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Abstract

Score-based generative modeling (SGM) is a highly successful approach for learn-
ing a probability distribution from data and generating further samples. We prove
the first polynomial convergence guarantees for the core mechanic behind SGM:
drawing samples from a probability density p given a score estimate (an estimate
of∇ ln p) that is accurate in L2(p). Compared to previous works, we do not incur
error that grows exponentially in time or that suffers from a curse of dimension-
ality. Our guarantee works for any smooth distribution and depends polynomially
on its log-Sobolev constant. Using our guarantee, we give a theoretical analy-
sis of score-based generative modeling, which transforms white-noise input into
samples from a learned data distribution given score estimates at different noise
scales. Our analysis gives theoretical grounding to the observation that an an-
nealed procedure is required in practice to generate good samples, as our proof
depends essentially on using annealing to obtain a warm start at each step. More-
over, we show that a predictor-corrector algorithm gives better convergence than
using either portion alone.

1 Introduction

A key task in machine learning is to learn a probability distribution from data, in a way that al-
lows efficient generation of additional samples from the learned distribution. Score-based genera-
tive modeling (SGM) is one empirically successful approach that implicitly learns the probability
distribution by learning how to transform white noise into the data distribution, and gives state-
of-the-art performance for generating images and audio [SE19; Dat+19; Gra+19; SE20; Son+20b;
Men+21; Son+21b; Son+21a; Jin+22]. It also yields a conditional generation process for inverse
problems [DN21]. The basic idea behind score-based generative modeling is to first estimate the
score function from data [Son+20a] and then to sample the distribution based on the learned score
function. Other approaches for generative modeling include generative adversarial networks (GANs)
[Goo+14; ACB17], normalizing flows [DSB16], variational autoencoders [KW19], and energy-
based models [ZML16]. While score-based generative modeling has achieved great success, its
theoretical analysis is still lacking and is the focus of our work.
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1.1 Background

General framework. The score function of a distribution P with density p is defined as the gra-
dient of the log-pdf, ∇ ln p. Its significance arises from the fact that knowing the score function
allows running a variety of sampling algorithms, based on discretizations of stochastic differential
equations (SDE’s), to sample from p. SGM consists of two steps: first, learning an estimate of the
score function for a sequence of “noisy” versions of the data distribution Pdata, and second, using
the score function in lieu of the gradient of the log-pdf in the chosen sampling algorithm. We now
describe each of these steps more precisely.

First, a method of adding noise to the data distribution is fixed; this takes the form of evolving a
(forward) stochastic differential equation (SDE) starting from the data distribution. We fix a se-
quence of noise levels σ1 < · · · < σN . For σ ∈ {σ1, . . . , σN}, let the resulting distributions be Pσ2

and the distributions conditional on the starting data point be Pσ2(·|x). Typically, σ1 is chosen so
that Pσ2

1
≈ Pdata and Pσ2

N
is close to some “prior” distribution that is easy to sample from, such as

N(0, σ2
NId). While the score∇ ln pσ2 cannot be estimated directly, it turns out that a de-noising ob-

jective that is equivalent to the score-matching objective can be calculated [SE19]. This de-noising
objective can be estimated from samples (X, X̃) where X̃ ∼ Pσ2(·|x). The objective is represented
and optimized within an expressive function class, typically neural networks, to obtain a L2-estimate
of the score, that is, sθ(x, σ2) such that

Ex∼Pσ2 [∥sθ(x, σ2)−∇ ln pσ2(x)∥2] (1)

is small.

The reason we estimate the score function ∇ ln pσ2 is that there are a variety of sampling
algorithms—based on simulating SDE’s—that can sample from p given access to ∇ ln p, including
Langevin Monte Carlo and Hamiltonian Monte Carlo. The second step is then to use the estimated
score function sθ(x, t) in lieu of the exact gradient in the sampling algorithm to successively ob-
tain samples from pσ2

N
, . . . , pσ2

1
. This sequence interpolates smoothly between the prior distribution

(e.g., N(0, σ2
NId)) and the data distribution Pdata; such an “annealing” or “homotopy” method is

required in practice to generate good samples [Son+20b].

Examples of SGM’s. There have been several instantiations of this general approach. [SE19]
add gaussian noise to the data and then use Langevin diffusion at a discrete set of noise levels
σN > · · · > σ1 as the sampling algorithm. [Son+20b] take the continuous perspective and con-
sider a more general framework, where the forward process can be any reasonable SDE. Then a
natural reverse SDE evolves the final distribution pσ2

N
back to the data distribution; this process

can be simulated with the estimated score. They consider methods based on two different SDE’s:
score-matching Langevin diffusion (SMLD) based on adding Gaussian noise and denosing diffusion
probabilistic models (DDPM) [Soh+15; HJA20], based on the Ornstein-Uhlenbeck process. Note
that a difference with MCMC-based methods is that these SDE’s are evolved for a fixed amount of
time, rather than until convergence. However, they can be combined with MCMC-based methods
such as Langevin diffusion in the predictor-corrector approach for improved convergence. [DVK21]
include Hamiltonian dynamics: they augment the state space with a velocity variable and consider
a critically-damped version of the Ornstein-Uhlenbeck process. Finally, we note the work of [De
+21], who introduce the Diffusion Schrödinger Bridge method to learn a diffusion that more quickly
transforms the prior into the data distribution.

We will give a general analysis framework for SGM’s that applies to the algorithms in both [SE19]
and [Son+20b].

1.2 Prior work and challenges for theory

Although the literature on convergence for Langevin Monte Carlo [DM17; CB18; Che+18; Dal17;
DK19; MMS20; EHZ21] and related sampling algorithms is extensive, prior works mainly consider
the case of exact or stochastic gradients. In contrast, by the structure of the loss function (1), the
score function learned in SGM is only accurate in L2(p). This poses a significant challenge for
analysis, as the stationary distribution of Langevin diffusion with L2(p)-accurate gradient can be
arbitrarily far from p (see Appendix D). Hence, any analysis must be utilizing the short/medium-

2



term convergence, while overcoming the potential issue of long-term behavior of convergence to an
incorrect distribution.

[BMR20] give the first theoretical analysis of SGM, and in particular, Langevin Monte Carlo with
L2(p)-accurate gradients. First, they show using uniform generalization bounds that optimizing
the de-noising autoencoder (DAE) objective does in fact give a L2(p)-accurate score function, with
sample complexity depending on the complexity of the function class. They analyze convergence of
LMC in Wasserstein distance. However, the error they obtain (Theorem 13) only decreases as ε1/d
where ε is the accuracy of the score estimate—so it suffers from the curse of dimensionality—and
increases exponentially in the time that the process is run, the dimension, and the smoothness of the
distribution, as in ODE/SDE discretization arguments that do not depend on contractivity.

[De +21] give an analysis for [Son+20b] in TV distance that requires a L∞-accurate score function
and depends exponentially on the amount of time the reverse SDE is run. Although exponential de-
pendence is bad in general, it is mollified using their Diffusion Schrödinger Bridge (DSB) approach,
as it allows running for a shorter, fixed amount of time, before the forward SDE converges to the
prior distribution. However, this supposes that a good solution can be found for the DSB problem,
and theoretical guarantees may be difficult to obtain.

We overcome the challenges of analysis with a L2(p)-accurate gradient, and give the first analysis
with only polynomial dependence on running time, dimension, and smoothness of the distribution,
with rates that are a fixed power of ε. Our convergence result is in TV distance. We assume only
smoothness conditions and a bounded log-Sobolev constant of the data distribution, a weaker con-
dition than the dissipativity condition required by [BMR20]. We introduce a general framework for
analysis of sampling algorithms given L2-accurate gradients (score function) based on constructing
a “bad set” with small measure and showing convergence of the discretized process conditioned on
not hitting the bad set. We use our framework to give an end-to-end analysis for both the algorithms
in [SE19] and [Son+20b], and illuminate the relative performance of different methods in practice.

1.3 Notation and organization

Through out the paper, p(x) ∝ e−V (x) denotes the target distribution in Rd and V : Rd → R is
referred to as the potential. We abuse notation by identifying a measure with its density when context
allows. We write a ∧ b := min{a, b} and a ∨ b := max{a, b}. We use a = O(b) or b = Ω(a) to
indicate that a ≤ Cb for a universal constant C > 0. Also, we write a = Θ(b) if there are universal
constants c′ > c > 0 such that cb ≤ a ≤ cb, and the notation Õ(·) means it hides polylog factors in
the parameters. Definite integrals without limits are taken over Rd.

In Section 2 we explain our main results for Langevin Monte Carlo with L2(p)-accurate score esti-
mate and use it to derive convergence bounds for the annealed LMC method of [SE19]. In Section 3,
we give our main results for the predictor-corrector algorithms of [Son+20b] based on simulating
reverse SDE’s. Our proofs are based on a common framework which we introduce in Section 4. Full
proofs are in the appendix.

2 Results for Langevin dynamics with estimated score

Let p(x) ∝ e−V (x) be a probability density on Rd such that V is C1. Langevin diffusion with
stationary distribution p is the stochastic process defined by the SDE

dxt = −∇V (xt) dt+
√
2 dwt,

where wt is a standard Brownian Motion in Rd. The rate of convergence to p in χ2 and KL diver-
gences are given by the Poincaré and log-Sobolev constants of p, respectively; see Section E.1. To
obtain the Langevin Monte Carlo (LMC) algorithm, we take the Euler-Murayama discretization of
the SDE. We define LMC with score estimate s(x) ≈ −∇V (x) and step size h by

x(k+1)h = xkh + h · s(xkh) +
√
2h · ξkh, where ξkh ∼ N(0, Id). (LMC-SE)

We make the following assumptions on the density p and the score estimate s, which we will use
throughout this paper.
Assumption 1. p is a probability density on Rd such that the following hold.
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1. ln p is C1 and L-smooth, that is,∇ ln p is L-Lipschitz. We assume L ≥ 1.

2. p satisfies a log-Sobolev inequality with constant CLS. We assume CLS ≥ 1.

3. (Moments) ∥Epx∥ ≤M1 and Ep ∥x∥2 ≤M2.

We note that the uniform Lipschitzness assumption (1) helps ensure a unique strong solution to the
Langevin diffusion, as in [BMR20]. One special case where one can prove Lipschitzness for all t is
when p0 is strongly log-concave [Lee+21, Lemma 28]. Although satisfying a log-Sobolev inequality
(3) is a significant assumption, it is standard for analysis of Langevin Monte Carlo [VW19]. It is
much weaker than assumptions in previous works [BMR20], including log-concave distributions
and distributions satisfying strong dissipativity, and is stable under bounded perturbations. See
Section E.1 for background on functional inequalities.
Assumption 2. Let p be a given probability density on Rd such that ln p is C1. The score estimate
s : Rd → Rd satisfies the following.

1. s is a C1 function that is Ls-Lipschitz. We assume Ls ≥ 1.

2. The error in the score estimate is bounded in L2:

∥∇ ln p− s∥2L2(p) = Ep[∥∇ ln p(x)− s(x)∥2] ≤ ε2.

2.1 Langevin with L2-accurate score estimate

Our first main result gives an error bound between the sampled distribution and p, assuming L2-
accurate score function estimate.
Theorem 2.1 (LMC with L2-accurate score estimate). Let p : Rd → R be a probability density
satisfying Assumption 1(1, 2) with L ≥ 1 and s : Rd → Rd be a score estimate satisfying Assump-
tion 2(2). Consider the accuracy requirement in TV and χ2: 0 < εTV < 1, 0 < εχ < 1, and
suppose furthermore the starting distribution satisfies χ2(p0||p) ≤ K2

χ. Then if

ε = O

(
εTVε

3
χ

dL2C
5/2
LS (ln(2Kχ/ε2χ) ∨Kχ)

)
, (2)

then running (LMC-SE) with score estimate s, step size h = Θ
(

ε2χ
dL2CLS

)
, and time T =

Θ
(
CLS ln

( 2Kχ

ε2χ

))
results in a distribution pT such that pT is εTV-far in TV distance from a dis-

tribution pT , where pT satisfies χ2(pT ||p) ≤ ε2χ. In particular, taking εχ = εTV, we have the error
guarantee that TV(pT , p) ≤ 2εTV.

Note that the error bound is only achieved when running LMC for a moderate time; this is consistent
with the fact that the stationary distribution of LMC with a L2-score estimate can be arbitrarily far
from p. Note also that we need a warm start in χ2-divergence: to obtain fixed errors εTV, εχ,
the required accuracy for the score estimate is inversely proportional to Kχ. Intuitively, we must
suffer from such a dependence because if the starting distribution is very far away, then there is no
guarantee that ∥∇ ln p(xt) − s(xt)∥2 is small on average during the sampling algorithm. Finally,
although we can state a result purely in terms of TV distance, we need this more precise formulation
to prove a result for annealed Langevin dynamics.

2.2 Annealed Langevin dynamics with estimated score

In light of the warm start requirement in Theorem 2.1, we typically cannot directly sample from
pdata or its approximation. Hence, [SE19] proposed using annealed Langevin dynamics: con-
sider a sequence of noise levels σN > · · · > σ1 ≈ 0 giving rise to a sequence of distributions
pσ2

N
, . . . , pσ2

1
≈ pdata, where pσ2 = p ∗ φσ2 , φσ2 being the density of N(0, σ2Id). For large enough

σN , φσ2
N
≈ pσ2

N
provides a warm start to pσ2

N
. We then successively run LMC using score estimates

for pσ2
k
, with the approximate sample for pσ2

k
giving a warm start for pσ2

k−1
. We obtain the following

algorithm and error estimate.
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Algorithm 1 Annealed Langevin dynamics with estimated score [SE19]
INPUT: Noise levels 0 ≤ σ1 < . . . < σM ; score function estimates s(·, σm) (estimates of
∇ ln(p ∗ φσ2

m
)), step sizes hm, and number of steps Nm for 1 ≤ m ≤M .

Draw x(M+1) ∼ N(0, σ2
MId).

for m from M to 1 do
Starting from x

(m)
0 = x(m+1), run (LMC-SE) with s(x, σm) and step size hm for Nm steps,

and let the final sample be x(m).
end for
OUTPUT: Return x(1), approximate sample from p ∗ φσ2

1
.

Theorem 2.2 (Annealed LMC with L2-accurate score estimate). Let p : Rd → R be a probability
density satisfying Assumption 1 for M1 = O(d), and let pσ2 := p ∗ φσ2 . Suppose furthermore that
∇ ln pσ2 is L-Lipschitz for every σ ≥ 0. Given σmin > 0, there exists a sequence σmin = σ1 <

· · · < σM with M = O
(√

d log
(
dCLS
σ2
min

))
such that for each m, if∥∥∇ ln(pσ2

m
)− s(·, σ2

m)
∥∥2
L2(pσ2

m
)
= Epσ2

m
[
∥∥∇ ln pσ2

m
(x)− s(x, σ2

m)
∥∥2] ≤ ε2.

with ε := Õ

(
ε4.5TV

d3.25L2C2.5
LS

)
(3)

then x(1) is a sample from a distribution q such that TV(q, pσ2
1
) ≤ εTV.

Note that we assume a score estimate with error ε at all noise scales; this corresponds to using an
objective function that is a maximum of the score-matching objective over all noise levels, rather
than an average over all noise levels as more commonly used in practice. However, these two losses
are at most a factor of M apart.

The proof shows that the noise levels σk can be chosen as a geometric sequence, which matches the
choice used in practice [SE20]. The additional dependence on d and εTV in Theorem 2.2 compared
to Theorem 2.1 comes from requiring a sequence of Õ(

√
d) noise levels and an additional factor

in χ2-divergence we suffer at the beginning of each level m. In the next section, we will find that
using a reverse SDE to evolve the samples between the noise levels—called a predictor step—will
improve the rate and time complexity.

3 Results for reverse SDE’s with estimated score

To improve the empirical performance of score-based generative modeling, [Son+20b] consider a
general framework where noise is injected into a data distribution pdata via a forward SDE,

dx̃t = f(x̃t, t) dt+ g(t) dwt, t ∈ [0, T ],

where x̃0 ∼ p̃0 := pdata. Let p̃t denote the distribution of x̃t (p̃t is used instead of pt to distin-
guish with the Gaussian-convolved distribution used in Annealed Langevin dynamics as in §2.2).
Remarkably, x̃t also satisfies a reverse-time SDE,

dx̃t = [f(x̃t, t)− g(t)2∇ ln p̃t(x̃t)]dt+ g(t) dw̃t, t ∈ [0, T ], (4)

where w̃t is a backward Brownian Motion [And82]. By carefully choosing f and g, we can expect
that p̃T is approximately equal to some prior distribution q̃T (e.g., a centered Gaussian) which we
can accurately sample from. Then we hope that starting with some ỹT ∼ pprior = q̃T ≈ p̃T and
running the reverse-time process, we will get a good sample ỹ0 ∼ q̃0 ≈ pdata.

The case where f ≡ 0 and g ≡ 1 recovers the simple case of convolving with a Gaussian as used
in §2.2; note, however that the reverse-time SDE differs from Langevin diffusion in having a larger
(and time-varying) drift relative to the diffusion. [Son+20b] highlight the following two special
cases. We will focus on DDPM while noting that our analysis applies more generically.

SMLD Score-matching Langevin diffusion: f ≡ 0. In this case, p̃t = p̃0 ∗ φ∫ t
0
g(s)2 ds, so

[Son+20b] call this a variance-exploding (VE) SDE. As is common for annealing-based
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algorithms, [SE19; Son+20b] suggest choosing an exponential schedule, so that g(t) = abt

for constants a, b. We take pprior = N(0,
∫ T
0
g(s)2 ds · Id).

DDPM Denoising diffusion probabilistic modeling: f(x, t) = − 1
2g(t)

2x. This is an Ornstein-
Uhlenbeck process with time rescaling, p̃t = M− 1

2

∫ t
0
g(s)2 ds♯p̃0 ∗ φ1−e−

∫ t
0 g(s)2 ds , where

Mα(x) = αx. [Son+20b] call this a variance-preserving (VP) SDE, as the variance con-
verges towards Id. Because it displays exponential convergence towards N(0, Id), it can
be run for a smaller amount of normalized time

∫ t
0
g(s)2 ds. [Son+20b] suggest the choice

g(t) =
√
b+ αt. We take pprior = N(0, (1− e−

∫ t
0
g(s)2 ds)Id) ≈ N(0, Id).

To obtain an algorithm, we consider the following discretization and approximation of (4); note
that in all cases of interest the integrals can be analytically evaluated. We reverse time so that t
corresponds to T − t of the forward process. As we are free to rescale time in the SDE, we assume
without loss of generality that the step sizes are constant. The predictor step is

z(k+1)h = zkh −
∫ (k+1)h

kh

[
f(zkh, T − t)− g(T − t)2 · s(zkh, T − kh)

]
dt

+

∫ (k+1)h

kh

g(T − t) dwt, (P)

where
∫ (k+1)h

kh
g(T − t) dwt is distributed as N(0,

∫ (k+1)h

kh
g(T − t)2 dt · Id). Following [Son+20b],

we call these predictor steps as the samples aim to track the distributions p̃T−kh. Note that we
flip the time. For simplicity of presentation, we consider the case g ≡ 1. We note that al-
though the choice of the schedule does matter in practice, what really matters in our theoretical
analysis is the integral

∫ t
0
g(s)2ds. This means that different choices of g are related by only a

rescaling of time, i.e., for different g and g̃, we can always choose total times T and T̃ , such that∫ T
0
g(s)2ds =

∫ T̃
0
g̃(s)2ds. While it seems that choosing large g(t) could reduce the total time T ,

in our analysis (e.g., Lemma C.15) we need the time step-size h to be O(1/g(T )2) and hence the
total computational cost, which is roughly O(T/h), does not change significantly.
Theorem 3.1 (Predictor with L2-accurate score estimate, DDPM). Let pdata : Rd → R be a proba-
bility density satisfying Assumption 1 with M2 = O(d), and let p̃t be the distribution resulting from
evolving the forward SDE according to DDPM with g ≡ 1. Suppose furthermore that ∇ ln p̃t is
L-Lipschitz for every t ≥ 0, and that each s(·, t) satisfies Assumption 2. Then if

ε = O

(
ε4TV

(CLS + d)C
5/2
LS (L ∨ Ls)2(ln(CLSd) ∨ CLS ln(1/ε2TV))

)
,

running (P) starting from pprior for time T = Θ
(
ln(CLSd) ∨ CLS ln

(
1
εTV

))
and step size h =

Θ
(

ε2TV

CLS(CLS+d)(L∨Ls)2

)
results in a distribution qT so that TV(qT , pdata) ≤ εTV.

A more precise statement of the Theorem can be found in the Appendix. Although we state our
theorem for DDPM, we describe in Appendix C how it can be adapted to other SDE’s like SMLD
and the sub-VP SDE; the primary SDE-dependent bound we need is a bound on∇ ln p̃t

p̃t+h
. Because

the predictor is tracking a changing distribution pt, we incur more error terms and worse dependence
on parameters (CLS, L) than in LMC (Theorem 2.1). Motivated by this, we intersperse the predictor
steps with LMC steps—called corrector steps in this context—to give additional time for the process
to mix, resulting in improved dependence on parameters.
Theorem 3.2 (Predictor-corrector with L2-accurate score estimate). Keep the setup of Theorem 3.1.
Then for ε3TV = O

(
1

(1+Ls/L)2(1+CLS/d)(ln(CLSd)∨CLS)

)
, if

ε = O

(
ε4TV

dL2C
5/2
LS ln(1/ε2χ)

)
, (5)

then Algorithm 2 with appropriate choices of T = Θ
(
ln(CLSd) ∨ CLS log

(
1
εTV

))
, Nm, correc-

tor step sizes hm and predictor step size h, produces a sample from a distribution qT such that
TV(qT , pdata) < εTV.
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Algorithm 2 Predictor-corrector method with estimated score [Son+20b]
INPUT: Time T , predictor step size h; number of corrector steps Nm per predictor step, corrector
step sizes hm
Draw z0 ∼ pprior from the prior distribution.
for m from 1 to T/h do

(Predictor) Take a step of (P) to obtain zmh from z(m−1)h, with f, g as in SMLD or DDPM.
(Corrector) Starting from zmh,0 := zmh, run (LMC-SE) with s(z, T −mh) and step size hm

for N steps, and let zmh ← zmh,N .
end for
OUTPUT: Return zT , approximate sample from pdata.

The assumption on εTV is for convenience in stating our bound. In comparison to using the predictor
step alone (Theorem 3.1), note that in the bound on ε, we obtain the improved rate of the corrector
step as in Theorem 2.1; this is because the predictor step only needs to track the actual distribution in
χ2-divergence with error O(1), and the final corrector steps are responsible for decreasing the error
to εTV. In comparison to the Annealed Langevin sampler (Algorithm 1, Theorem 2.2), which can be
viewed as using the corrector step alone, adding a predictor step provides a better warm start for the
distribution at the next smaller noise level, resulting in better dependence on parameters. Thus the
predictor-corrector algorithm combines the strengths of the predictor and corrector steps. For real-
world data, it can be challenging to estimate TV-distance between distributions given only samples,
and hence difficult to check consistency with empirical observations. However, our claim that using
a corrector can improve the convergence rate of DDPM/SMLD is consistent with the simulation
results in Section 4.2 of [Son+20b].

4 Theoretical framework and proof sketches

The main idea of our analysis framework is to convert a L2 error guarantee to a L∞ error guarantee
by excluding a bad set, formalized in the following theorem.
Theorem 4.1. Let (Ω,F ,P) be a probability space and {Fn} be a filtration of the sigma field F .
Suppose Xn ∼ pn, Zn ∼ qn, and Zn ∼ qn are Fn-adapted random processes taking values in Ω,
and Bn ⊆ Ω are sets such that the following hold for every n ∈ N0.

1. If Zk ∈ Bck for all 0 ≤ k ≤ n− 1, then Zn = Zn.

2. χ2(qn||pn) ≤ D2
n.

3. P(Xn ∈ Bn) ≤ δn.

Then the following hold.

TV(qn, qn) ≤
n−1∑
k=0

(D2
k + 1)1/2δ

1/2
k TV(pn, qn) ≤ Dn +

n−1∑
k=0

(D2
k + 1)1/2δ

1/2
k (6)

For our setting, we will take the “bad sets” Bn to be the set of x where ∥sθ(x)−∇ ln p∥ is large, qn
to be the discretized process with estimated score, and qn to be the discretized process with estimated
score except in Bn where the error is large. Because qn uses an L∞-accurate score estimate, we can
use existing techniques for analyzing Langevin Monte Carlo [VW19; EHZ21; Che+21] to bound
χ2(qn||pn).

Proof. We bound using condition 1 and Cauchy-Schwarz:

P
(
Zn ̸= Zn

)
≤ P

(
n−1⋃
k=1

{Zk ∈ Bk}

)
≤
n−1∑
k=0

P (Zk ∈ Bk) =
n−1∑
k=0

Eqk1Bk

≤
n−1∑
k=0

(
Epk

(
qk
pk

)2
)1/2

(Epk1Bk
)
1/2

=

n−1∑
k=0

(D2
k + 1)1/2δ

1/2
k .
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The second inequality then follows from the triangle inequality and Cauchy-Schwarz:

TV(pn, qn) ≤ TV(pn, qn) + TV(qn, qn)

≤
√
χ2(qn||pn) + TV(qn, qn) ≤ Dn +

n−1∑
k=0

(D2
k + 1)1/2δ

1/2
k .

It now remains to give χ2 convergence bounds under L∞-accurate score estimate. The following
theorem may be of independent interest.
Theorem 4.2 (LMC under L∞ bound on gradient error). Let p : Rd → R be a probability density
satisfying Assumption 1(1, 2) and s : Rd → Rd be a score estimate s with error bounded in L∞:
for some ε1 ≤

√
1

48CLS
,

∥∇ ln p− s∥∞ = max
x∈Rd

∥∇ ln p(x)− s(x)∥] ≤ ε1.

Let N ∈ N0 and 0 < h ≤ 1
4392dCLSL2 , and assume L ≥ 1. Let qnh denote the nth iterate of LMC

with step size h score estimate s. Then

χ2(q(k+1)h||p) ≤ exp

(
− h

4CLS

)
χ2(qkh||p) + 170dL2h2 + 5ε21h

and

χ2(qNh||p) ≤ exp

(
− Nh

4CLS

)
χ2(q0||p) + 680dL2hCLS + 20ε21CLS ≤ exp

(
− Nh

4CLS

)
χ2(q0||p) + 1

Following [Che+21], we prove this by first defining a continuous-time interpolation qt of the discrete
process, and then deriving a differential inequality for χ2(qt||p) using the log-Sobolev inequality for
p. Compared to [Che+21], we incur an extra error term arising from the inaccurate gradient.

This allows us to sketch the proof of Theorem 2.1; a complete proof is in Section B.

Proof sketch of Theorem 2.1. We first define the bad set where the error in the score estimate is
large,

B : = {∥∇ ln p(x)− s(x)∥ > ε1}

for some ε1 to be chosen. Then by Chebyshev’s inequality, P (B) ≤
(
ε
ε1

)2
=: δ. Let qnh be the

discretized process, but where the score estimate is set to be equal to∇ ln p onB; note it agrees with
qnh as long as it has not hitB. Because qnh uses a score estimate that has L∞-error ε1, Theorem 4.2
gives a bound for χ2(qNh||p). Then Theorem 4.1 gives

TV(qnh, qnh) ≤
n−1∑
k=0

(χ2(qkh||p) + 1)1/2P (B)1/2 ≤
n−1∑
k=0

(
exp

(
− kh

8CLS

)
χ2(q0||p)1/2 + 1

)
δ1/2

The theorem then follows from choosing parameters so that χ2(qT ||p) ≤ ε2χ and TV(qT , qT ) ≤
εTV.

We remark that the main inefficiency in the proof comes from the use of Chebyshev’s inequality,
and a Lp bound on the error for p > 2 will improve the bound.

Proof sketch of Theorem 2.2. Choosing the sequence σ1 < · · · < σM to be geometric with ratio
1+ 1√

d
ensures that the χ2-divergence between successive distributions pσ2

m
isO(1). Then, choosing

σ2
M = Ω(CLSd) ensures we have a warm start for the highest noise level: χ2(pprior||pσ2

M
) = O(1).

This uses O
(√

d log
(
dCLS
σ2
min

))
noise levels. Chebyshev’s inequality can be used to show that the

distribution of the final sample x(m) for pσ2
m

isO(εTV/M) close to a distribution that isO(M/εTV)

in χ2-divergence from pσ2
m+1

. This gives the warm start parameterKχ = (M/εTV)
1/2; substituting

into Theorem 2.1 then gives the required bound for ε. Note that the TV errors accrued from each
level add to O(εTV).
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To analyze the predictor-based algorithms, we also first prove convergence bounds under L∞-
accurate score estimate.

Theorem 4.3 (Predictor steps under L∞ bound on score estimate, DDPM). Let p : Rd → R be a
probability density satisfying Assumption 1 and s(·, t) : Rd → Rd be a score estimate s with error
bounded in L∞ for each t ∈ [0, T ]:

∥∇ ln p− s(·, t)∥∞ = max
x∈Rd

∥∇ ln p̃t(x)− s(x, t)∥] ≤ ε1.

Consider DDPM with g ≡ 1, T ≥ 1∨ ln(CLSd), and h = O
(

1
CLS(d+CLS)(L∨Ls)2

)
. (Recall that pkh

and qkh are the k-th iterate of LMC with step size h and true/estimated score respectively.) Then

χ2(q(k+1)h||p(k+1)h) ≤ χ2(qkh||pkh)e
(
− 1

8CLS
+8ε21

)
h
+O(ε21h+ (L2

s + L2d)h2)

and if ε1 < 1
128CLS

,

χ2(qNh||pNh) ≤ e−
Nh

16CLS χ2(q0||p0) +O
(
CLS

(
ε21 + (L2

s + L2d)h
))
.

Moreover, for q0 = pprior, χ2(q0||p0) ≤ e−T/2CLSd.

We give a more precise statement in Section C. Note that unlike the case for LMC as in Theorem 4.2,
the base density pt is also evolving in time, which produces additional error terms and necessitates
a more involved analysis. The additional error terms can be bounded using the Donsker-Varadhan
variational principle, concentration for distributions satisfying LSI, and error bounds between pt and
pt+h for small h.

Here, we only state the result about DDPM, which has better bounds than SMLD (when g ≡ 1)
because both the forward and backwards processes exhibit better mixing properties: the warm start
improves exponentially rather than inversely with T , and the log-Sobolev constant is uniformly
bounded by that of pdata rather than increasing. However, the analysis in Section C can be directly
applied to SMLD and other models as well. We also note there is a sense in which DDPM and
SMLD are equivalent under a rescaling in time and space (see discussion in Section C.2).

Note that the choice of h is necessary for exponential decay of error; as if h is not small enough, we
would get an exponential growing instead of decaying factor in the one-step error (See Section C
for details). Such an h may however still be a suitable choice when used in conjunction with a
corrector step. Moreover, as ε1 → 0, with appropriate choice of T and h, qNh and pNh can be made
arbitrarily close.

Theorem 3.1 now follows from the L∞ result (Theorem 4.3) in the same way that Theorem 2.1
follows from Theorem 4.2.

To prove Theorem 3.2, it suffices to run the corrector steps only at the lowest noise level, that is, set
Nm = 0 for 1 ≤ m < T/h, although we note that interleaving the predictor and corrector steps
does empirically help with mixing. The proof follows from using the predictor and the corrector
theorems in series: first apply Theorem 3.1 with εχ = O(1) to show that the predictor results a
warm start pdata, then use Theorem 2.1 to show the corrector reduces the error to the desired εTV.

5 Conclusion

We introduced a general framework to analyze SDE-based sampling algorithms given a L2-error
score estimate, and used it to obtain the first convergence bounds for several score-based generative
models with polynomial complexity in all parameters. Our analysis can potentially be adapted to
other SDE’s and sampling algorithms beyond Langevin Monte Carlo. There is also room for im-
proving our analysis to better use smoothing properties of the SDE’s and compare different choices
of the diffusion speed g.

We present several interesting further directions to explore. In addition to extending the analysis to
other SGM’s and comparing their theoretical performance (relative to each other as well as other
approaches to generative modeling), we propose the following.
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Analysis for multimodal distributions. Our assumption of a bounded log-Sobolev constant es-
sentially limits the analysis to distributions that are close to unimodal. However, SGM’s are em-
pirically successful at modeling multimodal distributions [SE19], and in fact perform better with
multimodal distributions than other approaches such as GAN’s. Can we analyze the convergence for
simple multimodal distributions, such as a mixture of distributions each with bounded log-Sobolev
constant? Positive results on sampling from multimodal distributions such as [GLR18] suggest this
is possible, as the sequence of noised distributions is natural for annealing and tempering methods
(see [GLR18, Remark 7.2]).

Weakening conditions on the score estimate. The assumption that we have a score estimate that
isO(1)-accurate inL2, although weaker than the usual assumptions for theoretical analysis, is in fact
still a strong condition in practice that seems unlikely to be satisfied (and difficult to check) when
learning complex distributions such as distributions of images. What would a reasonable weaker
condition be, and in what sense can we still obtain reasonable samples?

Guarantees for learning the score function. Our analysis assumes a L2-estimate of the score
function is given, but the question remains of when we can find such an estimate. What natural
conditions on distributions allow their score functions to be learned by a neural network? Various
works have considered the representability of data distributions by diffusion-like processes [TR19],
but the questions of optimization and generalization appear more challenging.
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