Chain of Methodologies: Scaling Test Time Computation without Training

Anonymous ACL submission

Abstract

Large Language Models (LLMs) often struggle
with complex reasoning tasks due to insuffi-
cient in-depth insights in their training data,
which are frequently absent in publicly avail-
able documents. This paper introduces the
Chain of Methodologies (CoM), a simple and
innovative iterative prompting framework de-
signed to build structured reasoning processes
by injecting human methodological insights,
thereby enabling LLMs to perform long and
effective reasoning for complex tasks. Assum-
ing that LLMs possess certain metacognitive
abilities, CoM leverages user-defined method-
ologies to stimulate the cognitive insights that
LLMs have learned implicitly from training
data. Experimental results indicate that CoM
outperforms competitive baselines, highlight-
ing the potential of training-free prompting
methods as general solutions for complex rea-
soning tasks and the possibility of incorpo-
rating human-like methodological insights to
bridge the gap to human-level reasoning.

1 Introduction

Recently, OpenAl’s o1 (OpenAl, 2024) showcases
the possibility of using a long chain of thoughts
to improve the reasoning ability of Large Lan-
guage Models (LLMs). During these long thoughts,
OpenAlT’s ol displays high-level cognitive abilities,
such as problem decomposition, error recognition,
and correction, which constantly steer the thoughts
in the right direction. OpenAl confers ol with
such abilities through training with reinforcement
learning.

This paper conducts novel research on investi-
gating the possibility of allowing LLMs to have the
same universal self-guiding ability as OpenAI’s ol
in conducting long and structured reasoning in var-
ious domains by merely using prompts and without
relying on instruction fine-tuning.

This new problem is challenging: while LLMs
can be fine-tuned using a relatively large dataset

Question: If You Ever
Get Lonely was covered
by what Lyric Street
Records-affiliated band?

Chain of
Methodologies

Analysis Chain of
Break down Reasonings
complex

problems into ... o .
The question is asking

for ... the song "If You
Ever Get Lonely".

Retrieval
Write Python ‘ ‘

function calls
search("If You Ever Get Lonely")

‘search([info])" q \
for %8, covered by American
%8 2 country music duo Love

m— N

Conclusion ‘ ‘

Clarify the
‘ [#### Love and Theft]

output format ...

Figure 1: An illustration of our Chain of Methodolo-
gies reasoning process, where the generation of method-
ologies and reasoning interleaves. A methodology (in
blue) is selected based on the historical reasoning status,
while the next reasoning step (in green) is guided by the
previously selected methodology.

for universal instruction-following ability, conven-
tional prompts are mostly employed to induce in-
struction following in specific tasks with few-shot
examples, due to the limitations of LLMs regarding
context length and the accuracy of extracting infor-
mation from long contexts. Therefore, pure prompt-
ing methods are seldom used in universal task solv-
ing, although prompting offers clear advantages
over extensive fine-tuning in many aspects, such as
low cost, fast deployment, high sample efficiency,
and no risk of catastrophic forgetting or biasing the
model with fine-tuning data.

Our approach is based on the discovery of
metacognitive knowledge (the ability to reason

about one’s own reasoning processes) in the fol-
lowing prior work on using LLMs. Pedagogical
research shows that improving human learners’
metacognitive knowledge can enhance their reason-
ing capabilities, and positive results are reported
for metacognitive prompts on introspective evalu-
ation and self-reflection (Wang and Zhao, 2024).
Microsoft directly uses “do not hallucinate” in their
system prompt, aiming to reduce hallucination in
Phi3 (et al, 2024), and (Didolkar et al., 2024) ob-
serves improved mathematical reasoning when al-
lowing LLMs to determine the type of skill required
to solve a problem, where the skill type is used to
retrieve in-context examples.

This paper proposes Chain of Methodologies
(CoM), a simple and task-agnostic iterative prompt-
ing technique aimed at achieving universal self-
guiding ability for long and structured reasoning.
Without relying on instruction fine-tuning, CoM
uses methodology as a catalyst to stimulate LLMs
to generate their next reasoning step based on the
current reasoning history. Our basic idea is that,
while LLMs struggle with complex reasoning tasks
due to insufficient in-depth insights in the training
data between problems and their respective solu-
tions, we can enable smooth transitions between
a problem and its solution steps by inserting an
analysis of the methodology adopted before each
solution step. We rely on the metacognitive knowl-
edge in LLMs to select or generate a methodology
that either explains or justifies the next solution
steps.

Our CoM approach features (1) a list of method-
ologies written in our “when-what” format that
facilitates selection based on the current reasoning
history and then bridges it with the next reason-
ing step, and (2) a methodology-reasoning loop
that iteratively chooses the next methodology to
guide the next step of reasoning along a long and
well-structured reasoning path. An example of the
CoM reasoning path is illustrated in Figure 1 and
two examples of our methodologies are listed in
Figure 2.

Our contributions include a simple CoM frame-
work and experimental studies. Our CoM frame-
work produces faithful reasoning containing steps
that are structured and explainable. It is also highly
extensible in that users can enhance the framework
by modifying the list of methodologies in plain
text. We evaluated our task-agnostic CoM frame-
work with two representative and challenging ap-
plications: mathematical reasoning and retrieval-

augmented generation. Experimental results show
that our CoM outperforms competitive baselines
on these tasks with diverse LLMs.

2 Chain of Methodologies

2.1 Overview

We aim to use prompts to stimulate the high-level
cognitive (metacognitive) knowledge in existing
LLMs, enabling them to possess the same universal
self-guiding ability as OpenAl’s ol to successfully
carry out long and structured reasoning sequences
across various domains. These prompts should be
task-agnostic and effective in guiding thought pro-
cesses, and we find prompts about methodology to
be ideal candidates for this purpose. Methodology
is a critical component of any discipline or field
that requires a structured approach to understand-
ing, problem-solving, or conducting research. It
provides a framework that ensures tasks are exe-
cuted consistently and effectively.

Our Chain of Methodologies (CoM) framework
features a list of user-defined methodologies and
a methodology-reasoning iteration. Each method-
ology provides a guideline for the next reasoning
step based on the current reasoning history. The
reasoning process of CoM alternates between a
methodology selection step and a methodology-
guided reasoning step, as illustrated in Figure 1.

List of Methodologies: Throughout human his-
tory, the accumulation and evolution of problem-
solving methodologies have relied on fundamental
processes such as trial and error, reflection, and
self-correction based on problem-solving experi-
ences. Unlike AlphaGo, which operates within
a defined set of rules and a closed action space,
human learning occurs in an open action space
that is more complex and challenging to optimize.
To navigate this complexity, we integrate human
knowledge and experience related to task com-
pletion through established methodologies. Let
M = {m(l),m@), e ,m(”)} denote the list of
user-defined methodologies.

Reasoning iterations: CoM conduct a max-
imum number of K steps for each question Q.
In step k£ where 1 < k < K, we first prompt
an LLM,, with prompt template P, to select a
methodology mj, € M based on the current rea-
soning history hg:

mi = LLM,(M,Q, hy, P) (1)

, and then prompt an LLM, with prompt tem-

Analysis

- When: In step 1.

- What: Analyze the category and solution type of the question, list the key facts, variables, relations, constraints with
their associated values, and clarify the required output format. Break down complex problems into simpler steps while
maintaining critical context. Propose a sequence of methodologies necessary to tackle the remaining reasoning steps
iteratively and explain how they are related to the final result.

Retrieval

- When: Fact-based information from the internet is needed.

- What: Write 1-3 line(s) of Python function call(s) ‘search([information],topk=3)" for each information needed to
retrieve. The function “search™ has been defined and imported for you, which returns a text summary for the argument
‘information’. Place your code in a single python\n...""" code-block. Finally, accurately simulated the retrieved output
by yourself.

Figure 2: Two example methodology definitions in our when-what format.

plate P, to generate the next reasoning sequence
ry, based on methodology my, and history hy:

Ty = LLMT(M7Q7hk7mk7PT) (2)

, where the reasoning history contains all previous
reasoning sequences hy = [ri1,72, -+, rk—1]. In
this paper, we simply use the same instruction fine-
tuned LLM for both LLM,, and L LM, , which is
frozen during the application of our framework.

2.2 Methodology Definition

Our emphasis is on a framework that utilizes a
user-defined list of methodologies instead of study-
ing the philosophy of finding a universally appli-
cable set of methodologies, whose existence is a
debated topic between universalism and contextu-
alism. From a pragmatic perspective, we focus
on how to represent each methodology to facilitate
methodology selection and methodology-based rea-
soning.

To clarify the differences between method and
methodology, a method is a specific technique or
systematic procedure to accomplish a task, while
a methodology encompasses the principles and ra-
tionale that guide the choice and use of methods.
Each methodology in our user-defined list should
specify two key fields: when and what. The when
field indicates the applicable stage during the rea-
soning lifecycle of the methodology, as well as the
context and factors that influence the choice of the
methodology. The what field outlines the system-
atic approach, the action selection criteria, and the
expected outcomes of the methodology.

Specifically, a methodology is defined in mark-
down format with three fields: (1) a name, (2) when:
the situation and timing for application, and (3)

what: the specification and details, including prin-
ciples, tools, techniques, and procedures to use.
Two methodology definitions are exemplified in
Figure 2.

Next, we discuss various types of methodology
definitions. We broadly divide them into three cat-
egories: analysis, coding, and reflection. The anal-
ysis methodologies inspire the LLM to organize
information, including extracting facts, variables,
relations, constraints, and objectives from the ques-
tion; breaking down the initial question into man-
ageable sub-problems; planning the sequence of
actions to be taken; and summarizing, rearranging,
and distilling the information obtained so far. The
coding methodologies prompt the LLM to generate
formal languages to be executed by their respective
solvers to obtain accurate results and to use exter-
nal tools, e.g., search engines, by calling prede-
fined functions attached to the solvers. The reflec-
tion methodologies encourage the LLM to identify
errors and provide constructive feedback through
self-reflection or self-verification in order to adjust
the approach and propose alternative strategies for
the next steps. Figure 3 in the Appendix lists the
task-agnostic methodology definitions we used in
our experiments.

To conclude, the utilization of methodologies
serves a multifaceted purpose: (1) providing hu-
man input methodologies to stimulate the metacog-
nitive ability of LLMs to compensate for the lack of
in-depth insights in their training data for conduct-
ing complex reasoning, (2) establishing a natural
connection through explanation or justification be-
tween the current reasoning situation and its solu-
tion in the next step, and (3) providing an educated
guess for the next step to avoid the search space of

stochastic search methods such as MCTS (Qi et al.,
2024) and RL (OpenAl, 2024; Snell et al., 2024;
Zelikman et al., 2022) over a universal reasoning
space that is much larger than those of games, such
as AlphaGo.

Last, our framework is designed to be conve-
niently extended: users only need to update the list
of methodology definitions in plain text to make it
more comprehensive for general thinking or tailor
it to a specific set of skills that accurately target a
particular task.

2.3 Methodology-Reasoning Iterations

As illustrated in Figure 1, CoM alternates between
prompting the LLM to generate the next method-
ology and the next methodology-based reasoning
sequence for a maximum number of K iterations.

The first prompt instructs the LLM to select a
methodology for the next reasoning steps, which
concatenates the list of user-defined methodology
definitions, the question, the history of previous
methodology-based reasoning sequences, and an
instruction with additional information about the
reasoning stage and the output format for the LLM
to select the most suitable methodology.

The second prompt contains all the information
from the first prompt, as well as the methodology
selected using the first prompt. It encourages the
LLM to follow the guidance in the methodology
while reasoning. The second prompt also requires
the output to include the following items: (1) ac-
knowledgment of the selected methodology by re-
peating its name, (2) a chain of thought reasoning
process or a program that implements the method-
ology, and (3) a summarized result of the reasoning
or a guessed output of the program.

Following the second prompt, a solver will be
invoked to post-process the LLM output with the
second prompt to facilitate the programming ability
of LLMs (Chen et al., 2023). Currently, we only
implement a Python interpreter, which is invoked
once Python code blocks are detected in the out-
put. This Python interpreter executes the code in a
safe environment with several common packages
imported. After execution, we replace the guessed
output of the program in the LLM output with the
stdout output of the code. This enables accurate
reasoning on tasks that require computation, such
as mathematical tasks, implementing the human
methodology: “You should use a calculator for
tasks that involve complex calculations.” It also al-
lows for various types of tool usage via the Python

API during the reasoning process, including web
search, knowledge base retrieval, and even invoca-
tion of other LLMs and manipulation of the LLM’s
own reasoning process (Cao et al., 2023).

Our Python interpreter executes code in a sand-
box, which is a new process with a safe global
scope where the code can only use a limited set of
built-in functions and import from a given set of
packages. We set a timeout of 1 minute for each
process. We empirically found that a larger timeout
does not bring significant performance improve-
ments in our experimental tasks. Users can extend
the tool-using capacity of the CoM framework by
adding the corresponding methodology definition
and implementing functions in the Python inter-
preter. For instance, if we want to enable Google
search, we can add a methodology definition that
specifies the existence of a function named “search”
and the meaning of its arguments, and then imple-
ment and add this function to the global scope of
the Python interpreter.

Our methodology selection prompt and
methodology-based reasoning prompt are listed in
Figure 4 in the Appendix.

3 Related Work

We draw inspiration from existing work that ex-
tensively explores different prompt designs, such
as Chain-of-Thought (Wei et al., 2022), Least-to-
Most (Zhou et al., 2023), Self-Consistency (Wang
et al., 2023b), and Tree-of-Thoughts (Cao et al.,
2023). Various methodologies have been proposed
to enhance problem-specific performance, includ-
ing question rephrasing, dividing subtasks, verifi-
cation, symbolic grounding (Lyu et al., 2023; Xu
et al., 2024a; Wang et al., 2023a; Zelikman et al.,
2022; Wang et al., 2024), factuality and faithful-
ness verification for reasoning chains (Wang et al.,
2024), as well as explicit separation of knowledge
retrieval and reasoning steps to organize decision-
making (Jin et al., 2024). These approaches are
effective in designated contexts where the main ob-
jective is to enhance explicit reasoning capabilities
in areas such as arithmetic, commonsense reason-
ing, and symbolic reasoning.

The key difference between our work and
prior research on workflows/pipeline approaches
(Anonymous, 2024b) is that prior studies use a set
of predefined, hardcoded actions, while our work
utilizes the metacognitive abilities of LLMs to se-
lect a methodology to derive actions step-by-step

based on reasoning history. Additionally, we cu-
rated a set of task-agnostic methodologies targeting
a broad range of unseen applications. We identify
several contemporary works with various objec-
tives that are closely related to ours, which we list
below.

Buffer of Thoughts (Yang et al., 2024c¢) derives
high-level guidelines from previously completed
tasks and stores them in a buffer for reuse in the
future, enabling learning from experience and im-
proving efficiency by distilling level-2 slow think-
ing into level-1 fast thinking. This work differs
from ours in that its high-level guidelines con-
tain problem-specific reasoning chains or code
templates targeting particular tasks, e.g., complex
multi-query tasks.

Skill-based CoT (Didolkar et al., 2024) explores
the metacognitive capabilities of LLLMs in math-
ematical problem-solving. This work first labels
each question with a corresponding skill. The la-
beled skills are then clustered to reduce redundancy.
During inference, one of these skills is selected,
and the skill-relevant examples are retrieved for
in-context learning.

Induction-augmented generation (Zhang et al.,
2023b) finds key concepts in the question and uses
an inductive prompting template to extract their
close concepts and common attributes to facilitate
more accurate reasoning processes.

rStar (Qi et al., 2024) demonstrates a self-play
mutual reasoning approach that significantly im-
proves the reasoning capabilities of small language
models without fine-tuning. This method uses a
costly Monte Carlo Tree Search (MCTS) with a set
of five reasoning-inducing prompts.

Training-based methods pursuing long chains
of thought include STaR (Zelikman et al., 2022),
which demonstrates that a language model itera-
tively trained on its reasoning history that leads
to correct answers can solve increasingly difficult
problems. In (Snell et al., 2024), small models
are fine-tuned to perform more reasoning steps
using reinforcement learning with beam search,
lookahead search, and best-of-N verifiers. ReST-
MCTS (Zhang et al., 2024) integrates process re-
ward guidance with tree search MCTS to collect
higher-quality reasoning traces. With similar ideas,
AFlow (Anonymous, 2024a) iteratively refines task-
specific workflows.

4 Experiments

4.1 Experiment Setup

We evaluate the effectiveness of two components
in CoM: methodology selection and methodology-
guided reasoning.

LLMs: We report experiment results conducted
on a relatively larger Qwen2-72B-Instruct and a rel-
atively smaller Qwen2.5-7B-Instruct (Yang et al.,
2024a), as well as a recent open-source model rem-
iniscent of OpenAlI’s o1, named Macro-ol (Zhao
et al., 2024), which is a fine-tuned Qwen2-7B-
Instruct with a combination of the filtered Open-
O1 CoT dataset (Team, 2024), Macro-ol CoT
dataset, and Macro-ol Instruction dataset. We
use the LLM API provided by Siliconflow (sil),
with settings: max_tokens=1024, temperature=0.2,
top_k=40, top_p=0.95, n=1.

Dataset: We evaluate CoM with the same set of
methodology definitions (Figure 3) on the test splits
of three datasets: AIME, GSMS8K, and HotpotQA.

We use the "AIME Problem Set: 1983-2024"
dataset (Zhang et al., 2023a). As part of the Ameri-
can Invitational Mathematics Examination (AIME),
it includes a variety of problems, such as com-
plex algebraic equations, geometric puzzles, and
advanced number theory, aimed at testing mathe-
matical understanding and problem-solving skills.

GSMBSK (Cobbe et al., 2021) is a dataset of high-
quality, linguistically diverse grade school math
word problems that take between 2 and 8 steps of
elementary calculations (+ — x--) to solve.

HotpotQA (Yang et al., 2018) is a comprehensive
dataset for multi-hop, multi-step question answer-
ing. Each entry in the dataset includes a question,
an answer, and supporting facts that indicate the
titles of the relevant paragraphs providing the nec-
essary information to answer the questions.

In the hard portion of the HotpotQA dataset, we
simulate retrieval-augmented generation (Anony-
mous, 2025) experiments, where we only present
the LLMs with the question, excluding the support-
ing facts and context paragraphs. When the LLMs
generate code that calls the search with keywords,
we employ fuzzy string matching to select the top-k
most similar supporting facts to the keywords and
return their corresponding context paragraphs as
the retrieval results.

4.2 Baselines

We conduct all our experiments using zero-shot
prompting, as current few-shot approaches utilize

Table 1: Results for AIME, GSMS8K, and Hard Hotpot Tasks of a large LLM: Qwen2-72B-Instruct

AIME | GSM8K Hard Hotpot
Acc Acc EM F1 Prec Rec
CoM 23.15% | 91.58% | 0.38 0.484 0.471 0.587
Workflow 22.77% | 92.27% | 0.36 0.441 0.450 0.497
CoT 17.15% | 93.10% | 0.26 0.376 0.380 0.425
MCoT 14.58% | 92.49% | 0.27 0.372 0.380 0.390

Table 2: Results for AIME, GSMS8K, and Hard Hotpot Tasks of a small LLM: Qwen2.5-7B-Instruct

AIME | GSMSK Hard Hotpot
Acc Acc EM F1 Prec Recall
CoM 25.4% | 84.53% | 0.33 0.417 0420 0.504
Workflow 23.58% | 84.00% | 0.35 0.439 0437 0.575
CoT 20.15% | 91.51% | 0.17 0.245 0.254 0.244
MCoT 17.58% | 89.92% | 0.15 0.216 0.222 0.215

task-specific few-shot examples, making it inappro-
priate to compare them with cross-domain methods.
We compare CoM with three baselines that employ
recent prompting techniques and utilize the same
list of methodology definitions (Figure 3). We also
compare CoM with Macro-ol (Zhao et al., 2024),
a recent open-source model reminiscent of OpenAl
ol.

CoT (Wei et al., 2022) simply prompts the LLM
to generate a chain of reasoning steps, and shows
it the format of the final result.

MCoT provides the same list of methodology
definitions as CoM, along with a CoT instruction
to encourage the LLM to utilize these methodolo-
gies in an appropriate order to guide its reasoning.
MCoT assesses whether the LLM can enhance rea-
soning with methodologies in a single-turn, non-
interactive prompting scenario; it embodies ideas
from prior work, such as Least-to-Most (Zhou et al.,
2023) and Metacognitive-Prompting (Wang and
Zhao, 2024).

Note that the first two baselines prompt the LLM
once, and they are not allowed to generate code
since a second prompt is required to synthesize the
code output into the required format.

Workflow differs from CoM only in that it uses
a fixed sequence of methodologies for each task.
For each task, we selected the most frequently
chosen methodology sequence by CoM (Table 4).
Workflow prompts the LLM to reason over mul-
tiple turns, guided by each methodology in the
sequence. For AIME and GSMSK, the method-
ology sequence is [Analysis, Coding, Variation,
Conclusion], while for Hard Hotpot, the sequence

is [Analysis, Retrieval, Conclusion]. Workflow em-
bodies ideas in the literature, including Program-of-
Thoughts (Chen et al., 2023), Cognitive Prompting
(Wang and Zhao, 2024), workflow/pipeline (Jin
et al., 2024; Anonymous, 2024b), RAG (Anony-
mous, 2025), etc.

4.3 Performance Comparison

Experimental results using the relatively large LLM
Qwen2-72B-Instruct in Figure 1 show that our
CoM outperforms other baselines on AIME and
Hard Hotpot, with 38.5% accuracy and 28.7% F1
increases over CoT. However, on GSMS8K, CoT is
slightly better than CoM, probably due to its sim-
plicity and benchmark leakage (Xu et al., 2024b).
Generally, Workflow performs second best, while
the results of MCoT show that the methodologies
hardly benefit from a single prompt.

On AIME, the accuracy of CoM is 1.7% higher,
and on Hard Hotpot, the F1 score of CoM is 9.8%
higher than that of Workflow when using Qwen2-
72B-Instruct. This indicates that CoM outperforms
Workflow due to greater flexibility in methodol-
ogy selection, which in turn provides evidence that
the metacognitive ability in LLMs enables the cor-
rect selection of methodology sequences, and our
methodology-based step-by-step reasoning is effec-
tive.

When using the relatively smaller LLM
Qwen2.5-7B-Instruct, as shown in Figure 2, CoM
still performs the best on the challenging math
dataset AIME. However, in GSM8K, lower accu-
racies are observed in both CoM and Workflow,
which/seem to relate to the decrease in model capac-

Table 3: Performance of Macro-ol and Qwen2.5-7B-
Instruct on AIME Tasks and Hard Hotpot

Table 4: Top 52.2% selected methodology sequences on
AIME

AIME Hard Hotpot

Acc EM F1 Prec Rec
Macro-ol
CoT 1447 | 0.12 020 0.20 0.27
MCoT 10.50 | 0.09 0.19 0.19 0.25
Qwen2.5-7B-Instruct
CoT 20.15 | 0.17 025 025 024
MCoT 17.58 | 0.15 022 022 022
CoM 254 1033 042 042 0.51

Methodology Sequence

22.0% Analysis Coding Validation Conclusion

16.2% Analysis Coding Conclusion

5.4% Analysis Coding Validation Reflection
Flexibility Conclusion

4.4% Analysis Coding Validation Reflection
Conclusion

4.3% Analysis Coding Validation Reflection

Flexibility Validation Conclusion

ity for long-range reasoning and instruction follow-
ing. On Hard Hotpot, CoM is slightly lower than
Workflow, indicating that the relatively smaller
model is weaker than the larger ones in terms of
metacognitive abilities, i.e., methodology selection.

Next, we compare Macro-ol (Zhao et al., 2024),
an LLM fine-tuned on datasets such as the Open-O1
CoT dataset (Team, 2024), with our prompting-
only CoM. Table 3 shows that fine-tuning fails
to improve Macro-ol on AIME and Hard Hotpot,
which likely indicates that the fine-tuning data is
not universal enough.

4.4 Methodology Selection Patterns

We extract from the reasoning history saved dur-
ing the experiment the methodology sequences
selected by CoM and identify the most frequent
patterns. The results on AIME with Qwen2-72B-
Instruct are shown in Table 4, where we report the
five most frequent patterns that dominate 52% of
the answers from CoM.

In 22.0% of the cases, CoM prioritized a well-
structured approach of first analyzing, then gen-
erating and executing code, which is followed by
result validation and conclusion. In 16.2% of the
cases, the model seems to be confident about its
code and skips the validation step. For the other 3
cases, more steps for error corrections are invoked,
suggesting errors may occur during validation. The
most frequent methodology sequences generated
by CoM indicate that LLMs possess the metacogni-
tive ability to plan their own reasoning steps during
the reasoning process.

4.5 Ablation Study

We study the relative importance of each compo-
nent of our CoM, including the Python interpreter,
and each of the methodologies we used. Here, in
contrast to excluding the code methodology; which

prevents CoM from generating code, removing the
Python interpreter still allows the LLM to generate
code, but the LLM then needs to guess the output of
the code by itself without an interpreter. Our abla-
tion study is conducted with Qwen2.5-7B-Instruct.

As listed in Table 5, the interpreter is very im-
portant for both tasks, which shows that the code
output guessed by the LLM without using the code
interpreter for both math calculation and knowl-
edge retrieval is unreliable. Secondly, for hard
math problems in AIME, systematic analysis of
the data and constraints in the problem is vital for
the correctness of the reasoning. For AIME, all
methodologies we provided are useful, each con-
tributing to a 7-10% improvement in accuracy. In
AIME, we disable retrieval for experimental sim-
plicity. For Hard Hotpot, where reasoning relies on
retrieved information, retrieval is clearly the most
important methodology.

4.6 Error Analysis

Errors made in CoM are conventional LLM er-
rors such as hallucination, misunderstanding, and
instruction-following errors. We manually in-
spected the first 10 error cases in CoM on the
GSMBSK dataset. We found that in most of these
cases, methodology selection is not perfect. Three
error cases are due to hallucination, where the
wrong answers are given directly without the nec-
essary calculation process. Two cases are due to
translation errors from natural language to math;
for example, “born early” is translated to a reduc-
tion in age. Three cases are due to language under-
standing errors; for instance, “restart downloading”
is understood as “continue downloading”, and “ev-
ery second” is understood as “from the second”. In
one error case, the initial calculation is correct, but
then asvalidation step causes an error because the

Table 5: Ablation Study Results for COM Method

CoM AIME (%) Hard Hotpot
No Ablation 254 04174

- Interpreter 14.1 (-44.5%) 0.25 (-40.2%)
- Analysis 18.7 (-26.6%) 0.38 (-8.4%)
- Coding 23.3(-8.3%) 0.38 (-8.8%)
- Retrieval - 0.22 (-46.8%)
- Validation 23.9 (-7.2%) 0.4 (-3%)

- Reflection 22.8 (-10.5%) 0.38 (-9%)

- Synthesis 23 (-9.3%) 0.4 (-3%)

LLM believes “servings” must be an integer. In one
error case, the LLM generates more than one code
block, although the methodology definition con-
tains an instruction to generate a single standalone
code block.

4.7 Efficiency

We examine the inference efficiency in terms of
total inference time for speed and the number of
inferences for cost. Table 6, shows that the speed
of CoM is around 5 times that of CoT in AIME and
7 times in Hard Hotpot. However, CoM is compara-
ble to the fine-tuned model, which generates longer
reasoning traces with a lower speed per token.

Table 7 compares the number of prompts made
by CoM with those made by Workflow. Note that
CoM prompts twice per methodology-reasoning
iteration. The results show that although we set
the maximum iteration K = 8, CoM stops at a
smaller number of steps on average, generates more
reasoning steps for the harder AIME problems, and
a smaller number of steps for the easier GSM8K
problems.

4.8 Summary of Experiments

The experiments on complex mathematical prob-
lems (AIME and GSM8K) and multi-hop question
answering (HotpotQA) evaluate the effectiveness
of CoM in methodology selection and guided rea-
soning using a 72B, a 7B LLM, and a fine-tuned
LLM for structured reasoning.

Results show that our CoM is effective in im-
proving the performance of two challenging tasks
over baselines that embody recent prompt engineer-
ing approaches. This result supports our hypothesis
that we can use a training-free solution that inte-
grates human methodological insights to enhance
the performance of LLMs in complex reasoning
tasks.

Table 6: Average Speed of Experiments in Seconds per
Iteration (Multiplied by 50)

AIME GSMS8K Hard Hotpot

Macro-ol

CoT 96.0 33.5 19.0
MCoT 84.5 42.5 20.0
Qwen2.5-7B-Instruct

CoM 91.0 34.0 50.5
Workflow 36.0 18.0 21.5
CoT 19.0 5.0 3.5
MCoT 19.0 8.0 35

Table 7: Average Number of Prompts

AIME GSMSK Hard Hotpot

CoM 2x5.76 2x3.99 2x5.98
Workflow 4 4 3

Methodology selection patterns reveal that CoM
effectively generates reasonable methodology se-
quences, which guide its reasoning in the right
direction. Error analysis identifies that common
LLM issues contribute to the majority of errors
made by CoM. Finally, the ablation study confirms
that the methodologies we employed are critical
for solving complex reasoning tasks.

5 Conclusion and Future Work

In this paper, we introduced the Chain of Method-
ologies (CoM), an innovative iterative prompting
framework aimed at enhancing the reasoning capa-
bilities of LLMs for complex tasks by simulating
metacognitive processes. Our approach enables
LLMs to utilize user-defined methodologies, allow-
ing for more effective navigation of complex rea-
soning tasks without extensive retraining. Through
rigorous experimentation, we demonstrated CoM’s
effectiveness and adaptability across various ap-
plications, including mathematical reasoning and
retrieval-augmented generation.

An interesting area for future work will be to in-
vestigate the automatic search for optimal method-
ologies and reasoning chains via explorations and
evaluations similar to (Yang et al., 2024b), from
which we elicit sets of methodologies and their ap-
plication examples to construct prompts for better
reasoning performance.

Limitations

Due to constraints in computational resources, we
conducted experiments using a few LLMs with free
API calls on three applications across two domains:
mathematical reasoning and retrieval-augmented
reasoning. Future work can expand on this founda-
tion with additional LLLMs and applications.

The methodologies included in our framework
are not exhaustive. This presents an opportunity for
future research to enhance the list by incorporating
diverse strategies to improve the CoM framework’s
adaptability.

Ethical Statement

This work fully complies with the ACL Ethics Pol-
icy. We declare that there are no ethical issues in
this paper, to the best of our knowledge.

References

https://siliconflow.cn/.

Anonymous. 2024a. AFlow: Automating agentic work-
flow generation. In The Thirteenth International Con-
ference on Learning Representations (ICLR).

Anonymous. 2024b. Chain of ideas: Revolutionizing
research in idea development with LLM agents. In
The Thirteenth International Conference on Learning
Representations (ICLR).

Anonymous. 2025. Inference scaling for long-context
retrieval augmented generation. In The Thirteenth In-
ternational Conference on Learning Representations
(ICLR).

Shulin Cao, Jiajie Zhang, Jiaxin Shi, Xin Lv, Zijun Yao,
Qi Tian, Lei Hou, and Juanzi Li. 2023. Probabilistic
tree-of-thought reasoning for answering knowledge-
intensive complex questions. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2023,
pages 12541-12560. Association for Computational
Linguistics.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Aniket Rajiv Didolkar, Anirudh Goyal, Nan Rose-
mary Ke, Siyuan Guo, Michal Valko, Timothy P

Lillicrap, Danilo Jimenez Rezende, Yoshua Bengio,
Michael Curtis Mozer, and Sanjeev Arora. 2024.
Metacognitive capabilities of LLMs: An exploration
in mathematical problem solving. In Al for Math
Workshop @ ICML 2024.

Marah Abdin et al. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
Preprint, arXiv:2404.14219.

Mingyu Jin, Weidi Luo, Sitao Cheng, Xinyi Wang,
Wenyue Hua, Ruixiang Tang, William Yang Wang,
and Yongfeng Zhang. 2024. Disentangling mem-
ory and reasoning ability in large language models.
Preprint, arXiv:2411.13504.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 305-329,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

OpenAl. 2024. Learning to Reason with LLMs.

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller llms stronger problem-solvers. In
Arxiv.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
Preprint, arXiv:2408.03314.

O. Team. 2024.
ol/open-ol.

https://github.com/open-source-

Jianing Wang, Qiushi Sun, Xiang Li, and Ming Gao.
2024. Boosting language models reasoning with
chain-of-knowledge prompting. In The 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 49584981,
Bangkok, Thailand. Association for Computational
Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609-2634, Toronto,
Canada. Association for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=FSjIrOm1vz
https://openreview.net/forum?id=FSjIrOm1vz
https://openreview.net/forum?id=FSjIrOm1vz
https://doi.org/10.18653/v1/2023.findings-emnlp.835
https://doi.org/10.18653/v1/2023.findings-emnlp.835
https://doi.org/10.18653/v1/2023.findings-emnlp.835
https://doi.org/10.18653/v1/2023.findings-emnlp.835
https://doi.org/10.18653/v1/2023.findings-emnlp.835
https://openreview.net/forum?id=0MsI3bSmmD
https://openreview.net/forum?id=0MsI3bSmmD
https://openreview.net/forum?id=0MsI3bSmmD
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2411.13504
https://arxiv.org/abs/2411.13504
https://arxiv.org/abs/2411.13504
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.06195
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://github.com/Open-Source-O1/Open-O1
https://github.com/Open-Source-O1/Open-O1
https://github.com/Open-Source-O1/Open-O1
https://doi.org/10.18653/v1/2024.acl-long.271
https://doi.org/10.18653/v1/2024.acl-long.271
https://doi.org/10.18653/v1/2024.acl-long.271
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw

Yuqing Wang and Yun Zhao. 2024. Metacognitive
prompting improves understanding in large language
models. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1914-1926,
Mexico City, Mexico. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-
Li Lee, and Wynne Hsu. 2024a. Faithful logical
reasoning via symbolic chain-of-thought. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 13326-13365, Bangkok, Thailand.
Association for Computational Linguistics.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu.
2024b. Benchmarking benchmark leakage in large
language models. arXiv preprint arXiv:2404.18824.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2024b. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao,
Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. 2024c. Buffer of thoughts: Thought-
augmented reasoning with large language models.
arXiv preprint arXiv:2406.04271.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-

10

soning. In Advances in Neural Information Process-
ing Systems, volume 35, pages 15476—15488. Curran
Associates, Inc.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao
Dong, and Jie Tang. 2024. Rest-mcts*: Llm
self-training via process reward guided tree search.
Thirty-eighth Conference on Neural Information Pro-
cessing Systems (NeurIPS).

Xingyuan Zhang, Philip Becker-Ehmck, Patrick van der
Smagt, and Maximilian Karl. 2023a. Action infer-
ence by maximising evidence: Zero-shot imitation
from observation with world models. In Thirty-
seventh Conference on Neural Information Process-
ing Systems (NeurlPS).

Zhebin Zhang, Xinyu Zhang, Yuanhang Ren, Saijiang
Shi, Meng Han, Yongkang Wu, Ruofei Lai, and Zhao
Cao. 2023b. TAG: Induction-augmented generation
framework for answering reasoning questions. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 1—
14. Association for Computational Linguistics.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi
Shi, Chenyang Lyu, Longyue Wang, Weihua Luo,
and Kaifu Zhang. 2024. Marco-ol: Towards open
reasoning models for open-ended solutions. Preprint,
arXiv:2411.14405.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex rea-
soning in large language models. In The Eleventh
International Conference on Learning Representa-
tions.

A Appendix

Our list of methodologies is displayed in Figure 3,
and our methodology-selection and methodology-
based reasoning prompts are listed in Figure 4.

https://doi.org/10.18653/v1/2024.naacl-long.106
https://doi.org/10.18653/v1/2024.naacl-long.106
https://doi.org/10.18653/v1/2024.naacl-long.106
https://doi.org/10.18653/v1/2024.naacl-long.106
https://doi.org/10.18653/v1/2024.naacl-long.106
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2024.acl-long.720
https://doi.org/10.18653/v1/2024.acl-long.720
https://doi.org/10.18653/v1/2024.acl-long.720
https://arxiv.org/abs/2404.18824
https://arxiv.org/abs/2404.18824
https://arxiv.org/abs/2404.18824
https://openreview.net/forum?id=Bb4VGOWELI
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://openreview.net/forum?id=WjlCQxpuxU
https://openreview.net/forum?id=WjlCQxpuxU
https://openreview.net/forum?id=WjlCQxpuxU
https://openreview.net/forum?id=WjlCQxpuxU
https://openreview.net/forum?id=WjlCQxpuxU
https://doi.org/10.18653/v1/2023.emnlp-main.1
https://doi.org/10.18653/v1/2023.emnlp-main.1
https://doi.org/10.18653/v1/2023.emnlp-main.1
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2411.14405
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

~

(&

Analysis

- When: In step 1.

- What: Analyze the category and solution type of the question, list the key facts, variables,
relations, constraints with their associated values, and clarify the required output format. Break
down complex problems into simpler steps while maintaining critical context. Propose a sequence
of methodologies necessary to tackle the remaining reasoning steps iteratively and explain how
they are related to the final result.

Retrieval

- When: Fact-based information from the internet is needed.

- What: Write 1-3 line(s) of Python function call(s) ‘search([information],topk=3)" for each
information needed to retrieve. The function ‘search’ has been defined and imported for you,
which returns a text summary for the argument “information’. Place your code in a single
““python\n..."" code-block. Finally, accurately simulated the retrieved output by yourself.

Coding
- When: Coding is necessary.

- What: A standalone Python snippet with structural and systematic reasoning in comments, using
the **print** function to output the result. Place your code in a single *“python\n..."" code-

block. Finally, accurately simulated the output of your Python snippet by yourself without using a
computer.

Validation

- When: A temporary or a final the result is resulting from a previous reasoning step.

- What: Identify the result, and analyze its correctness from a different angle. You may write a
test-case function that prints True/False to validate the result and then simulate its output.

Reflection
- When: An error is detected or validation fails.

- What: Analyze the reasoning steps to identify errors and provide constructive self-critic or
feedback for improvement.

Flexibility

- When: The previous step fails to obtains the expected result or when a reflective or critic
feedback is available.

- What: Adjust the approach based on insights gained and propose alternative strategies for the
next steps.

Conclusion

- When: A confident final answer is available, or in the last step.

- What: Clarify the output format required by the question. Compile the reasoning process and
generate the answer in the required format.

Figure 3: Our list of methodologies.

11

(. L . N ()
RS I P # List of Existing Methodologies

e {example_methodologies}

historical i L .
eIzl e T St {historical_reasoning_steps}
Question

Question
- {question} 2

- {question}

Step Instruction

- You are currently on {cur_step} out of a
total of a maximum of {max_steps} steps
to solve the question. Please select the
most suitable methodology from the list,
considering the reasoning history and the
timing for applying each methodology.
Try to diversify your choices to advance
the resolution of the question, and avoid
redundant or repeated methodologies.
Select and output a single methodology
succinctly in the following format,
without any additional text:

Selected Methodology
{selected_methodology}

Step Instruction

- You are currently on {cur_step} out of a total of a
maximum of {max_steps} steps to solve the
question. Please conduct an innovative next
reasoning step for the question, using the selected
methodology "{selected_methodology_name}"

based on the current reasoning history. Please
output your reasoning step succinctly in the

following format, without any additional text:

i [Me?hodolggy LT . - Methodology: [Name of the selected
- When: [The timing for applying the

methodology]
methodology]

- Reasoning/Code: [A structural and systematic
reasoning step that uses the selected methodology
and improves on your past reasoning steps. Or a
Python snippet with such reasoning inside its
comments in a python\n...”" code-block.]

- Result: [A short result of your reasoning, or an
accurate simulated outpout from the code.]

_ J U _J

- What: [The characteristics and details of
the methodology]

Figure 4: Our methodology-selection prompt (left) and methodology-based reasoning prompt (right).

12

	Introduction
	Chain of Methodologies
	Overview
	Methodology Definition
	Methodology-Reasoning Iterations

	Related Work
	Experiments
	Experiment Setup
	Baselines
	Performance Comparison
	Methodology Selection Patterns
	Ablation Study
	Error Analysis
	Efficiency
	Summary of Experiments

	Conclusion and Future Work
	Appendix

