue|. (120)

Therefore, to conclude

|bad− true| − |good− true| ≥ 0, (121)

it suffices for

|bad− t̂rue| − |good− t̂rue| ≥ 2|true− t̂rue|. (122)

Under the earlier assumptions, we see that Eqn. (122) is implied (with high probability) by

|bad− t̂rue| − |good− t̂rue| ≥ 2∆

√
1

2M test log
2

δ
. (123)

When discussing each experiment, we discuss the plausibility of the assumptions needed to make this argument when
justifying our estimated ground truth, as well as specific values for ∆ and M test and the resulting bound.

E.2. Computational Considerations

E.2.1. COMPUTATIONAL COMPLEXITY OF OUR METHOD

We focus on the case S = [0, 1]d with nearest-neighbors implented using a kd-tree. Computation of the approximate
fill distance is already discussed in App. D.5.4 and is shown to be O(dN val logN val). Construction of a kd tree on the
validation data is also O(dN val logN val). Once constructed, finding the nearest neighbor for each test point requires
O(logN val) computations of a d-dimensional Euclidean distance, meaning finding the neighbors is O(dM testk logN val).
Since O(logN val) values of k are tried in selecting k, this leads to a complexity not more than O(dM testN val(logN val)2).
We expect further improvements could be made by storing the nearest neighbor set for intermediate values of k, but we do
not pursue these.
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E.2.2. COMPUTATIONAL SETUP USED

All experiments were run on a CPU cluster with 36 Intel(R) Xeon(R) W-2295 CPU @ 3.00GHz CPUs and a total of 251 GB
of system RAM. In all experiments linear algebra operations operations were allowed to be multithreaded, and so at times
all 36 CPUs were used, even if fewer than 36 parallel jobs were run.

E.2.3. COMPUTATIONAL COST OF SYNTHETIC EXPERIMENT

Data Generation. Generating the point prediction synthetic data takes around 25 minutes using 10 parallel jobs and has a
peak memory usage of around 46GB.

Generating the grid prediction synthetic data takes around 33 minutes using 10 parallel jobs and has a peak memory usage
of around 71GB.

Running Experiment. Running the point prediction task takes around 25 minutes using 10 parallel jobs and has a peak
memory usage of around 32GB.

Running the grid prediction task takes around 27 minutes using 10 parallel jobs and has a peak memory usage of around
39GB.

E.2.4. COMPUTATIONAL COST OF BOOTSTRAPPED AIR TEMPERATURE EXPERIMENT

Data Generation Running the make file to download air station data takes on the order of 30 seconds and not more than
6GB of RAM after some data has been installed manually as described in the README file in the released code. Fitting the
model and computing residuals in order to generate bootstrapped datasets takes around 10.5 minutes and has peak memory
usage around 95GB.

Running Experiment Running the bootstrapped air temperature metro prediction task takes around 66 minutes with 20
parallel jobs and has peak memory usage around 225GB.

Running the bootstrapped air temperature grid prediction task takes around 8.5 hours with 3 parallel jobs and has peak
memory usage around 150GB.

E.2.5. COMPUTATIONAL COST OF UK HOUSE PRICE EXPERIMENT

Data Processing Downloading and processing the data takes around 7 seconds and has a peak memory usage of under
3GB.

Running Experiment Running the UK House price prediction task takes around 4.6 hours with 5 parallel jobs and has
peak memory usage around 70GB.

E.2.6. COMPUTATIONAL COST OF WIND SPEED

Data Processing Downloading and processing the data takes around 3.5 minutes and has a peak memory usage of under
12GB.

Running Experiment Running the wind spped prediction task takes around 8.5 hours with 15 parallel jobs and has peak
memory usage around 15GB.

E.2.7. COMPUTATIONAL COST OF REAL DATA AIR TEMPERATURE EXPERIMENT

Time to process the data has been previously described in App. E.2.4.

Running Experiment Running all the air temperature tasks takes around 10 minutes and has peak memory usage around
9GB.
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Figure 3: The validation sites (blue, clustered) for the first seed of the synthetic grid task. Panels from left to right and top to
bottom represent N val in the sequence (250, 500, 1000, 2000, 4000, 8000). Test sites (orange, gridded) are constant across
panels.

E.2.8. COMPUTATIONAL COST OF MODEL SELECTION EXPERIMENT

Generating data for and running the synthetic model selection experiment takes under a minute of time and under 4GB of
RAM.

E.3. Risk Estimation on Synthetic Data

In this section, we provide additional details and figures for our risk estimation experiment on synthetic data presented in
Section 6.1. App. E.3.1 describes the process by which we generate both datasets considered and shows an example of the
covariate and response spatial fields for each problem (Figs. 4 and 6). App. E.3.3 describes the procedure used to fit the
predictive methods to each dataset. App. E.3.4 describes the implementation of the risk estimation procedures we compare.
App. E.3.6 describes the metric reported, and Figs. 5 and 7 show the (signed) relative error of each estimator as we vary the
amount of validation data available.

E.3.1. SIMULATION DATA GENERATING PROCESS DETAILS

For both tasks, 100 datasets are generated following the process outlined below.

Grid data Generation of training and validation sites: The first training point is selected via generating a point uniformly
in [−0.5, 0.5]2, and making this the mean of a Gaussian mixture component, with standard deviation randomly sampled
between 0.05 and 0.15. This mixture is initially given weight 1, the first training point is then sampled from a Gaussian
with this mean and standard deviation, the and weight of this mixture is increased to 2. Subsequent points are sampled
sequentially. For each i between 2 and the total number of training and validation points, a weight of 1 is assigned to adding
a mixture component. The new point is then sampled from either one of the existing mixture components, or the new
mixture component, with probability proportional to the current weights assigned to each mixture component. The weight
of the mixture from which the points, w(t)

i(t), is then increased as

w
(t+1)
i(t) = w

(t)
i(t) +

1

w
(t)
i(t)

. (124)
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This is reminiscent of a Chinese restaurant process (Pitman, 2006, Section 3.1), but the weights are increased more slowly,
leading to more clusters being formed and less large clusters typically.

If a new mixture component is generated, a mean for the mixture component is generated on [−0.5, 0.5]2, and a standard
deviation is selected uniformly on [0.05, 0.15]. Conditional on the mixture component, the new point is sampled from a
Gaussian distribution with the components mean and standard deviation.

The first 1000 points generated this way are taken to be the training data, and the remaining N val points generated this way
are the validation data. An example of the training and validation data generated through this process are shown in the top
left of Fig. 4.

Generation of test data The test data is {(−0.5 + a/29,−0.5 + b/29) : 0 ≤ a, b ≤ 49}. That is, it is a regular grid on
[−0.5, 0.5]2. We generate 50 values of each response variable on each. grid point.

Generation of Covariates

The covariates are generated as a zero-mean Gaussian process with an isotropic Matérn 3/2 covariance function with
lengthscale 0.3 and scale parameter 1. That is, the covariance function is,

kχ(S, S
′) =

(
1 +

√
3∥S − S′∥2

0.3

)
exp

(
−
√
3∥S − S′∥2

0.3

)
. (125)

A small diagonal term (1e-12) is added to the diagonal of the covariance matrix to avoid numerical linear algebra errors.
Sampling is performed using Tensorflow probability (Dillon et al., 2017). We generate two covariates spatial processes via
this process χ = (χ(1), χ(2)).

Generation of Response Once the sites and covariates have been generated, the response variable is sampled from a Gaussian
process with zero mean. The covariance function of the Gaussian is a sum of two, 2 dimensional isotropic Matérn 3/2
kernels:

k(S, S′) = 0.5

(
1 +

√
3∥S − S′∥2

0.5

)
exp

(
−
√
3∥S − S′∥2

0.5

)
(126)

+
(
1 +
√
3∥χ(S)− χ(S′)∥2

)
exp

(
−
√
3∥χ(S)− χ(S′)∥2

)
. (127)

Independent, identically distributed Gaussian noise is added to the function values with variance 0.1.

Point Prediction Task Generation of training and validation sites: The training and validation points are sampled
independently and identically from a uniform distribution supported on [−0.5, 0.5]2. 1000 training points are used in all
experiments. The number of validation points is varied in {250× 2ℓ}5ℓ=0.

Generation of test site The test site is fixed to be the origin. We generate 45000 response values at the origin so that when
we compute the empirical risk we expect it to accurately reflect that actual risk.

Generation of covariates: The covariates are generated as a zero-mean Gaussian process with an isotropic squared
exponential covariance function with lengthscale 0.3 and scale parameter 1. That is, the covariance function is,

kχ(S, S
′) = exp

(
−∥S − S

′∥22
2 · 0.32

)
. (128)

A small diagonal term (1e-12) is added to the diagonal of the covariance matrix to avoid numerical linear algebra errors.
Sampling is performed using tensorflow probability (Dillon et al., 2017). We generate two covariates via this process
X = (X(1), X(2)).

Generation of response Once the sites and covariates have been generated, the response variable is sampled from a Gaussian
process with zero mean. The covariance function of the Gaussian is a sum of two, 2 dimensional isotropic squared
exponential kernels:

k(S, S′) = 0.5 exp

(
−∥S − S

′∥22
2 · 0.52

)
+ exp

(
−∥χ(S)− χ(S

′)∥2
2

)
. (129)

Independent, identically distributed Gaussian noise is added to the function values with variance 0.1.
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Figure 4: Data for the grid prediction task. An example of a single sample of the training and validation points (with 1000
training points and 250 validation points) is shown in the top left. The top right and bottom left show the covariates as a
function of space, while the bottom right shows the mean of the response variable as a function of space.
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Table 2: Value of k⋆T2
chosen by minimizing the bound in the grid prediction task. Because the test data is well separated,

the variance of the estimator is small even when k is small. As a result the value of k that minimizes the upper bound is
generally small, even as the number of validation points increases.

Number of Validation Points

k⋆
T2

250 500 1000 2000 4000 8000
1 82 85 81 82 66 50
2 15 15 19 18 34 41
4 3 0 0 0 0 9

Table 3: Value of k⋆T2
chosen by minimizing the bound in the point prediction task. In this task, there is generally a

bias-variance trade-off that must be balanced. As a result the value of k that minimizes the upper bound increases as the
amount of available validation data increases.

Number of Validation Points

k⋆
T2

250 500 1000 2000 4000 8000
16 7 0 0 0 0 0
32 93 33 0 0 0 0
64 0 67 99 14 0 0
128 0 0 1 86 98 0
256 0 0 0 0 2 100

E.3.2. LOSS FUNCTION

We use truncated, squared loss,

ℓ(a, b) = min(1.0, (a− b)2), (130)

which is bounded by 1.0. The empirical risk is calculated as in Eqn. (114).

E.3.3. MODEL FITTING

We fit a Gaussian process regression model to using only the first covariate χ(1) to the training data. The prior is taken to be
the same as the data generating process, but with (only) χ(1) in place of (χ(1), χ(2)) in the second kernel in Eqn. (127) and
Eqn. (129) for the two datasets respectively. The mean of the posterior process is used for predictions, and is calculated
using GPFlow (Matthews et al., 2017).

E.3.4. IMPLEMENTATION OF RISK ESTIMATION

The holdout is implemented by taking an (unweighted) average of the loss on each validation point. Both nearest neighbor
methods are implemented using scikit-learn (Pedregosa et al., 2011) with kd-trees and Euclidean distance. For k⋆T2

nearest neighbors, nearest neighbors is performed for all k that are powers of 2 less than N val, and the value of k with the
smallest bound is used for risk estimation. This is done with δ = r, with r calculated as in App. D.5.4, and ∆ = 1. Table 2
and Table 3 show the values of k chosen for grid and point prediction respectively. For the grid prediction task, k⋆T2

tends to
be small, even as the size of the validation set becomes large. This supported by Cor. D.16, since even 1-nearest neighbor
reliably estimates risk in this setting. For the point prediction task, k⋆T2

grows with N val.

E.3.5. MONTE CARLO ESTIMATION OF TEST RISK

Following the argument in App. E.1, we use the empirical test risk Eqn. (114) in place of the test risk as ground truth in
synthetic experiments. The assumption that (Zm)M

test

m=1 are independent holds by the description of the data generating
process, because the (Ym)M

test

m=1 are conditionally independent and Zm is a function of Ym. The assumption that Zm is almost
surely bounded holds with ∆ = 1 by our choice of truncated squared loss. Further, in both synthetic experiments, we take
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Figure 5: The relative error in estimating the empirical risk for each method is plotted against the number of validation
points used for the grid prediction task. The holdout is biased, even for large N val. The 1-nearest neighbor and k⋆T2

-nearest
neighbor estimates both have small relative error for large N val.

M test = 45000. Combining these gives that with probability at least 0.95

|R̂Qtest(h)−RQtest(h)| ≤
√

1

2× 45000
log

2

0.05
≤ 0.0065. (131)

Fig. 1 shows the absolute difference between each estimator and the empirical test risk across 100 seeds. We see that the
difference between the estimators is generally larger than twice Eqn. (131), and so by the argument in App. E.1, we expect
our estimate of ground truth to be accurate enough that the difference in performance of the methods is not simply due to
error in estimating the ground truth.

E.3.6. METRICS REPORTED AND ADDITIONAL FIGURES

Figs. 5 and 7 show the relative errors of each estimation, calculated as

R̂Qtest(h)− R̂(h)
R̂Qtest(h)

. (132)

From this, we can see that the holdout method has a bias in both cases that does not appear to go away as the number of
validation points increases. In contrast, the 1-nearest neighbor method primarily suffers due to a variance issue when it fails
to converge. We again see in both instances the k⋆T2

-nearest neighbor approach appears to concentrate around zero error as
the number of validation points increases.

E.4. Air Temperature Tasks

We now provide additional details about data source, pre-processing, model fitting and risk estimation for the air temperature
dataset. These are identical between the real response experiment and the partially synthetic experiment, except for the
bootstrapping procedure described in App. E.4.6. We also provide additional experimental results on a grid prediction task
for both the bootstrapped and original datasets.
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Figure 6: Data for the point prediction task. An example of a single sample of the training and validation points (with 1000
training points and 250 validation points) is shown in the top left. The top right and bottom left show the covariates as a
function of space, while the bottom right shows the mean of the response variable as a function of space.
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Figure 7: The relative error in estimating the empirical risk for each method is plotted against the number of validation
points used for the point prediction task. The holdout has a small but non-negligible bias. The 1-nearest neighbor method
has a small bias, but large variance. The nearest neighbor procedure with k⋆T2

neighbors has small relative error for large
N val.

E.4.1. DATA SOURCES

The land surface temperature used is from MODIS Aqua (Wan et al., 2021) and is monthly average land surface temperature
on a 0.05 degree grid. We download monthly average weather station data from the Global Historical Climatology Network
(Menne et al., 2018). Latitude and longitude of major United States (US) urban areas are from the 2023 US census gazetteer
(United States Census Bureau, 2023). All of these datasets are produced in large part by US government agencies (NASA,
NOAA and the Census). While we could not find specific license information, we understand these datasets to be public
domain following section 105 of the Copyright Act of 1976.

E.4.2. DATA PRE-PROCESSING

We assign the land surface temperature at the nearest point (using a spherical approximation to distance between points) to
each weather station. The nearest point is found using the scikit-learn implementation of nearest neighbor algorithm
using the ‘ball-tree’ (Omohundro, 2009) and ‘Haversine’ metric. Temperatures are converted to Celsius from Kelvin. We
remove all rows where the Land Surface temperature is not available. We use the weather station data uploaded to GHCNM
as of January 15, 2024. We filter out weather stations outside of the United States (based on the station ID). We also filter out
stations with a non-empty quality control flag or no temperature recorded for January 2018 (the month we consider). Finally,
we remove stations in Hawaii or Alaska to focus on the continental United States. In total, after this processing, there are
6422 weather stations. We use 70% of the stations for fitting the models, and holdout the remaining 30% estimates. When
building the test sites, we remove points outside the United States based on a reverse geocoding lookup with Thampi (2015)
to the nearest city. This does not create an exact boundary (since it is based on the nearest city or town and not the country
in which the latitude and longitude is based in) but is a good proxy for whether or not a point is in the United States. Fig. 8
of the available weather stations for model fitting and validation, colored by monthly average temperature in January 2018.

E.4.3. LOSS FUNCTION

We consider a truncated absolute value as the loss function, ℓ(a, b) = min(5.0, |a − b|). This means we are primarily
interested in the quality of the model predictions when it is relatively close to the actual response, and do not consider
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Figure 8: Weather stations used in the air temperature prediction task we considered, colored by average temperature in
January 2018 in degrees Celsius.

differences in predictions that are, for example, 8 degrees Celsius versus 10 degrees Celsius wrong meaningfully different.
While the choice of 5 degrees is arbitrary, this is motivated by applications in which we might have some allowable tolerance
for the quality of a prediction beyond which the prediction is no longer useful (and so it doesn’t matter how bad it is).

E.4.4. MODEL FITTING

Inspired by Hooker et al. (2018), we fit a geographically weighted least squares regression model using the land surface
temperature at day and night. In particular, we fit an affine model, with the coefficients, β(S) depending on the location that
will be predicted at. β(S) is selected by solving the weighted least squares problem,

β̂(S) ∈ arg min
(b0,b1,b2)∈R3

ntrain∑
i=1

wi(S)(Y
train
i − (b0 + b1X

train,1
i + b2X

train,2
i ))2, (133)

with Y train
i the temperature at station i, X train,1

i the daytime land surface temperature X train,2
i the nighttime land

surface temperature both at the closest satellite point to station i and wi(S) = exp(−dhaversine(S,S
train
i )2

2ℓ2 ) and
dhaversine the Haversine (great circle) distance between the points. ℓ ≥ 0 is a parameter, and we select it from
{25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 300.0, 400.0, 500.0, 750.0, 1000.0}km via leave-one-out cross-validation on the
training data with mean squared error. We perform leave-one-out cross-validation (without additional weighting).

We also consider a simple baseline model fit using only the weather station data. We fit a Gaussian process with zero prior
mean and Matérn 3/2 kernel to the weather stations with covariate the spatial locations in latitude and longitude converted to
radians, and a Gaussian likelihood model. We fit the parameters of the kernel using L-BFGS to attempt to maximize the
marginal likelihood of the parameters. The parameters fit are two lengthscale parameters (one for each spatial dimension), a
kernel scale parameter, and a likelihood variance parameter. The mean is removed from the training data prior to fitting, the
kernel lengthscales are set to to standard deviation of each covariate and the kernel variance parameter is set to equal the
variance of the training response data, and the likelihood variance parameter is set to equal 0.1-times the variance of the
training response variable. A maximum of 15 iterations of L-BFGS are run.
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E.4.5. RISK ESTIMATION DETAILS

The holdout is implemented as in previous experiments (App. E.3.4). We estimate the standard error of the holdout
empirically by computing the sample standard deviation of the sum of the losses,

σ̂2 =

 1

N val(N val − 1)

N val∑
j=1

ℓ(Y val
j , hχ(Sval

j ))2

1/2

. (134)

Table 1 reports the holdout estimate ± two standard deviation.

The nearest neighbor methods are implemented using the scikit-learn implementation with Haversine distance and
the ball-tree algorithm. k⋆T2

is selected with δ = 0.1 and ∆ = 5◦C and a Lipschitz constant of 1◦C/100 km. We use a fixed
δ since we only discuss a method applicable to estimating fill distance on the unit cube, not on a subset of the sphere.

E.4.6. BOOTSTRAPPING OF RESIDUALS

In order to generate many datasets with a realistic synthetic response variable where we have access to ground truth we:

1. Fit a Gaussian process regression model to all the available weather station data. We use a Matérn 3/2 kernel with
zero prior mean on the weather station data with the (spatial) mean temperature removed. Parameters of the kernel are
selected via maximum likelihood.

2. Compute the empirical distribution of the residuals of the mean of these predictions.

3. For each seed we then use the same spatial locations and covariates, and generate the response surface at any point in
space by computing the mean of the Gaussian process regression model fit and adding a sample from the empirical
distribution of the residuals of the actual data.

We can then directly estimate the test risk via generating many Y test at each spatial location (we use 1000 realizations for
each city in the 5-metros task) and 1 for each grid point in the grid task (since the error is averaged over test sites this still
results in an estimator that is concentrated) in this manner and forming a Monte Carlo estimate as in App. E.1.

E.4.7. ESTIMATION OF GROUND TRUTH IN BOOTSTRAPPED EXPERIMENT

Following the argument in App. E.1, we use the empirical test risk Eqn. (114) in place of the test risk as ground truth in
synthetic experiments. For the assumption that (Zm)M

test

m=1 are independent to hold it is sufficient for Y test
m to be independent,

conditioned on the spatial location at which it is observed. This holds based on the data generating process used to construct
the synthetic responses: since Y test

m is a noisy observation of the smooth function we fit to the weather stations, plus noise
sampled independently from the distribution of residuals. Because the loss is truncated MAE, the Zm are surely bounded by
5. We use 10000 samples at each of the 5 test location in estimating the risk. Using these numbers in Eqn. (117), we arrive at

|R̂Qtest(h)−RQtest(h)| ≤ 5

√
1

2× 50000
log

2

0.05
< 0.031. (135)

Following the argument in App. E.1, we expect our estimate of ground truth to be good enough to distinguish between the
quality of models whose absolute error from the estimated ground truth differs by more than 2 × 0.031 = 0.062. Fig. 9
shows these absolute errors. We see that for many of the seeds, the difference between the performance of 1NN (orange)
and SNN and the holdout is greater than 0.174. Given that the earlier argument is quite conservative (in the sense that
Hoeffding’s inequality is likely to be loose), we therefore can attribute the difference in performance of the methods to
indicate that SNN and the holdout are giving better estimates of the ground truth test risk, and the observed difference is not
due to error in our estimation of the test risk.

For the grid prediction task the assumptions are similar, but M test = 341,628 as this is the number of points on the
map. Because the assumptions are satisfied by construction of the synthetic data (as in the 5-metro prediction task), with
probability 1− δ

|R̂Qtest(h)−RQtest(h)| ≤ 5

√
1

2× 341628
log

2

0.05
< 0.012. (136)
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Figure 9: Absolute error in estimating the truncated mean absolute error in the air temperature dataset with bootstrapping.

Table 4: Estimates of risk given by each method. All three methods agree reasonably well (within ±2 standard deviation of
the estimate given by holdout for both geographically weighted regression and spatial regression in this task. In particular,
all three methods suggest that the geographically weighted regression method has lower risk on this task.

GWR Spatial GP
Holdout 0.83± 0.03 0.90± 0.04

1NN 0.80 0.88
SNN 0.80 0.88

We therefore expect our estimate of ground truth to be very accurate, although we see in Fig. 10 that the methods all perform
well in estimating the test risk on this task, and so there is likely not a meaningful difference in which approach is used to
perform validation.

E.4.8. RESULTS FOR GRID PREDICTION WITH BOOTSTRAPPED DATA

Fig. 10 shows the results for holdout, 1-nearest neighbor and SNN with the test set each grid point in the map that is located
in the continental United States. All 3 methods lead to reasonably accurate estimates of the mean absolute error on this
prediction task (within 0.1 degrees of the ground truth error). Based on our theory, we generally expect 1NN and SNN to
have small error in grid prediction tasks (at least with sufficient data and the infill assumption being satisfied), while for the
holdout it depends on the particular predictive method and distribution of test and validation sites. In this case, it appears for
both prediction methods the bias introduced by the use of the holdout is relatively small.

E.4.9. RESULTS FOR GRID PREDICTION WITH REAL DATA

Table 4 shows the results for holdout, 1-nearest neighbor and SNN with the test set each grid point in the map that is located
in the continental United States. We see good agreement between all three method. This is expected for 1-nearest neighbor
and SNN based on earlier theory (App. D.6.5).

E.5. UK Housing Experiment

We provide additional details for the UK flat price prediction task presented in Section 6.3.

E.5.1. DATA SOURCES AND PRE-PROCESSING

We download 2023 price paid data for England and Wales from HM Land Registry (2023). This
data is subject to a UK Open Government License (https://www.nationalarchives.gov.uk/doc/
open-government-licence/version/3/), which requires citation of the data, but allows both commercial and
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Figure 10: Error in estimate of mean absolute error of the Gaussian process regression predictions (left) and the geographi-
cally weighted regression predictions (right) for the holdout (blue), 1NN (oragne) and SNN (green) on a grid prediction task.
We see that all 3 methods result in accurate estimates (within 0.1 degrees Celsius) of the mean absolute error on this task for
both prediction methods, and suspect it is unlikely meaningfully different conclusions would be drawn from use of any of
the methods in this application.

non-commercial uses. These records contain postal codes for each property sold, the type of property sold, town or city,
price paid for the property. We use the type of property variable to filter out all properties that are not flats, and only consider
additions (not replacements or deletions) to the dataset and “standard” price paid data (not repossessions, buy-to-lets or
other sales labelled as non-standard). Noting that a postal code in the UK corresponds to a very small geographic area,
we obtain latitude and longitude data for each sale by looking up the postal code coordinates using the National Statistics
Postcode Lookup (Office Of National Statistics, 2024), which we understand to be a product of the UK Census and therefore
also subject to an Open Government License. We convert from northing and easting to latitude and longitude using R. We
log transform the price variable prior to model fitting as we expect price paid to be non-negative and highly skewed, and so a
Gaussian (process) prior would otherwise be almost certainly inappropriate.

E.5.2. MODEL FITTING

We fit hyperparameters of the variational Gaussian process regression by evidence lower bound maximization.

Model Specification We fit a Gaussian process regression model with prior covariance specified by a sum of two Matérn
3/2 kernels and a zero prior mean on the mean centered log price paid data. We use a sum of Matérn 3/2 kernel in place
of the sum of RBF kernel used in Hensman et al. (2013) as we expect there to be places where (log) property prices vary
quickly in space, and so the smoothness properties implicitly assumed in using an RBF kernel may be inappropriate. We
use 2000 inducing points for the variational approximation. The locations of these points are optimized jointly with model
parameters when maximizing the evidence lower bound. We use the closed form for the optimal variational posterior (given
a set of inducing points) provided in Titsias (2009), and perform maximization of the evidence lower bound using L-BFGS.

Initialization The locations of the inducing points are initialized by the greedy procedure suggested in Burt et al. (2020),
which is essentially equivalent to a partially pivoted Cholesky decomposition recommended earlier in the Gaussian process
approximation literature (Foster et al., 2009). The initial prior variance of both kernels is set to be equal to the variance in
the training data; the lengthscales of one kernel (intended to model regional price trends) are initialized to twice the standard
deviation in the location data (in radians), while the scale of the other kernel (intended to model local trends) is initialized
to half the standard deviation in the location data. The likelihood standard deviation is initialized to be 0.1× the standard
deviation in the log price paid in the training data.
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Figure 11: Absolute error of estimates (relative to Monte Carlo estimate of ground truth truncated mean absolute error) for
the holdout (blue), 1NN (green) and our SNN (orange). We see that the holdout has significantly higher error in estimating
the test risk in this task, which is caused by bias in the estimate provided.

E.5.3. ESTIMATION OF GROUND TRUTH

We next describe why we might expect empirical test risk to provide a reasonable estimate of ground truth in this problem,
and in particular we discuss the assumptions that justify the use of empirical test risk in relation to App. E.1. We consider
a truncated loss ℓ(a, b) = min(0, 106), and so Zm is almost surely bounded by 106. The assumption that the (Zm)M

test

m=1

are independent would be implied by independence of (Ym)M
test

m=1 that is: that given the location at which a flat is sold,
any remaining randomness in the observed sale prices is independent. Concretely, we might think of the randomness in
sales price, ϵtest

m in our model, as coming from aspects of the sale process of the house, such as who happens to see the
advertisement for a house, and we assume these are independent for each house when constructing our estimate of the
ground truth.

If the conditional independence assumption proposed above holds, then following App. E.1 we have that

|R̂Qtest(h)−RQtest(h)| ≤ £1000000

√
1

2× 1000
log

2

0.05
< £43000. (137)

Therefore, under this assumption, we might would expect our estimate of ground truth to be at least good enough to tell the
difference (in the sense of which is closer to the actual ground truth) between predictors that differ in absolute error from the
ground truth estimate by more than 2×£43, 000 = £86, 000. Fig. 11 shows the absolute error of the three methods. We
see that the error in the estimate provided by the holdout is on the order of £150, 000, while the error in 1NN and SNN are
closer to £25000 in most seeds. Given this large difference and earlier discussion, we do not expect that this error arises
from difficulties in estimating the ground truth, but instead arises from actual differences in the qualities of the estimator.

E.5.4. RISK ESTIMATION DETAILS

Holdout, 1NN and SNN are run as in the air temperature experiments (App. E.4.5). In particular, we use a failure probability
of δ = 0.1 for SNN and nearest neighbor calculations are done with respect to Haversine distance to account for Earth’s
curvature. We use a fixed δ since we only discuss a method applicable to estimating fill distance on the unit cube, not on
a subset of the sphere. ∆ = £1, 000, 000 is used in selecting the number of neighbors as this is an upper bound on the
truncated loss. We use a Lipschitz constant of £1,000/km as £1/km seems implausibly small.

E.6. Wind Speed Prediction Experiment

In this section, we provide additional details for the wind speed prediction experiment discussed in Section 6.4 of the main
text.
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E.6.1. DATA SOURCES AND PRE-PROCESSING

We download daily wind speed readings from weather stations from the Global Historical Climate Network (Menne et al.,
2012). As this dataset was constructed by NOAA employees, we understand it to be public domain following section 105 of
the Copyright Act of 1976. We filter out weather stations outside the continental US, as well as any weather stations that do
not contain daily average wind speed readings. We look only at wind speed data from January in the prediction task, and
years 2000–2024. There is a weather station at Chicago O’Hare which we remove from the training and validation data and
use as the test set.

For each replicate used to form Fig. 10 we split off a training set containing 80% of weather stations, and a validation set
containing the remaining 20%. The number of observations in the training and validation set varies (because different
weather stations may be online for a different number of days in January in previous years), but this leads to on the order of
580000 training observation and 126000 validation observations. Each training and validation point is a triple containing
latitude, longitude and average wind speed. We perturb the latitude and longitude (in degrees) of validation points by a
Gaussian random variable with standard deviation 10−12, which is essentially equivalent to using random tie-breaking in the
nearest neighbor algorithms. We expect this has a significant impact on 1NN compared to the version discussed in the paper,
because there may be many observations from the nearest weather station to Chicago O’Hare. While this would unlikely
be done in practice, random tie-breaking, or tie-breaking by selecting the first nearest neighbor according to some other
ordering are common and would lead to similar outcomes as the results presented here (but higher variance than averaging
over all neighbors that are equally close). The latitude and longitude are then converted to radians for the analysis.

E.6.2. LOSS FUNCTION

We use truncated mean squared error as the loss function, ℓ(a, b) = min(25, (a− b)2).

E.6.3. ESTIMATION OF GROUND TRUTH

Following the argument in App. E.1, we use the empirical test risk Eqn. (114) in place of the test risk as ground truth in
synthetic experiments. The assumption that (Zm)M

test

m=1 are independent. It is sufficient for Y test
m (the wind daily wind speeds)

to be independent, conditioned on the spatial location at which it is observed. This is likely not the case, as we would
expect average wind speed in consecutive days exhibit at least some dependence. However, if the wind speed decorrelates
reasonably rapidly over time, we would expect similar arguments to hold, possibly with fewer effective samples.

Because the loss is truncated mean squared error, the Zm are surely bounded by 25m2/s2. We use 775 samples in estimating
the risk. Using these numbers, and under the assumption that wind speed at a location is independent of the wind speed on
previous days, in Eqn. (117), we arrive at

|R̂Qtest(h)−RQtest(h)| ≤ 25m2/s2
√

1

2× 775
log

2

0.05
< 1.22m2/s2. (138)

Comparing to Fig. 12, we see that this application of Hoeffding’s inequality is not sufficient to justify that the estimate of
ground truth is accurate enough to attributed the observed better performance of SNN to (actually) better estimation of the
ground truth as opposed to inaccuracies of our Monte Carlo estimate of the test risk. However, we expect this is largely
due to looseness is Hoeffding’s inequality and, given that a large difference is observed in most seeds, it would be very
surprising if this was only due to error in estimation of the ground truth which is independent across seeds.

E.6.4. MODEL FITTING

A gradient boosted machine is fit using LightGBM (Ke et al., 2017) with default parameters expect for the number of leaves
(set to 127) and the number of estimators (set to 100).

E.6.5. RISK ESTIMATION PROCEDURES

Holdout, 1NN and SNN are run as in the air temperature experiments (App. E.4.5). In particular, we use a failure probability
of δ = 0.1 for SNN and nearest neighbor calculations are done with respect to Haversine distance to account for Earth’s
curvature. We use a fixed δ since we only discuss a method applicable to estimating fill distance on the unit cube, not on a
subset of the sphere. A Lipschitz constant of 1(m2/s2)/km is used for selecting the number of neighbors.
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Figure 12: Absolute error in estimating (approximate) test risk in the wind speed experiment for the holdout (blue), 1NN
(orange) and our SNN (green). It appears that SNN has the smallest error in estimating the ground truth, although the
approximate ground truth we compute via Monte Carlo estimate is not entirely theoretically justified. However, due to the
relatively large differences across most seeds, we still expect the difference is indicative of better performance of SNN.

E.7. Model Selection on Synthetic Data

We next see that SNN and 1NN are able to select the model with lower test risk in a model selection task, but the holdout
systematically picks the wrong model. We repeat the model selection problem 100 times. In each repetition, we have
N train = 100 and a max N val = 75. In our analysis, we will consider validation subsets of size N val ∈ {5ℓ}15ℓ=1. We generate
independent test, validation, and training data as follows; see Fig. 13.

U j
i ∼ U([−0.5, 0.5]), Sj

i =
√
U j
i + 0.5, j ∈ {train, val}

Stest
m = m/20− 0.5, 0 ≤ m ≤ 20, ϵji ∼ U([0, 0.1]),
Y j
i = |Sj

i |+ ϵji j ∈ {train, val, test}, (139)

We compare two predictive methods: h0(S) = 0.25 and h1(S) = β⊤
1 S + β0, with (β1, β0) fit by minimizing the mean

absolute residual on the training data. Fig. 13 shows the data and predictions of both models (as functions of space). We use
the loss function ℓ(a, b) = |a− b|, which is bounded for this problem because both the hypotheses and the response variable
are bounded on [0, 1].

Across all seeds, h0 has the lower empirical test risk; h1 makes large errors on the test points near 0 because most of the
training data is in [0, 0.5]. Since most of the validation data also clusters near 1, we expect the holdout to struggle due to
bias. Our arguments in App. C lead us to expect both SNN and 1NN should perform well on this task when given sufficient
validation data.

We say an estimator of the risk, R̂, selects h0 if R̂(h0) < R̂(h1). We plot the percentage of times each method (correctly)
selects h0 as a function of the number of validation points in Fig. 14. When the validation set is small, all estimators select
the model with lowest test risk (h0) less than half the time. For the nearest neighbor methods, we expect that when there are
few or no spatial locations less than 1, weighting cannot fix the estimate. However, when the number of validation points is
large, the nearest neighbor methods consistently (correctly) select h0. By contrast, the holdout consistently (incorrectly)
selects h1, even though h1 has higher test risk. See App. C for full experiment details.

Data Generation The data generation is fully described by Eqn. (139).
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Figure 13: Training (blue), validation (orange), and test (green) data for a single seed of the model selection experiment.
The dashed red line depicts predictive method h0, and dashed black shows h1.
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Figure 14: The percentage of times each estimator (correctly) selects the model with lower empirical test risk (h0), out of
100 seeds as a function of N val. Estimators include the holdout (blue), 1NN (orange), and our SNN (green).
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Model Fitting We consider two models. The first is a constant predictor that predicts 0.25. The second is an affine model
(a linear model with an intercept) fit by minimizing the mean absolute error from the line to the training points. This is fit
using the Scikit-learn quantile regression with the (default) “HiGHS” solver (Huangfu & Hall, 2015).

Estimation of Risk The validation estimates used are calculated in the same as the synthetic experiments outlined
previously in App. E.3.4. We use ∆ = 1 in the bound when selecting k⋆T2

, even though the absolute value loss used can be
larger than 1. We don’t expect this to have a significant impact on the results, as the upper bound we minimize is already
misspecified in a similar way by not using the actual Lipschitz constant of the function. We again use δ = 0.1 when selecting
k⋆T2

.
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