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Abstract— Visuotactile sensors are gaining momentum in
robotics because they provide high-resolution contact measure-
ments at a fraction of the price of conventional force/torque sen-
sors. It is, however, not straightforward to extract useful signals
from their raw camera stream, which captures the deformation
of an elastic surface upon contact. To utilize visuotactile sensors
more effectively, powerful approaches are required, capable
of extracting meaningful contact-related representations. This
paper proposes a neural network architecture called CANFnet
that provides a high-resolution pixelwise estimation of the
contact area and normal force given the raw sensor images.
The CANFnet is trained on a labeled experimental dataset
collected using a conventional force/torque sensor, thereby
circumventing material identification and complex modeling for
label generation. We test CANFnet using GelSight Mini sensors
and showcase its performance on real-time force control and
marble rolling tasks. We are also able to report generalization
of the CANFnets across different sensors of the same type.
Thus, the trained CANFnet provides a plug-and-play solution
for pixelwise contact area and normal force estimation for
visuotactile sensors. The models, dataset, and additional infor-
mation are open-source at https://sites.google.com/
view/canfnet.

I. INTRODUCTION & RELATED WORKS

One of the biggest challenges in robotics is deploying au-
tonomous systems in the real-world [1]. Particularly contact-
rich tasks such as dexterous manipulation, reliable grasping,
and precise assembly are still open research problems [2],
[3], [4], [5]. Sensing object pose and other properties such
as geometry, mass, etc., is especially difficult using external
sensing only, e.g., due to gripper-object occlusions [6]. It is
thus important to equip robots with sensors that can perceive
contact properties directly. Tactile feedback has the potential
to enhance robustness, precision, and reliability in tasks such
as grasping, autonomous assembly, and stable object placing
in complex and unstructured environments [7], [8].

Visuotactile sensors measure contact properties through
a camera capturing the deformation of an elastomer that
interacts with the environment (cf. Fig. 1). They are promis-
ing due to potentially high spatial resolution, low cost,
and ease of manufacturing. While many visuotactile sensors
have been proposed already [9], [10], they are not readily
available. Therefore, herein, we focus on the commercially
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Fig. 1. Overview of the proposed method. A raw tactile image is
passed through the CANFnet, which outputs a normal force distribution.
Subsequently, the contact area is estimated via straightforward thresholding.
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available GelSight Mini [11], [12], thereby removing the
most significant entry barrier into the field, i.e., manufac-
turing knowledge and facilities, and promoting reusability
and reproducibility of the developed methods.

One of the significant challenges in visuotactile sensing
is how to infer the contact information from the raw sensor
images and which representation to choose. One possibility
is to reconstruct the sensor’s depthmap using photometric
stereo [13], [14]. Other approaches use learning to directly
regress from the image [14], [15], [16] or lower-dimensional
representations, such as tracking markers inside the gel [17],
[12], to force estimates. Alternatively, the images can be used
directly in an end-to-end fashion to solve downstream tasks
[18], [19], [20], [21]. However, this comes at the cost of
losing interpretability and transferability to different tasks.
Instead, learning policies or designing controllers on top
of physically meaningful intermediate representations can
effectively speed up the transfer to new tasks, mitigate over-
fitting and enhance generalization capabilities [19]. While
there are various possibilities for an intermediate visuotactile
representation, in this work, we learn a neural network
that directly maps from input image to the normal force
distribution that caused the deformation of the gel. This
choice is because the force and force distribution directly
relate to the statics and dynamics of a contact configuration
[22]. Furthermore, force provides a natural interface in the
context of control tasks.

Our proposed approach (cf. Fig. 1) focuses on maintaining
the high spatial resolution benefit of visuotactile sensors. We
train the network using solely experimental data collected
using a conventional force/torque (F/T) sensor. We, therefore,
neither require mathematical models and simulations nor
other intermediate representations such as marker movements
or depthmap estimation. Using real-world experimental data
by nature amortizes potential inaccuracies and modeling
errors. In contrast to other works, we estimate the normal
force distribution pixelwise, i.e., at the same resolution as the
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Fig. 2. Main steps for collecting the labeled dataset for training our
proposed CANFnet. The left image depicts the real experimental setup in
the lab. Next, we show a schematic close-up view of the most important
components, i.e., visuotactile sensor, F/T, and the indenter (in red), mounted
on top. By exploiting knowledge about the relative transformations between
indenter and tactile sensor, we can project the indenter’s contact area into
the image of the visuotactile sensor using the Pinhole camera model. Finally,
we obtain a labeled pixelwise force distribution by dividing the ground truth
force measurement by the contact area and assigning this value to all pixels
within the contact area.

original image. Furthermore, our model outputs a pixelwise
estimate of the contact area between the external object and
the sensor. Both normal force and contact area are essential
for tasks that involve contact-rich object manipulation. To
prevent loss of spatial information, we consider gels that do
not have any impainted markers or dots.

In summary, we make the following contributions. We
propose CANFnet, an architecture and training procedure
that provides a plug-and-play module for estimating normal
force and contact area at a pixel level. We test CANFnet
on GelSight Mini, and demonstrate that the trained network
can generalize over different sensors, gels, and test objects.
We showcase CANFnet’s real-time capability by applying
it to a dynamic marble rolling and force tracking task. We
open-source our model and the training data to facilitate
reproducibility and further advancements in this area.

II. METHOD

We next describe the experimental setup for collecting
the labeled dataset containing pixelwise normal force values.
Subsequently, we introduce a neural network for mapping
from the raw sensor images to the high-resolution labels
for Contact Area and Normal Force across the gel called
CANFnet.

A. Experimental Setup for Creating High-Resolution Labels

One of our goals is to avoid complex and computationally
expensive mathematical models for training data generation.
Therefore, our method relies on labeled experimental data.
F/T sensors only provide one single measurement, which
contrasts with our idea of pixelwise normal force recon-
struction. We propose the following procedure to collect
pixelwise labeled experimental data. As shown in Fig. 2,
we mount an object with known geometry, that we denote
as indenter, on top of a F/T sensor and attach the visuotactile
sensor at the robot’s end-effector. The idea is to bring
the sensor and indenter into a contact configuration where
the normal force acts uniformly upon the gel. Exploiting
a well-calibrated setup in which we know all the relevant
transformations, we can project the indenter’s geometry into
the images of the tactile sensor. Subsequently, we obtain
pixelwise labels by dividing the total measured normal force
from the F/T sensor by the contact area. Note that we do

(b) Test In-
denters.

(c) U-Net architecture.

(a) Train Indenters.

Fig. 3. These 3D-printed indenters have been used for training data
collection (left) and testing (middle). The architecture of the proposed
CANFnet, i.e., a U-Net architecture mapping from raw visuotactile images
to a pixelwise normal force distribution (right).

not aim to reconstruct the normal forces acting inside the
gel; instead, our labels relate to the external normal force
exerted onto the gel. Our procedure is based on two main
assumptions. First, the indenters, i.e., the objects pressing
onto the visuotactile sensors, must have flat surfaces and
known dimensions. Second, during contact, the indenter
and visuotactile sensor surfaces are parallel. For network
generalization, we collect data using indenters varying in
shape and size (cf. Fig. 3(a)). We also press against the
indenters using different positions and orientations. In total,
we collected 277325 training samples with forces ranging
from ON to 20 N.

B. CANFnet

We use a U-Net [23] to estimate the force distribution
and contact area. The U-Net is a powerful convolutional
neural network (CNN) architecture originally developed for
segmentation in the biomedical field.

Architecture. Fig. 3(c) shows the proposed U-Net architec-
ture, containing a contracting path (encoder) together with an
expanding path (decoder), retrieving spatial information from
the encoder’s latent space. The U-Net thus has a 3-channel
320240 input, and outputs the pixelwise normal force
estimate fngT for each pixel location x,y. The contact
area is obtained by thresholding the force estimates. For the
details, we refer to our code which is publicly available.

Training. The U-Net has to resolve a pixelwise regression
problem. The force distribution labels f£ yT have a unit of
N/pixel. A potential loss function for training the network’s

pixelwise force prediction fI'ET could thus be the mean

squared error (MSE) per pixel, MSE( f EET, fé/T) =

1/(WH) SV SO (FUNBT T2 with image width
and height W, H, respectively. However, initial experiments
revealed that this resulted in relatively big errors when
comparing the integrated force values with the measurements
from the F/T sensor Fp,r. Consequently, we added an
integrated force loss (IFL) term comparing the integrated
normal force prediction with the F/T measurement
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The overall loss function is thus a weighted sum of IFL and
MSE with weighting factor w;g controlling whether more
focus should be put on local or global force reconstruction,

£ = MSE(fUNET, £ T 4 wig IFL(FIN®T, P p). )



TABLE I
EVALUATION OF CANFNET VS BASELINES FOR NORMAL FORCE
AND CONTACT AREA ESTIMATION

Method Sensor IoU MAE [F]
Image Diff Train 0.301 £ 0.001 NA
(Pytouch [24]) Test 0.294 £ 0.001 NA
3D-Recon Train 0.463 £ 0.002 1.472 £0.012
(GelSight [25]) Test 0.451 £+ 0.002 1.805 4+ 0.016
CANFnet (ours) Train 0.73 £ 0.002 0.82 £ 0.009
(Neural Network) | Test 0.718 £0.002 0.767 +0.007

We reason that the additional global regularization term is
needed since there might be small mismatches in the image
data and the force labels, which might come from inaccu-
racies in the calibration. Small errors might accumulate to
a large error in the overall force prediction due to the high
pixel count. w;g=0.05 was found to be a good compromise.

To obtain the pixelwise contact area estimation, we use the
normal force prediction. There is contact between the sensor
and object ic,, ,=1 at pixel x,y, whenever the normal force
exceeds the empirical threshold of w;.=10"%.

We also use data augmentation to reduce overfitting and
enhance generalization abilities of the networks as well as
their robustness against object and sensor variations.

III. EXPERIMENTAL RESULTS

After generating training data according to subsection II-
A and training CANFnet, we validate the results. We want
to point out that we did not only evaluate our models on the
same sensor with which the training data was collected (‘train
sensor’) but also on a different sensor (‘test sensor’) which
may differ in lighting, gel properties, camera calibration, etc.
CANFnet Inference Speed. We test our network on a
NVIDIA GeForce RTX 3090 GPU and an AMD Ryzen 9
5950X 16-Core CPU. The mean inference time is 3.498 ms
over 300 runs, which is sufficient for real-time operation, as
the GelSight operates at 25 Hz.

Contact Area & Normal Force. We evaluate CANFnet
and two baselines on contact area detection and static force
reconstruction. We collected 10000 images for the train and
test sensor, solely using new indenters (‘unseen’) that have
not been used during training (cf. Fig 3(b)). We report the
mean absolute error (MAE) for normal force estimation, and
the intersection over union for contact area estimation. For
the IoU, higher is better; for the force error, lower is better.

The baselines are: 1) Image Diff, which is based on
PyTouch [24] and estimates the contact area using the
differences between the current image and a reference image
prior to contact, solely using classical image processing.
2) 3D-Recon reconstructs the depth map of the GelSight
sensor [25]. For estimating contact area, a pixel is considered
in contact if the depth value exceeds a threshold. For the
normal force, we fit a linear model mapping from total gel
deformation to normal force.

As shown in Table I, Image Diff results in lowest IoU
values, and is outperformed by 3D-Recon. However, the IoU
estimation of the 3D-Recon baseline suffers especially at
higher forces and smaller objects. In these scenarios, the
gel deforms in a much wider area than just at the contact
area, resulting in lower IoU values. Our proposed CANFnets

TABLE II
EVALUATION ON THE TASK OF TRACKING DESIRED FORCE
PROFILES FOR DIFFERENT FORCE RANGES AND INDENTER SIZES

Sensor Indenter | Relative Size | Force Range [N] MAE [N]
smaller 0—10 0.491 + 0.015
seen lareer 0—10 0.863 £ 0.022
GelSight g 0—18 2.073 & 0.063
(Test) smaller 0—10 0.919 £ 0.027
unseen lareer 0—10 0.602 £ 0.02
g 0—18 0.961 + 0.029
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Fig. 4. Force tracking. The desired sawtooth profile F is tracked using

our CANFnet Fcanr. The ground truth is given by the F/T sensor Fg /.

perform best and clearly outperforms the baselines (im-
proving by a factor of more than two compared to Image
Diff, by around 58% compared to 3D-Recon). Considering
normal force reconstruction, the proposed CANFnet also
performs best. Lastly, we also computed the average pixel
error between the center of mass of the groundtruth contact
area and the CANFnet’s predictions. The error is 8.3 pixels
which roughly corresponds to 0.45 mm, thereby underlining
the high spatial resolution. Moreover, we observe that the
model transfers seamlessly to the test sensor, although it was
only trained on data from the train sensor.

Force Control. To get an impression of our model’s capa-
bilities on a more realistic task, i.e., force control, we mount
the visuotactile sensor at the end-effector of a Franka Panda
robot and track a sawtooth force profile.Thus, the visuotactile
sensor presses against an indenter mounted on top of a F/T
sensor, same as during data collection.An example trajectory
can be seen in Fig. 4. The results in Table II are similar to
the previous static experiments, demonstrating that CANFnet
can also deal with more dynamic scenarios, i.e., changes in
input images. The MAE is generally better at lower forces
for smaller objects, covering only part of the sensing surface.
While the force of a larger indenter is distributed over a
bigger area and the gel deformation saturates at increasing
pressure, the variation in the pixel values is only high at the
edges of that object. Consequently, the network’s potential
to learn through image differences and the information
contained in the images decreases.

Marble Roll. To showcase further advantages compared to
a regular F/T sensor, we designed a marble roll task that
requires joint force tracking and contact area estimation. A
small marble is placed on a table and manipulated through
the visuotactile sensor attached to a Franka Panda’s tool
flange (cf. Fig. 6(a)). The task is to move the marble to a
desired position in the tactile image. The marble’s centroid is
estimated through CANFnet’s contact area prediction. Fig. 5
shows the resulting trajectories. The marble is successfully
moved to the desired set points. This illustrates that CANFnet
can be used as a component in a larger task, jointly providing
force and contact area information.
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Fig. 5. Trajectories (z (top), y (bottom)) of the marble roll task. The desired
position of the marble center (x4, yq, in pixel coordinates) is tracked by
manipulating the marble through the visuotactile sensors mounted at the
robot’s end effector (cf. Fig. 6(a)).
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(a) GelSight & marble. (b) Elephant, orange, salad, strawberry, marble.

Fig. 6. (a) An image of the marble roll task. (b) Five irregular toy objects
used to evaluate the generalization of CANFnet to non-flat indenters.

Generalization to Irregular Objects. Given that CANFnet
is trained only on flat indenters (cf. Fig. 3), how well can
it generalize to irregularly shaped objects? We therefore
repeated the force tracking task using five irregularily shaped
objects (cf. Fig. 6(b)). We observer that the model also
generalizes to the more irregular objects as the errors remain
consistent with the previous experiments (see Table III).

IV. CONCLUSION

We presented CANFnet, a neural network for mapping
from the raw images of visuotactile sensors to a pixelwise
estimate of normal force and contact area, thereby not
compromising any resolution. The method aims to maintain
one of the main benefits of visuotactile sensors, their high
spatial resolution, while at the same time counteracting one
of their main drawbacks, namely, that the raw sensor signals
are hard to interpret, making their integration cumbersome.
To train CANFnet, we propose an effective experimental
setup that allows for the creation of labeled high-resolution
data using a standard F/T sensor and a robot manipulator. Our
experimental evaluations underline the effectiveness of the
trained representations in several experiments ranging from
static force and contact area estimation to dynamic force
control and a marble roll task. We open-source all models
and data and plan to exploit CANFnet in more complicated
robotic downstream tasks in the future.
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