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Abstract001

Probabilistic regression models the entire predic-002

tive distribution of a response variable, offering003

richer insights than classical point estimates and di-004

rectly allowing for uncertainty quantification. While005

diffusion-based generative models have shown re-006

markable success in generating high-dimensional007

data, their usage in regression tasks often lacks008

uncertainty-related evaluation. We propose a novel009

diffusion-based framework for probabilistic regres-010

sion where we model the full distribution of the011

diffusion noise, enabling adaptation to diverse tasks012

and enhanced uncertainty quantification.013

1 Introduction014

Supervised regression aims at predicting a response015

variable y ∈ Y from covariates c ∈ C. Classical016

approaches estimate the conditional mean E[y |017

c], whereas probabilistic regression models the full018

predictive distribution pY(y | c) [1, 2], typically via019

a Gaussian [3, 4]. Recent work has emphasized more020

flexible, non-parametric alternatives [2, 5].021

Diffusion-based generative models have emerged022

as state-of-the-art approaches for high-dimensional023

data generation, achieving remarkable results in024

tasks such as photorealistic image [6] and video025

synthesis [7].026

Recently, diffusion models have been applied to027

various regression tasks such as depth estimation [8],028

autoregressive flow prediction [9, 10], and weather029

forecasting [11, 12], often achieving state-of-the-art030

performance. Despite their inherently probabilistic031

nature, evaluations rarely emphasize uncertainty-032

related metrics or calibration. Recent efforts aim to033

extract uncertainty estimates from diffusion mod-034

els [13–15], but typically rely on training multiple035

networks, incurring substantial computational over-036

head. Furthermore, the intimate relation between037

uncertainty quantification and the noise modeling038

within the diffusion process remains underexplored.039

Contributions: In this work, we address these040

limitations by adapting the diffusion process to yield041

∗Equal contribution

calibrated probabilistic predictions. Building on re- 042

cent advances from generative modeling [16], we 043

introduce a novel loss for diffusion-based regression 044

models that enables learning a parameterized noise 045

distribution, and offers task-specific trade-offs be- 046

tween expressivity and computational efficiency. 047

2 Background 048

2.1 Probabilistic regression 049

Let y ∈ Y ⊆ Rdy denote the response variables of in- 050

terest and c ∈ C ⊆ Rdc the corresponding condition- 051

ing variables. Given training data D = (ci,yi)
N
i=1, 052

the goal is to recover the predictive distribution 053

pY(y | c,D). 054

2.2 Diffusion models 055

Diffusion probabilistic models (DPMs) aim to learn 056

a target distribution p0 on Rd from samples by esti- 057

mating the reverse dynamics of a diffusion process. 058

We follow the non-Markovian formulation of denois- 059

ing diffusion implicit models (DDIM) [17]. 060

Let T ∈ N, x0 ∼ p0, and β1:T ∈ [0, 1]T denote 061

a noise schedule. Define αt := 1 − βt and ᾱt := 062∏t
i=1 αi. The forward process produces intermediate 063

states 064

Xt =
√
ᾱtX0 +

√
1− ᾱtϵt, ϵt ∼ N (0, I), (1) 065

such that each xt is a noisy version of x0. For suffi- 066

ciently small ᾱT , xT is close to a standard normal, 067

providing a tractable prior. 068

To generate samples, one must approximate the 069

reverse process p(xt−1 | xt), which is intractable in 070

general. DPMs approximate it with a latent-variable 071

model 072

pθ(x0:T ) := pθ(xT )

T∏
t=1

pθ(xt−1 | xt), (2) 073

which is a Markov chain that samples from xT 074

to x0, that is referred to as the generative pro- 075

cess. For sufficiently small βt, the reverse transition 076

p(xt−1 | xt) is well approximated by a Gaussian, 077
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thus allowing to set pθ(xT ) ∼ N (0, I) and specify-078

ing the latent variable model as a neural network,079

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).080

Training proceeds by minimizing the MSE loss of081

the noise samples082

Lsimple(θ) = Et,x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥22

]
. (3)083

The target distribution is set as p0 = pY(· | c),084

yielding an approximate predictive distribution pθ(· |085

c) ≈ pY(· | c).086

While diffusion models have shown great success087

in conditional and unconditional generative model-088

ing, note that due to the objective in Equation (3),089

the latent variable model only learns to approximate090

ϵθ(xt, t) ≈ E [ϵt | xt] and does not capture informa-091

tion about the full distribution p(ϵt | xt).092

2.3 Scoring rules093

Let P be a convex set of probability measures094

on Y and P,Q ∈ P. A scoring rule S(P,y) [18]095

is a function that measures the discrepancy be-096

tween a predictive distribution P and an obser-097

vation y ∈ Y. The expected score is defined as098

S(P,Q) := EY∼Q[S(P, Y )]. A scoring rule is called099

proper if S(Q,Q) ≤ S(P,Q) for all P,Q ∈ P, and100

strictly proper if equality holds if and only if Q = P.101

Therefore, strictly proper scoring rules ensure that102

the true distribution is the unique optimum and103

have been successfully applied in training neural104

networks for various tasks [19–21].105

3 Our Methodology106

3.1 Learning pϵθ(· | xt)107

Most diffusion frameworks, following DDPM [22],108

fix the variance of the noise distribution in each109

denoising step. This design was originally motivated110

by two observations: (i) learning the variance of-111

ten destabilizes training, and (ii) variance modeling112

showed little benefit for image generation bench-113

marks, for example, with respect to the FID [23].114

However, subsequent work [24] demonstrated that115

learning the variance improves likelihood estimates,116

indicating that recovering only the mean is insuf-117

ficient for faithfully approximating the conditional118

distribution. Furthermore, the Gaussian approxima-119

tion of p(xt−1 | xt) is only valid when the number of120

timesteps T is large. Yet, large T is computationally121

costly, and recent results suggest that using as few122

as 20–50 steps can yield superior performance in123

regression tasks [10, 12], particularly with improved124

noise schedulers and solvers [25, 26].125

These observations motivate us to go beyond esti-126

mating the first two moments and instead learn the127

full distribution of ϵt. Specifically, we reinterpret128

ϵθ: rather than treating it as a point estimate of ϵt, 129

we view it as a random variable. This perspective 130

naturally suggests replacing the mean-squared error 131

loss with a criterion that compares probability distri- 132

butions rather than point predictions. To this end, 133

we adopt the framework of strictly proper scoring 134

rules [20, 27]. 135

3.2 Parametrization of pϵθ(· | xt) 136

Concurrent work by Bortoli et al. [16] reached a 137

similar conclusion. They proposed modeling the full 138

posterior distribution p(x0 | xt) by a neural network 139

and generating samples via noise concatenation to 140

the inputs. 141

This, however, comes at significant computational 142

cost: multiple samples increase the runtime. Empir- 143

ically, training is reported to be 1.3× to 7× slower 144

than standard diffusion models [16]. 145

As an alternative to nonparametric sampling- 146

based approaches, we propose to model pϵθ(· | xt) 147

directly through a parametrized distribution. This 148

aligns naturally with scoring rule minimization, since 149

closed-form expressions for the training objective 150

are available, and thereby reducing the training time 151

significantly as we do not need to generate samples. 152

Depending on the choice of parametrization, one 153

obtains a trade-off between computational efficiency 154

and flexibility, which may vary across tasks. 155

Specifically, we consider for pϵθ(ϵt | xt) the general 156

Gaussian mixture form 157

K∑
k=1

πθ,kN (ϵt;µ
ϵ
θ,k(xt, t),Σ

ϵ
θ,k(xt, t)). (4) 158

From this general specification, we highlight three 159

concrete parametrizations that offer a trade-off be- 160

tween the expressivity of the distribution and the 161

simplicity of the model training: 162

Univariate Gaussian: For K = 1 and 163

Σθ(xt, t) = diag(σ2
θ(xt, t)), σ2

θ(xt, t) ∈ Rdy

>0, we ob- 164

tain a simple baseline. 165

Univariate Gaussian mixture. Setting 166

Σθ,k(xt, t) = diag(σ2
θ,k(xt, t)) with σ2

θ,k(xt, t) ∈ 167

Rdy

>0 and K > 1 we get a Gaussian mixture that 168

approximates arbitrary densities under mild assump- 169

tions [1, 28]. 170

Multivariate Gaussian: Choosing K = 1 with 171

full covarianceΣθ(xt, t) allows modeling correlations 172

between the marginals of ϵt. 173

4 Conclusion 174

We propose to learn the full diffusion noise distri- 175

bution using a Gaussian mixture model, aiming to 176

improve probabilistic regression performance and 177

decrease training time. 178
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