Under review as a conference paper at ICLR 2022

LOCAL-GLOBAL SHIFTING VISION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work has shown the potential of transformers for computer vision appli-
cations. An image is first partitioned into patches, which are then used as input
tokens for the attention mechanism. Due to the expensive quadratic cost of
the attention mechanism, either a large patch size is used, resulting in coarse-
grained global interactions, or alternatively, attention is applied only on a local
region of the image at the expense of long-ranged interactions. In this work,
we propose an approach that allows for both coarse global interactions and
fine-grained local interactions simultaneously. At the core of our method is
the application of local and global attention layers. In the local attention layer,
we apply attention to each patch and its local shifts, resulting in virtually lo-
cated local patches, which are not bound to a single, specific location. These
virtually located patches are then used in global attention layers, where global
coarse interactions are learned, using a pyramid of attention layers applied on
decreasing resolution inputs. The separation of the attention layer into local
and global counterparts allows for a low computational cost in the number of
patches, while still supporting data-dependent localization, as opposed to the
static positioning in other visual transformers. Our method is shown to be su-
perior to both convolutional and transformer-based methods for image classi-
fication on CIFAR10, CIFAR100, and ImageNet.

1 INTRODUCTION

Convolutional neural networks have dominated computer vision research and enabled signifi-
cant breakthroughs in solving many visual tasks, such as image classification (Krizhevsky et al.,
2012} [Simonyan & Zisserman, [2014) and semantic segmentation (Long et al., [2015). Typically,
CNN architectures begin by applying convolutional layers of a small receptive field for low-level
features, resulting in local dependencies between neighbouring image regions. As processing
continues and the features become more semantic, the effective receptive field is gradually in-
creased, capturing longer-ranged dependencies.

Inspired by the success of Transformers (Vaswani et al., 2017) for NLP tasks, a new set of
attention-based approaches have emerged for vision-based processing. The Vision Transformer
(ViT) (Dosovitskiy et al.,2020) is the first model to rely exclusively on the Transformer architec-
ture to obtain competitive image classification performance. ViT divides the input image into
patches of a fixed size and considers each patch as a token to which the transformer model is
applied. The attention mechanism between these patches results in global dependencies be-
tween pixels, already at the first transformer layer. Due to the quadratic cost of the attention
mechanism (Vaswani et al., 2017; Dosovitskiy et al.,|2020) in the number of patches, a fixed-size
partitioning is performed. As a result, ViT does not benefit from the built-in locality bias that
is present in CNNs: neighbouring pixels within a patch may be highly correlated, but this bias
is not encoded into the ViT architecture. That is, ViT encodes inter-patch correlations well, but
not intra-patch correlations. Second, each image may require a different patch size and location,
depending on the size and location of objects in the image.

Recent approaches (Liu et al.,2021;|Zhang et al.}|2021;|Wang et al.}|2021;|Wu et al.,2021) attempt
to alleviate the need for this fixed-size partition, thus enjoying some of the benefits of CNNs.
PvT (Wang et al.}[2021), for instance, applies attention in a pyramid-like fashion, with increasing
patch size at each level. However, an initial fixed partition of the image into non-overlapping
patches is still performed, so finer sub-patch correlations are still not captured. In another line
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Method | Patch Size | Embedding |  #Tokens | #Levels | Complexity | Region
ViT 16 x 16 Linear B =14? 1 O(B?) Global
DeiT 16x 16 Linear B =142 1 O(B?) Global
PVT 4x4 Linear B =562 4 0(B?) Global
CvT* 7x7 Convolution B =562 3 0(B?) Global
NesT' 4x4 Convolution B=42 3 O(B?) Local
Swin' 4x4 Convolution B="72 4 O(B?) Local
Ours 4 x4 Convolution | B=562, T=10 4 O(B-T?+ B?%) | Global

Table 1: A comparison of our method to baselines on key elements. We assume an input resolu-
tion of 224 x 224, as used for ImageNet (see Tab. for more details). We consider the Patch Size
used for the division of the image, type of patch Embedding, number of tokens (#Tokens) result-
ing from the patch embedding (for the first level of the hierarchy), and number of levels (#Levels)
used in the hierarchy. We consider the Complexity of the attention step in the number of tokens
as well as the Region on which attention is applied - either over a local region or over the entire
image (global). B stands for the number of tokens. In our method, we also consider T variants
for each patch, which results in a total of B x T tokens. CvT* considers overlapping patches (a
stride of 4 is used) and so the resulting number of tokens is large with respect to patch size. In
NesT' and Swin', attention is applied only to a local number of patches, so the number of tokens
is small with respect to patch size.

of work NesT (Zhang et al.} |2021) and Swin (Wang et al.} [2021), apply attention in a localized
fashion, over local regions in the image. This results in the inability to capture global correlations
between distant patches in the image. CvT (Wu et al., 2021) considers overlapping patches, thus
capturing both inter-patch correlations and intra-patch correlations. As a result, a large number
of patches is considered, and CvT does not scale well to large images due to the quadratic cost of
the attention mechanism in the number patches.

Our approach combines the locality bias of CNNs, for both coarser and finer details, with the
ability to attend globally to all patches in the image. The method scales well to large images,
since it does not incur the prohibitive quadratic cost of considering all overlapping patches. It
is based on the observation that the optimal location for each patch varies from image to image
depending on object locations and sizes. Therefore, instead of considering a single patch at a
given location, we consider an ensemble of patches. This ensemble consists of the conventional
fixed patch location and of the patches obtained by small horizontal and vertical shifts of each
patch. By employing this shift property, the ensemble can capture more precisely the finer details
of the object patches, which are necessary for the downstream task.

To avoid the expensive quadratic cost of computing self-attention over all ensembles of patches,
we split each attention layer to two consecutive attention operations, which accumulate both
local and global information for each patch. In the local attention layer, we apply self-attention
to each patch with its local shifts. This step allows the fixed patches to gain information from
a rich collection of variations, where each variant represents an alternative to the location of
the patch. This way, we construct a virtually located patch as a weighted sum of all possible
shifts of the fixed patch. In the global attention layers, we utilize the virtually local patches and
apply the standard global self-attention between them. This step allows each patch to gain global
information from all the other patches, where each patch was optimized in the previous local
layer by considering all of its local shifts. Global attention is applied in a number of layers, in a
pyramid-like fashion, where at each layer a coarser resolution is considered. Our method obtains
state-of-the-art performance in image classification on a variety of different model sizes for both
CIFAR10, CIFAR100 (Krizhevsky, 2009) and ImageNet (Deng et al.} 2009). At the same time, our
method is efficient and can scale well to large image resolutions.

2 RELATED WORK

The Transformer, first introduced in (Vaswani et al., [2017), revolutionized the field of NLP due
to its ability to capture both local and global connections in an input sequence and its capac-
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ity, compared to previous state-of-the-art models based on RNNs or CNNs. Inspired by the
Transformer’s success in NLP, multiple attempts have been made to incorporate such emerging
attention-based techniques for image classification. The Vision Transformer (ViT) (Dosovitskiy
et al.,[2020) marked a turning point for Transformers in vision. ViT showed excellent results com-
pared to existing CNN-based networks, while requiring fewer computational resources.

Later attempts incorporated the locality bias of CNNs within a transformer architecture.
DeiT (Touvron et al.} 2020) introduced a teacher-student strategy specifically for Transformers,
using an additional distillation token, in which the teacher is a CNN. This enabled training vision
Transfromers with the standard ImageNet dataset, removing the need of ViT to utilize a larger-
scale pre-training dataset. PvT (Wang et al.,|2021) fused the locality bias of CNNs with the ability
to attend to all the patches of the image globally, at different scales. A pyramid of attention blocks
is applied on coarser feature maps, thus enabling patches to capture a different set of pixels and
for local dependencies between neighbouring pixels to emerge. However, an initial fixed parti-
tion of the image into non-overlapping patches limits the ability of the attention mechanism to
capture finer sub-patch details.

Approaches such as the Swin Transformer (Liu et al., 2021) and NesT (Zhang et al.,[2021) attempt
to alleviate this issue by focusing on localized self-attention in non-overlapping blocks, and ag-
gregating the blocks. This partition considers very small, even pixel-sized patches, so correlation
between surrounding pixels can be considered, thus reinforcing the locality bias of CNNs. How-
ever, this comes at the expense of considering only a part of the image at a given scale, while
ignoring global dependencies between all patches in the image.

CvT is a recent approach by (Wu et al.}[2021) that applies the attention mechanism over overlap-
ping patches of the image at different scales, thus capturing finer details along with global depen-
dencies between distant patches. However, the number of overlapping patches in large images
is significantly larger than the number of non-overlapping patches, so applying attention, whose
cost increases quadratically with the number of patches, is prohibitively expensive.

In contrast, our method separates the attention mechanism into a local stage and a global stage.
At the local stage, finer details can be aggregated over the local region of each patch, producing
new patches, which incorporate fine details. At the global stage, a standard attention computa-
tion is applied between all newly aggregated patches. This aggregation is done in a pyramid-like
fashion over a number of scales, resulting in an efficient transformer architecture, which can
scale well to large images, and which incorporates the locality bias at both fine and coarse scales.

Tab.[1]shows the key differences of our method to previous work. Crucially, for B tokens resulting
from the patch embedding, we can consider a large number of patch variants T (at most v/B),
while the overall complexity remains O(B?). This results in a much larger number of tokens being
used in our attention mechanism, while also considering the entire image region globally.

3 METHOD

We first describe the formation of the patch embeddings. Then, we discuss the two types of
attention layers: the local attention layer operates locally on each patch and its shifts, while the
global attention is applied globally in an coarse-to-fine hierarchical manner. Finally we describe
the implementation details.

3.1 LocCAL SHIFT EMBEDDINGS

Given animage I € R¥**W we consider a partition of the image to patches of size S x S, resulting
inamap of £ x ¥ patches, similarly to ViT (Dosovitskiy et al., 2020). For each patch i of this map,
we consider T shifted patches. A patch is created by shifting patch i, P, pixels horizontally and
Py pixels vertically where |P,| < S and |Py| < S. Each such shift is identified by the pair (Py, Py).

This process results in T x %I x % patches of size S x S. The subset of chosen shift variants among
all possible shifts is a hyper-parameter described in Sec. 4} In Tab. |5} we report our results with

subsets of varying size.
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Figure 1: (a) llustration of six image shifting variants out of the total 7, as defined in Sec. A
grid is shown over each image shift variant. In each variant, the grid represents a different divi-
sion of the image to patches. Patches shown in light blue and red indicate two different patch-
shifting variants. The color of the grid is indicative of the variant index. (b) The same six variants
are shown for the light blue (top) and red (bottom) patches in (a). The figure illustrates the sub-
optimality of the fixed partition used in previous work. For example, the dog’s left eye is fully
captured only in the "orange partition" and the nose only in the "yellow partition". A fixed parti-
tion would only capture one of those concepts.

For each of the T variants of patch i, we construct a D dimensional embedding. These embed-
dings are obtained by shifting the entire image I by P, and P), and applying circular padding at
the edges. Each resulting image, referred to as image shifting variant, is then passed through a
convolutional layer with an S x S kernel, stride S and D output channels. This results in T feature
maps of size D x % x % One can view each feature map as % . % tokens of size D. We define
O to be the token corresponding to patch i and that shift index s, which corresponds to shift

(P.XT)Py)-

Positional embedding A learned positional embedding is added for each patch and variant
convolutional embedding O?’. Thatis, O] = O’ + L, where L is a learned positional embedding
of size D. In Sec.[4.1} we consider a different strategy whereby a single D dimensional positional
embedding L;is learned for all variants of a given patch, which results in worse performance.

O;.‘ € RP, for s = 1..T, is then the set of embeddings for the shift-variants associated with each

patch i of size S x S. We assign indexes such that the first variant, O}, is the embedding of the
non-shifted (identity) patch, where Py = P, = 0.

3.2 LOCAL-GLOBAL ATTENTION

We first apply the local attention layer. This attention layer considers each patch i independently.
For each i, we aggregate the embeddings of the T local shifted variants and using an attention
mechanism. This results in an updated embedding of size D for each patch. Subsequently global
attention layers are applied using a pyramid structure.

Local Attention An illustration of our local attention layer is shown in Fig.[2| Denote by B =

% . V—g = fg—Z", the number of patches for each variant. The first step is to calculate, for each non-

shifted patch embedding O!, a query value:
q=XU, X eRB*P U, e RP*P e)

where X is a matrix constructed from all non-shifted patch embeddings O{ fori=1.BandU,isa
learned query matrix. Next, we calculate keys and values for each patch embedding and variant:

(kv] = ZUy, ZeRIB*D g e RP*2P 2
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Thatis, Z is a matrix constructed from all patch embeddings Oé over all variants. Uy, is alearned
key and value matrix. We note that, for each patch, while the keys and values are computed from
all T variants, the queries are obtained only from the non-shifted variant.

We now wish to construct an attention matrix W. We consider each patch separately. That is,
given g € RB*P we extract the patch-specific query vector g; € RP. Similarly, we can view k and
v as tensors in RB*7*P_ For each patch, we consider the patch-specific key and value matrices
ki, v; € RT*P_ We now apply multi-head attention separately for each patch:

W; = softmax(qik;! 1\/Dy)  qi€RP, k;eRT*P, 3)

where Dy, is the dimension of each attention head. For each patch, this results in a pseudo-
probability vector W; € R indicating the weight of each patch variant. The pooled value for
patch i is given by:

A = W Wi eR”, v; eRTP @
A€ RB*D is then constructed by pooling all aggregated patch embeddings A;.

Following the local attention layer, we apply a feed-forward fully-connected network (FFN) with
skip-connection (He et al.,2016) and LayerNorm (LN) (Ba et al.,2016). The application of all of
these components together is referred to as a local attention block.

Global Attention Following the local attention block, we are given B tokens (for each patch)
with embedding of size D. As in the standard setting of transformers (Touvron et al., 2021), a
multi-head self-attention (Vaswani et al.} [2017) is applied to the tokens. The global attention
block consists of a multihead-attention layer followed by a feed-forward fully-connected network
(FFN) with skip-connection (He et al.,[2016) and LayerNorm (LN) (Ba et al.,[2016).

Pyramid structure Recall that B = % . % and so one can view the input as having a height of

By = %, width of By, = % and D channels. We would like to consider patches at coarser scales,
so we apply a sequence (pyramid) of global attention blocks, but with the output of each block
being downsampled before the application of the next attention block.

The downsampling operation consists of the application of a convolutional layer with a 3 x 3 ker-
nel, stride 1 and padding of 1 followed by a max-pooling operation with a 3 x 3 kernel, stride 2 and
padding of 1. Assuming the output channel of the convolutional layer is D?°*", downsampling
results in % tokens of dimension D" on which the next global attention block is applied.

We continue this way for K times (chosen as a hyperparameter), obtaining an output with lower
and lower resolution. Lastly, we apply global average pooling over the spatial dimension, result-
ing in a final vector of dimension D/"% This is followed by a linear layer that outputs C (number
of classes) logits, on which standard softmax classification is applied.

3.3 IMPLEMENTATION DETAILS

In Tab. 2|we provide the exact architectures for two different image resolutions - 224 x 224 (used
for ImageNet (Deng et al.,[2009)) and 32 x 32 (used for CIFAR10 and CIFAR100 (Krizhevsky, 2009)
datasets). For 32 x 32 resolution (CIFAR10/CIFAR100) images we consider three model variants
provided - tiny, small and base, with increasing number of parameters. For 224 x 224 (ImageNet)
resolution, tiny and small variants are consideredﬂ

We use 300 epochs for all experiments and use the same set of data augmentation and regu-
larization strategies used by (Touvron et al.,[2021) but exclude repeated augmentations (Hoffer
et al., |2020) and exponential moving average (Polyak & Juditsky} 1992). The initial learning rate
is set to 5-107*. We apply a linear warm-up of 20 epochs for ImageNet and 5 epochs for CI-
FAR10/CIFAR100. We scale the learning rate (Ir) according to the batch size (bs) as: % x bs. We
use the AdamW (Kingma & Ba,2014) optimizer with a cosine learning rate scheduler. The weight

decay is set to 0.05 and the maximal gradient norm is clipped to 5.0.

INote that while some previous works report results also for larger models, we were unable to allocate the
resources needed for such experiments. Specifically, running our larger model on ImageNet would require
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Figure 2: Illustration of our local attention layer. Patch i is represented in blue; Variants of i
are shown in different colors. All patches are first encoded using a convolutional layer, which,
together with the positional encoding, results in a D dimensional embedding O; for each patch i
and variant s. Given Oj, a query embedding is generated as in Eq.|1} For each patch variant, a key
embedding is generated as in Eq.[2| Both the query and key embeddings are used to create W;
using Eq.[3} a softmax probability vector indicating the importance of each patch variant. Finally,
W; is multiplied by the value embeddings (generated using Eq.[2for all patch variants) as in Eq.[4}
to generate the final output A;.

4 EXPERIMENTS

We present multiple image classification experiments. Results are reported on three datasets: CI-
FAR10 (Krizhevsky} [2009), CIFAR100 (Krizhevsky, [2009), and ImageNet (Deng et al.}[2009). Eval-
uation on the CIFAR10 and CIFAR100 datasets demonstrates the effectiveness of our method on
low-resolution 32 x 32 images, while evaluation on ImageNet demonstrates the effectiveness of
our method on a higher resolution of 224 x 224.

We consider state-of-the-art convolution-based baselines as well as transformer-based base-
lines. Beyond DeiT (Touvron et al.,2020), we also consider baselines that use a pyramid-like ar-
chitecture: PVT (Wang et al.,[2021), Swin (Liu et al.,[2021) and Nest (Zhang et al.,[2021). CvT
et al.}[2021) is also considered for ImageNet (CIFAR10/CIFAR100 values not reported). Convo-
lutional baselines include Pyramid-164-48 and WRN28-10 (Zagoruyko & Ko-|
for CIFAR10/CIFAR100 and ResNet50, ResNet101 [2016), ResNetY-4GF
and ResNetY-8GF (Radosavovic et al.}2020) for ImageNet. We also perform an extensive ablation
study for evaluating the each of our contributions.

CIFAR10/CIFAR100 As noted previously by (Zhang et al., 2021), previous transformer-based
methods usually perform poorly on such datasets. This is because self-attention methods are
typically data-intensive, while in these datasets both the resolution and the number of samples
is relatively small. In contrast, our method reintroduced the locality bias of CNNs by first apply-
ing local attention over neighbouring patches. By subsequently applying global attention in a
pyramid-like fashion our method benefits from the introduction of correlations between distant
patches gradually, at different scales. For CIFAR10 and CIFAR100 datasets, we use T = 18 possi-
ble local variants: {(0,0), (1,0), (0,1), (-1,0), (0,-1), (2,0), (0,2), (-2,0), (0,-2), (1,1), (1,2), (1,-1), (-1,1),
(-1,2), (-1,-1), 2,1), (2,2), (2,-1)}.

The results for CIFAR10 and CIFAR100 experiments are shown in Table[3] As can be seen, our
method is superior to both CNN-based and Transformer-based baselines for each model size
(tiny, small and base). Already at a small model size of 10.2M parameters our model achieves
superior performance for both CIFAR10 and CIFAR100 on most baselines, which have a signifi-
cantly larger number of parameters.

more than 20 GPU months, using 32GB GPUs. This is not more demanding than previous work. e.g,
letal}|2021;|Liu et al., |2021}|Zhang et al.,|2021). However, these resources are not at our disposal at this time.




Under review as a conference paper at ICLR 2022

Input Resolution: 224 x 224 ‘ Input Resolution: 32 x 32
‘ ‘ Output size Layer ‘ Tiny ‘ Small ‘ Output size Layer ‘ Tiny ‘ Small Base
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1T x(g-5)x E | Proj. xT xT Proj. xT
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(5 %)% By Local Att. Local Att.
AWy x B Global Att. (H-W) x E; Global Att.
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w8 ) Hy =4 Hy =2 v ow ) Hy =3 H =6 Hy =12
(E . R]x E» Proj. (7 . 7]>< Ey Proj.
(- Wyx B, Global Att. &= E Global Att.
S 2 E, =192 E, =192 ) E, =192 E, =384 E, =768
3| B3xExi Down. x x2 Ey x5 W Down. x4 x4 x
v ) Hy=4 Hy=6 o ) Hy=3 Hy =6 Hy=12
(35" 35)% B3 Proj. (3 7)% B3 Proj.
(%)% B3 Global Att. (4 Wy E; Global Att.
S 4sTm E3=192 E3=192 E3=384 E3=768
4| Eyxfx Down. x4 - Ey x84 x W Down. x x x
o A Hy=4 o ) Hy=3 Hy;=6 Hy=12
(55" g5)% Ea Prof. (g g)x Es Proj.
&M% E, Global Att. | F=8S F=45 &Yy Ey Global Att.
Ey=192 E4=384 E4 =768
5| E Avg Pool Eq4=192 Eq4=384 Ey Avg Pool x4
x4 %10 Hy=3 Hyi=6 Hy=12
# classes Linear. Hy=4 Hy=12 # classes Linear.

Table 2: Architectures used for images with input resolution 224 x 224 (ImageNet) and for input
resolution 32 x 32 (CIFAR10 and CIFAR100) for three model types: tiny, small and base. In step 1,
we begin by applying a convolutional embedding (Conv emb.) to the input image. A kernel size
K, stride S and padding P are used and the output has E; channels. A separate convolutional
embedding is performed for each of the T image shifting variants (indicated beside the curly
bracket) and positional encoding is added for each patch and variant embedding. Subsequently,
we project the image (Proj.) into a three dimensional tensor, which is then used as input for our
local attention block (Local Att.). From step 2 onward, we begin by applying a global attention
block (Glob Att.). We subsequently un-project the input and apply a downsampling operation
(Down), as described in Sec. where the resulting dimension is E;. H; denotes the number of
heads used. A projection layer is then applied, converting the input into a two-dimensional input
that can be used for subsequent global attention blocks. Each such step (Global Att. - Down. -
Proj.) may be applied a number of times, as indicated by the number beside the curly bracket.
In the last step, the downsampling operation is replaced by average pooling (Avg. Pool) and the
projecting operation is replaced by a linear layer (Linear), resulting in a logit vector. The final step
(not shown) is a standard apllication of softmax, followed by a cross-entropy loss.

ImageNet In Tab.[4} we consider a comparison of our method to baselines on the ImageNet
dataset, which consists of a much larger number of higher-resolution (224 x 224) images. Since
the image resolution is 224 x 224, a fixed partition of the image into patches of size S x S results
in % . % patches. As the attention mechanism is quadratic in the number of tokens B, S is
either chosen to be large (ViT, DeiT), or a subset of patches is used as tokens (Nest, Swin). In
contrast, our method considers, for each patch, T = 10 possible local variants: (0,0), (1,0), (2,0),
(3,0, (0,1), (0,2), (0,3), (1,1), (2,2), (3,3). As a result, it can correctly capture details from its local
neighborhood. Our local attention layer results in quadratic computation only in the number of
variants. That is, the cost is O(B - T?). The cost of subsequent global attention layers is O(B?).
Therefore, as long as T < VB, our method results in lower or equal computation cost, and it
also considers local variants of each patch. As can be seen in Tab. |4} this results in a superior
performance of our method in comparison to baselines for two different model sizes.

4.1 ABLATION STUDY

An ablation study is performed for our method. The results are summarized in Tab.[5| To demon-
strate the superiority of our method, we consider the current state-of-the-art as baseline (Zhang
et al.,|2021). First, we examine the importance of shifting i.e. introducing shifting variants as in-
put to the model and attending them with a local attention layer. By removing the use of shifting
variants and local attention layers, our method is simplified to only applying hierarchical global
attention the as described in Sec. As can be seen (variant A), the tiny setting our method sur-



Under review as a conference paper at ICLR 2022

Type | Method #Params (M) Throughput CIFAR10(%) CIFAR100(%)
CNNs | Pyramid-164-48 1.7 3715.9 95.97 80.70
WRN28-10 36.5 1510.8 95.83 80.75
Deit-T 5.3 1905.3 88.39 67.52
Deit-S 21.3 734.7 92.44 69.78
Deit-B 85.1 233.7 92.41 70.49
PVI-T 12.8 1478.1 90.51 69.62
PVT-S 24.1 707.2 92.34 69.79
PVT-B 60.9 315.1 85.05 43.78
Trans- Swin-T 27.5 1372.5 94.46 78.07
formers Swin-S 48.8 2399.2 94.17 77.01
Swin-B 86.7 868.3 94.55 78.45
Nest-T 6.2 627.9 96.04 78.69
Nest-S 23.4 1616.9 96.97 81.70
Nest-B 90.1 189.8 97.20 82.56
Our-T 10.2 1700.2 97.00 81.80
Our-S 36.2 807.6 97.64 83.66
Our-B 115.8 276.8 97.75 84.70

Table 3: Classification accuracy on CIFAR10 and CIFAR100. The number of parameters (in mil-
lions), and inference throughput (images per second) on a single GPU are shown.

Type | Method #Params (M) GFLOPs (G) Throughput ImageNet(%)

ResNet-50 25 3.9 1226.1 76.2

CNNs ResNet-101 45 7.9 753.6 77.4
RegNetY-4GF 21 4.0 1156.7 80.0
RegNetY-8GF 39 8.0 591.6 81.7

Deit-T 5.7 1.3 2536.5 72.2

Deit-S 22 4.6 940.4 79.8

PVT-T 13.2 1.9 - 75.1

PVT-S 245 3.8 - 79.8

Trans- Swin-T 29 4.5 755.2 81.3
formers Swin-S 50 8.7 436.9 83.0
Nest-T 17 5.8 633.9 81.5

Nest-S 38 10.4 374.5 83.3

CVI-T 20 4.5 - 81.6

CVT-S 32 7.1 - 82.5

Our-T 9.9 3.1 797.2 75.4

Our-S 22.0 7.6 298.9 82.2

Table 4: Classification accuracy on the ImageNet validation set. The number of parameters (in
millions), GFLOPs, and inference throughput (images per second) on single GPU are shown.
Throughput is given in baselines in which this value is reported.

passes the baseline even without using shifting variants. Comparing the shiftless variant A to our
full method (variant F) demonstrates the performance gain achieved by adding shifting variants.

Next, we analyzed the effect of shifting the image with different number of variants (#Shifting). As
can be seen (variants A to B to F), increasing the number of shifting variants improves the model’s
performance. To reduce the number of shifts, we focus on shifts that are either on the horizon-
tal or vertical lines, i.e, the 9 shifts: (0,0), (0,1), (0,2),(1,0), (2,0), (-1,0), (-2,0), (0,-1),(0,-2), or a
subset of the shifts in which we include diagonal lines as well, i.e., the 18 shifts out of the possible
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Model . Conv. Pos. #Params  CIFAR10
Method Variant #Shifting Variations Embed. M) (%)
Baseline nested-T 0 - - 6.2 96.04
Ours w/o shifting A 0 - - 6.8 96.50
B 9 v v 8.4 96.70
C 18 X X 6.8 96.69
Ours D 18 X v 10.1 96.77
E 18 v X 7.6 96.85
F 18 v v 10.2 97.00

Table 5: Ablation analysis for examining the contribution of: (1) shifting variants, (2) number
of shifting variants, (3) shifting variants generated using learned convolutional filters, and, (4)
employing different positional embeddings for each shifting variant.

25: (07 0)) (1) 0)) (0) 1)) (_lr O)r (0) _1)) (2y O)r (Or 2), (_2) 0)) (O) _2)) (1) 1)) (1) 2)) (1) _l)y (_1) l)y (_1) 2))
(-1,-1,(2,1),(22),2,-1).

In addition, we compare two approaches for shifting: (i) constructing T shifting variants as a
pre-processing step, using image translation with reflection padding and (ii) passing the original
image as input to the network, and applying T convolutional layers as in Sec. (as is done in
our method). In Tab. |5, “Conv. Variations” indicates applying (ii) as opposed to (i). As can be
seen, comparing variant C with variant E, and comparing variant D with variant F generating
shifting variants using learned convolutional layers improves the model performance.

Finally, we checked whether it is necessary to add different positional embeddings to each shift-
ing variant rather than simply learning one set of positional embeddings for all T variants. As
can be seen, comparing variant C with variant D and variant E with variant E there is a trade-off
between parameters and accuracy. Adding positional embeddings for each variant improves the
performance, but the number of parameters increases. In our experiments we apply different
positional embeddings to each shifting variant.

As can be seen, our complete method, variant E outperforms the baseline. Furthermore, our tiny
model outperforms the small model of the baseline - as can be seen in Tab.[3]

5 CONCLUSION

While convolutional layers typically employ small strides, resulting in heavily overlapping
patches, the token-based approach of recent transformer-based techniques has led to a grid view
of the input image. This leads to the loss of the translation invariance which played a major role
in the development of neural networks in computer vision as well as in the study of biological
vision models (Bouvrie et al.,2009).

In this work, we reintroduce the locality bias of CNNs into a transformer-based architecture in or-
der to benefit from the ability to model fine-detailed local correlations in addition to the coarse-
detail global correlations that transformers model well. We employ two types of attention layers.
The local attention layer models the correlation of a patch with its local shifting variants, thus
modeling fine grained correlations. The global attention layer, applied in a pyramid-like man-
ner, with decreasing input resolution, models long-range correlations. The use of local-global
attention layers as opposed to a single attention layer is crucial for introducing the desired lo-
cality bias and capturing the correlation between neighbouring local shifts of each patch. This
is especially useful for smaller datasets, with low resolution images, such as CIFAR10/CIFAR100.
Nevertheless, our method also scales well to large images as is the case for ImageNet.

We demonstrate the superiority of our method on both small resolution inputs of 32 x 32 (CI-
FAR10/CIFAR100) and larger resolution inputs of 224 x 224 (ImageNet). Our method achieves
superior accuracy to other convolutional and transformer-based state-of-the-art methods with a
comparable number of parameters.
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REPRODUCIBILITY STATEMENT

The full implementation of our method and scripts for reproducing the experiments will be made
publicly available. This will include a README file as well as requirements for reproducing all
experiments.

Our experimental comparison in Sec. [4| includes important statistics, including memory,
throughput and GFLOPs. Datasets used in our work are publicly available. A detailed depiction
of our training architectures as well as implementation details are provided in Tab.[2]and Sec.
respectively. We further compare our method architecture in relation to baselines in Tab.
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