
Infinite-Fidelity Coregionalization for Physical
Simulation

Shibo Li, Zheng Wang, Robert M. Kirby, and Shandian Zhe
School of Computing, University of Utah

Salt Lake City, UT 84112
{shibo, wzhut, kirby, zhe}@cs.utah.edu

Abstract

Multi-fidelity modeling and learning is important in physical simulation related ap-
plications. It can leverage both low-fidelity and high-fidelity examples for training
so as to reduce the cost of data generation yet still achieving good performance.
While existing approaches only model finite, discrete fidelities, in practice, the
feasible fidelity choice is often infinite, which can correspond to a continuous
mesh spacing or finite element length. In this paper, we propose Infinite Fidelity
Coregionalization (IFC). Given the data, our method can extract and exploit rich
information within infinite, continuous fidelities to bolster the prediction accuracy.
Our model can interpolate and/or extrapolate the predictions to novel fidelities that
are not covered by the training data. Specifically, we introduce a low-dimensional
latent output as a continuous function of the fidelity and input, and multiple it with
a basis matrix to predict high-dimensional solution outputs. We model the latent
output as a neural Ordinary Differential Equation (ODE) to capture the complex
relationships within and integrate information throughout the continuous fidelities.
We then use Gaussian processes or another ODE to estimate the fidelity-varying
bases. For efficient inference, we reorganize the bases as a tensor, and use a
tensor-Gaussian variational posterior approximation to develop a scalable inference
algorithm for massive outputs. We show the advantage of our method in several
benchmark tasks in computational physics.

1 Introduction

Many scientific and engineering applications demand physical simulations, for which the task is
mainly to solve partial differential equations (PDEs) at a domain of interest. For example, to estimate
the temperature change at the end of a part, one might need to solve transient heat transfer equations
over the part (Incropera et al., 2007). Due to the high cost of running numerical solvers, in practice
it is often important to train a surrogate model (Kennedy and O’Hagan, 2000; Conti and O’Hagan,
2010). Given the PDE parameters and/or parameterized boundary/initial conditions, we use the
surrogate model to predict the high-dimensional solution field, rather than run the numerical solvers
from scratch. In this way, we can greatly reduce the cost, because computing the prediction for a
machine learning model is often much more efficient and faster.

However, we still have to run the numerical solvers to generate the training data for the surrogate
model, which is costly and can be a bottleneck. To alleviate this issue, a wise strategy is to conduct
multi-fidelity learning. High-fidelity examples are generated via dense meshes (or smaller finite
elements), hence are accurate yet expensive to compute; low-fidelity examples are generated with
coarse meshes, which are much cheaper for computation yet quite inaccurate. Despite the (significant)
difference in quality, the low-fidelity and high-fidelity examples are strongly correlated since they are
based on the same equation(s) or physical laws. Many multi-fidelity surrogate modeling and learning
methods have therefore been developed to effectively combine examples of different fidelities to

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

improve the prediction accuracy while reducing the cost of data generation, e.g., (Perdikaris et al.,
2017; Parussini et al., 2017; Xing et al., 2021a; Wang et al., 2021).

While successful, the exiting methods only model finite, discrete fidelities, which usually corresponds
to several pre-specified meshes (or finite elements). However, since the spacing of the mesh (or the
length of finite elements) is continuous, its choice can be infinite and therefore corresponds to infinitely
many fidelities. To extract and take advantage of rich information within these infinite, continuous
fidelities, we propose IFC, an infinite-fidelity coregionalization method. Our model can flexibly
estimate the complex relationships among these fidelities to bolster the predictive performance, and
scale to high-dimensional outputs, which are common in physical simulation. Specifically, we first
introduce a low-dimensional latent output, which is a continuous function of the input and fidelity.
We model the latent output as an ordinary differential equation (ODE), where the dynamics (fidelity
derivative) is a neural network with the input as the latent output itself plus the original input, i.e.,
neural ODE (Chen et al., 2018). In this way, we can capture the complex relationships within and
integrate the information throughout the continuous fidelities. To predict high-dimensional outputs,
we multiply the latent output with a basis matrix. We place a Gaussian process prior over the basis
elements or use another element-wise ODE to capture the basis variations along with the fidelity.
For scalable inference of the GP bases, we re-organize the basis matrix as a tensor and introduce a
tensor-Gaussian distribution as the variational posterior. In this way, not only can we capture the
strong posterior dependency among the massive basis elements, we also avoid estimating the full
posterior covariance matrix (which can be huge) and greatly reduce the parameters. We then use the
Kronecker product properties and ODE solvers to develop an efficient variational inference algorithm.

For evaluation, we tested our method for predicting the solution fields of three benchmark PDEs,
including Poisson’s, Heat and Burger’s equations. We also applied IFC in topology structure
optimization and computational fluid dynamics (CFDs). The output dimension for these tasks varies
from thousands to hundreds of thousands. In all the cases, IFC outperforms the state-of-the-art
multi-fidelity learning methods by a large margin. In addition, we examined the performance of
IFC in making predictions with novel fidelities (other than the training fidelities). It shows that our
model with the ODE bases can extrapolate the prediction to new fidelities higher than (i.e., more
accurate than) the training fidelities. This opens up a possibility to achieve high-fidelity predictive
performance by only using low fidelity data.

2 Background

Linear Model of Coregionalization. Many tasks demand learning a function of high-dimensional
outputs, where the dimension of the input is relatively low. For example, given the scalar viscosity
(input), we want to predict the solution of the viscous Burger’s equation at a 128× 128 grid on some
domain of interest (output). A popular and classical high-dimensional output regression method is
Linear Model of Coregionalization (LMC) (Journel and Huijbregts, 1978), which introduces a low
dimensional latent output h(x) = [h1(x), . . . , hK(x)]

> where each hk : Rs → R and s is the input
dimension. LMC models the actual high-dimensional output f ∈ Rd by linearly combining the latent
output elements with a basis matrix B = [b1, . . . ,bK],

f(x) =

K∑
k=1

hk(x)bk = B · h(x) (1)

where K � d and each bk ∈ Rd. To flexibly estimate each latent output, we often use a Gaus-
sian process (GP) prior (Rasmussen and Williams, 2006). GP is a popular approach to estimate
single-output functions. In general, suppose given the training data D = {(x1, y1), . . . , (xN , yN)},
we want to learn a function g : Rs → R. With the GP prior over g, the function values
g = [g(x1), . . . , g(xN)]> follow a multivariate Gaussian distribution, p(g|X) = N (g|m,K),
where m is the mean function evaluated at the training inputs, usually set to 0, K is the covariance
matrix, and each element [K]ij = κ(xi,xj) is a covariance (kernel) function of the inputs. The
observations y = [y1, . . . , yN]> are often assumed to be generated from a Gaussian noise model,
p(y|g) = N (y|g, σ2I) where σ2 is the noise variance. We can marginalize out g to obtain the
marginal likelihood, p(y|X) = N (y|0,K + σ2I). The kernel parameters and noise variance can be
estimated by maximizing the marginal likelihood. Due to the Gaussian form, given the new input x∗,
the predictive distribution of g(x∗) is straightforward to compute, which is a conditional Gaussian.

2

While we can jointly estimate the latent outputs and bases in (1), an effective approach is to conduct
Principled Component Analysis (PCA) on the training data to identify the bases B, and then use the
singular values as the training outputs to learn the latent functions hk(x) with standard GP regression.
We refer to this method as PCA-GP (Higdon et al., 2008).

Multi-fidelity Coregionalization. Practical applications often allow us to collect data with varying
fidelities to enable a trade-off between the cost and efficiency. For example, in physical simulation,
one can adjust the mesh spacing or length of the finite elements in the numerical solver to generate
solution examples at different fidelities. Many multi-fidelity models have been developed to synergize
training examples of different fidelities. For example, (Xing et al., 2021a) recently proposed deep
residual coregionalization, which sequentially learns M PCA-GP models l1, . . . , lM , for the given
M fidelities. At each fidelity m, it first uses the lower fidelity models to make predictions and then
compute the residual error between the low-fidelity predictions and the training outputs at the current
fidelity. Based on the residual, it performs PCA to find the bases and estimates the latent output via
GP regression,

lm = PCA-GP(Xtrain
m ,Rtrain

m), Rtrain
m = Ytrain

m −
∑m−1

j=1
lj(X

train
m), (2)

where (Xtrain
m ,Ytrain

m) is the training inputs and outputs at fidelity m, and lj(·) the prediction made
by the PCA-GP at fidelity j. The prediction at the highest fidelity M is obtained by summing the
predictions of all the M models. Other than the sequential training, the recent works of Wang et al.
(2021); Li et al. (2022) jointly learn the bases and latent output for every fidelity. To estimate the
relationship of successive fidelities, they model the latent output at fidelity m as a nonlinear function
of the latent output at fidelity m− 1,

hm(x) = α (hm−1(x),x) , fm(x) = Bmhm(x), (3)

where Bm is the basis matrix at fidelity m, hm(·) and hm−1(·) are the latent outputs at fidelity m
and m − 1, respectively, and fm(x) is the prediction at fidelity m. To fulfill this auto-regression,
Wang et al. (2021) proposed a matrix GP prior over α(·) that introduces an additional dependency on
the bases, while Li et al. (2022) used a (deep) neural network to model α(·).

3 Model

Despite their success, the existing multi-fidelity approaches only model or estimate the relationships
between finite, discrete fidelities. In physical simulation, these fidelities often correspond to several
specific mesh spacings or finite element lengths. However, since the mesh spacing or element length
is continuous, we actually have infinitely many possible choices, which correspond to infinitely many
fidelities. Among the continuous, infinite fidelities are much richer information or relationships
that can be valuable to promote the predictive performance. To extract and take advantage of this
information, we propose IFC, an infinite-fidelity coregionalization model.

Specifically, since the fidelity m can be viewed as continuous (corresponding to the continuous mesh
spacing and finite element length), we model the latent output as a continuous function of the input and
fidelity, i.e., h(x,m). Inspired by the residual coregionalization of Xing et al. (2021a) (see (2)), we
model the latent output — which can be viewed as a low-rank summary of the actual high-dimensional
output — as the latent output at the preceding (lower) fidelity, plus an adjustment/correction for the
current fidelity,

h(m,x) = h(m−∆,x) +ψ, (4)

where ∆ > 0 is an infinitesimal and ψ is the correction term. To capture the complex yet strong
relationship with the proceeding fidelity m −∆, we model ψ as a function of the latent output at
m−∆ , the current fidelity m, and the input: ψ = ψ (m,h(m−∆,x),x) . Since lim

∆→0
ψ = 0, it is

natural to assume ψ = ∆ · φ. Therefore, we have

h(m,x) = h(m−∆,x) + ∆ · φ (m,h(m−∆,x),x) .

Moving h(m−∆,x) to the left, dividing the equation by ∆, and taking the limit of ∆ to zero, we
arrive at an ODE model,

∂h(m,x)

∂m
= φ (m,h(m,x),x) . (5)

3

Without loss of generality, we assume the lowest fidelity is 0. We then model the initial state of the
ODE, i.e., the latent output at the lowest fidelity, as a function of the input x,

h(0,x) = β(x). (6)

To flexibly estimate β and φ, we parameterize them as neural networks. The advantage of our
modeling is two-fold. First, according to (5) and (6), the prediction at an arbitrary fidelity m is
h(m,x) = h(0,x) +

∫m
0
φ (v,h(v,x),x) dv, which integrates the predictions from all possible

lower fidelities. Thereby, it enables us to exploit information from infinite, continuous fidelities.
Second, learning dynamics φ via neural networks enables us to capture the complex relationships
among these continuous fidelities so as to bolster the predictive performance. The above component
is an instance of neural ODE (Chen et al., 2018), and a continuous extension of the auto-regressive
model in (3).

Similar to LMC (see (1)), we multiply the latent output h(x,m) with a basis matrix B to obtain the
high-dimensional output at fidelity m. However, the bases can vary along with the fidelity. To flexibly
capture such variations, we propose two methods.

IFC-GPODE We model each basis element bij as a function of the fidelity m and place a GP prior,

bij(m) ∼ GP(0, κ(m,m′)), (7)

where κ(·, ·) is the kernel function. Suppose we have collected a set of training examples
D = {(xn,mn,yn)}Nn=1. We use a Gaussian noise model to sample the observed data. The
joint distribution is given by

p(B,Y|X) =

d∏
i=1

K∏
k=1

N (bij |0,K)

N∏
n=1

N (yn|Bnh(mn,xn), σ2I) (8)

where X = {x1, . . . ,xN}, Y = {y1, . . . ,yN}, B = {bij}1≤i≤d,1≤j≤K , bij =
[bij(s1), . . . , bij(sT)]> is the basis values at different fidelities, {sj}Tj=1 are the distinct fidelities in
the data, K is the kernel matrix on {sj}, and Bn = [bij(mn)]1≤i≤d,1≤j≤K is the basis matrix at
fidelity mn. Note that the latent output h(mn,xn) is the state of the ODE system in (5) and (6).

IFC-ODE2 Our second method is to model each element bij with another ODE system,

∂bij(m)

∂m
= γ(bij ,m), bij(0) = νij , (9)

where γ is parameterized by a neural network. In this way, we can flexibly capture the evolution of
the bases along with the fidelity. The joint distribution is

p(Y|X) =

N∏
n=1

N (yn|Bnh(mn,xn), σ2I) (10)

where both Bn and h are computed from ODE solvers.

4 Algorithm

We now present the inference algorithm. Both IFC-GPODE and IFC-ODE2 demand we compute the
gradient of the learning objective w.r.t to the ODE parameters and initial states, i.e., the parameters
for φ and β in (5) and (6) and for γ and νij in (9). This can be efficiently done by applying
automatic differentiation during the numerical integration in ODE solvers (e.g., the Runge-Kutta
method (Dormand and Prince, 1980)). However, the computational graph can be memory intensive.
When the memory is insufficient, we can use the adjoint state approach instead (Pontryagin, 1987;
Chen et al., 2018), which constructs an adjoint backward ODE system. The gradient is computed by
solving the adjoint ODE. We refer to the details in (Chen et al., 2018).

We estimate the parameters of IFC-ODE2 by maximizing the log joint probability (10) via stochastic
optimization, which is relatively straightforward. The learning of IFC-GPODE, however, is much
more challenging in that we need to estimate the posterior distribution of the bases at the observed
fidelities, B = {bij}1≤i≤d,1≤k≤K , which consists of dKT elements. The posterior distribution
does not have a closed form, and we resort to the variational inference framework (Wainwright and

4

Jordan, 2008). Since these bases are coupled in both the GP prior (across the fidelities) and the
likelihood (across the outputs), they are strongly dependent in the posterior. Hence, it is natural to
introduce a multi-variate Gaussian distribution for B as the variational posterior to capture these
dependencies. However, since the output dimension d is often large, say, hundreds of thousands, the
computation and storage of the posterior covariance matrix (dKT × dKT) is prohibitively costly or
even infeasible. To sidestep this issue, one might consider the commonly used mean-field variational
approximation (Wainwright and Jordan, 2008), which uses a fully factorized posterior. However,
doing this will lose all the posterior dependencies and can result in inferior inference quality.

To address this issue, we use an idea of (Zhe et al., 2019; Li et al., 2021) to fold the output space
into an R dimensional tensor space, d1 × . . . × dR where d =

∏R
r=1 dr. For convenience, we set

d1 = . . . = dR = R
√
d. Then we can arrange B as a d1 × . . . × dR × K × T tensor. To fully

capture the posterior correlations while still achieving a compact parameterization, we introduce a
tensor-Gaussian distribution as the variational posterior for the bases B. The tensor-Gaussian is a
straightforward extension of the matrix Gaussian distribution,

q(B) = T N (B|U ,Σ1, . . . ,ΣR,ΣR+1,ΣR+2) = N (vec(B)|vec(U),Σ1 ⊗ . . .⊗ΣR+2) , (11)

where U is the posterior mean, and Σr is the posterior covariance at each mode r (1 ≤ r ≤ R+2). To
ensure the positive definiteness, we parameterize each covariance matrix by Σr = LrL

>
r where Lr

is a lower-triangular matrix (i.e., the Cholesky decomposition form). In this way, the total number of
parameters for the posterior covariance is reduced to

∑R
r=1

dr(dr+1)
2 + K(K+1)

2 + T (T+1)
2 . Consider

d = 106, K = 10, and T = 100 as an example. If we fold the output into a three-dimension tensor,
i.e., R = 3, we only need 2× 10−5dKT parameters to represent the whole dKT × dKT covariance
matrix. Thus, the number of variational parameters is dramatically reduced (> 99.99%) while our
variational posterior can still represent the strong posterior dependencies.

We then construct the variational evidence lower bound (ELBO) with the tensor-Gaussian posterior
(11), L = Eq(B)

[
log p(B,Y|X)

q(B)

]
. We maximize the ELBO to obtain the variational parameters U

and {Lr}, ODE parameters, and noise variance σ2. We leverage the Kronecker product properties
(Stegle et al., 2011) to decompose the full covariance matrix and to simplify the ELBO,

L = −KL(q(B)‖p(B)) +

N∑
n=1

Eq(B) [log p(Yn|xn,B)] (12)

where

KL(q(B)‖p(B)) =
1

2
tr
(
K−1ΣR+2

)∏R+1

r=1
tr(Σr) +

1

2
tr(K−1UR+2U

>
R+2)

+
1

2
dK log det(K)− 1

2

∑R+2

r=1

dKT

dr
log det(Σr), (13)

Eq [log p(Yn|xn,B)] = −d
2

log(2πσ2)− 1

2σ2

(
y>n yn − 2y>nEq[Bn]zn + tr(Eq

[
B>nBn

]
znz>n)

)
where zn

∆
= h(mn,xn), UR+2 is obtained by unfolding the mean tensor U at mode R+ 2, giving a

T × dK matrix, Eq[Bn] is obtained by fetching the mn-th slice of U at mode R+ 2 and reshape it as

a d×K matrix, and Eq[B>nBn] =
(∏R

r=1 tr(Σr)
)

ΣR+1 + Eq [Bn]Eq [Bn]
>. The computation

is restricted to the covariance matrices at each mode and hence is much more efficient. Note that we
can always choose enough large R to ensure dR is small (e.g., ≤ 100) so that the computation of
the per-mode covariance matrix is efficient and cheap. We can use any gradient-based optimization
method to maximize the ELBO.

5 Related Work

Linear model of coregionalization (LMC) (Matheron, 1982; Goulard and Voltz, 1992) is a classical
framework to extend the standard GP regression for multi-output function estimation. There have
been many instances and variants, such as intrinsic coregionalization (Goovaerts et al., 1997), PCA-
GP (Higdon et al., 2008), KPCA-GP (Xing et al., 2016), and IsoMap-GP (Xing et al., 2015). GP
regression networks (GPRNs) (Wilson et al., 2012) place a GP prior over the basis elements in

5

LMC and model the bases as functions of the input as well. While more flexible, it brings in
additional computational challenges. In addition to LMC, other multi-output regression approaches
include convolution GPs (Higdon, 2002; Boyle and Frean, 2005; Alvarez et al., 2019) and multi-task
GPs (Bonilla et al., 2007, 2008; Rakitsch et al., 2013). They use kernel convolution and matrix
GP priors to model the multiple function outputs. The sparse GP approximations were applied for
large output dimensions (Alvarez and Lawrence, 2009; Álvarez et al., 2010). A great survey is given
in (Alvarez et al., 2012). The recent work of Zhe et al. (2019) tensorized the output space and learned
a set of coordinate features to scale up to massive outputs and to capture the output correlations.
To scale up GPRNs to high-dimensional outputs, Li et al. (2021) tensorized the bases and latent
output, and developed a structural variational inference with matrix Gaussian and tensor Gaussian
posteriors. They also used the Kronecker product properties to simplify the computation. Hence, our
approximation technique is similar to these works.

To fulfill multi-fidelity training, Perdikaris et al. (2017); Cutajar et al. (2019) learned a sequence of
GP regressors, where each GP is for one fidelity, and models the output as a function of the input
and the prediction at the previous fidelity. Their model is an instance of deep GPs (Damianou and
Lawrence, 2013; Hebbal et al., 2019). However, their method might not be amenable to a large
number of outputs, since these outputs will serve as a part of the input to the GP at the next fidelity,
and henceforth greatly increase the input dimension of that GP model. Wang et al. (2021) addressed
this issue by fulfilling an auto-regressive structure over the low-dimensional latent outputs. They
used a matrix GP prior to sample the latent output as a function of the latent output at the previous
fidelity, the input, and the bases. Li et al. (2022) instead used auto-regressive neural networks to
model the latent output, and developed an active learning algorithm to dynamically query at new
inputs and fidelities. In addition, recently Hamelijnck et al. (2019) developed a multi-resolution,
multi-task (output) regression method based on GPRNs and mixtures of experts (Rasmussen and
Ghahramani, 2002), which intends to integrate data collected by sensor networks. The network nodes
can have multiple resolutions. Other most recent multi-fidelity models include (Wang and Lin, 2020;
Wu et al., 2022; Xing et al., 2021b), etc. All these works assume the fidelities are fixed and finite, and
model the relationship between these discrete fidelities. Our work is different in that we point out
the presence and value of continuous fidelities, especially in physical simulation, and we develop a
new method to capture and leverage the rich knowledge/relationships within the continuous, infinite
fidelities to further enhance the predictive performance.

6 Experiment

6.1 Predicting Solution Fields of Partial Differential Equations

We first tested IFC for predicting the solution fields of several benchmark PDEs in computational
physics, including Poisson’s, Heat and Burger’s equations (Olsen-Kettle, 2011). To collect the
training data, we run the numerical solvers with several meshes. Denser meshes give examples of
higher fidelities. The output vector comprises of the solution values on the grid. For instance, a
mesh of size 50× 50 corresponds to an output vector of 2, 500 dimensions. For Poisson’s and Heat
equations, we generated training examples of four fidelities, using 8×8, 16×16, 32×32 and 64×64
meshes, respectively. For Burger’s equation, we used 16× 16, 24× 24, 32× 32 and 64× 64 meshes
to generate four-fidelity training data. For all the PDEs, the number of training examples for each
fidelity (from the lowest to highest) is 100, 50, 20, and 5, respectively. For testing, we generated
128 examples with the highest fidelity. Both the training and test inputs were uniformly sampled
from the domain (but non-overlapping). The input includes the parameters of the PDE, the boundary
and/or the intial conditions. The input dimension for Poisson’s, Heat and Burger’s equations is five,
three and one, respectively. Hence, the task is in essence to learn an low-to-high mapping that maps
the parameters that index a PDE to the solution field of that PDE. The data generation followed the
details as provided in (Wang et al., 2021).

Competing Methods. We compared with the following state-of-the-art multi-fidelity high-
dimensional output learning methods. (1) DRC (Xing et al., 2021a)(https://github.com/
wayXing/DC), deep residual coregionalization, which performs LMC on the residual error of the pre-
dictions from the lower fidelities. The final prediction is the summation of the LMC prediction across
all the fidelities. See Sec. 2. (2) MFHoGP (Wang et al., 2021)(https://github.com/GregDobby/
Multi-Fidelity-High-Order-Gaussian-Processes-for-Physical-Simulation), which
uses a matrix GP prior to construct a nonlinear coregionalization (NC) model, and connects multiple

6

https://github.com/wayXing/DC
https://github.com/wayXing/DC
https://github.com/GregDobby/Multi-Fidelity-High-Order-Gaussian-Processes-for-Physical-Simulation
https://github.com/GregDobby/Multi-Fidelity-High-Order-Gaussian-Processes-for-Physical-Simulation

5 10 15 20

K

0.1

0.2

0.4

0.6

nR
M

S
E

(a) Poisson

5 10 15 20

K

0.15

0.25

0.40

nR
M

S
E

(b) Heat

5 10 15 20

K

0.2

0.4

0.8

nR
M

S
E

(c) Burgers

Figure 1: Normalized RMSE in predicting the solution fields of Poisson’s, and Heat and Burger’s equations. K
is the dimension of the latent output.

NC models for multi-fidelity learning, one for each fidelity. To capture the correlation between
successive fidelities, the matrix GP prior samples the latent output as a random function of the latent
output in the previous fidelity. (3) DMF (Li et al., 2022)(https://github.com/shib0li/DMFAL),
a neural network (NN) based multi-fidelity learning approach, where each NN models one fidelity.
To synergize different fidelities, the latent output of each NN is fed into the NN for the next fidelity.
The high-dimensional prediction at each fidelity is obtained through a linear transformation of the
latent output. To verify if IFC can indeed better integrate information of distinct fidelities, we also
tested (4) SF, the single-fidelity degeneration of our model, where the prediction is f(x) = B0h0(x),
where B0 is a static basis matrix, and h0(·) is a neural network. SF uses all the training examples
without differentiation. We denote our ODE based method using the GP prior over the basis matrix
by (5) IFC-GPODE and another latent ODE over each basis element by (6) IFC-ODE2.

Settings and Results. All the methods were implemented by PyTorch (Paszke et al., 2019),
except that DRC was implemented by MATLAB. For our method, we used torchdiffeq li-
brary (https://github.com/rtqichen/torchdiffeq) to solve ODEs and to compute the
gradient w.r.t ODE parameters and initial states via automatic differentiation. We used
the Runge-Kutta method of order 5 with adaptive steps. For GP related models, in-
cluding DRC, MFHoGP and IFC-GPODE, we used the square exponential (SE) kernel.

5 10 15 20

K

0.5

0.7

0.9

nR
M

S
E

(a) Topology Optimization

5 10 15 20

K

0.1

0.3

0.4

nR
M

S
E

(b) Fluid Dynamics

Figure 2: Normalized RMSE in predicting the optimal topological struc-
tures and spatial-temporal pressure field of fluids.

The length-scale parameter was
initialized to one. For our
method, each NN component (φ,
β, and γ in Eq. (5), (6) and (9))
employed two hidden layers with
tanh as the activation function.
To handle continuous (infinite) fi-
delities, we mapped the lowest
fidelity to m = 0, and highest
to m = 1. For simplicity, we
use a linear mapping from the
mesh size to the fidelity value m.
Suppose the mesh for m = 0
is s0 × s0, and for m = 1 is
s1 × s1. Then the fidelity of an
arbitrary s × s mesh is m(s) =
(s−s0)/(s1−s0). Note that this
is just one way of indexing the
mesh size (or spacing) by fidelity
values and there can be arbitrary other ways. The complex, possibly nonlinear relationships between
the fidelities (or meshes) are captured by our neural ODE component (see (5)). Since DRC, MFHoGP
and IFC demand the output dimension be the same across different fidelities, we set the output
dimension to the one at the highest fidelity (which is 64 × 64 = 4, 096), and used interpolation

7

https://github.com/shib0li/DMFAL
https://github.com/rtqichen/torchdiffeq

Ground-truth SF MFHoGP DMF DRC IFC-ODE2 IFC-GPODE

(a) Poisson’s equation

Ground-truth SF MFHoGP DMF DRC IFC-ODE2 IFC-GPODE

(b) Fluid dynamics at t = 10

Figure 3: Local prediction errors. The leftmost column in (a) and (b) is the original solution. The other columns
are the error fields based on the prediction of each method. The lighter the color, the smaller the error.

8 16 24 32 40 48 56 64 72 80 88 96 104112120128
Mesh size

0.0

0.1

0.2

0.3

nR
M

S
E

IFC-ODE2

IFC-GPODE

(a) Poisson’s equation

8 16 24 32 40 48 56 64 72 80 88 96 104112120128
Mesh size

0.0

0.1

0.2

0.3

nR
M

S
E

IFC-ODE2

IFC-GPODE

(b) Heat equation

Figure 4: Normalized RMSE of the predictions with various fidelity values (m ∈ [0, 2.14]). The x-axis shows
the corresponding mesh size, where m = 0 corresponds to the 8× 8 mesh and m = 2.14 the 128× 128 mesh.
The largest training fidelity (m = 1) corresponds to the 64× 64 mesh.

(or down sampling) to obtain lower dimension predictions to fit the data (Zienkiewicz et al., 1977).
For IFC-GPODE, the output is folded into a two-dimensional tensor. For DMF, we also used two
hidden layers for each NN, and tanh activation, which is consistent with the setting in (Li et al.,
2022). The number of neurons per layer was chosen from {10, 20, 30, 40, 50, 60}. We found that
more layers for both our method and DMF did not improve the predictive performance. In addition,
other activation functions, such as ReLU and LeakyReLu worsened the performance. This is consis-
tent with the typical choice of the activation function in physics-informed neural networks (Raissi
et al., 2019). We ran ADAM (Kingma and Ba, 2014) to train all the models, except DRC that
uses L-BFGS to estimate the latent output (the maximum number of iterations was set to 1,000).
We used ReduceLROnPlateau (Al-Kababji et al., 2022) scheduler to adjust the learning rate from
[10−3, 10−2]. We set the maximum number of epochs to 5,000, which ensured the convergence of
every method. We verified K — the latent output dimension — from {5, 10, 15, 20}. For each
setting, we repeated the experiment for five times. The average normalized root-mean-square-error
(nRMSE) and the standard deviation of each method are reported in Fig. 1.

As we can see, both IFC-GPODE and IFC-ODE2 consistently outperform all the competing methods
by a large margin. The prediction errors of IFC-GPODE and IFC-ODE2 are much closer, as compared
with their difference from the other methods. The both versions of IFC greatly outperforms SF, the
single-fidelity degeneration, and in most case SF is also worse than the competing finite fidelity
models. This together shows the advantage of our infinite-fidelity modeling, and the improvement is
indeed from more effective usage of the training information across dinstinct fidelities.

8

6.2 Topology Optimization

Next, we applied IFC in predicting the optimal topology design structures. Topology optimization
(TO) is an important task in engineering design and manufacturing. In general, given the environmen-
tal constraint, e.g., an external force, our goal is to find a layout of the give materials (e.g., alloys)
that maximizes/minimizes a property of interest, e.g., stiffness. The standard TO solves a constraint
optimization problem that includes a compliance objective and total volume constraint (Sigmund,
1997). The computation of the objective often demands for solving associated PDEs, and hence is
quite computationally expensive. Hence, we learn a surrogate model to predict the optimal structure
outright given the constraint (input). We considered the design problem in (Keshavarzzadeh et al.,
2018), which aims to find a structure (discretized in [0, 1]× [0, 1]) with the maximum stiffness under
a load on the bottom right half. The load (input) is expressed by the location (in [0.5, 1]) and angle
(in [0, π2]). The strength of the load is fixed. During the optimization, we need to repeatedly run a
numerical solver. To learn the surrogate model, we generated training examples with four fidelities,
corresponding to 50× 50, 60× 60, 70× 70 and 80× 80 meshes. Again, we generated 100, 50, 20, 5
for each fidelity, and 128 examples at the highest fidelity for testing. We repeated the experiment
for five times. The average nRMSE and standard deviation are shown in Fig. 2a. IFC-GPODE and
IFC-ODE2 achieve much higher prediction accuracy than all the competing methods in all the cases.
It is interesting to see that the performance of our method kept improving with the increase of the
latent output dimension. This might be because more latent output elements can summarize and
propagate the fidelity information more comprehensively and accurately.

6.3 Computational Fluid Dynamics

Third, we applied IFC in predicting the simulation results of computational fluid dynamics. We
considered a flow driven by rectangular boundaries (Bozeman and Dalton, 1973). The rectangular is in
the domain [0, 1]× [0, 1]. Each of the four boundaries has a prescribed velocity. The spatial-temporal
field can be computed by solving the incompressive Navier-Stokes (NS) equations (Chorin, 1968),
which is known to be costly due to the complex behaviors under large Renolds numbers. We were
interested in predicting the pressure field of the flow along with time in [0, 10], given the Reynolds
number in [10, 500]. We simulated training examples of four fidelities, with spatial meshes of size
32× 32, 48× 48, 64× 64 and 80× 80 respectively. The number of time steps was set to 20. Hence,
the output dimension (at the highest fidelity) is 128,000. Similar to the previous experiments, we
collected 100, 50, 20, and 5 examples for each fidelity, and 128 examples at the highest fidelity for
testing. We examined the prediction accuracy of each method. For IFC-GPODE, the output is folded
as a 20× 80× 80 tensor. We repeated the experiment for five times and report the average nRMSE in
Fig. 2b. We can see that, consistent with the previous comparison results, IFC (both versions) greatly
outperforms all the competing baselines, which confirms the advantage of IFC in predicting complex
physical simulation results.

Furthermore, to investigate the local errors in predicting individual solution outputs, we randomly
selected four test examples for Poisson’s equation and fluid dynamics. We examined the absolute
error of each method in predicting every output. For fluid dynamics, we restrict the prediction at
t = 10. We visualized the error field for each example in Fig. 3 b and c. As we can see, in most cases,
the competing methods have dominant errors at several local places, e.g., MFHoGP in Fig. 3a (first
three examples) and DRC in Fig.3 b. By contrast, the local errors of IFC-GPODE and IFC-ODE2

are distributed much more uniformly, and much smaller than the competing methods (lighter colors).
That means, their performance is much less restricted by a few local regions. This also leads to a
better global error.

6.4 Interpolation and Extrapolation in Fidelities

Since our method models the output as the function of a continuous fidelity m, it can predict the
solution outputs at arbitrary m that is different from the training fidelity values, i.e., interpolation and
extrapolation. Note that the current finite, discrete fidelity approaches cannot make such predictions.
To examine the performance of our model in interpolating and extrapolating the fidelity of prediction,
we tested on Poisson’s and Heat equations. We generated four-fidelity training data, including
256, 128, 64, and 32 examples for the first, second, third and fourth fidelity, respectively. The
corresponding mesh size is 8 × 8, 16 × 16, 32 × 32, and 64 × 64. The lowest fidelity is m = 0,
and highest m = 1. We set the latent output dimension to 20 and trained our model accordingly.

9

We then used the model to predict the solution at a variety of m values, which corresponds to new
meshes. For example, m = 1.29, 1.57, 2.14 correspond to meshes of size 80 × 80, 96 × 96 and
128 × 128, respectively. We viewed the “gold-standard” solution as solved with the 128 × 128
mesh, under which we generated 256 test examples. We varied m ∈ [0, 2.14], and examined the
corresponding prediction errors as compared with the gold-standard solution. The results are reported
in Fig. 4. As we can see, within the range of training fidelities, i.e., 0 ≤ m ≤ 1 and the corresponding
mesh size less than 64× 64, the prediction error of IFC-GPODE is consistently smaller than that of
IFC-ODE2, especially at very low fidelities (e.g., the 8× 8 grid). IFC-GPODE achieves the smallest
prediction error at m = 1, i.e., the highest training fidelity. When m > 1 (mesh size bigger than
64× 64), the performance of IFC-GPODE drops. By contrast, while when m < 1, the prediction
error of IFC-ODE2 is slightly worse than IFC-GPODE, when m > 1, the performance of IFC-ODE2

keeps improving; it achieves the smallest error at the largest m (i.e., m = 2.14 corresponding to the
128× 128 mesh), which is smaller than the prediction at m = 1 (i.e., highest training fidelity). The
nRMSE of IFC-ODE2 at m = 1 and m = 2.14 is 0.036 vs. 0.018 and 0.074 vs. 0.061, for Poisson’s
and Heat equations, respectively. The results show that IFC-GPODE is better in interpolation but
IFC-ODE2 is promising in extrapolation. This might be attributed to the GP used IFC-GPODE, which
is known to interpolate well yet not good at extrapolation (Rasmussen and Williams, 2006). The
improved extrapolation performance of IFC-ODE2 can be particularly useful in practice. It allows us
to train the surrogate model only using lower fidelity examples, but we can still expect to gain higher
fidelity predictions, i.e., more accurate than the training data. Therefore, we can avoid generating
very high-fidelity examples for training to further reduce the cost.

One major limitation of IFC is that the training is much slower than the other methods. For example,
on the dataset for Poisson’s equation, the average per-epoch/-iteration time of DRC, MFHoGP, DMF,
IFC-GPODE and IFC-ODE2 is 0.02, 1.05, 0.04, 4.95 and 7.84 seconds, respectively (K = 20). For
the fluid dynamics, the average per-epoch/-iteration time is 0.04, 1.28, 0.10, 14.65 and 21.54 seconds,
respectively (K = 20). This mainly arises from the intensive computation in back-propagating the
gradient throughout the numerical integration in the ODE solver. One might improve the speed by
using lower order solvers or larger step-sizes, which, however, can hurt the accuracy of the gradient
computation. Note that, after training, the prediction of IFC is instantly fast (as fast as the competing
methods), because simply doing numerical integration is very efficient.

7 Conclusion

We have presented IFC, an infinite coregionalization method for physical simulation. Through ODE
based modeling, our method can capture and integrate information from infinite, continuous fidelities
to facilitate learning. Our algorithm can scale up to high-dimensional outputs. The experimental
results have shown an encouraging improvement upon the existing finite, discrete fidelity methods. In
the future, we plan to develop an active learning scheme for our model to further reduce the training
data amount and to maximize the benefit-cost ratio.

Acknowledgments

This work has been supported by MURI AFOSR grant FA9550-20-1-0358 and NSF CAREER Award
IIS-2046295.

References

Al-Kababji, A., Bensaali, F., and Dakua, S. P. (2022). Scheduling techniques for liver segmentation:
Reducelronplateau vs onecyclelr. arXiv preprint arXiv:2202.06373.

Alvarez, M. and Lawrence, N. D. (2009). Sparse convolved gaussian processes for multi-output
regression. In Advances in neural information processing systems, pages 57–64.

Álvarez, M., Luengo, D., Titsias, M., and Lawrence, N. (2010). Efficient multioutput gaussian
processes through variational inducing kernels. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 25–32.

10

Alvarez, M., Ward, W., and Guarnizo, C. (2019). Non-linear process convolutions for multi-output
gaussian processes. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 1969–1977.

Alvarez, M. A., Rosasco, L., Lawrence, N. D., et al. (2012). Kernels for vector-valued functions: A
review. Foundations and Trends® in Machine Learning, 4(3):195–266.

Bonilla, E. V., Agakov, F. V., and Williams, C. K. (2007). Kernel multi-task learning using task-
specific features. In Artificial Intelligence and Statistics, pages 43–50.

Bonilla, E. V., Chai, K. M., and Williams, C. (2008). Multi-task gaussian process prediction. In
Advances in neural information processing systems, pages 153–160.

Boyle, P. and Frean, M. (2005). Dependent gaussian processes. In Advances in neural information
processing systems, pages 217–224.

Bozeman, J. D. and Dalton, C. (1973). Numerical study of viscous flow in a cavity. Journal of
Computational Physics, 12(3):348–363.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential
equations. Advances in neural information processing systems, 31.

Chorin, A. J. (1968). Numerical solution of the navier-stokes equations. Mathematics of computation,
22(104):745–762.

Conti, S. and O’Hagan, A. (2010). Bayesian emulation of complex multi-output and dynamic
computer models. Journal of statistical planning and inference, 140(3):640–651.

Cutajar, K., Pullin, M., Damianou, A., Lawrence, N., and González, J. (2019). Deep gaussian
processes for multi-fidelity modeling. arXiv preprint arXiv:1903.07320.

Damianou, A. and Lawrence, N. (2013). Deep gaussian processes. In Artificial Intelligence and
Statistics, pages 207–215.

Dormand, J. R. and Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26.

Goovaerts, P. et al. (1997). Geostatistics for natural resources evaluation. Oxford University Press
on Demand.

Goulard, M. and Voltz, M. (1992). Linear coregionalization model: tools for estimation and choice
of cross-variogram matrix. Mathematical Geology, 24(3):269–286.

Hamelijnck, O., Damoulas, T., Wang, K., and Girolami, M. (2019). Multi-resolution multi-task
gaussian processes. arXiv preprint arXiv:1906.08344.

Hebbal, A., Brevault, L., Balesdent, M., Talbi, E.-G., and Melab, N. (2019). Multi-fidelity modeling
using DGPs: Improvements and a generalization to varying input space dimensions. In NeurIPS
Workshop on Bayesian Deep Learning.

Higdon, D. (2002). Space and space-time modeling using process convolutions. In Quantitative
methods for current environmental issues, pages 37–56. Springer.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer model calibration using
high-dimensional output. Journal of the American Statistical Association, 103(482):570–583.

Incropera, F. P., Lavine, A. S., Bergman, T. L., and DeWitt, D. P. (2007). Fundamentals of heat and
mass transfer. Wiley.

Journel, A. G. and Huijbregts, C. J. (1978). Mining geostatistics, volume 600. Academic press
London.

Kennedy, M. C. and O’Hagan, A. (2000). Predicting the output from a complex computer code when
fast approximations are available. Biometrika, 87(1):1–13.

11

Keshavarzzadeh, V., Kirby, R. M., and Narayan, A. (2018). Parametric topology optimization with
multi-resolution finite element models. arXiv preprint arXiv:1808.10367.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Li, S., Wang, Z., Kirby, R. M., and Zhe, S. (2022). Deep multi-fidelity active learning of high-
dimensional outputs. Proceedings of the Twenty-Fifth International Conference on Artificial
Intelligence and Statistics.

Li, S., Xing, W., Kirby, R. M., and Zhe, S. (2021). Scalable Gaussian process regression networks.
In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences
on Artificial Intelligence, pages 2456–2462.

Matheron, G. (1982). Pour une analyse krigeante des données régionalisées. Centre de Géostatistique,
Report N-732, Fontainebleau.

Olsen-Kettle, L. (2011). Numerical solution of partial differential equations. Lecture notes at
University of Queensland, Australia.

Parussini, L., Venturi, D., Perdikaris, P., and Karniadakis, G. E. (2017). Multi-fidelity gaussian
process regression for prediction of random fields. Journal of Computational Physics, 336:36–50.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32.

Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N., and Karniadakis, G. E. (2017). Nonlinear
information fusion algorithms for data-efficient multi-fidelity modelling. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 473(2198):20160751.

Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC press.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707.

Rakitsch, B., Lippert, C., Borgwardt, K., and Stegle, O. (2013). It is all in the noise: Efficient
multi-task gaussian process inference with structured residuals. In Advances in neural information
processing systems, pages 1466–1474.

Rasmussen, C. E. and Ghahramani, Z. (2002). Infinite mixtures of gaussian process experts. In
Advances in neural information processing systems, pages 881–888.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT
Press.

Sigmund, O. (1997). On the design of compliant mechanisms using topology optimization. Journal
of Structural Mechanics, 25(4):493–524.

Stegle, O., Lippert, C., Mooij, J. M., Lawrence, N. D., and Borgwardt, K. (2011). Efficient inference
in matrix-variate gaussian models with\iid observation noise. In Advances in neural information
processing systems, pages 630–638.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational
inference. Now Publishers Inc.

Wang, Y. and Lin, G. (2020). Mfpc-net: Multi-fidelity physics-constrained neural process. arXiv
preprint arXiv:2010.01378.

Wang, Z., Xing, W., Kirby, R., and Zhe, S. (2021). Multi-fidelity high-order Gaussian processes for
physical simulation. In International Conference on Artificial Intelligence and Statistics, pages
847–855. PMLR.

12

Wilson, A. G., Knowles, D. A., and Ghahramani, Z. (2012). Gaussian process regression networks.
In Proceedings of the 29th International Coference on International Conference on Machine
Learning, pages 1139–1146. Omnipress.

Wu, D., Chinazzi, M., Vespignani, A., Ma, Y.-A., and Yu, R. (2022). Multi-fidelity hierarchical
neural processes. arXiv preprint arXiv:2206.04872.

Xing, W., Shah, A. A., and Nair, P. B. (2015). Reduced dimensional gaussian process emulators of
parametrized partial differential equations based on isomap. In Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, volume 471, page 20140697.
The Royal Society.

Xing, W., Triantafyllidis, V., Shah, A., Nair, P., and Zabaras, N. (2016). Manifold learning for
the emulation of spatial fields from computational models. Journal of Computational Physics,
326:666–690.

Xing, W. W., Kirby, R. M., and Zhe, S. (2021a). Deep coregionalization for the emulation of
simulation-based spatial-temporal fields. Journal of Computational Physics, 428:109984.

Xing, W. W., Shah, A. A., Wang, P., Zhe, S., Fu, Q., and Kirby, R. M. (2021b). Residual Gaussian
process: A tractable nonparametric Bayesian emulator for multi-fidelity simulations. Applied
Mathematical Modelling, 97:36–56.

Zhe, S., Xing, W., and Kirby, R. M. (2019). Scalable high-order gaussian process regression. In The
22nd International Conference on Artificial Intelligence and Statistics, pages 2611–2620.

Zienkiewicz, O. C., Taylor, R. L., Zienkiewicz, O. C., and Taylor, R. L. (1977). The finite element
method, volume 36. McGraw-hill London.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

13

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Background
	Model
	Algorithm
	Related Work
	Experiment
	Predicting Solution Fields of Partial Differential Equations
	Topology Optimization
	Computational Fluid Dynamics
	Interpolation and Extrapolation in Fidelities

	Conclusion

