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Abstract001

Large Language Models (LLMs) often struggle002
with complex reasoning tasks due to insuffi-003
cient in-depth insights in their training data,004
which are frequently absent in publicly avail-005
able documents. This paper introduces the006
Chain of Methodologies (CoM), a simple and007
innovative iterative prompting framework de-008
signed to build structured reasoning processes009
by injecting human methodological insights,010
thereby enabling LLMs to perform long and011
effective reasoning for complex tasks. Assum-012
ing that LLMs possess certain metacognitive013
abilities, CoM leverages user-defined method-014
ologies to stimulate the cognitive insights that015
LLMs have learned implicitly from training016
data. Experimental results indicate that CoM017
outperforms competitive baselines, highlight-018
ing the potential of training-free prompting019
methods as general solutions for complex rea-020
soning tasks and the possibility of incorpo-021
rating human-like methodological insights to022
bridge the gap to human-level reasoning.023

1 Introduction024

Recently, OpenAI’s o1 (OpenAI, 2024) showcases025

the possibility of using a long chain of thoughts026

to improve the reasoning ability of Large Lan-027

guage Models (LLMs). During these long thoughts,028

OpenAI’s o1 displays high-level cognitive abilities,029

such as problem decomposition, error recognition,030

and correction, which constantly steer the thoughts031

in the right direction. OpenAI confers o1 with032

such abilities through training with reinforcement033

learning.034

This paper conducts novel research on investi-035

gating the possibility of allowing LLMs to have the036

same universal self-guiding ability as OpenAI’s o1037

in conducting long and structured reasoning in var-038

ious domains by merely using prompts and without039

relying on instruction fine-tuning.040

This new problem is challenging: while LLMs041

can be fine-tuned using a relatively large dataset042

Chain of 
Reasonings

Question: If You Ever 
Get Lonely was covered 
by what Lyric Street 
Records-affiliated band?

Chain of 
Methodologies

The question is asking 
for … the song "If You 
Ever Get Lonely".# Retrieval

Write Python 
function calls 
`search([info])`
for …

# Analysis
Break down 
complex 
problems into …

search("If You Ever Get Lonely")
... covered by American 
country music duo Love 
and Theft …

# Conclusion
Clarify the 
output format … #### Love and Theft

Figure 1: An illustration of our Chain of Methodolo-
gies reasoning process, where the generation of method-
ologies and reasoning interleaves. A methodology (in
blue) is selected based on the historical reasoning status,
while the next reasoning step (in green) is guided by the
previously selected methodology.

for universal instruction-following ability, conven- 043

tional prompts are mostly employed to induce in- 044

struction following in specific tasks with few-shot 045

examples, due to the limitations of LLMs regarding 046

context length and the accuracy of extracting infor- 047

mation from long contexts. Therefore, pure prompt- 048

ing methods are seldom used in universal task solv- 049

ing, although prompting offers clear advantages 050

over extensive fine-tuning in many aspects, such as 051

low cost, fast deployment, high sample efficiency, 052

and no risk of catastrophic forgetting or biasing the 053

model with fine-tuning data. 054

Our approach is based on the discovery of 055

metacognitive knowledge (the ability to reason 056
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about one’s own reasoning processes) in the fol-057

lowing prior work on using LLMs. Pedagogical058

research shows that improving human learners’059

metacognitive knowledge can enhance their reason-060

ing capabilities, and positive results are reported061

for metacognitive prompts on introspective evalu-062

ation and self-reflection (Wang and Zhao, 2024).063

Microsoft directly uses “do not hallucinate” in their064

system prompt, aiming to reduce hallucination in065

Phi3 (et al, 2024), and (Didolkar et al., 2024) ob-066

serves improved mathematical reasoning when al-067

lowing LLMs to determine the type of skill required068

to solve a problem, where the skill type is used to069

retrieve in-context examples.070

This paper proposes Chain of Methodologies071

(CoM), a simple and task-agnostic iterative prompt-072

ing technique aimed at achieving universal self-073

guiding ability for long and structured reasoning.074

Without relying on instruction fine-tuning, CoM075

uses methodology as a catalyst to stimulate LLMs076

to generate their next reasoning step based on the077

current reasoning history. Our basic idea is that,078

while LLMs struggle with complex reasoning tasks079

due to insufficient in-depth insights in the training080

data between problems and their respective solu-081

tions, we can enable smooth transitions between082

a problem and its solution steps by inserting an083

analysis of the methodology adopted before each084

solution step. We rely on the metacognitive knowl-085

edge in LLMs to select or generate a methodology086

that either explains or justifies the next solution087

steps.088

Our CoM approach features (1) a list of method-089

ologies written in our “when-what” format that090

facilitates selection based on the current reasoning091

history and then bridges it with the next reason-092

ing step, and (2) a methodology-reasoning loop093

that iteratively chooses the next methodology to094

guide the next step of reasoning along a long and095

well-structured reasoning path. An example of the096

CoM reasoning path is illustrated in Figure 1 and097

two examples of our methodologies are listed in098

Figure 2.099

Our contributions include a simple CoM frame-100

work and experimental studies. Our CoM frame-101

work produces faithful reasoning containing steps102

that are structured and explainable. It is also highly103

extensible in that users can enhance the framework104

by modifying the list of methodologies in plain105

text. We evaluated our task-agnostic CoM frame-106

work with two representative and challenging ap-107

plications: mathematical reasoning and retrieval-108

augmented generation. Experimental results show 109

that our CoM outperforms competitive baselines 110

on these tasks with diverse LLMs. 111

2 Chain of Methodologies 112

2.1 Overview 113

We aim to use prompts to stimulate the high-level 114

cognitive (metacognitive) knowledge in existing 115

LLMs, enabling them to possess the same universal 116

self-guiding ability as OpenAI’s o1 to successfully 117

carry out long and structured reasoning sequences 118

across various domains. These prompts should be 119

task-agnostic and effective in guiding thought pro- 120

cesses, and we find prompts about methodology to 121

be ideal candidates for this purpose. Methodology 122

is a critical component of any discipline or field 123

that requires a structured approach to understand- 124

ing, problem-solving, or conducting research. It 125

provides a framework that ensures tasks are exe- 126

cuted consistently and effectively. 127

Our Chain of Methodologies (CoM) framework 128

features a list of user-defined methodologies and 129

a methodology-reasoning iteration. Each method- 130

ology provides a guideline for the next reasoning 131

step based on the current reasoning history. The 132

reasoning process of CoM alternates between a 133

methodology selection step and a methodology- 134

guided reasoning step, as illustrated in Figure 1. 135

List of Methodologies: Throughout human his- 136

tory, the accumulation and evolution of problem- 137

solving methodologies have relied on fundamental 138

processes such as trial and error, reflection, and 139

self-correction based on problem-solving experi- 140

ences. Unlike AlphaGo, which operates within 141

a defined set of rules and a closed action space, 142

human learning occurs in an open action space 143

that is more complex and challenging to optimize. 144

To navigate this complexity, we integrate human 145

knowledge and experience related to task com- 146

pletion through established methodologies. Let 147

M = {m(1),m(2), · · · ,m(n)} denote the list of n 148

user-defined methodologies. 149

Reasoning iterations: CoM conduct a max- 150

imum number of K steps for each question Q. 151

In step k where 1 ≤ k ≤ K, we first prompt 152

an LLMm with prompt template Pp to select a 153

methodology mk ∈ M based on the current rea- 154

soning history hk: 155

mk = LLMp(M,Q, hk, Pp) (1) 156

, and then prompt an LLMr with prompt tem- 157
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## Analysis
- When: In step 1.
- What: Analyze the category and solution type of the question, list the key facts, variables, relations, constraints with 
their associated values, and clarify the required output format. Break down complex problems into simpler steps while 
maintaining critical context. Propose a sequence of methodologies necessary to tackle the remaining reasoning steps 
iteratively and explain how they are related to the final result.

## Retrieval
- When: Fact-based information from the internet is needed.
- What: Write 1-3 line(s) of Python function call(s) `search([information],topk=3)` for each information needed to 
retrieve. The function `search` has been defined and imported for you, which returns a text summary for the argument 
`information`. Place your code in a single ```python\n...``` code-block. Finally, accurately simulated the retrieved output 
by yourself.

Figure 2: Two example methodology definitions in our when-what format.

plate Pr to generate the next reasoning sequence158

rk based on methodology mk and history hk:159

rk = LLMr(M,Q, hk,mk, Pr) (2)160

, where the reasoning history contains all previous161

reasoning sequences hk = [r1, r2, · · · , rk−1]. In162

this paper, we simply use the same instruction fine-163

tuned LLM for both LLMm and LLMr, which is164

frozen during the application of our framework.165

2.2 Methodology Definition166

Our emphasis is on a framework that utilizes a167

user-defined list of methodologies instead of study-168

ing the philosophy of finding a universally appli-169

cable set of methodologies, whose existence is a170

debated topic between universalism and contextu-171

alism. From a pragmatic perspective, we focus172

on how to represent each methodology to facilitate173

methodology selection and methodology-based rea-174

soning.175

To clarify the differences between method and176

methodology, a method is a specific technique or177

systematic procedure to accomplish a task, while178

a methodology encompasses the principles and ra-179

tionale that guide the choice and use of methods.180

Each methodology in our user-defined list should181

specify two key fields: when and what. The when182

field indicates the applicable stage during the rea-183

soning lifecycle of the methodology, as well as the184

context and factors that influence the choice of the185

methodology. The what field outlines the system-186

atic approach, the action selection criteria, and the187

expected outcomes of the methodology.188

Specifically, a methodology is defined in mark-189

down format with three fields: (1) a name, (2) when:190

the situation and timing for application, and (3)191

what: the specification and details, including prin- 192

ciples, tools, techniques, and procedures to use. 193

Two methodology definitions are exemplified in 194

Figure 2. 195

Next, we discuss various types of methodology 196

definitions. We broadly divide them into three cat- 197

egories: analysis, coding, and reflection. The anal- 198

ysis methodologies inspire the LLM to organize 199

information, including extracting facts, variables, 200

relations, constraints, and objectives from the ques- 201

tion; breaking down the initial question into man- 202

ageable sub-problems; planning the sequence of 203

actions to be taken; and summarizing, rearranging, 204

and distilling the information obtained so far. The 205

coding methodologies prompt the LLM to generate 206

formal languages to be executed by their respective 207

solvers to obtain accurate results and to use exter- 208

nal tools, e.g., search engines, by calling prede- 209

fined functions attached to the solvers. The reflec- 210

tion methodologies encourage the LLM to identify 211

errors and provide constructive feedback through 212

self-reflection or self-verification in order to adjust 213

the approach and propose alternative strategies for 214

the next steps. Figure 3 in the Appendix lists the 215

task-agnostic methodology definitions we used in 216

our experiments. 217

To conclude, the utilization of methodologies 218

serves a multifaceted purpose: (1) providing hu- 219

man input methodologies to stimulate the metacog- 220

nitive ability of LLMs to compensate for the lack of 221

in-depth insights in their training data for conduct- 222

ing complex reasoning, (2) establishing a natural 223

connection through explanation or justification be- 224

tween the current reasoning situation and its solu- 225

tion in the next step, and (3) providing an educated 226

guess for the next step to avoid the search space of 227
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stochastic search methods such as MCTS (Qi et al.,228

2024) and RL (OpenAI, 2024; Snell et al., 2024;229

Zelikman et al., 2022) over a universal reasoning230

space that is much larger than those of games, such231

as AlphaGo.232

Last, our framework is designed to be conve-233

niently extended: users only need to update the list234

of methodology definitions in plain text to make it235

more comprehensive for general thinking or tailor236

it to a specific set of skills that accurately target a237

particular task.238

2.3 Methodology-Reasoning Iterations239

As illustrated in Figure 1, CoM alternates between240

prompting the LLM to generate the next method-241

ology and the next methodology-based reasoning242

sequence for a maximum number of K iterations.243

The first prompt instructs the LLM to select a244

methodology for the next reasoning steps, which245

concatenates the list of user-defined methodology246

definitions, the question, the history of previous247

methodology-based reasoning sequences, and an248

instruction with additional information about the249

reasoning stage and the output format for the LLM250

to select the most suitable methodology.251

The second prompt contains all the information252

from the first prompt, as well as the methodology253

selected using the first prompt. It encourages the254

LLM to follow the guidance in the methodology255

while reasoning. The second prompt also requires256

the output to include the following items: (1) ac-257

knowledgment of the selected methodology by re-258

peating its name, (2) a chain of thought reasoning259

process or a program that implements the method-260

ology, and (3) a summarized result of the reasoning261

or a guessed output of the program.262

Following the second prompt, a solver will be263

invoked to post-process the LLM output with the264

second prompt to facilitate the programming ability265

of LLMs (Chen et al., 2023). Currently, we only266

implement a Python interpreter, which is invoked267

once Python code blocks are detected in the out-268

put. This Python interpreter executes the code in a269

safe environment with several common packages270

imported. After execution, we replace the guessed271

output of the program in the LLM output with the272

stdout output of the code. This enables accurate273

reasoning on tasks that require computation, such274

as mathematical tasks, implementing the human275

methodology: “You should use a calculator for276

tasks that involve complex calculations.” It also al-277

lows for various types of tool usage via the Python278

API during the reasoning process, including web 279

search, knowledge base retrieval, and even invoca- 280

tion of other LLMs and manipulation of the LLM’s 281

own reasoning process (Cao et al., 2023). 282

Our Python interpreter executes code in a sand- 283

box, which is a new process with a safe global 284

scope where the code can only use a limited set of 285

built-in functions and import from a given set of 286

packages. We set a timeout of 1 minute for each 287

process. We empirically found that a larger timeout 288

does not bring significant performance improve- 289

ments in our experimental tasks. Users can extend 290

the tool-using capacity of the CoM framework by 291

adding the corresponding methodology definition 292

and implementing functions in the Python inter- 293

preter. For instance, if we want to enable Google 294

search, we can add a methodology definition that 295

specifies the existence of a function named “search” 296

and the meaning of its arguments, and then imple- 297

ment and add this function to the global scope of 298

the Python interpreter. 299

Our methodology selection prompt and 300

methodology-based reasoning prompt are listed in 301

Figure 4 in the Appendix. 302

3 Related Work 303

We draw inspiration from existing work that ex- 304

tensively explores different prompt designs, such 305

as Chain-of-Thought (Wei et al., 2022), Least-to- 306

Most (Zhou et al., 2023), Self-Consistency (Wang 307

et al., 2023b), and Tree-of-Thoughts (Cao et al., 308

2023). Various methodologies have been proposed 309

to enhance problem-specific performance, includ- 310

ing question rephrasing, dividing subtasks, verifi- 311

cation, symbolic grounding (Lyu et al., 2023; Xu 312

et al., 2024a; Wang et al., 2023a; Zelikman et al., 313

2022; Wang et al., 2024), factuality and faithful- 314

ness verification for reasoning chains (Wang et al., 315

2024), as well as explicit separation of knowledge 316

retrieval and reasoning steps to organize decision- 317

making (Jin et al., 2024). These approaches are 318

effective in designated contexts where the main ob- 319

jective is to enhance explicit reasoning capabilities 320

in areas such as arithmetic, commonsense reason- 321

ing, and symbolic reasoning. 322

The key difference between our work and 323

prior research on workflows/pipeline approaches 324

(Anonymous, 2024b) is that prior studies use a set 325

of predefined, hardcoded actions, while our work 326

utilizes the metacognitive abilities of LLMs to se- 327

lect a methodology to derive actions step-by-step 328
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based on reasoning history. Additionally, we cu-329

rated a set of task-agnostic methodologies targeting330

a broad range of unseen applications. We identify331

several contemporary works with various objec-332

tives that are closely related to ours, which we list333

below.334

Buffer of Thoughts (Yang et al., 2024c) derives335

high-level guidelines from previously completed336

tasks and stores them in a buffer for reuse in the337

future, enabling learning from experience and im-338

proving efficiency by distilling level-2 slow think-339

ing into level-1 fast thinking. This work differs340

from ours in that its high-level guidelines con-341

tain problem-specific reasoning chains or code342

templates targeting particular tasks, e.g., complex343

multi-query tasks.344

Skill-based CoT (Didolkar et al., 2024) explores345

the metacognitive capabilities of LLMs in math-346

ematical problem-solving. This work first labels347

each question with a corresponding skill. The la-348

beled skills are then clustered to reduce redundancy.349

During inference, one of these skills is selected,350

and the skill-relevant examples are retrieved for351

in-context learning.352

Induction-augmented generation (Zhang et al.,353

2023b) finds key concepts in the question and uses354

an inductive prompting template to extract their355

close concepts and common attributes to facilitate356

more accurate reasoning processes.357

rStar (Qi et al., 2024) demonstrates a self-play358

mutual reasoning approach that significantly im-359

proves the reasoning capabilities of small language360

models without fine-tuning. This method uses a361

costly Monte Carlo Tree Search (MCTS) with a set362

of five reasoning-inducing prompts.363

Training-based methods pursuing long chains364

of thought include STaR (Zelikman et al., 2022),365

which demonstrates that a language model itera-366

tively trained on its reasoning history that leads367

to correct answers can solve increasingly difficult368

problems. In (Snell et al., 2024), small models369

are fine-tuned to perform more reasoning steps370

using reinforcement learning with beam search,371

lookahead search, and best-of-N verifiers. ReST-372

MCTS (Zhang et al., 2024) integrates process re-373

ward guidance with tree search MCTS to collect374

higher-quality reasoning traces. With similar ideas,375

AFlow (Anonymous, 2024a) iteratively refines task-376

specific workflows. 377

4 Experiments 378

4.1 Experiment Setup 379

We evaluate the effectiveness of two components 380

in CoM: methodology selection and methodology- 381

guided reasoning. 382

LLMs: We report experiment results conducted 383

on a relatively larger Qwen2-72B-Instruct and a rel- 384

atively smaller Qwen2.5-7B-Instruct (Yang et al., 385

2024a), as well as a recent open-source model rem- 386

iniscent of OpenAI’s o1, named Macro-o1 (Zhao 387

et al., 2024), which is a fine-tuned Qwen2-7B- 388

Instruct with a combination of the filtered Open- 389

O1 CoT dataset (Team, 2024), Macro-o1 CoT 390

dataset, and Macro-o1 Instruction dataset. We 391

use the LLM API provided by Siliconflow (sil), 392

with settings: max_tokens=1024, temperature=0.2, 393

top_k=40, top_p=0.95, n=1. 394

Dataset: We evaluate CoM with the same set of 395

methodology definitions (Figure 3) on the test splits 396

of three datasets: AIME, GSM8K, and HotpotQA. 397

We use the "AIME Problem Set: 1983-2024" 398

dataset (Zhang et al., 2023a). As part of the Ameri- 399

can Invitational Mathematics Examination (AIME), 400

it includes a variety of problems, such as com- 401

plex algebraic equations, geometric puzzles, and 402

advanced number theory, aimed at testing mathe- 403

matical understanding and problem-solving skills. 404

GSM8K (Cobbe et al., 2021) is a dataset of high- 405

quality, linguistically diverse grade school math 406

word problems that take between 2 and 8 steps of 407

elementary calculations (+−×÷) to solve. 408

HotpotQA (Yang et al., 2018) is a comprehensive 409

dataset for multi-hop, multi-step question answer- 410

ing. Each entry in the dataset includes a question, 411

an answer, and supporting facts that indicate the 412

titles of the relevant paragraphs providing the nec- 413

essary information to answer the questions. 414

In the hard portion of the HotpotQA dataset, we 415

simulate retrieval-augmented generation (Anony- 416

mous, 2025) experiments, where we only present 417

the LLMs with the question, excluding the support- 418

ing facts and context paragraphs. When the LLMs 419

generate code that calls the search with keywords, 420

we employ fuzzy string matching to select the top-k 421

most similar supporting facts to the keywords and 422

return their corresponding context paragraphs as 423

the retrieval results. 424

4.2 Baselines 425

We conduct all our experiments using zero-shot 426

prompting, as current few-shot approaches utilize427
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Table 1: Results for AIME, GSM8K, and Hard Hotpot Tasks of a large LLM: Qwen2-72B-Instruct

AIME GSM8K Hard Hotpot
Acc Acc EM F1 Prec Rec

CoM 23.15% 91.58% 0.38 0.484 0.471 0.587
Workflow 22.77% 92.27% 0.36 0.441 0.450 0.497
CoT 17.15% 93.10% 0.26 0.376 0.380 0.425
MCoT 14.58% 92.49% 0.27 0.372 0.380 0.390

Table 2: Results for AIME, GSM8K, and Hard Hotpot Tasks of a small LLM: Qwen2.5-7B-Instruct

AIME GSM8K Hard Hotpot
Acc Acc EM F1 Prec Recall

CoM 25.4% 84.53% 0.33 0.417 0.420 0.504
Workflow 23.58% 84.00% 0.35 0.439 0.437 0.575
CoT 20.15% 91.51% 0.17 0.245 0.254 0.244
MCoT 17.58% 89.92% 0.15 0.216 0.222 0.215

task-specific few-shot examples, making it inappro-428

priate to compare them with cross-domain methods.429

We compare CoM with three baselines that employ430

recent prompting techniques and utilize the same431

list of methodology definitions (Figure 3). We also432

compare CoM with Macro-o1 (Zhao et al., 2024),433

a recent open-source model reminiscent of OpenAI434

o1.435

CoT (Wei et al., 2022) simply prompts the LLM436

to generate a chain of reasoning steps, and shows437

it the format of the final result.438

MCoT provides the same list of methodology439

definitions as CoM, along with a CoT instruction440

to encourage the LLM to utilize these methodolo-441

gies in an appropriate order to guide its reasoning.442

MCoT assesses whether the LLM can enhance rea-443

soning with methodologies in a single-turn, non-444

interactive prompting scenario; it embodies ideas445

from prior work, such as Least-to-Most (Zhou et al.,446

2023) and Metacognitive-Prompting (Wang and447

Zhao, 2024).448

Note that the first two baselines prompt the LLM449

once, and they are not allowed to generate code450

since a second prompt is required to synthesize the451

code output into the required format.452

Workflow differs from CoM only in that it uses453

a fixed sequence of methodologies for each task.454

For each task, we selected the most frequently455

chosen methodology sequence by CoM (Table 4).456

Workflow prompts the LLM to reason over mul-457

tiple turns, guided by each methodology in the458

sequence. For AIME and GSM8K, the method-459

ology sequence is [Analysis, Coding, Variation,460

Conclusion], while for Hard Hotpot, the sequence 461

is [Analysis, Retrieval, Conclusion]. Workflow em- 462

bodies ideas in the literature, including Program-of- 463

Thoughts (Chen et al., 2023), Cognitive Prompting 464

(Wang and Zhao, 2024), workflow/pipeline (Jin 465

et al., 2024; Anonymous, 2024b), RAG (Anony- 466

mous, 2025), etc. 467

4.3 Performance Comparison 468

Experimental results using the relatively large LLM 469

Qwen2-72B-Instruct in Figure 1 show that our 470

CoM outperforms other baselines on AIME and 471

Hard Hotpot, with 38.5% accuracy and 28.7% F1 472

increases over CoT. However, on GSM8K, CoT is 473

slightly better than CoM, probably due to its sim- 474

plicity and benchmark leakage (Xu et al., 2024b). 475

Generally, Workflow performs second best, while 476

the results of MCoT show that the methodologies 477

hardly benefit from a single prompt. 478

On AIME, the accuracy of CoM is 1.7% higher, 479

and on Hard Hotpot, the F1 score of CoM is 9.8% 480

higher than that of Workflow when using Qwen2- 481

72B-Instruct. This indicates that CoM outperforms 482

Workflow due to greater flexibility in methodol- 483

ogy selection, which in turn provides evidence that 484

the metacognitive ability in LLMs enables the cor- 485

rect selection of methodology sequences, and our 486

methodology-based step-by-step reasoning is effec- 487

tive. 488

When using the relatively smaller LLM 489

Qwen2.5-7B-Instruct, as shown in Figure 2, CoM 490

still performs the best on the challenging math 491

dataset AIME. However, in GSM8K, lower accu- 492

racies are observed in both CoM and Workflow, 493

which seem to relate to the decrease in model capac-494
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Table 3: Performance of Macro-o1 and Qwen2.5-7B-
Instruct on AIME Tasks and Hard Hotpot

AIME Hard Hotpot
Acc EM F1 Prec Rec

Macro-o1
CoT 14.47 0.12 0.20 0.20 0.27
MCoT 10.50 0.09 0.19 0.19 0.25
Qwen2.5-7B-Instruct
CoT 20.15 0.17 0.25 0.25 0.24
MCoT 17.58 0.15 0.22 0.22 0.22
CoM 25.4 0.33 0.42 0.42 0.51

ity for long-range reasoning and instruction follow-495

ing. On Hard Hotpot, CoM is slightly lower than496

Workflow, indicating that the relatively smaller497

model is weaker than the larger ones in terms of498

metacognitive abilities, i.e., methodology selection.499

Next, we compare Macro-o1 (Zhao et al., 2024),500

an LLM fine-tuned on datasets such as the Open-O1501

CoT dataset (Team, 2024), with our prompting-502

only CoM. Table 3 shows that fine-tuning fails503

to improve Macro-o1 on AIME and Hard Hotpot,504

which likely indicates that the fine-tuning data is505

not universal enough.506

4.4 Methodology Selection Patterns507

We extract from the reasoning history saved dur-508

ing the experiment the methodology sequences509

selected by CoM and identify the most frequent510

patterns. The results on AIME with Qwen2-72B-511

Instruct are shown in Table 4, where we report the512

five most frequent patterns that dominate 52% of513

the answers from CoM.514

In 22.0% of the cases, CoM prioritized a well-515

structured approach of first analyzing, then gen-516

erating and executing code, which is followed by517

result validation and conclusion. In 16.2% of the518

cases, the model seems to be confident about its519

code and skips the validation step. For the other 3520

cases, more steps for error corrections are invoked,521

suggesting errors may occur during validation. The522

most frequent methodology sequences generated523

by CoM indicate that LLMs possess the metacogni-524

tive ability to plan their own reasoning steps during525

the reasoning process.526

4.5 Ablation Study527

We study the relative importance of each compo-528

nent of our CoM, including the Python interpreter,529

and each of the methodologies we used. Here, in530

contrast to excluding the code methodology, which 531

Table 4: Top 52.2% selected methodology sequences on
AIME

Methodology Sequence
22.0% Analysis Coding Validation Conclusion
16.2% Analysis Coding Conclusion
5.4% Analysis Coding Validation Reflection

Flexibility Conclusion
4.4% Analysis Coding Validation Reflection

Conclusion
4.3% Analysis Coding Validation Reflection

Flexibility Validation Conclusion

prevents CoM from generating code, removing the 532

Python interpreter still allows the LLM to generate 533

code, but the LLM then needs to guess the output of 534

the code by itself without an interpreter. Our abla- 535

tion study is conducted with Qwen2.5-7B-Instruct. 536

As listed in Table 5, the interpreter is very im- 537

portant for both tasks, which shows that the code 538

output guessed by the LLM without using the code 539

interpreter for both math calculation and knowl- 540

edge retrieval is unreliable. Secondly, for hard 541

math problems in AIME, systematic analysis of 542

the data and constraints in the problem is vital for 543

the correctness of the reasoning. For AIME, all 544

methodologies we provided are useful, each con- 545

tributing to a 7-10% improvement in accuracy. In 546

AIME, we disable retrieval for experimental sim- 547

plicity. For Hard Hotpot, where reasoning relies on 548

retrieved information, retrieval is clearly the most 549

important methodology. 550

4.6 Error Analysis 551

Errors made in CoM are conventional LLM er- 552

rors such as hallucination, misunderstanding, and 553

instruction-following errors. We manually in- 554

spected the first 10 error cases in CoM on the 555

GSM8K dataset. We found that in most of these 556

cases, methodology selection is not perfect. Three 557

error cases are due to hallucination, where the 558

wrong answers are given directly without the nec- 559

essary calculation process. Two cases are due to 560

translation errors from natural language to math; 561

for example, “born early” is translated to a reduc- 562

tion in age. Three cases are due to language under- 563

standing errors; for instance, “restart downloading” 564

is understood as “continue downloading”, and “ev- 565

ery second” is understood as “from the second”. In 566

one error case, the initial calculation is correct, but 567

then a validation step causes an error because the568
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Table 5: Ablation Study Results for COM Method

CoM AIME (%) Hard Hotpot
No Ablation 25.4 0.4174
- Interpreter 14.1 (-44.5%) 0.25 (-40.2%)
- Analysis 18.7 (-26.6%) 0.38 (-8.4%)
- Coding 23.3 (-8.3%) 0.38 (-8.8%)
- Retrieval - 0.22 (-46.8%)
- Validation 23.9 (-7.2%) 0.4 (-3%)
- Reflection 22.8 (-10.5%) 0.38 (-9%)
- Synthesis 23 (-9.3%) 0.4 (-3%)

LLM believes “servings” must be an integer. In one569

error case, the LLM generates more than one code570

block, although the methodology definition con-571

tains an instruction to generate a single standalone572

code block.573

4.7 Efficiency574

We examine the inference efficiency in terms of575

total inference time for speed and the number of576

inferences for cost. Table 6, shows that the speed577

of CoM is around 5 times that of CoT in AIME and578

7 times in Hard Hotpot. However, CoM is compara-579

ble to the fine-tuned model, which generates longer580

reasoning traces with a lower speed per token.581

Table 7 compares the number of prompts made582

by CoM with those made by Workflow. Note that583

CoM prompts twice per methodology-reasoning584

iteration. The results show that although we set585

the maximum iteration K = 8, CoM stops at a586

smaller number of steps on average, generates more587

reasoning steps for the harder AIME problems, and588

a smaller number of steps for the easier GSM8K589

problems.590

4.8 Summary of Experiments591

The experiments on complex mathematical prob-592

lems (AIME and GSM8K) and multi-hop question593

answering (HotpotQA) evaluate the effectiveness594

of CoM in methodology selection and guided rea-595

soning using a 72B, a 7B LLM, and a fine-tuned596

LLM for structured reasoning.597

Results show that our CoM is effective in im-598

proving the performance of two challenging tasks599

over baselines that embody recent prompt engineer-600

ing approaches. This result supports our hypothesis601

that we can use a training-free solution that inte-602

grates human methodological insights to enhance603

the performance of LLMs in complex reasoning604

tasks.605

Table 6: Average Speed of Experiments in Seconds per
Iteration (Multiplied by 50)

AIME GSM8K Hard Hotpot
Macro-o1
CoT 96.0 33.5 19.0
MCoT 84.5 42.5 20.0
Qwen2.5-7B-Instruct
CoM 91.0 34.0 50.5
Workflow 36.0 18.0 21.5
CoT 19.0 5.0 3.5
MCoT 19.0 8.0 3.5

Table 7: Average Number of Prompts

AIME GSM8K Hard Hotpot
CoM 2×5.76 2×3.99 2×5.98
Workflow 4 4 3

Methodology selection patterns reveal that CoM 606

effectively generates reasonable methodology se- 607

quences, which guide its reasoning in the right 608

direction. Error analysis identifies that common 609

LLM issues contribute to the majority of errors 610

made by CoM. Finally, the ablation study confirms 611

that the methodologies we employed are critical 612

for solving complex reasoning tasks. 613

5 Conclusion and Future Work 614

In this paper, we introduced the Chain of Method- 615

ologies (CoM), an innovative iterative prompting 616

framework aimed at enhancing the reasoning capa- 617

bilities of LLMs for complex tasks by simulating 618

metacognitive processes. Our approach enables 619

LLMs to utilize user-defined methodologies, allow- 620

ing for more effective navigation of complex rea- 621

soning tasks without extensive retraining. Through 622

rigorous experimentation, we demonstrated CoM’s 623

effectiveness and adaptability across various ap- 624

plications, including mathematical reasoning and 625

retrieval-augmented generation. 626

An interesting area for future work will be to in- 627

vestigate the automatic search for optimal method- 628

ologies and reasoning chains via explorations and 629

evaluations similar to (Yang et al., 2024b), from 630

which we elicit sets of methodologies and their ap- 631

plication examples to construct prompts for better 632

reasoning performance. 633
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Limitations634

Due to constraints in computational resources, we635

conducted experiments using a few LLMs with free636

API calls on three applications across two domains:637

mathematical reasoning and retrieval-augmented638

reasoning. Future work can expand on this founda-639

tion with additional LLMs and applications.640

The methodologies included in our framework641

are not exhaustive. This presents an opportunity for642

future research to enhance the list by incorporating643

diverse strategies to improve the CoM framework’s644

adaptability.645

Ethical Statement646

This work fully complies with the ACL Ethics Pol-647

icy. We declare that there are no ethical issues in648

this paper, to the best of our knowledge.649
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## Analysis
- When: In step 1.
- What: Analyze the category and solution type of the question, list the key facts, variables, 
relations, constraints with their associated values, and clarify the required output format. Break 
down complex problems into simpler steps while maintaining critical context. Propose a sequence 
of methodologies necessary to tackle the remaining reasoning steps iteratively and explain how 
they are related to the final result.

## Retrieval
- When: Fact-based information from the internet is needed.
- What: Write 1-3 line(s) of Python function call(s) `search([information],topk=3)` for each 
information needed to retrieve. The function `search` has been defined and imported for you, 
which returns a text summary for the argument `information`. Place your code in a single 
```python\n...``` code-block. Finally, accurately simulated the retrieved output by yourself.

## Coding
- When: Coding is necessary.
- What: A standalone Python snippet with structural and systematic reasoning in comments, using 
the **print** function to output the result. Place your code in a single ```python\n...``` code-
block. Finally, accurately simulated the output of your Python snippet by yourself without using a 
computer.

## Validation
- When: A temporary or a final the result is resulting from a previous reasoning step.
- What: Identify the result, and analyze its correctness from a different angle. You may write a 
test-case function that prints True/False to validate the result and then simulate its output.

## Reflection
- When: An error is detected or validation fails.
- What: Analyze the reasoning steps to identify errors and provide constructive self-critic or 
feedback for improvement.

## Flexibility
- When: The previous step fails to obtains the expected result or when a reflective or critic 
feedback is available.
- What: Adjust the approach based on insights gained and propose alternative strategies for the 
next steps.

## Conclusion
- When: A confident final answer is available, or in the last step.
- What: Clarify the output format required by the question. Compile the reasoning process and 
generate the answer in the required format.

Figure 3: Our list of methodologies.
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# List of Existing Methodologies

{example_methodologies}

{historical_reasoning_steps}

# Question
- {question}

# Step Instruction
- You are currently on {cur_step} out of a 
total of a maximum of {max_steps} steps 
to solve the question. Please select the 
most suitable methodology from the list, 
considering the reasoning history and the 
timing for applying each methodology. 
Try to diversify your choices to advance 
the resolution of the question, and avoid 
redundant or repeated methodologies. 
Select and output a single methodology 
succinctly in the following format, 
without any additional text:

## [Methodology name]
- When: [The timing for applying the 
methodology]
- What: [The characteristics and details of 
the methodology]

# List of Existing Methodologies

{example_methodologies}

{historical_reasoning_steps}

# Question
- {question}

# Selected Methodology

{selected_methodology}

# Step Instruction
- You are currently on {cur_step} out of a total of a 
maximum of {max_steps} steps to solve the 
question. Please conduct an innovative next 
reasoning step for the question, using the selected 
methodology "{selected_methodology_name}" 
based on the current reasoning history. Please 
output your reasoning step succinctly in the 
following format, without any additional text:

- Methodology: [Name of the selected 
methodology]
- Reasoning/Code: [A structural and systematic 
reasoning step that uses the selected methodology 
and improves on your past reasoning steps. Or a 
Python snippet with such reasoning inside its 
comments in a ```python\n...``` code-block.]
- Result: [A short result of your reasoning, or an 
accurate simulated outpout from the code.]

Figure 4: Our methodology-selection prompt (left) and methodology-based reasoning prompt (right).
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