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ABSTRACT

Graph Neural Networks (GNNs) deliver strong classification results but often
suffer from poor calibration performance, leading to overconfidence or under-
confidence. This is particularly problematic in high-stakes applications where
accurate uncertainty estimates are essential. Existing post-hoc methods, such
as temperature scaling, fail to effectively utilize graph structures, while cur-
rent GNN calibration methods often overlook the potential of leveraging di-
verse input information and model ensembles jointly. In the paper, we propose
Graph Ensemble Temperature Scaling (GETS), a novel calibration framework
that combines input and model ensemble strategies within a Graph Mixture-of-
Experts (MoE) architecture. GETS integrates diverse inputs, including logits,
node features, and degree embeddings, and adaptively selects the most relevant
experts for each node’s calibration procedure. Our method outperforms state-
of-the-art calibration techniques, reducing expected calibration error (ECE) by
≥ 25% across 10 GNN benchmark datasets. Additionally, GETS is compu-
tationally efficient, scalable, and capable of selecting effective input combina-
tions for improved calibration performance. Anonymous code is available at
https://anonymous.4open.science/r/GETS/.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations in
numerous real-world applications, including social networks, recommendation systems, biological
networks, and traffic systems, achieving state-of-the-art performance in tasks like node classifica-
tion, link prediction, and graph classification (Kipf & Welling, 2016; Veličković et al., 2017). Their
ability to capture complex relationships and dependencies makes them invaluable for modeling and
predicting interconnected systems (Fan et al., 2019; Wu et al., 2019; Scarselli et al., 2008; Wu et al.,
2022; 2021).

However, ensuring the reliability and trustworthiness of GNN prediction remains a critical challenge,
especially in high-stakes applications where decisions can have significant consequences (e.g. hu-
man safety). Take GNN classification as an example, one key aspect of model reliability refinement
is uncertainty calibration, which aims to align the predicted probabilities with the true likelihood
of outcomes (Guo et al., 2017). In short, well-calibrated models provide confidence estimates that
reflect real-world probabilities, which is essential for risk assessment and informed decision-making
(Zhuang et al., 2023).

Calibration methods are typically applied post-hoc and fall into two categories: nonparametric and
parametric. Nonparametric methods, like histogram binning and isotonic regression, adjust confi-
dence estimates based on observed data distributions without assuming a specific functional form
(Zadrozny & Elkan, 2001; Naeini et al., 2015). While allowing for the freedom in modeling, these
methods often require large calibration datasets and struggle with high-dimensional or unevenly
distributed graph data, making them less practical for graphs with vast numbers of nodes. In con-
trast, parametric methods such as temperature scaling (TS) and Platt scaling assume a functional
relationship to adjust model outputs (Guo et al., 2017; Platt et al., 1999). Among them, TS has
gained popularity for its simplicity and effectiveness in calibrating models by smoothing predicted
probabilities. This method is scalable, and easy to implement, especially for large-scale graphs.
Moving beyond the uniform adjustments applied to all data in classic TS, recent work focuses on
learning node-specific calibration parameters to capture individual characteristics that impact graph
calibration performance (Tang et al., 2024; Hsu et al., 2022).
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Figure 1: Expected calibration error (ECE), see Equation 3, for a well-trained CaGCN model (Wang
et al., 2021). ECE is measured grouping nodes based on degree ranges rather than predicted confi-
dence. Datasets are sorted by average degree 2|E|

|V| as a measure of connectivity (see Table 1), from
low to high. In lower-connectivity datasets like Pubmed and Cora-full, high-degree nodes tend to
show larger calibration errors, whereas in more connected datasets like Photo and Ogbn-arxiv, low-
degree nodes exhibit higher calibration errors.

Motivated by the methodologies discussed above, when we dive into the GNN (classification) cali-
bration task, we find that the subtleties lie in two main challenges: (i) the difficulty of representing
the calibration error score for the individual sample points; (ii) the disability to identify and utilize
multiple information related to the GNN calibration. Existing approaches for graph temperature
scaling primarily rely on an additional GNN model to output node-wise temperatures. However,
systematic methods for determining the inputs to the calibration network and for integrating various
input information have not been thoroughly explored.

Given the challenges we have, we aim to resolve the following issues: (i) What are the influential
factors in the calibration task for GNN classification? (ii) How can we wisely integrate these factors,
which may exist in different spaces and scales, to effectively perform GNN calibration?

For issue (i), we note that besides the logits and features mentioned in the prior work (Wang et al.,
2021; Huang et al., 2022), Figure 1 demonstrates that node degree also affects the calibration error,
aligning with the message-passing mechanism in GNNs. In some cases, a low degree can lead to
worse calibration performance due to insufficient information passing. Conversely, overconfidence
may occur when excessive (potentially misleading) information floods into a single node (Wang
et al., 2022). Regarding issue (ii), it remains unclear how to develop an appropriate algorithm that
incorporates multiple factors for calibration within the graph structure. To address these issues, we
propose a novel calibration framework named Graph Ensemble Temperature Scaling (GETS).
Our approach leverages both input ensemble and model ensemble strategies within a Graph Mixture-
of-Experts (MoE) architecture to address the limitation of existing methods. By incorporating mul-
tiple calibration experts—each specializing in different aspects of the influential factors affecting
calibration—GETS can adaptively select and combine relevant information for each node.

Experimental results on 10 GNN benchmark datasets demonstrate that GETS consistently achieves
superior calibration performance, significantly reducing the ECE across all datasets. This highlights
its effectiveness in addressing the calibration problem in the GNN classification task. Additionally,
GETS is scalable and capable of handling large-scale datasets with computational efficiency.

Our key contributions are summarized as:

• We introduce a novel framework GETS that combines input and model ensemble strategies
within a Graph MoE architecture. This enables robust node-wise calibration by integrating
diverse inputs like logits, features, and degree embeddings.

• GETS significantly reduces ECE across 10 GNN benchmark datasets, outperforming state-
of-the-art methods like CaGCN and GATS, and demonstrating effectiveness across diverse
graph structures.

• GETS employs the sparse gating mechanism to select the top k experts per node. This
enables scalable calibration on large graphs with computational efficiency.
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2 RELATED WORK

2.1 UNCERTAINTY CALIBRATION

Uncertainty calibration adjusts a model’s predicted probabilities to better reflect the true likelihood
of outcomes. Methods for uncertainty calibration are generally classified into in-training and post-
hoc approaches.

In-training calibration adjusts uncertainty during model training. Bayesian methods, such as
Bayesian Neural Networks (BNNs) and variational inference, adjust uncertainty by placing dis-
tributions over model parameters (Gal & Ghahramani, 2016; Sensoy et al., 2018; Detommaso et al.,
2022). Frequentist approaches, including conformal prediction (Zargarbashi et al., 2023; Huang
et al., 2024; Deshpande et al., 2024) and quantile regression (Chung et al., 2021), are also employed
to ensure calibrated outputs.

Despite these efforts, model misspecification and inaccurate inference often lead to miscalibration
(Kuleshov et al., 2018). To address this, post-hoc methods recalibrate models after training. These
can be divided into nonparametric and parametric approaches. Nonparametric methods, such as
histogram binning (Zadrozny & Elkan, 2001), isotonic regression (Zadrozny & Elkan, 2002), and
Dirichlet calibration (Kull et al., 2019), adjust predictions flexibly based on observed data (Naeini
et al., 2014). Parametric methods assume a specific functional form and learn parameters that di-
rectly modify predictions. Examples include temperature scaling (Guo et al., 2017), Platt scaling
(Platt et al., 1999), beta calibration (Kull et al., 2017) and so on.

2.2 GNN CALIBRATION

Calibration of GNNs remains an under-explored area (Zhuang et al., 2023). Take the node clas-
sification task as an example, most existing methods adopt post-hoc approaches, often relying on
temperature scaling where the temperature is learned via a certain network.

Teixeira et al. (2019) noted that ignoring structural information leads to miscalibration in GNNs.
GNNs also tend to be underconfident, unlike most multi-class classifiers, which are typically over-
confident. To address this, CaGCN introduces a GCN layer on top of the base GNN for improved
uncertainty estimation using graph structure (Wang et al., 2021). Hsu et al. (2022) identified key
factors affecting GNN calibration and proposed GATS, which employs attention layers to account
for these factors. Tang et al. (2024) further explored node similarity within classes and proposed
ensembled temperature scaling to jointly optimize accuracy and calibration.

3 PROBLEM DESCRIPTION

3.1 UNCERTAINTY CALIBRATION ON GNN
This paper addresses the calibration of common semi-supervised node classification tasks. Let G =
(V, E) represent the graph, where V is the set of nodes, and E is the set of edges. The adjacency
matrix is denoted by A ∈ RN×N , with N = |V| being the number of nodes. Let X be the input
space and Y be the label space, with yi ∈ Y = {1, . . . ,K}, where K ≥ 2 is the number of classes.
Let X ∈ X and Y ∈ Y be the input feature and label. A subset of nodes with ground-truth labels
L ⊂ V is selected for training. The goal of semi-supervised node classification is to infer the labels
of the unlabeled nodes, U = V\L. The node-wise input feature matrix and the label vector are
denoted as X = [x1, . . . ,xN ]⊤ and Y, respectively.

A GNN model fθ is trained to address this problem by considering the node-wise features {xi}i:vi∈L
and A, where θ represents the learnable parameters. For a given node i, the logit output of the GNN
is represented as zi = fθ(xi,A) = [zi,1, . . . , zi,K ]⊤, where K is the total number of classes.
The predicted label for node i is given by ŷi = argmaxk∈[1,K] zi,k, selecting the class with the
highest logit value. The confidence or predicted probability for node i is then defined as p̂i =
maxk∈[1,K] softmax(zi,k), where softmax(zi,k) transforms the logits into probability scores for
each class k. We define fθ to be perfectly calibrated as (Guo et al., 2017; Chung et al., 2021):

P(ŷi = yi | p̂i = p) = p, ∀p ∈ [0, 1]. (1)

The calibration error (CE) for a graph neural network fθ can be defined as the discrepancy between
the predicted probability p̂i = maxk softmax(zi,k) and the true probability. For node i, the calibra-
tion error is expressed as:

CE(fθ) = E [|p̂i − P(Y = ŷi | p̂i)|] . (2)

3
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If CE(fθ) = 0, then fθ is perfectly calibrated. However, direct computation of the calibration error
from the model outputs is challenging in practice. Therefore, the expected calibration error (ECE)
is proposed to approximate CE by discretization (binning) and summation, where the model outputs
are partitioned into B intervals (bins) with binning strategy B = {I1, I2, . . . , IB}. A common
binning strategy B0 divides bins by sorting confidence scores p̂i in ascending order, ensuring each
bin I0j contains approximately the same number of nodes, i.e., |I0j | ≈ N

B .

The ECE is defined as the weighted average of the absolute difference between the accuracy and
confidence in each bin, denoted as Acc(Ij) and Conf(Ij):

ECE(fθ,B) =
B∑

j=1

|Ij |
N

|Acc(Ij)− Conf(Ij)| =
B∑

j=1

|Ij |
N

∣∣∣∣∣∣E[Y = ŷi | p̂i ∈ Ij ]−
1

|Ij |
∑
i∈Ij

p̂i

∣∣∣∣∣∣ .
(3)

Importantly, ECE(fθ,B) ≤ CE(fθ) for any binning strategy, and this approximation is widely
used for estimating the overall calibration error (Kumar et al., 2019). By default, we evaluate models
with ECE(fθ,B0).

3.2 NODE-WISE PARAMETRIC CALIBRATION

TS is the classical parametric calibration approach, adjusts model confidence by scaling logits with a
temperature T > 0 before softmax, smoothing outputs without affecting accuracy. The temperature
T controls the smoothness of predicted probabilities: T = 1 uses logits directly, while increasing T
spreads probabilities, improving calibration in overconfident models.

Recent studies extend this by learning node-wise temperatures for each node i in graph classification
(Wang et al., 2021; Hsu et al., 2022). Commonly, node-wise temperature scaling for calibration is
conducted by applying an extra GNN layer to learn the node-wise optimal smoothing parameter Ti

and do the following operation for the logits:

z′i = zi/Ti. (4)

We should mention that in training the smoothing temperature T , the loss function is always the
negative log-likelihood function, which is categorized to the proper score (Gruber & Buettner, 2022)
in the classification task. The famous ECE error can not be utilized as a training objective function
for their discontinuity. Moreover, these post-hoc calibration methods are usually trained on the
validation set. We follow these training settings in our main context.

4 GETS

4.1 ENSEMBLE STRATEGY MEETS NODE-WISE CALIBRATION

Ensemble strategy are widely recognized for improving model robustness and calibration by ag-
gregating predictions from multiple models. For example, in the context of ensemble temperature
scaling (ETS) (Zhang et al., 2020), each model learns its own temperature parameter Tm to calibrate
its predictions. The ensemble strategy combines the calibrated outputs from multiple calibration
models, averaging their predictions to produce a more reliable and better-calibrated result. The
ensemble weighting is formulated as a weighted sum over temperature-scaled logits (Zhang et al.,
2020): T (z) =

∑M
m=1 wm · tm(z), where wm are non-negative coefficients summing to 1, and

tm(z) represents the value of temperature of the m-th model TS model trained on logit z, with M
being the number of models.

The ensemble inherits the accuracy-preserving properties from its individual components, with the
weights wm controlling the contribution of each calibrated prediction. While ETS leverages model
diversity to mitigate overconfidence and improve calibration quality, it falls short in handling the
intricate structural problems inherent in graph data. Specifically, ETS considers only the tempera-
tures tm(z), logit z, and bin size B to optimize the weights, without incorporating graph structural
information such as node degrees. Moreover, the learned temperature is a single value uniformly
applied across all nodes, which cannot adapt to the node-wise calibration required in graphs.

We propose to learn node-wise ensemble strategy for the GNN calibration task. To incorporate the
different sources of information, we ensemble based on not only the calibration models but also
diverse inputs, including logits zi, node feature xi and node degrees di, as well as their combination

4
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Figure 2: Illustration of input and model ensemble calibration. The input ensemble explores differ-
ent combinations of input types, while the model ensemble employs a MoE framework to select the
most effective experts for calibration. The final calibrated outputs are weighted averages determined
by the gating mechanism. The notation (·) indicates different input types for the function.

as the calibration model inputs. We use gm to represent the m-th GNN calibration model that outputs
the calibrated logits. Due to the monotone-preserving property of TS, the weighted summation of
the logits still keeps the invariant accuracy output. For each node i, the calibrated logits z′i are
computed as a weighted sum of the outputs from multiple calibration models:

z′i =

M∑
m=1

wi,m · gm(zi,xi, di; θm), (5)

with wi,m ≥ 0 are the node-specific ensemble weights for node i and model m, satisfying∑M
m=1 wi,m = 1. We further point out that in our expert setting, the input of each expert only

contains one element in xi, di, zi. This gives reasonable learning tasks for different experts and
rules out the problem arising in concatenating vectors of different input spaces. Each calibration
model gm can focus on different aspects of the calibration process by utilizing various combinations
of inputs. For example, one model may calibrate based solely on the logits, another may incorporate
node features, and another may consider the node degrees. Specifically, wi,m can therefore be deter-
mined by a gating function G(·) that outputs a probability distribution over the calibration models
for each node:

[wi,1, wi,2, . . . , wi,M ] = G({g(zi,xi, di; θm)}Mm=1;Wg,Wn), (6)

where Wg and Wn represent the parameters of the gating function G(·), which will be introduced
later on. We ensemble the feature inputs by concatenating different combinations of inputs into
gm(·). The key component remains unknown is how we should do the information aggregation and
obtain the gating function to select models.

We include logits z, node features x, and degree (embeddings) d to capture key factors influencing
calibration. Including logits is crucial because they contain the raw prediction information before
applying softmax, reflecting the model’s confidence. Incorporating node features allows the model
to address individual calibration needs, as feature-based methods binning methods have successfully
captured unique sample point characteristics in calibration task (Huang et al., 2022). Adding degree
embeddings tackles structural disparities since our experiments show that degree imbalance leads
to varying calibration errors among nodes. By combining these inputs, our ensemble leverages
multiple information sources, resulting in a more robust and effective calibration strategy.

4.2 ENSEMBLE CALIBRATION BY GRAPH MOE
The node-wise ensemble idea mentioned in the last section coincides with the so called MoE frame-
work (Jordan & Jacobs, 1994; Jacobs et al., 1991; Jacobs, 1995; Wang et al., 2024). MoE allows for
specialization by assigning different experts to handle distinct inputs, enabling each expert to focus

5
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on specific factors. This specialization is particularly beneficial when inputs are diverse, as it allows
experts to learn the unique properties of each factor more effectively than one single GAT model
(Hsu et al., 2022) for many inputs at the same time. Moreover, MoE employs sparse activation
through a gating network, which selectively activates only relevant experts for each input, reducing
computational overhead compared to the dense computation in GATs (Shazeer et al., 2017; Lepikhin
et al., 2020). The overall framework design is shown in Figure 2 (Zhang et al., 2020). To adapt MoE
for graph-based calibration tasks, we propose the GETS framework that integrates both the input
ensemble and the model ensembles. In GNNs like GCNs, nodes update their representations by
aggregating information from their neighbors. The standard GCN propagation rule is (Wang et al.,
2024):

h′
i = σ

∑
j∈Ni

1√
|di||dj |

hjW

 , (7)

where h′
i is the updated feature vector for node i after the GCN layer, Ni is the set of neighbor-

ing nodes of node i. We train different GCNs based on various ensemble of inputs as different
experts, hj is the feature vector of the neighboring node j and W is a learnable matrix for the
GCN network. 1√

|Ni||Nj |
is the normalization term where |Ni| and |Nj | are the degrees (number

of neighbors) of nodes i and j, respectively. In many GNN papers, the normalization term is also
denoted as D̃−1/2ÃD̃−1/2 with Ã = A+ I is the adjacency matrix with added self-loops. D̃ is the
corresponding degree matrix with D̃ii =

∑
j Ãij and σ is a non-linear activation function.

While GCNs aggregate neighbor information effectively, they apply the same transformation to all
nodes, which may not capture diverse patterns or complex dependencies in the graph. Following
our aforementioned notations, the Graph MoE framework introduces multiple experts by learning
different GNN models with a gating mechanism for aggregation. The propagation rule in Graph
MoE training is:

h′
i = σ

(
M∑

m=1

G(hi)m · gm (hj ; θm)

)
, (8)

where, for consistency with Equation 5, gm(·) represents the m-th GNN expert function that pro-
cesses a specific ensemble of inputs—such as logits zi, node features xi, and node degrees. The
parameter θm, associated with expert m, is analogous to the weight matrix Wm from Equation
7 (we omit the message-passing aggregation for clarity). The gating mechanism determines the
contribution of each expert for node i is

G(hi) = Softmax (TopK(Q(hi), k)) , (9)
with the function, TopK to select the best k experts with gating scores Q(hi). G(hi)m is the gating
function outputted weights for m-th expert, with hi usually being the last layer output of m-th
expert. The gating score Q(hi) is computed as:

Q(hi) = hiWg + ϵ · Softplus(hiWn), (10)
where Wg and Wn are learnable weight matrices control clean and noisy scores, respectively. Noisy
gating ϵ ∼ N (0, 1) introduces Gaussian noise for exploration. In the context of calibration, we adapt
GETS to combine multiple calibration experts, each specialized in handling specific calibration
factors. For those unselected models the gating function G(·) sets them to zeroes to be consistent
with Equation 9, for example, if we select the best 2 experts, the rest M − 2 outputs, the gating
function G(·) assigns them to 0. Finally, for each node i, the calibrated logits z′i are computed as, in
a similar form as Equation 5:

z′i =

M∑
m=1

G(hi)m · gm(zi; θm), (11)

Each calibration expert gm can implement different node-wise calibration strategies, where node-
wise temperatures are usually included in the model. The model is trained by minimizing a cali-
bration loss over all nodes: L = 1

N

∑N
i=1 ℓcal (z

′
i, yi), where ℓcal is a differentiable calibration loss

function (e.g., cross-entropy loss) mentioned before and N is the number of nodes. By leverag-
ing GETS, we enable the calibration model to specialize in handling diverse calibration factors via
different experts and adaptively select the most relevant experts for each node through the gating
mechanism using node features and topology.

6
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We include the 10 commonly used graph classification networks for thorough evaluation, The data
summary is given in Table 1, refer to Appendix A.2 for their sources. The train-val-test split is 20-
10-70 (Hsu et al., 2022; Tang et al., 2024), note that uncertainty calibration models are trained on
validation set, which is also referred as the calibration set. We randomly generate 10 different splits
of training, validation, and testing inputs and run the models 10 times on different splits.

For the base classification GNN model, i.e., the uncalibrated model fθ, we choose the vanilla GCN
(Kipf & Welling, 2016), GAT (Veličković et al., 2017), and GIN (Xu et al., 2018). We tune the
vanilla models to get optimal classification performance, see Appendix A.1.1 for more details about
the parameters. After training, we evaluate models by ECE with B = 10 equally sized bins.

Table 1: Summary of datasets. The average degree is defined as |2E|
|V| to measure the connectivity of

the network.

Citeseer Computers Cora Cora-full CS Ogbn-arxiv Photo Physics Pubmed Reddit
#Nodes 3,327 13,381 2,708 18,800 18,333 169,343 7,487 34,493 19,717 232,965
#Edges 12,431 491,556 13,264 144,170 163,788 2,501,829 238,087 495,924 108,365 114,848,857
Avg. Degree 7.4 73.4 9.7 15.3 17.8 29.5 63.6 28.7 10.9 98.5
#Features 3,703 767 1,433 8,710 6,805 128 745 8,415 500 602
#Classes 6 10 7 70 15 40 8 5 3 41

All our experiments are implemented on a machine with Ubuntu 22.04, with 2 AMD EPYC 9754
128-Core Processors, 1TB RAM, and 10 NVIDIA L40S 48GB GPUs.

5.2 CONFIDENCE CALIBRATION EVALUATION

Baselines. For comparison, we evaluate our approach against several baseline models, including
both classic parametric post-hoc calibration methods and graph calibration techniques. The classic
methods include TS (Guo et al., 2017; Kull et al., 2019), Vector Scaling (VS) (Guo et al., 2017),
and ETS (Zhang et al., 2020). These baselines are primarily designed for standard i.i.d. multi-class
classification.

In addition, we compare against graph-based calibration models that utilize a two-layer GNN to
learn temperature values for each node. These include Graph convolution network as a calibration
function (CaGCN) (Wang et al., 2021) and Graph Attention Temperature Scaling (GATS) (Hsu et al.,
2022), which use GCN or GAT layers to process logits and incorporate graph-specific information
for calibration. All models are tuned to their optimal performance, with detailed parameter settings
provided in Appendix A.1.3.

GETS settings. For the parameters of GETS, we constructed input ensembles for each node i as
{zi,xi, di, [zi,xi], [xi, di], [zi, di], [zi,xi, di]}. We trained M = 7 experts and selected the top 2
experts based on their gating scores, as described in Equation 9. For the degree input di, we mapped
the integer degree of each node into a dense vector of fixed size 16 using torch.nn.Embedding,
before training the experts with this representation.

After parameter tuning, we train the GNN expert gm(·),m = 1, . . . ,M for 1000 epochs with a
patience of 50 across all datasets. The calibration learning rate is set to 0.1, except for the Reddit
dataset, which uses a rate of 0.01. Weight decay is set to 0 for most datasets, except for Citeseer
(0.01) and Reddit (0.001). By default, we use a two-layer GCN to train an expert and apply noisy
gating with ϵ ∼ N (0, 1). We also report the ECE for uncalibrated predictions as a reference.

For all experiments, the pre-trained GNN classifiers are frozen, and the predicted logits z from
the validation set are fed into our calibration model as inputs. Further comparison settings and
hyperparameters are detailed in the Appendix A.1.2.

Results. Table 2 presents the calibration results evaluated by ECE, showing that our proposed
method, GETS, consistently achieves superior performance across various classifiers and datasets.
On average, GETS improves ECE by 28.60% over CaGCN, 26.62% over GATS, and 28.09% over
ETS across all datasets. While GETS demonstrates significant improvements on most datasets,
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Table 2: Calibration performance across datasets evaluated by ECE. Results are reported as mean ±
standard deviation over 10 runs. ‘Uncal.’ denotes uncalibrated results, and ‘OOM’ indicates out-of-
memory issues where the model could not be run. The best results for each dataset are marked bold.

Dataset Classifier Uncal. TS VS ETS CaGCN GATS GETS

Citeseer
GCN 20.51 ± 2.94 3.10 ± 0.34 2.82 ± 0.56 3.06 ± 0.33 2.79 ± 0.37 3.36 ± 0.68 2.50 ± 1.42
GAT 16.06 ± 0.62 2.18 ± 0.20 2.89 ± 0.28 2.38 ± 0.25 2.49 ± 0.47 2.50 ± 0.36 1.98 ± 0.30
GIN 4.12 ± 2.83 2.39 ± 0.32 2.55 ± 0.34 2.58 ± 0.34 2.96 ± 1.49 2.03 ± 0.23 1.86 ± 0.22

Computers
GCN 5.63 ± 1.06 3.29 ± 0.48 2.80 ± 0.29 3.45 ± 0.56 1.90 ± 0.42 3.28 ± 0.52 2.03 ± 0.35
GAT 6.71 ± 1.57 1.83 ± 0.27 2.19 ± 0.15 1.89 ± 0.24 1.88 ± 0.36 1.89 ± 0.34 1.77 ± 0.27
GIN 4.00 ± 2.84 3.92 ± 2.59 2.57 ± 1.06 2.91 ± 2.07 2.37 ± 1.87 3.34 ± 2.08 3.14 ± 3.70

Cora
GCN 22.62 ± 0.84 2.31 ± 0.53 2.43 ± 0.41 2.56 ± 0.47 3.22 ± 0.81 2.60 ± 0.76 2.29 ± 0.52
GAT 16.70 ± 0.75 1.82 ± 0.39 1.71 ± 0.28 1.67 ± 0.33 2.85 ± 0.66 2.58 ± 0.71 2.00 ± 0.48
GIN 3.59 ± 0.65 2.51 ± 0.33 2.20 ± 0.38 2.29 ± 0.30 2.79 ± 0.26 2.64 ± 0.39 2.63 ± 0.87

Cora-full
GCN 27.73 ± 0.22 4.43 ± 0.10 3.35 ± 0.22 4.34 ± 0.09 4.08 ± 0.25 4.46 ± 0.17 3.32 ± 1.24
GAT 37.51 ± 0.22 2.27 ± 0.33 3.55 ± 0.13 1.37 ± 0.25 3.96 ± 1.15 2.47 ± 0.35 1.52 ± 2.27
GIN 10.69 ± 3.55 3.33 ± 0.22 2.43 ± 0.19 2.18 ± 0.16 4.74 ± 0.66 3.98 ± 0.35 1.95 ± 0.37

CS
GCN 1.50 ± 0.10 1.49 ± 0.07 1.39 ± 0.10 1.44 ± 0.08 2.00 ± 0.98 1.51 ± 0.10 1.34 ± 0.10
GAT 4.30 ± 0.42 2.98 ± 0.15 3.02 ± 0.18 2.98 ± 0.15 2.57 ± 0.38 2.56 ± 0.15 1.05 ± 0.27
GIN 4.36 ± 0.31 4.31 ± 0.31 4.28 ± 0.28 3.04 ± 1.19 1.81 ± 1.09 1.24 ± 0.45 1.15 ± 0.32

Ogbn-arxiv
GCN 9.90 ± 0.77 9.17 ± 1.10 9.29 ± 0.88 9.60 ± 0.92 2.32 ± 0.33 2.97 ± 0.34 1.85 ± 0.22
GAT 6.90 ± 0.47 3.56 ± 0.10 4.39 ± 0.08 3.55 ± 0.10 3.52 ± 0.13 3.90 ± 0.77 2.34 ± 0.12
GIN 11.56 ± 0.27 11.35 ± 0.27 11.26 ± 0.43 11.38 ± 0.40 6.01 ± 0.28 6.41 ± 0.29 3.33 ± 0.36

Photo
GCN 4.05 ± 0.42 2.14 ± 0.46 2.11 ± 0.23 2.21 ± 0.34 2.42 ± 0.76 2.24 ± 0.30 2.07 ± 0.31
GAT 4.97 ± 0.75 2.06 ± 0.57 1.71 ± 0.23 2.57 ± 0.59 1.69 ± 0.14 2.05 ± 0.45 1.10 ± 0.25
GIN 3.37 ± 2.40 3.12 ± 1.85 3.77 ± 1.10 3.34 ± 1.70 2.42 ± 1.90 3.37 ± 1.85 1.43 ± 0.71

Physics
GCN 0.99 ± 0.10 0.96 ± 0.05 0.96 ± 0.05 0.87 ± 0.05 1.34 ± 0.45 0.91 ± 0.04 0.87 ± 0.09
GAT 1.52 ± 0.29 0.37 ± 0.10 0.44 ± 0.05 0.47 ± 0.22 0.69 ± 0.11 0.48 ± 0.23 0.29 ± 0.05
GIN 2.11 ± 0.14 2.08 ± 0.14 2.08 ± 0.14 1.64 ± 0.09 2.36 ± 0.52 0.90 ± 0.66 0.44 ± 0.10

Pubmed
GCN 13.26 ± 1.20 2.45 ± 0.30 2.34 ± 0.27 2.05 ± 0.26 1.93 ± 0.36 2.19 ± 0.27 1.90 ± 0.40
GAT 9.84 ± 0.16 0.80 ± 0.07 0.95 ± 0.08 0.81 ± 0.09 1.04 ± 0.08 0.81 ± 0.07 0.78 ± 0.15
GIN 1.43 ± 0.15 1.01 ± 0.06 1.04 ± 0.06 1.00 ± 0.04 1.40 ± 0.47 1.00 ± 0.06 0.92 ± 0.13

Reddit
GCN 6.97 ± 0.10 1.72 ± 0.07 2.02 ± 0.07 1.72 ± 0.07 1.50 ± 0.08 OOM 1.49 ± 0.07
GAT 4.75 ± 0.15 3.26 ± 0.08 3.43 ± 0.10 3.52 ± 0.10 0.81 ± 0.09 OOM 0.62 ± 0.08
GIN 3.22 ± 0.09 3.17 ± 0.13 3.19 ± 0.10 3.25 ± 0.14 1.63 ± 0.21 OOM 1.57 ± 0.12

some exceptions are noted in Computers, Cora, and Cora-full, where the gains are less pronounced
or slightly negative.

Interestingly, the best results often come from models that incorporate ensemble strategies, such
as ETS, highlighting the importance of combining these techniques for effective calibration. This
underscores the value of our GETS framework, which leverages both ensemble learning and GNN
structures to achieve node-specific calibration.

Moreover, GETS proves to be more scalable than GATS, which suffers from out-of-memory (OOM)
issues in larger networks like Reddit. These results affirm the robustness and scalability of GETS,
showcasing its ability to handle both small and large-scale datasets while significantly reducing cal-
ibration error. Overall, GETS demonstrates its effectiveness in addressing node-wise calibration by
incorporating input and model ensemble, offering clear improvements over other GNN calibration
methods like CaGCN and GATS.

5.3 TIME COMPLEXITY

CaGCN uses a two-layer GCN with a total time complexity of O(2(|E|F + |V|F 2)), where F is the
feature dimension (Blakely et al., 2021). GATS adds attention mechanisms, leading to a complexity
of O(2(|E|FH+ |V|F 2)), with H as the number of attention heads (Veličković et al., 2017). GETS,
fundamentally Graph MoE, introduces additional complexity by selecting the top k experts per node,
yielding O(k(|E|F+|V|F 2)+|V|MF ), where k ≪ M . This reduces computational costs compared
to using all experts, making GETS scalable while maintaining competitive performance. Training
multiple experts might make GETS less time-efficient than its counterpart. However, GETS scales
linearly with the number of nodes, and selecting lightweight models like GCN as experts helps
manage the time complexity effectively. In practice, the GETS model is computationally efficient,
as shown in Figure 3a, even though multiple experts are trained, GETS remains stable elapsed time
comparably efficient with the other two models that are trained with a single GNN model.
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Figure 3: Illustration of computational efficiency and expert selection properties. (a): Elepsed time
for training each model for 10 runs; (b): Primary and secondary expert selections across datasets for
various input ensembles. The top bar plot shows the frequency of expert selection, highlighting the
significance of combining logits and features in calibration across datasets.

5.4 EXPERT SELECTION

One advantage of GETS is its ability to visualize which experts, trained on specific input types, are
most important for each node. We illustrate this by coloring each node according to the selected
expert for it. As sparse activation in the gating function highlights the significance of different input
ensembles, we present the top two expert selections (primary and secondary) for each dataset in Fig-
ure 3b. Gating results are averaged over 10 runs to select the primary and secondary experts.

The results show a diverse range of expert choices, with the combination of logits and features [z, x]
frequently chosen as the primary experts, particularly for complex datasets like Ogbn-arxiv and Red-
dit. In contrast, degree-based experts (d) are often selected as secondary. For smaller datasets such
as Cora and Pubmed, individual expert selections are more prevalent. Noted that only using logits z
as the inputs are not preferred by the gating function, which indicates the importance of ensembling
different inputs. These findings indicate that integrating multiple input types—especially logits and
features—improves calibration, with the optimal expert combination depending on the complexity
of the dataset.

5.5 ABLATION STUDIES

In this section, we evaluate the impact of the backbone calibration model in our proposed GETS
framework. We investigate whether the choice of GNN backbone (e.g., GCN, GAT, GIN) signifi-
cantly affects calibration performance, offering insights into the robustness of GETS across different
architectures. We reuse the parameters tuned for default GETS. For the ablation discussion that fol-
lows, we use GCN as the default uncalibrated model.

Table 3: Ablation studies on different expert models, measured by ECE.

Expert Citeseer Computers Cora Cora-full CS Ogbn-arxiv Photo Physics Pubmed Reddit
GETS-GAT 4.09 ± 0.71 3.64 ± 1.94 2.96 ± 0.70 14.04 ± 5.70 4.91 ± 3.93 1.61 ± 0.28 3.43 ± 1.82 2.57 ± 2.23 1.96 ± 0.59 OOM
GETS-GIN 4.34 ± 1.36 4.56 ± 3.33 5.53 ± 0.59 2.83 ± 0.46 2.29 ± 0.82 2.48 ± 0.30 4.06 ± 2.96 1.16 ± 0.14 2.30 ± 0.58 4.64 ± 1.03

Generally, choosing GAT and GIN as the models to train experts does not provide significant ad-
vantages over using GCN, as shown in Table 3. GETS-GAT yields comparable performance to
GATS, also encounters the same OOM issue in the Reddit dataset, demonstrating its limitations in
handling large-scale datasets. Furthermore, while GETS-GIN shows improved results on datasets
like Cora-full, it underperforms on several other datasets, such as Citeseer, Computers, and Red-
dit, compared to GCN-based calibration. Notably, in simpler datasets or those with smaller graph
structures, GCN tends to achieve better calibration results without overfitting. This suggests that a
simpler GNN-based calibrator, like GCN, is preferable for training experts as it offers a more bal-
anced trade-off between model complexity and calibration performance, while avoiding potential
issues like overfitting, which may arise when more complex GNN architectures are used.
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6 CONCLUSION

We propose the GETS framework that combines input and model ensemble strategies within a Graph
MoE architecture. It effectively incorporates diverse inputs — logits, node features, and degree
embeddings, as well as using a sparse gating mechanism to adaptively select the most relevant
experts for each node. This mechanism enhances node-wise calibration performance in general
GNN classification tasks.

Our extensive experiments on 10 benchmark GNN datasets demonstrated that GETS consistently
outperforms state-of-the-art calibration methods, reducing the expected calibration error signifi-
cantly across different datasets and GNN architectures. GETS also proved to be computationally
efficient and scalable, effectively handling large-scale graphs without significant overhead. By inte-
grating multiple influential factors and leveraging ensemble strategies, GETS enhances the reliability
and trustworthiness of GNN prediction results.
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A APPENDIX

A.1 MODEL DETAILS

A.1.1 BASE GNN CLASSIFIER SETTINGS

For the base GNN classification model (i.e., the uncalibrated model), we follow the architecture and
parameter setup outlined by Kipf & Welling (2016); Veličković et al. (2017); Xu et al. (2018), with
modifications to achieve optimal performance. Specifically, we use a two-layer GCN, GAT, or GIN
model and tune the hidden dimension from the set {16, 32, 64}. We experiment with dropout rates
ranging from 0.5 to 1, and we do not apply any additional normalization.

During training, we use a learning rate of 1× 10−2. We tune the weight decay parameter to prevent
overfitting and consider adding early stopping with a patience of 50 epochs. The model is trained for
a maximum of 200 epochs to ensure convergence. The specifics are summarized in Table 4.

Table 4: Summary of GNN and Training Parameters

Dataset Num Layers Hidden Dimension Dropout Training Epochs Learning Rate Weight Decay
Citeseer 2 16 0.5 200 1e-2 5e-4

Computers 2 64 0.8 200 1e-2 1e-3
Cora-Full 2 64 0.8 200 1e-2 1e-3

Cora 2 16 0.5 200 1e-2 5e-4
CS 2 64 0.8 200 1e-2 1e-3

Ogbn-arxiv 2 256 0.5 200 1e-2 0
Photo 2 64 0.8 200 1e-2 1e-3

Physics 2 64 0.8 200 1e-2 1e-3
Pubmed 2 16 0.5 200 1e-2 5e-4
Reddit 2 16 0.5 200 1e-2 5e-4

A.1.2 GETS PARAMETER SETTINGS

The backbone GNN models used for calibration are identical to the base classification models, ensur-
ing consistent feature extraction and processing. We tune the hidden dimension for the calibrators
from the set {16, 32, 64}, depending on the dataset’s complexity, while dropout rates are chosen
between 0.2 and 0.8 to balance regularization and model performance.

GETS includes an expert selection mechanism that incorporates logits, features, and node degree
information, either individually or in combination, depending on the configuration that best fits the
dataset. For all experiments, we maintain a fixed bin size of 10 for uncertainty estimation. The
calibrators are trained with a learning rate of either 1× 10−1 or 1× 10−3, depending on the model’s
complexity, and we tune weight decay ranging from 0 to 0.1 to further regularize the training process.
The calibrators are trained for up to 1000 epochs, with early stopping applied based on a patience of
50 epochs.

This comprehensive setup ensures robust calibration of the GNN models across diverse datasets.
The full details of the calibration parameters are summarized in Table 5.

Table 5: Summary of GETS Parameters Across Datasets

Dataset Hidden Dim Dropout Num Layers Learning Rate Weight Decay
Citeseer 16 0.2 2 0.1 0.01

Computers 16 0.8 2 0.1 0
Cora-Full 16 0.8 2 0.1 0

Cora 16 0.5 2 0.001 0
CS 16 0.8 2 0.1 0

Ogbn-arxiv 16 0.2 2 0.1 0.01
Photo 32 0.8 2 0.1 0.001

Physics 16 0.2 2 0.1 0.001
Pubmed 16 0.8 2 0.1 0
Reddit 64 0.8 2 0.01 0.001
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A.1.3 BASELINE MODELS SETTINGS

For all the baseline calibration models, we ensure consistent training and calibration settings. The
calibration process is set to run for a maximum of 1000 epochs with early stopping applied after 50
epochs of no improvement. The calibration learning rate is set to 0.01, with no weight decay (0)
to avoid regularization effects during calibration. We use 10 bins for the calibration process, and
the default calibration method is chosen as Vector Scaling (VS). For the GATS model, we apply
two attention heads and include bias terms. Additionally, we apply a dropout rate of 0.5 during the
calibration to prevent overfitting, ensuring robustness across different setups. Full implementations
can be also found on our GitHub.

TS (Guo et al., 2017) adjusts the logits output by a model using a single scalar temperature parameter
T > 0 . The calibrated logits z′i for sample i are computed as:

z′i =
zi
T

(12)

The temperature T is learned by minimizing the negative log-likelihood (NLL) loss on the validation
(calibration) set:

min
T>0

LNLL(T ) = − 1

N

∑
i = 1N log

(
softmax

(zi
T

)
yi

)
(13)

where yi ∈ {1, . . . ,K} is the true label for sample i, N is the number of validation samples.

Vector Scaling (VS) (Guo et al., 2017) extends TS by introducing class-specific temperature scaling
and bias parameters. The calibrated logits z′i are computed as:

z′i = zi ⊙ t+ b (14)

where: t ∈ RK is the vector of temperature scaling parameters for each class, b ∈ RK is the
vector of bias parameters for each class, and ⊙ denotes element-wise multiplication. Therefore, the
parameters t and b are learned by minimizing the NLL loss on the validation set:

min
t,b

LNLL(t,b) = − 1

N

N∑
i=1

log
(
softmax (zi ⊙ t+ b)yi

)
(15)

ETS (Zhang et al., 2020) combines multiple calibration methods by weighting their outputs to im-
prove calibration performance. Specifically, ETS combines the predictions from temperature-scaled
logits, uncalibrated logits, and a uniform distribution. The calibrated probability vector pi for sample
i is computed as:

pi = w1 · softmax
(zi
T

)
+ w2 · softmax(zi) + w3 · u (16)

where: zi ∈ RK is the vector of logits for sample i. T > 0 is the temperature parameter learned from
TS, w1, w2, w3 ≥ 0 are the ensemble weights, satisfying w1 +w2 +w3 = 1, and u = 1

K1 ∈ RK is
the uniform probability distribution over K classes.

The ensemble weights w = [w1, w2, w3] are optimized by minimizing the NLL loss:

min
w

LNLL(w) = − 1

N

N∑
i=1

log (pi,yi
)

subject to
3∑

j=1

wj = 1, wj ≥ 0 for j = 1, 2, 3

(17)
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CaGCN (Wang et al., 2021) incorporates graph structure into the calibration process by applying a
GCN to the logits to compute node-specific temperatures. The temperature Ti for node i is computed
as:

Ti = softplus (fGCN(z,A)i) (18)

where z ∈ RN×K is the matrix of logits for all nodes, A is the adjacency matrix of the graph, fGCN(·)
is the GCN function mapping from logits to temperature logits, softplus(·) ensures the temperatures
are positive, and Ti is scalar for node i. The calibrated logits follows 12: Note that CaGCN scales
the logits multiplicatively with Ti, where Ti > 0, to ensure its accuracy preserving.

The GCN parameters θ are learned by minimizing the NLL loss on the validation set:

min
θ

LNLL(θ) = − 1

N

N∑
i=1

log
(
softmax (z′i)yi

)
(19)

GATS (Hsu et al., 2022) employs a GAT to compute node-specific temperatures, taking into account
both the graph structure and node features. The notations are nearly the same as CaGCN, with a
difference in the model architecture, from fGCN to fGAT. The number of attention heads is set to
2.

A.2 DATASET SOURCE DESCRIPTIONS

We evaluated our method on several widely used benchmark datasets, all accessible via the Deep
Graph Library (DGL)1. These datasets encompass a variety of graph types and complexities, allow-
ing us to assess the robustness and generalizability of our calibration approach.

Citation Networks (Cora, Citeseer, Pubmed, Cora-Full): In these datasets (Sen et al., 2008; Mc-
Callum et al., 2000; Giles et al., 1998), nodes represent academic papers, and edges denote citation
links between them. Node features are typically bag-of-words representations of the documents,
capturing the presence of specific words. Labels correspond to the research topics or fields of the
papers. The Cora-Full dataset is an extended version of Cora, featuring more nodes and a larger
number of classes, which introduces additional classification challenges.

Coauthor Networks (Coauthor CS, Coauthor Physics): These datasets (Shchur et al., 2018) rep-
resent co-authorship graphs where nodes are authors, and edges indicate collaboration between au-
thors. Node features are derived from the authors’ published papers, reflecting their research inter-
ests. Labels represent the most active field of study for each author. These datasets are larger and
have higher average degrees compared to the citation networks, testing the models’ ability to handle
more densely connected graphs.

Amazon Co-Purchase Networks (Computers, Photo): In these graphs (Yang & Leskovec, 2012),
nodes represent products on Amazon, and edges connect products that are frequently co-purchased.
Node features are extracted from product reviews and descriptions, providing rich textual informa-
tion. Labels correspond to product categories. These datasets exhibit strong community structures
and higher connectivity, offering a different perspective from academic networks.

Ogbn-arxiv: Part of the Open Graph Benchmark (Hu et al., 2020), this dataset is a large-scale
citation network of ArXiv papers. Nodes represent papers, edges denote citation relationships, node
features are obtained from paper abstracts, and labels are assigned based on subject areas. Its size
and complexity make it suitable for evaluating scalability and performance on real-world, large
graphs.

Reddit: This dataset (Hamilton et al., 2017) models interactions on Reddit. Nodes are posts, and
edges connect posts if the same user comments on both, capturing user interaction patterns. Node
features are derived from post content and metadata, and labels correspond to the community (sub-
reddit) of each post. Its large size and dense connectivity challenge models to scale efficiently while
maintaining performance.
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Dataset Uncalibrated (×10−3) GETS (×10−3) Improvement (%)
Citeseer 4.46 ± 0.82 2.95 ± 1.08 33.9%

Computers 8.44 ± 1.11 5.86 ± 3.02 30.6%
Cora-full 10.02 ± 0.15 4.87 ± 0.62 51.4%

Cora 2.07 ± 0.17 1.69 ± 0.28 18.3%
CS 2.05 ± 0.13 2.05 ± 0.18 0.0%

Ogbn-arxiv 1.81 ± 0.29 4.72 ± 0.65 -
Photo 5.12 ± 0.78 2.62 ± 0.30 48.8%

Physics 1.29 ± 0.12 1.46 ± 0.20 -
Pubmed 4.69 ± 0.28 1.63 ± 0.23 65.3%
Reddit 26.38 ± 0.45 16.51 ± 1.54 37.4%

Table 6: Comparison of VarECE between Uncalibrated and GETS models, with improvement in
percentage. Positive values indicate improvement.

A.3 ALGORITHMIC FAIRNESS AMONG DEGREE GROUPS

While fairness is not the primary focus of this paper, our model enhances algorithmic fairness by
incorporating graph structural information into the calibration process, improving fairness across
different degree groups. Although grouping nodes based on degrees is a nonparametric binning strat-
egy—which may diverge from our main focus on parametric calibration—we include this discussion
to address calibration errors among these groups. This demonstrates that our method promotes fair-
ness by achieving similar calibration results across nodes with varying degrees. The metrics and
analyses presented can be extended to algorithmic fairness studies to evaluate model trustworthi-
ness.

We define a binning strategy B∗ = {D1,D2, . . . ,DB} that groups nodes based on their degrees,
each containing approximately N

B nodes, where N is the total number of nodes. The average degree
of group Di is: AvgDeg(Di) =

1
|Di|

∑
v∈Di

deg(v), where deg(v) is the degree of node v. Groups
are ordered such that AvgDeg(Di) < AvgDeg(Dj) for i < j. Note that B∗ can also be defined using
other topological statistics.

Following the Rawlsian Difference Principle (Rawls, 1971; Kang et al., 2022), we aim to balance
calibration errors across degree-based groups by minimizing their variance. We define the Variation
of ECE (VarECE) as a fairness metric:

VarECE(fθ,B∗) = Var

({
|Dj |
N

|Acc(Dj)− Conf(Dj)|
}B

j=1

)
, (20)

where Acc(Dj) and Conf(Dj) are the accuracy and confidence on group Dj , respectively.

Results are given in Table 6. By minimizing VarECE, our model promotes fairness across different
groups, ensuring that no group—particularly those with lower degrees—suffers from disproportion-
ately higher calibration errors.

A.4 ABLATIION OF ENSEMBLE STRATEGIES

If we ablate the input ensemble, we still use M = 7, but only use the logit z for the input. In this
case, we have trained M same calibration models and do the average.

Table 7: Ablation studies on different input configurations, measured by ECE.

Input-Ablation Citeseer Computers Cora Cora-full CS Ogbn-arxiv Photo Physics Pubmed Reddit
GETS 6.70 ± 1.60 4.36 ± 1.79 2.95 ± 0.43 3.42 ± 0.53 1.78 ± 0.10 2.36 ± 0.11 2.03 ± 0.34 1.08 ± 0.09 1.87 ± 0.31 2.86 ± 0.49

If we ablate the model ensemble, the diverse input type is concatenated and is fed into one GNN
calibrator, which is reduced to the idea GATS, which is demonstrated to perform less efficiently and
effectively than GETS in our previous discussion of Table 2.

1https://github.com/shchur/gnn-benchmark
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Table 8: GPU reserved memory usage for each algorithm. The OOM case is marked with the
attempted reserved memory from the algorithm.

Dataset Classifier TS VS ETS CaGCN GATS GETS
Citeseer GCN 164 MB 164 MB 118 MB 164 MB 168 MB 184 MB

Computers GCN 210 MB 210 MB 190 MB 212 MB 348 MB 250 MB
Cora GCN 98 MB 98 MB 98 MB 98 MB 102 MB 110 MB

Cora-full GCN 1380 MB 1380 MB 1380 MB 1380 MB 1384 MB 2018 MB
CS GCN 1546 MB 1546 MB 620 MB 1060 MB 1066 MB 1546 MB

Ogbn-arxiv GCN 3382 MB 3382 MB 3382 MB 1328 MB 2858 MB 2418 MB
Photo GCN 186 MB 186 MB 130 MB 154 MB 216 MB 186 MB

Physics GCN 2368 MB 2368 MB 2368 MB 2368 MB 2390 MB 3504 MB
Pubmed GCN 224 MB 224 MB 224 MB 166 MB 176 MB 224 MB
Reddit GCN 7208 MB 7208 MB 7208 MB 7206 MB 17.54 GB 7208 MB

A.5 CALIBRATION RELIABILITY DIAGRAM RESULTS

Based on classifier GCN, the reliability diagrams reflect how the confidence aligns with the accura-
cies in each bin. Reliability diagram of calibration results of different models are given in Figure 4
and 5. The ECE calculated by degree based binning is shown in Figure 6.

A.6 GPU MEMORY USAGE

We summarize the GPU memory reserved by each of the calibration methods. By default, all the
calibration methods run on the GCN classifier outputs. The memory usage results are shown in
Table 8.

A.7 SIMCALIB COMPARISON

We further compare with the work of SimCalib (Tang et al., 2024), as shown in Table 9.

Table 9: ECE Comparison of GETS and SimCalib results for various datasets and classifiers.
Smaller values are highlighted in bold.

Dataset Classifier GETS SimCalib
Cora GCN 2.29 ± 0.52 3.32 ± 0.99

GAT 2.00 ± 0.48 2.90 ± 0.87
Citeseer GCN 2.50 ± 1.42 3.94 ± 1.12

GAT 1.98 ± 0.30 3.95 ± 1.30
Pubmed GCN 1.90 ± 0.40 0.93 ± 0.32

GAT 0.78 ± 0.15 0.95 ± 0.35
Computers GCN 2.03 ± 0.35 1.37 ± 0.33

GAT 1.77 ± 0.27 1.08 ± 0.33
Photo GCN 2.07 ± 0.31 1.36 ± 0.59

GAT 1.10 ± 0.25 1.29 ± 0.55
CS GCN 1.34 ± 0.10 0.81 ± 0.30

GAT 1.05 ± 0.27 0.83 ± 0.32
Physics GCN 0.87 ± 0.09 0.39 ± 0.14

GAT 0.29 ± 0.05 0.40 ± 0.13
CoraFull GCN 3.32 ± 1.24 3.22 ± 0.74

GAT 1.52 ± 2.27 3.40 ± 0.91

A.8 GATING SCORES VISUALIZATION

We also visualize the stack plot of the gating score changes during training. This will reflect how
different experts are preferred during different stages of training. By default, we look into the GETS-
GCN case run on the GCN classifier.
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A.9 ABLATION ON THE INPUT ENSEMBLE

A.9.1 DIFFERENT STRUCTURAL INFORMATION

We conduct the test to replace the degree embedding with centrality embedding and Node2Vec em-
bedding. We conduct experiments on all datasets, but some of the datasets are too large to compute
the network statistics. We left those datasets empty due to limited time in rebuttal periods.

The results are shown in Table 10. For the naming convenience, we use GETS-centrality and GETS-
Node2Vec to represent different structural information. The original GETS is also repeated here for
comparison. By default, we use the classifier GCN. For Node2Vec embedding, we set by default
walk length=20, num walks=10, workers=4

Table 10: Ablation studies on different structural information, measured by ECE (cleaned values).

Expert Citeseer Computers Cora Cora-full CS Ogbn-arxiv Photo Physics Pubmed Reddit
GETS 2.50 ± 1.42 2.03 ± 0.35 2.29 ± 0.52 3.32 ± 1.24 1.34 ± 0.10 1.85 ± 0.22 2.07 ± 0.31 0.87 ± 0.09 1.90 ± 0.40 1.49 ± 0.07

GETS-Centrality 7.63 ± 1.35 5.01 ± 3.49 3.29 ± 0.75 3.63 ± 0.68 2.21 ± 0.90 / 1.84 ± 0.17 / 2.18 ± 0.35 /
GETS-Node2Vec 4.25 ± 1.28 2.99 ± 0.97 3.06 ± 0.54 3.88 ± 1.06 1.82 ± 0.09 / 1.85 ± 0.40 1.13 ± 0.15 2.30 ± 0.33 /

A.9.2 DIFFERENT INPUT TYPES

We further ablate on different input types. We ablate one of the three input types and create the input
ensemble based on the other two. For example, we ablate z and then construct the input ensemble
as {x, d, [x, d]}. For the convenience of naming, we use GETS-DX, GETS-DZ, and GETS-XZ to
represent the input ensemble without including z, x, and d. The results can be found in Table 11.
Generally, incorporating more information in the inputs types would make the results better.

Table 11: Ablation studies on different input ensembles, measured by ECE (cleaned values).

Expert Citeseer Computers Cora Cora-full CS Ogbn-arxiv Photo Physics Pubmed Reddit
GETS 2.50 ± 1.42 2.03 ± 0.35 2.29 ± 0.52 3.32 ± 1.24 1.34 ± 0.10 1.85 ± 0.22 2.07 ± 0.31 0.87 ± 0.09 1.90 ± 0.40 1.49 ± 0.07

GETS-DX 4.00 ± 0.94 2.76 ± 0.40 3.27 ± 0.62 3.60 ± 0.54 1.86 ± 0.21 2.15 ± 0.46 2.12 ± 0.42 1.06 ± 0.08 2.02 ± 0.35 1.55 ± 0.25
GETS-DZ 4.29 ± 1.24 3.53 ± 2.36 2.66 ± 0.71 3.34 ± 0.34 1.83 ± 0.15 2.32 ± 0.27 1.76 ± 0.58 0.98 ± 0.12 2.43 ± 0.56 1.80 ± 0.16
GETS-XZ 2.93 ± 0.72 3.49 ± 1.47 3.09 ± 0.47 3.26 ± 0.40 1.94 ± 0.52 2.24 ± 0.19 1.33 ± 0.15 1.02 ± 0.07 2.56 ± 0.55 2.28 ± 0.84

A.10 ABLATION ON THE EXPERTS

We extend the Table 3 by including Multi-layer Perceptron (MLP) as the backbone model with the
same layer number for training the algorithm. MLP is structure-unaware, which can serve as the
baseline. The MLP results show that the selection of the backbone methods for the experts does not
necessarily require graph-based models, which offer the opportunity to include a broader range of
models for the graph calibration task.

Table 12: Ablation studies on different expert models, measured by ECE.

Expert Citeseer Computers Cora Cora-full CS Ogbn-arxiv Photo Physics Pubmed Reddit
GETS 2.50 ± 1.42 2.03 ± 0.35 2.29 ± 0.52 3.32 ± 1.24 1.34 ± 0.10 1.85 ± 0.22 2.07 ± 0.31 0.87 ± 0.09 1.90 ± 0.40 1.49 ± 0.07

GETS-GAT 4.09 ± 0.71 3.64 ± 1.94 2.96 ± 0.70 14.04 ± 5.70 4.91 ± 3.93 1.61 ± 0.28 3.43 ± 1.82 2.57 ± 2.23 1.96 ± 0.59 OOM
GETS-GIN 4.34 ± 1.36 4.56 ± 3.33 5.53 ± 0.59 2.83 ± 0.46 2.29 ± 0.82 2.48 ± 0.30 4.06 ± 2.96 1.16 ± 0.14 2.30 ± 0.58 4.64 ± 1.03
GETS-MLP 4.82 ± 0.85 4.09 ± 1.51 3.19 ± 0.65 3.51 ± 1.02 1.89 ± 0.10 2.38 ± 0.17 1.38 ± 0.46 0.99 ± 0.15 2.18 ± 0.33 1.96 ± 0.48
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(a) Reliability diagram of CaGCN.
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(b) Reliability diagram of GATS.
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(d) Reliability diagram of TS.

Figure 4: Reliability diagrams of GaGCN, GATS, GETS, and TS.
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(a) Reliability diagram of VS.
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(b) Reliability diagram of ETS.

Figure 5: Reliability diagrams of VS and ETS.
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Figure 6: Visualization of the ECE performance of three deep learning models (CaGCN, GATS, and
GETS) across various datasets. Confidence bins are sorted by degree. Note that GATS encountered
an out-of-memory issue on the Reddit dataset, resulting in a blank figure for that case.
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Figure 7: GETS gating scores changes during training.
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