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Abstract

Probabilistic regression models the entire predic-
tive distribution of a response variable, offering
richer insights than classical point estimates and di-
rectly allowing for uncertainty quantification. While
diffusion-based generative models have shown re-
markable success in generating high-dimensional
data, their usage in regression tasks often lacks
uncertainty-related evaluation. We propose a novel
diffusion-based framework for probabilistic regres-
sion where we model the full distribution of the
diffusion noise, enabling adaptation to diverse tasks
and enhanced uncertainty quantification.

1 Introduction

Supervised regression aims at predicting a response
variable y € ) from covariates ¢ € C. Classical
approaches estimate the conditional mean Ely |
c|, whereas probabilistic regression models the full
predictive distribution py(y | ¢) [1, 2], typically via
a Gaussian [3, 4]. Recent work has emphasized more
flexible, non-parametric alternatives [2, 5].

Diffusion-based generative models have emerged
as state-of-the-art approaches for high-dimensional
data generation, achieving remarkable results in
tasks such as photorealistic image [6] and video
synthesis [7].

Recently, diffusion models have been applied to
various regression tasks such as depth estimation [g],
autoregressive flow prediction [9, 10], and weather
forecasting [11, 12], often achieving state-of-the-art
performance. Despite their inherently probabilistic
nature, evaluations rarely emphasize uncertainty-
related metrics or calibration. Recent efforts aim to
extract uncertainty estimates from diffusion mod-
els [13-15], but typically rely on training multiple
networks, incurring substantial computational over-
head. Furthermore, the intimate relation between
uncertainty quantification and the noise modeling
within the diffusion process remains underexplored.

Contributions: In this work, we address these
limitations by adapting the diffusion process to yield
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calibrated probabilistic predictions. Building on re-
cent advances from generative modeling [16], we
introduce a novel loss for diffusion-based regression
models that enables learning a parameterized noise
distribution, and offers task-specific trade-offs be-
tween expressivity and computational efficiency.

2 Background

2.1 Probabilistic regression

Let y € Y C R% denote the response variables of in-
terest and ¢ € C C R% the corresponding condition-
ing variables. Given training data D = (c¢;, yi)f\;l,
the goal is to recover the predictive distribution

py(y | (& D)

2.2 Diffusion models

Diffusion probabilistic models (DPMs) aim to learn
a target distribution py on R? from samples by esti-
mating the reverse dynamics of a diffusion process.
We follow the non-Markovian formulation of denois-
ing diffusion implicit models (DDIM) [17].

Let T € N, &g ~ po, and Br.r € [0,1]7 denote
a noise schedule. Define oy == 1 — §; and a; =
Hle «;. The forward process produces intermediate
states

Xt = V@tXO —|— vV 1 — dt€t; (1)

such that each x; is a noisy version of . For suffi-
ciently small &, zr is close to a standard normal,
providing a tractable prior.

To generate samples, one must approximate the
reverse process p(€;—1 | ), which is intractable in
general. DPMs approximate it with a latent-variable
model

€t ~~ N(07 I)a

(2)

T
po(@o.r) = po(@r H (@i—1 | @),

which is a Markov chain that samples from xr
to xg, that is referred to as the generative pro-
cess. For sufficiently small 3;, the reverse transition
p(xi—1 | @) is well approximated by a Gaussian,
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thus allowing to set pg(xr) ~ N (0, I) and specify-
ing the latent variable model as a neural network,
po(xi—1|Ts) = N(xi—1; po(xe, 1), Xo(ae, t)).

Training proceeds by minimizing the MSE loss of
the noise samples

Lsimple(‘g) = Et,20,¢, “|€t - 60(‘”&””%] . (3)

The target distribution is set as pg = py(- | ¢),
yielding an approximate predictive distribution pg(- |
c) = py(-|c).

While diffusion models have shown great success
in conditional and unconditional generative model-
ing, note that due to the objective in Equation (3),
the latent variable model only learns to approximate
eg(xs,t) = E[e; | 4] and does not capture informa-
tion about the full distribution p(e; | @:).

2.3 Scoring rules

Let P be a convex set of probability measures
on Y and P,Q € P. A scoring rule S(P,y) [18]
is a function that measures the discrepancy be-
tween a predictive distribution P and an obser-
vation y € ). The expected score is defined as
S(P,Q) :=Eyg[S(P,Y)]. A scoring rule is called
proper if S(Q,Q) < S(P,Q) for all P,Q € P, and
strictly proper if equality holds if and only if Q = PP.
Therefore, strictly proper scoring rules ensure that
the true distribution is the unique optimum and
have been successfully applied in training neural
networks for various tasks [19-21].

3 Our Methodology

3.1 Learning pj(- | =)

Most diffusion frameworks, following DDPM [22],
fix the variance of the noise distribution in each
denoising step. This design was originally motivated
by two observations: (i) learning the variance of-
ten destabilizes training, and (ii) variance modeling
showed little benefit for image generation bench-
marks, for example, with respect to the FID [23].

However, subsequent work [24] demonstrated that
learning the variance improves likelihood estimates,
indicating that recovering only the mean is insuf-
ficient for faithfully approximating the conditional
distribution. Furthermore, the Gaussian approxima-
tion of p(as—1 | x¢) is only valid when the number of
timesteps T is large. Yet, large T is computationally
costly, and recent results suggest that using as few
as 20-50 steps can yield superior performance in
regression tasks [10, 12], particularly with improved
noise schedulers and solvers [25, 26].

These observations motivate us to go beyond esti-
mating the first two moments and instead learn the
full distribution of €;. Specifically, we reinterpret
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€9: rather than treating it as a point estimate of ¢,
we view it as a random variable. This perspective
naturally suggests replacing the mean-squared error
loss with a criterion that compares probability distri-
butions rather than point predictions. To this end,
we adopt the framework of strictly proper scoring
rules [20, 27].

3.2 Parametrization of pj(- | x;)

Concurrent work by Bortoli et al. [16] reached a
similar conclusion. They proposed modeling the full
posterior distribution p(xg | ;) by a neural network
and generating samples via noise concatenation to
the inputs.

This, however, comes at significant computational
cost: multiple samples increase the runtime. Empir-
ically, training is reported to be 1.3x to 7x slower
than standard diffusion models [16].

As an alternative to nonparametric sampling-
based approaches, we propose to model pj(- | @)
directly through a parametrized distribution. This
aligns naturally with scoring rule minimization, since
closed-form expressions for the training objective
are available, and thereby reducing the training time
significantly as we do not need to generate samples.
Depending on the choice of parametrization, one
obtains a trade-off between computational efficiency
and flexibility, which may vary across tasks.

Specifically, we consider for p§(e, | ;) the general
Gaussian mixture form

K
Zﬂ—&,k/\/’(et;uak(a"tat)v zg,k(mt’t))' (4)

k=1

From this general specification, we highlight three
concrete parametrizations that offer a trade-off be-
tween the expressivity of the distribution and the
simplicity of the model training:

Univariate Gaussian: For K
B (¢, t) = diag(o (x4, 1)), o5 (@4, t)
tain a simple baseline.

Univariate Gaussian mixture. Setting
o r(xe,t) = diag(og . (@,t)) with o (z,t) €
]Riyo and K > 1 we get a Gaussian mixture that
approximates arbitrary densities under mild assump-
tions [1, 28].

Multivariate Gaussian: Choosing K = 1 with
full covariance Xy (¢, t) allows modeling correlations
between the marginals of ¢;.

= 1 and
€ Riyo, we ob-

4 Conclusion

We propose to learn the full diffusion noise distri-
bution using a Gaussian mixture model, aiming to
improve probabilistic regression performance and
decrease training time.
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