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ABSTRACT

Retrosynthesis poses a fundamental challenge in biopharmaceuticals, aiming to
aid chemists in finding appropriate reactant molecules and synthetic pathways
given determined product molecules. With the reactant and product represented
as 2D graphs, retrosynthesis constitutes a conditional graph-to-graph generative
task. Inspired by the recent advancements in discrete diffusion models for graph
generation, we introduce Retrosynthesis Diffusion (RetroDiff), a novel diffusion-
based method designed to address this problem. However, integrating a diffusion-
based graph-to-graph framework while retaining essential chemical reaction tem-
plate information presents a notable challenge. Our key innovation is to develop
a multi-stage diffusion process. In this method, we decompose the retrosynthe-
sis procedure to first sample external graph motifs from the dummy distribution
given products and then generate the external bonds to connect the products and
generated motifs. Interestingly, such a generation process is exactly the reverse
of the widely adapted semi-template retrosynthesis procedure, i.e. from reaction
center identification to synthon completion, which significantly reduces the er-
ror accumulation. Experimental results on the benchmark have demonstrated the
superiority of our method over all other semi-template methods.

1 INTRODUCTION

Retrosynthesis (Coreyl [1991) is an important topic in organic synthesis, which aims to help chemists
find legitimate reactant molecules and synthetic pathways given product molecule, thus providing
efficient and stable drug discovery and compound preparation methods for the biopharmaceutical
field. Since the first computer-aided approaches were investigated (Corey & Wipkel [1969), huge
efforts have been devoted in this area to explore analytical computational methods for retrosynthesis
planning, and the research for data-driven methods has reached its peak in recent years with the
machine learning boom.

Among the recent progress, the retrosynthesis methods can be broadly categorized into three groups.
The template-based methods aim to retrieve the best match reaction template for a target molecule
from a large-scale chemical database (Schneider et al., |2016; Somnath et al., 2020; |Chen & Jung,
2021)). Though with appealing performance, the scalability of the template-based method is indeed
limited by the template database size (Segler & Waller, 2017; |Segler et al., 2018). The template-
free methods instead aim to generate the reactants given corresponding products directly without the
involvement of the chemical prior (Zheng et al.| |2019; |Seo et al., 2021} Tu & Coley} [2022). While
limited chemical reaction diversity and interpretability hinder the potential of template-free methods
in practical applications (Chen et al., 2019; He et al., 2018; Jiang & de Rijke, [2018}; |Roberts et al.}
2020).

Fortunately, the semi-template methods could be another alternative for building retrosynthesis mod-
els. Combining the strengths of both previously mentioned template-based and -free methods, the
semi-template method introduces the chemical prior into the model design by employing a two-stage
process including reaction center prediction and synthon completion. This makes the semi-template
method more scalable than the template-based one and more interpretable than the template-free
one, which has drawn increasing interest of late (Yan et al [2020; |Shi et all 2020; Wang et al.,
2021). In this paper, our goal is to develop a more efficient semi-template method for retrosynthesis.
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Figure 1: The overview and examples of our RetroDiff model.

The non-autoregressive diffusion generative model is particularly well-suited for capturing the com-
plex structure of graph data, along with its robust capability for probabilistic modeling. Nonetheless,
strictly following the conventional chemical reaction template can restrict the model’s exploratory
power with respect to distribution transformation. This is because it overly constrains the intrinsic
data structure, necessitating artificial modifications to the molecular structure of groups and bonds.

To address this issue, we redefine the reaction template by separating the generation of external
groups from the generation of bonds. This revised approach aligns with the concept of retrosyn-
thesis, wherein the task is to transform distributions with minimal constraints: given a product
molecule, we generate a “dummy” distribution that transitions to distributions of external groups
and bonds. We then splice these to form the distribution of reactants. The traditional chemical
reaction template is not suitable for this transformation, particularly in predicting the reaction cen-
ter. Hence, our reformulation facilitates this process by distinguishing the generation of external
groups from that of bonds, better accommodating the needs of distribution transformation within
the modeling framework.

Building on this framework, we introduce RetroDiff—a Retrosynthesis Diffusion model that works
in discrete conditions. As illustrated in Figure [T} the model generates molecular structures through
a two-stage denoising process. Initially, it begins with a simple distribution, proceeding to first
create the external groups, which are parts that attach to the core molecule. Once these groups are
formed, the model then constructs the bonds that connect these external groups to the product. In the
final step, we adjust the molecule by removing certain bonds based on the atom’s bonding capacity
(valence), thereby ensuring the resulting reactant is chemically valid. Effectively, this is similar to a
post-processing step where the reaction center is dissected. This proposed approach flips the script
on the conventional semi-template method for retrosynthesis. Typically, the less uncertain task is
performed first in order to minimize the buildup of errors.

Extensive experiment has been conducted on the benchmark dataset USPTO-50k (Schneider et al.}
2016) under the semi-template setting. Our model achieves state-of-the-art performance compared
with other competitive semi-template methods which further demonstrates the effectiveness of the
proposed framework. Overall, our main contributions are three-fold:

* We propose RetroDiff, a multi-stage conditional retrosynthesis diffusion model that maps
the product distribution to the reactant distribution. To this end, we decompose the reactant
as a joint of the external group and external bonds and conduct the diffusion in the two
variables in order.

* We redefine the pipeline of the semi-template methods by decomposing the task into ex-
ternal group generation and external bond generation to maximize the usage of chemical
information in the molecule and reduce the error accumulation by determining the high
entropy variable first.

* Our approach achieves state-of-the-art performance on the USPTO-50K dataset under the
semi-template setting, and the reaction center prediction accuracy is significantly improved
due to the acquisition of chemical information about the external groups.
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2 RETRODIFF: RETROSYNTHESIS DIFFUSION

We begin by defining the task of retrosynthesis prediction. Consider a chemical reaction expressed

as {G%} ‘@131 —{ G}}Lill, where G g represents the set of reactant molecular graphs, G p represents
the set of product molecular graphs, and | R| and | P| indicate the respective counts of reactants and
products in a given reaction. Typically, we assume |P| = 1, which aligns with the conventions of
benchmark datasets. The key problem in the retrosynthesis task is to invert the chemical reaction;

namely deduce the reactant set {GiR}yil1 when presented with a sole product {Gp}. In general, the
assorted connected sub-graphs comprising the reactants can be amalgamated into a single disjoint
graph {Gr}. Thus, the retrosynthesis prediction problem simplifies to the transformation {Gp} —

{GRr}.

Existing semi-template retrosynthesis approaches typically first identify the reaction center in the
target product and then complete the corresponding synthons at the fractured site. However, such a
template setup is infeasible for designing the appropriate generative diffusion process. To address
this, we redefine the task template with the following preliminary notations: x ~ Py denotes the
variable of product graphs and the corresponding distribution, y ~ P for the reactant variable,
g ~ P as the external group, and b ~ P denotes the external bond. We elaborate on the revised
template task in the subsequent stages:

o Stage 1: External Group Generation. The process commences with the generation of the
external group g that will attach to the product x. namely sampling from such distribution
Pg(g|x;0) which parameterized by the neural network 6.

o Stage 2: External Bond Generation. Next, the process involves the generation of the
external bond b, which will link the product x with the newly formed external group g.
Here, we focus on modeling the distribution Pg(b|g, x; ).

o Stage 3: Post-Adaptation (Rule-Based). The concluding phase involves a manual ad-
justment, breaking the reaction center in the product in line with valence rules to yield the
final reactant y. This transformation is depicted as Py (y|b, g, x) which is a predetermined
rule-based mapping.

Building on this framework, we introduce RetroDiff, a novel approach that models the aforemen-
tioned stages collectively within a unified diffusion model framework. The above stage-by-stage
procedure essentially implies an autoregressive decomposition of the probabilistic model for ap-
proximating the conditional distribution:

P (y[x:0) = / Po(glx: 0) Ps(blg. x:0) Py (y|b, g, x) db dg, (1)

which essentially represents the transformation between the product distribution and the reactant
distribution.

2.1 RETRODIFF PIPELINE

In this section, we introduce the whole pipeline of the proposed RetroDiff which includes the de-
tailed implementations and training procedures of Pg(g|x;0), Ps(b|g,x;6) and Py (y|b, g, x).

To start with, the diffusion process is utilized for modeling all the corresponding conditional distribu-
tions. For completeness, we elaborate on the details for parameterizing the conditional distribution
with a diffusion process. We take Pg(g|x;6) as an example. Under the context of diffusion models,
the dimensions of the input variable and output variable should be aligned. Hence we append a
dummy variable v; which makes the input as (vy, x); Correspondingly, the output is as (g, x). Note
that here we have dim(vy) = dim(g). Similarly, for Py(y|b, g, x), the input is (vo, g, x) while
the output is as (b, g, x). For the training objective, we only calculate the objective on the variables
concerned, g in Pg(g|x;0) and b in Pg(blg, x; #). Strictly, our models implies a transformation on
the joint space as:

XXV XVy =32 AXAXGXVy 32X XGXB—= )Y, 2)

Details of the generation pipeline could be found in Figure 2] To simplify the representation, we
denote the condition at each stage as c.
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Figure 2: The generation overview of the distribution transformation upon our template. The top row
indicates changes in the atom types in the graph, the middle row indicates changes in the adjacency
matrix of the graph, and the bottom row indicates overall changes in the graph structure. Specifically,
the hollow circle denotes a dummy atom category we set for this task, and the colored circles denote
real atom categories. The Line between circles means there exists one bond between the two atoms.

2.1.1 EXTERNAL GROUP GENERATION

The goal of this stage is to interpolate the distribution P, to Pg conditional on c. In this stage,
condition c is the product x ~ Px. This is a graph-to-graph generative process, we define v ~ Py,
as a dummy graph and g ~ P as an external group.

Noise-applying. In the noise-applying process, we interpolate the distribution Pg to Py, condi-
tional on c. With a slight abuse of notation, we splice external group g and product x as one uncon-
nected graph G = (X, E) with n atoms and m bonds, each atom and bond have a and b categories,
respectively, so they can be represented by one-hot attributes that X € R"*% and E € R"*"*?,
For graph G, each atom and bond are diffused independently, which means the state transition each
time acts on the single atom x; € X and bond ¢; € E.

We follow [Austin et al] (2021) to define the probability transitional matrix @Q; to conduct state
transitions at each time ¢ in the discrete space. For graph G, we apply noise to them via Markov
matrices [Q7 ]ss = q(x¢ = §'|x1_1 = s) (for atom) and [QF],. = q(e; = s'|e;_1 = s) (for bond),
where s and s’ represent the state of atom (or bond) at time ¢ — 1 and ¢, respectively. Due to the
graph independence, the noise-applying process for graph G can be defined as:

9(Gi|Gi-1) = (X4-1QF B, 1QF) = a(G4|Go) = (XoQ[, EoQY), 3)
where Gy is the graph of ground truth, QX = [['_, QX and QF = [[._, QF. Finally, we sample
the probability distribution ¢(G¢|Gy) to obtain the noisy graph G;.

Denoising. In the denoising process, given a noisy graph G; and condition ¢, we need to iterate
the denoising process pg(G:—1|Gt, ¢) by a trainable network py at each time t. We model the distri-
bution as the product over nodes and edges and marginalize each item over the network predictions:

p@(Gt71|Gt;C) = H p@(x‘Gtac> H p9(6|Gt7C)a

re€Xt 1 ecE; 1
where po(e|Gire) = 3 a(eler, w0, c)poolGrsc), @
o€ X0
p9(6|Gt7C): Z q(@‘et,€07C)p9(€0|Gt,C).
eo€Ey

Next, we derive ¢(Gt—1|G4, Gy, ¢) with the Bayes theorem and transform it into forms of node and
edge to complete the calculations in Eq.@) (Vignac et al| [2022). For node X, we have:



Under review as a conference paper at ICLR 2024

X | X1, Xo,¢)q(X—1] X0, ¢)

Q(Xt|X07C)
~X[QF]T 0 X0Q,
B XoQ [ X"

Q(Xt—l‘XtmeC): Q(
5

x X, [QF]" © XoQk |,

Similarly, ¢(E;_1|E;, Xo,¢) x E[QF]T ® EoQF ,. Based on the above derivation, we only need
to create a network p(Go|GY, c) to predict clean graph G given noisy data G; and condition c.

2.1.2 EXTERNAL BOND GENERATION

In this stage, we aim to interpolate the distribution P, to P conditional on ¢, where condition ¢
is Py x Pg. This is a bond-to-bond generative process, we define v ~ P),, as a dummy bond set
and b ~ P connecting g and x. In the same way, we splice g, x, and b as a connected graph. We
have obtained a trained network pg in the last stage, so we freeze g and x in the graph and continue
to train py.

2.1.3 POST-ADAPTION

Under traditional semi-template methods, the reaction
center in the product is first predicted. After breaking the
bond, completion is conducted at the reaction site. In the
first two stages, we equivocally complete the “comple-
tion”, and thus need to break the reaction bond to obtain a
legitimate reactant finally. There exist two possible situa-
tions: without and with broken bonds. If without broken  |nvalid
bonds, only one external bond connects the product to the .
external group. If with broken bonds, two external bonds
connect two atoms in the product and these two atoms are
connected to each other by a legal bond.

We reverse this observation to design a post-adaption rule.
Specifically, when only one external bond is generated, no
treatment of the product is required. When two external
bonds are generated, if there is a legal bond between the
two product atoms connected by the two external bonds, they are broken, otherwise, they are judged
to be illegally generated. Figure [3|shows the valid and invalid situations.

Figure 3: Valid and invalid situations of
the post-adaption operation.

2.2  PRIOR DISTRIBUTION AND INTERPOLATION DIRECTION

In this part, we design the task-specific prior distribution (i.e. sampling start) Py, and Py, in the
first two stages, and interpolation direction (i.e. transitional matrix) Qf( and QF. We denote Ng
and n, as the atom numbers of the external group g and the product x, respectively. It is noted that
we cannot predict the exact atom number of external groups in different cases, so we restrict ng4 as a
constant and create a dummy atom category EI We set ng as the maximum real atom number of all
external groups in the dataset.

Prior Distribution. All atoms can start from a single distribution v,, and all bonds can start from
ve. In the external group generation of stage 1, both atoms and bonds need to be denoised, but in
the external bond generation of stage 2, only bonds need to be denoised. Therefore, the two prior
distributions can be formulated as

PV1 = H Pv, X H Pues PV2 = H P, - (6)

1<i<|n 1<i<|ng]| 1<i<|ng|

gl .
1<j<|ng| 1<j<|nzl|

For all atoms and bonds samples from the dummy state, we set the probability of single distribution
as p,, = [1,0,0,...,0]T € R @+ and p,, = [1,0,0,...,0]T € R+ where the first position

'As an example, at the sampling stage, the external group starts from n, dummy atoms, and half of them
are denoised to the real atoms, then in this case, the actual number of external group atoms is ng /2.
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Figure 4: The whole architecture (left) of the denoising network for training with graph transformer
modules (right). X, E, y denote the atom features, bond features, and global features, respectively.
FlLM(Ml, MQ) = M1W1 + (MQWQ) ® MQ + MQ, where W1, W2 are learnable. PNA(M) =
[max(M) o min(M) o mean(M) o std(M )|W, where W is learnable.

in the vector denotes the dummy atom (bond) category and the other positions denote each real
categories (a types of atoms and b types of bonds), respectively.

Interpolation Direction. For the diffusion model to be reversible, any sample s = (s, S.) ~
Ddata (Pdata denotes the whole data distribution) must converge to a limit distribution ¢, after ¢-
step noise-applying, i,e., ¢oo = limy_, o, sQ¢, Which in turn is the sampling start. Therefore, we
need to design Q7% and QF to satisfy that for any atom s, and bond s, from the data distribution,
vy = limy_o0 $:Q7 and v, = lim;_, o 5.QF. Considering s, and s, are one-hot vectors, we
compute lim;_, Q7 = 1,,;11; and limy_, Qyf = leveT, so a trivial design is

Qf( =a+(1- ozt)lmv;, QF =ad+(1- at)levz, (7

where I is an identity matrix, 1, and 1. are all-one vectors, oy is a cosine schedule that &y =
cos (0.57(t/T + s)/(1 + s))? (Nichol & Dhariwal, 2021).

2.3 DENOISING NETWORK FOR TRAINING

We design pg(Go|G+, ¢) to model pg(G:—1|Gh, c) at the above stages. Specifically, at 0 to T5 steps,
we take group g, product x, and noisy external bonds b; as the input, and clean external bond by as
the output. At T5 + 1 to T + T7 steps, we take product x, and noisy external group G as the input,
and clean external group G| as the output. The training loss of py(Go|G+, ¢) can be formulated as:

L(Go = (Xo,Eo)) = —1- Y _ log(ps(w)) — D log(ps(e)), ®)

zeXy eeEgy

where p is a control unit, in stage 1, 4 = 0, and in stage 2, u is a hyperparameter to trade off the
importance of atoms and bonds. In general, p < 1.

We use the graph transformer architecture (Vignac et al., [2022) to design the network. The overall
architecture and the graph transformer module for each layer are shown in Figure [ Specifically,
we merge the input graph G at step ¢ and condition ¢ into a whole graph structure G = (X, E, y),
where y is the global features, and obtain the topological features and chemical features (Details
can be seen in Appendix [A)) of this molecular graph to splice with the original features. After the
pre-processing, G = (X, E,y) is input to a feed-forward network to be encoded, then it will pass
serially through the nj,ye; graph transformer modules. Finally, another feed-forward network is set
to decode the graph features, the output is the final prediction result.



Under review as a conference paper at ICLR 2024

Table 1: Top-k accuracy for the retrosynthesis task on USPTO-50K dataset.

Model \ Top-k accuracy

| k=1 | k=3 | k=5 | k=10
Template-based methods
GLN (Schneider et al.|[2016 52.5 69.0 75.6 83.7
GraphRetro (Somnath et al./[2020 53.7 68.3 72.2 75.5

LocalRetro (Chen & Jung/2021 534 71.5 85.9 92.4
RetroKNN (Xie et al. 55.3 76.9 84.3 90.8

Template-free methods

Transformer (Vaswani et al.|2017) 2.4 58.6 63.8 67.7
SCROP (Zheng et al.| 2010} 437 600 652 687
Transformer (Aug.) (Tetko et al.|[2020 48.3 - 73.4 77.4
Tied Transformer (Kim et al.]2021] 47.1 67.1 73.1 76.3
GTA (Seo et al.| 2021] SL1 676 748 816

Graph2SM 52.9 66.5 70.0 72.9
Retroformer (Wan et al.|[2022] 47.9 62.9 66.6 70.7

Retroformer (Aug.) (Wan et al.|[2022 52.9 68.2 72.5 76.4
RootAligned (Zhong et al. 56.0 79.1 86.1 91.0

Semi-template methods

RetroXpert (Yan et al | 504 611 623 63.4
G2G (Shi et al.][2020 489 676 725 75.5
MEGAN (Sacha et al.] 2021 481 707 184 86.1
RetroPrime (Wang et al.[[2021] 514 708 740 76.1
RetroDiff (ours 52.6 71.2 81.0 83.3

3 EXPERIMENTS

3.1 SETUP

Dataset. We perform experiments on the widely used USPTO-50K (Schneider et al.2016)), which
contains 50,000 single-step chemical reactions from 10 reaction types. We follow standard splits to
select 80% of data as the training set, 10% as the validation set, and 10% as the test set.

Baseline. Our baselines can be categorized into three groups: (i) Template-based methods, we
choose GLN (Schneider et all, [2016), GraphRetro (Somnath et all, [2020), LocalRetro
[2021)), and RetroKNN (Xie et al., 2023). (ii) Template-free methods, we choose Transformer
(Vaswani et al., 2017), SCROP (Zheng et al., 2019)), Tied Transformer (Kim et a! L 2021), Augmented
Transformer (Tetko et all, [2020), GTA (Seo et al 2021, Graph2SMILES (Tu & Coley}, [2022),
Retroformer (Wan et al.,[2022)), and RootAligned (Zhong et al.,|2022). (iii) Semi-template methods,
we choose RetroXpert (Yan et al., [2020), G2G 2020), RetroPrime (Wang et all, [2021])),
and MEGAN (Sacha et al.,[2021).

Implementation. We use open-source RDKit to construct molecular graphs based on molecular
SMILES. For noise-applying and sampling processes, we set 77 = 500 and 75 = 50. For the
training process, we train the graph transformer at 8-card 24G GTX-3090 with a training step of
100000, a batch size of 120, and an Adam learning rate of 0.0001, and set ¢+ = 0.2. In addition, when
setting ng, during the statistical process, to avoid extreme values that cause sparse distributions, we
exclude all samples whose statistic is more than three times the standard deviation from the mean.

Evaluation. We follow prior works to adopt top-k accuracy as the main evaluation metric. For
end-to-end models, beam search is adopted, but it is unfeasible for diffusion models. Therefore, we
set the negative variational lower bound as the reranking score for each generated Gy = (X, Ey),
yielding the following top-k accuracy score:

Score = 1 By(ag) Eq(a, o) [ =108 20 (20|74)] + Eq(eo)Eq(e.leo) [~ l0g Poleoler)].  (9)
For each sampling, the smaller the score is, the closer the sample is to the true data distribution.
We sample 100 results for each case to rerank the scores. In addition, we compute top-k valid-
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ity, which can reflect the legitimacy of the reactants as chemical molecules, and is formulated as
=% Ziv Zlf isvalid(Gyg), where N denotes the dataset size.

3.2 MAIN RESULTS

We report top-k accuracy and validity in the reactant class unknown setting and compare our method
with all strong template-based, template-free, and semi-template methods. Specifically, we catego-
rize our method as a semi-template method.

Table [1| shows the top-k accuracy results. Our

method outperforms all other competitive semi-  Table 2: Top-k validity for the retrosynthesis task
template baselines across different k values, on USPTO-50K dataset comparing our method

particularly excelling at top-5. In addition, our ith some template-free methods.
method demonstrates competitive results when

compared to the strongest template-free meth- Model Top-k validity

ods, Graph2SMILES and Retroformer. No- k=1 k=3 k=5 k=10
tably, our methqq holds a substantial advantage Transformer 972 979 824 731
for k > 1. Additionally, we surpass the perfor-  GrpnosMILES 994 909 849 749
mance of GLN in the realm of template-based  Retroformer (Aug.) 99.3 985 972 926
methods, underscoring the effectiveness of our ~ RetroDiff (ours) 992 990 978 943
template setup.

Table [2| shows the top-k validity results. We take the vanilla retrosynthesis Transformer,
Graph2SMILES, and augmented Retroformer as strong template-free baselines (mainly on SMILES
generation) for validity comparison with our model. We note that our validity score outperforms
that of both Transformer and GraphSMILES, two end-to-end SMILES generation models. Despite
Retroformer’s competitive validity score as a template-free model, attributed to the integration of
chemical information from the reaction center in their model, our method demonstrates a further
improvement. This suggests that our model exhibits enhanced chemical feasibility,

3.3 ABLATION

In this part, We will conduct ablation studies to analyze the performances of generative sub-modules
in each stage, namely external group generation and external bond generation.

3.3.1 EXTERNAL GROUP GENERATION

First, RetroDiff generates external groups

given raw products.  In traditional semi- Taple 3: Top-k accuracy of the external group
template methods, the external group genera- generation sub-module (* indicates the perfor-

tion equates to a synthon completion task, com- mance of raw synthon completion).
monly addressed through two distinct meth-

ods: (i) autoregressive generation, encompass- Top-k accuracy
: o : Model :
ing encoder-decoder sequence prediction (Shi — — . —
. - k=1 k=3 k=5 k=10

et al., |2020) and action-state sequence predic- Ty 61 85 867 900
tion (Somnath et al., [2020), (ii) finite-space * : : . :
searcfl where all possible lea)vir(l )rou Voléab— RetroXpert* 648 776 808 84.5

¢, p caving group RetroDiff (ours)  66.5 784 850 864
ularies are constructed using a database, fol-
lowed by maximum likelihood estimation using
a classification model (Yan et al.l |2020). In our template setting, the external group generation is
treated as a non-autoregressive generation task.

Table [3] shows the results and we compare the external group generation performance between our
method and the synthon completion performance of other methods. Our external group generation
outperforms the rest of the methods on top-1, but not as well as G2G when k > 1, albeit within a
reasonable margin. A plausible explanation lies in the fact that G2G acquires information about the
reaction center when generating the external group, i.e., serial complementation from the reaction
sites. In contrast, our method may lack this specific information, resulting in a slight disadvantage.

3.3.2 EXTERNAL BOND GENERATION
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Next, RetroDiff generates external bonds given  Table 4: Top-k accuracy of the external bond gen-
products and generated external groups. In eration sub-module (* indicates the performance
the traditional semi-template methods, reaction of raw reaction center prediction).
centers are predicted directly by the classifica-
tion model, whereas under our template setup, M Top-k accuracy

. L. odel
this task equates to a combination of external b—1 k=3 k=5 k=10
bond generation and post-adaptation. Thus, we "
conduct a direct comparison between the per- gezt(r}o'xpm* 2‘1‘; 81_'5 86_‘7 99'0
formance of previous methods in predicting re- GraphRetro* 756 874 925 96.1
action centers and the external bond generation  RetroDiff (ours)  82.3 924  95.5 96.8
performance of our model. Table [4| shows the
results, indicating that predicting the connect-
ing bond between the product and the external group, and thus deducing the reaction center based
on the rule, can lead to achieving higher accuracy than direct prediction of the reaction center given
the product.

Specifically, the atom number of the product is denoted as n, the bond number as m, and the external
group atom number as ¢ (with ¢ being a constant set to 10 in our experimental configuration). Con-
sidering a maximum bonding site limit of 4 for an atom (e.g., Carbon atom) excluding Hydrogen
atoms, we establish the condition m < 2n. In the realm of traditional reaction center prediction,
the search space size is m, whereas, for external bond generation, it is cn. Consequently, the com-
plexity of the external bond generation task is higher than that of the reaction center prediction
task. However, the external bond generation task leverages molecular information from external
groups, expanding the model’s ability to search for reaction sites more accurately by incorporating
additional chemical insights. Consequently, the observed superior performance of external bond
generation over traditional reaction center prediction can be empirically attributed to the enriched
chemical information acquired through the former.

4 RELATED WORK

Retrosynthesis Prediction. Existing methods of retrosynthesis prediction can be broadly catego-
rized into three groups: (i) Template-based methods retrieve the best match reaction template for a
target molecule from a large-scale chemical database, they focus on computing the similarity scores
between target molecules and templates using either plain rules (Coley et al., 2017)) or neural net-
works (Schneider et al., 2016} Somnath et al.| 2020; /Chen & Jung, [2021). (ii) Template-free methods
adopt end-to-end generative models to directly obtain final reactants given products (Zheng et al.,
2019;|Kim et al.,[2021}|Seo et al.,| 2021} Tu & Coley, 2022;|Wan et al.,|2022)). Despite the efficiencies
of data-driven methods, the chemical prior has been ignored. (iii) Semi-template methods combine
the advantages of the above two approaches, they split the task into two parts, i.e., reaction center
prediction and synthon correction (Yan et al.,2020; Shi et al.; 2020; Wang et al., 2021), followed by
serial modeling using a classification model and a generative model, respectively.

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; |Ho et al., 2020) is a class of
score-based generative models (Song & Ermon, 2019), whose goal is to learn the latent structure
of a dataset by modeling the way in which data points diffuse through the latent space. Since the
generalized discrete diffusion model (Austin et al.| [2021) and the discrete graph diffusion model
(Vignac et al.| |2022) have been proposed, the molecular design field has begun to use them exten-
sively, such as molecular conformation (Xu et al., | 2021)), molecular docking (Corso et al., |2022)),
and molecular linking (Igashov et al.l 2022)). To the best of our knowledge, we are the first to apply
discrete diffusion models to the retrosynthesis prediction task.

5 CONCLUSION

We introduce RetroDiff, a multi-stage conditional retrosynthesis diffusion model. Considering max-
imizing the usage of chemical information in the molecule, we reset the template to decompose the
retrosynthesis into external group generation and external bond generation sub-tasks, and set a joint
diffusion model to transfer dummy distributions to group and bond distributions serially. Our method
performs the best under the semi-template setting in the accuracy and validity evaluation metrics. In
the future, we will try to extend our RetroDiff to multi-step retrosynthesis scenarios.
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A ADDITIONAL FEATURES FOR NETWORK TRAINING

To fully explore the potential features of a molecular graph, we can analyze it from two perspectives:
topological features and chemical features.

Topological Features. We focus on two useful topological features. First is the spectral features,
we first compute some graph-level features that relate to the eigenvalues of the graph Laplacian:
the number of connected components (given by the multiplicity of eigenvalue 0), as well as the 5
first nonzero eigenvalues. We then add node-level features relative to the graph eigenvectors: an
estimation of the biggest connected component (using the eigenvectors associated with eigenvalue
0), as well as the two first eigenvectors associated with non-zero eigenvalues.

Second is the cycle detection. To further refine it, we split it into node-level and graph-level features.
For node-level features, we compute how many k-cycles this node belongs to, where 3 < k < 5.
The feature formulas are as follows:

X = diag(A?%)/2,
X, = (diag(A") — d(d — 1) — A(d1,,)1,)/2, (10)
X5 = (diag(A®) — 2diag(A®) © d — A(diag(A%)1,))1,, + diag(A®))/2,

where d denotes the vector containing node degrees. For graph-level features, we compute how
many k-cycles this graph contains, where 3 < k < 6. The feature formulas are as follows:

vz = X5 1,/3,
Yyq = X;rln/4a
Ys = X;—ln/l{)a

ys = Tr(A%) — 3Tr(A® © A%) + 9||A(A% © A?)||p — 6diag(A?) T diag(A?)

+ 6Tr(A*) — 4Tr(A3) + 4Tr(A%A% © A?) 4 3||A3||p — 12(A% © A?) 4 4Tr(A?),
(11)

where || - || is Frobenius norm.

Chemical Features. There are two useful chemical features. First is the atom valency, which can
be concatenated to the atom features X . Second is the molecular weight, which can be concate-
nated to the global features y.

B CASE STUDY VIA VISUALIZATION

In this section, we present visualizations of both successful and failed cases to provide an intuitive
analysis of RetroDiff’s mechanisms. Figure [3] illustrates instances of success, featuring external
groups delineated by blue shaded boxes and external bonds highlighted in green. Conversely, Figure
[6] showcases failed cases, revealing two prevalent situations associated with higher error rates: (i)
elevated error rates are observed when the external group size is substantial, leading to biases in the
prediction of bonds between atoms, and (ii) for external bond predictions, inaccuracies in predicting
reaction sites on the product contribute to ineffective post-adaptation of reaction centers.
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Case 1: Single Reactant
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Figure 5: Successful cases produced by RetroDiff on the retrosynthesis task.
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Figure 6: Failed cases produced by RetroDiff on the retrosynthesis task.
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