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Abstract

Scientific Machine Learning (SciML) has significantly advanced climate science by
enabling precise forecasting of complex dynamical systems. While state-of-the-art
models excel in domain-specific tasks, recent advancements in time series-based
foundation models seek to replicate the success seen in natural language processing
and computer vision. This study investigates whether a "small" MLP-Mixer-based
foundation model, Tiny Time Mixers (TTMs), can be fine-tuned to accurately
forecast complex real-world dynamical systems while adhering to practical resource
and cost constraints. Our findings suggest that TTMs are sensitive to the dynamical
characteristics present in the training data, particularly in terms of amplitude and
periodicity, yet significant variations in forecast accuracy were observed within the
same training distribution. These results highlight the need for further adaptation
of TTMs to enhance their robustness in specialized SciML forecasting tasks.

1 Introduction

In recent years, Scientific Machine Learning (SciML) has rapidly emerged as a transformative
approach in climate science, particularly in forecasting complex dynamical systems. Within the
SciML toolkit, there exist a vast number of state-of-the-art architectures such as: Neural ordinary
differential equations (NODEs) which model time-evolving systems by learning continuous-time
dynamics directly from data [3], Physics-informed neural networks (PINNs) which embed physical
laws into the learning process enabling models to predict behavior consistent with known scientific
principles while also leveraging data-driven approaches [11], Deep Neural Operators (DeepONets)
which generalize neural networks to learn operators mapping between function spaces [8]. Although
each of these methods has shown significant promise in domain specific tasks, there is growing
interest in foundation models (FMs) for time series forecasting which aim to replicate the success
seen in NLP and vision domains [2, 16, 14]. Unlike single-task designs, FMs serve as a versatile
base that can be adapted through transfer learning (TL) to perform various downstream tasks with
minimal additional data. Recent time-series FMs like TimesFM [5], Lag-llama [12], Chronos [1],
and Moment [7] have demonstrated strong zero-shot forecasting capabilities. However, these models
often require substantial computational resources, making them less practical for specialized SciML
forecasting tasks. This study addresses a key question: Can a “small" time series-based foundation
model be fine-tuned to accurately forecast a complex real-world dynamical system under practical
resource and cost constraints? To this aim, we consider the recently developed “small" pre-trained
MLP-Mixer based foundation model Tiny Time Mixers (TTMs) [6]. Despite its size, this model has
demonstrated state-of-the-art performance in zero and few-shot forecasting of multivariate time-series
data and as such there has been interest in applying such MLP-Mixer architectures within the field of
SciML [10]. In this study, we fine-tune the TTM model using real-world temperature data within a
hyperparameter optimization framework and evaluate its performance on downstream forecasting
tasks. Our findings suggest that forecast accuracy is sensitive to the amplitude and periodicity of
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Figure 1: The general neural architecture of Tiny Time Mixer.

the dynamics present in the training data, with notable deviations even within the same training
distribution. These results suggest that while TTMs hold promise, further adaptation is required to
enhance their robustness in complex SciML scenarios.

2 Methods

Foundation Model: TTM is an architectural improvement over TSMixer [4], a deep learning model
designed for multivariate time series forecasting using historical data. This architecture consists of
two main components: time-mixing MLPs and feature-mixing MLPs, which are shared across all
time steps and capture covariate information, respectively. Temporal projection is used to map the
time series from its original input length to the target forecast length, while residual connections
allow for deeper architectures and improved training efficiency. Normalization layers ensure stable
and efficient learning, and 2D normalization is applied on both time and feature dimensions due to
the presence of time-mixing and feature-mixing operations. A schematic of the neural architecture
for TTM is presented in Figure 1.
Data: We obtained real world climate data from the ERA5-Land dataset [9]. Specifically, the data
consists of hourly 2-meter temperature measurements for 2022 & 2023, at geographical locations
corresponding to four large cities in the United States (Miami, New York, Los Angles and Seattle),
see Appendix A for further details. This resulted in 17522 time steps for each time series data.
Fine-tuning: We restored the pre-trained model in our codebase and re-trained just the head decoder
which is usually smaller compared to the backbone part of the architecture. We consider two
pre-trained TTM models, the 512-96 (512 context window length, 96 prediction length) and the
1024-96 variant for finetuning. The head decoder for the 512-96 and 1024-96 model variants have
approximately 290k and 390k parameters respectively. For the finetuning we used 80% of the
data and 20% for testing. To obtain the best performance for the finetuning we use a Sequential
Model-Based Optimization (SMBO) framework where we optimize the few-shot percentage, dropout
and head dropout to minimize the evaluation loss. All other hyperparamaters are kept fixed and
we use the AdamW optimizer for all tests which were run on a single NVIDIA V100 GPU. The
hyperparameter definitions and value ranges are presented in Table 1 and the optimized results for the
global finetuning in Table 3 with the corresponding Mean Squared Error (MSE) for both the fine-tuned
and standard pre-trained models. For further details on the data, training methods, hyperparameter
selection, and model performance results, see Appendix A.

3 Results

Figures 2 and 3 show the best and worst fitting forecasts, based on the forecasted MSE, for each city
using our fine-tuned 1024-96 and 512-96 TTM models, respectively. To facilitate visualization, we
plot the time series using a context length that is twice the size of the prediction length, thus the vertical
red line is at a Time of 192 which is twice the prediction length of 96. Additionally, to accommodate
the different temperature scales across cities, the temperature variable θ is normalized as per the
method in the first step of the TTM architecture (see Figure 1). A notable characteristic observed
from both the 512-96 and 1024-96 model forecasts is the significant variation in prediction accuracy
across different cases. For the best-fitting forecasts of the 1024-96 model shown in the top panel
of Figure 2, both the magnitude and periodicity are well predicted by our TTM model, particularly
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Table 1: Hyperparameter definition and values used in our hyperparameter optimization framework.
Hyperparameter Description Values
fewshot Fraction of data used for few-shot fine-tuning 5% - 20%
head_dropout Dropout rate applied to the model’s head 0.2 - 0.9
dropout General dropout rate applied throughout the model 0.2 - 0.9
learning_rate Learning rate for the AdamW optimizer 0.001
batch_size Batch size for training and evaluation 64
num_epochs Maximum number of epochs for training 100
freeze_backbone Whether to freeze the backbone during fine-tuning True
context_length Length of input sequence 512, 1024
forecast_length Length of forecasted output sequence 96
n_trials Number of trials for the hypersearch 100

for Miami, New York, and Seattle. Even when the amplitude and periodicity characteristics are
not obviously clear in the context window, as in the case for Los Angeles, the model still yields an
accurate forecast compared to the real values. Conversely if we consider the worst fitting forecasts
for each city, bottom sub-panels, we observe even when there is a clear periodicity in the dynamics
present in the context window as in the case of Miami, Seattle and Los Angeles the model appears
to somewhat capture this periodicity but fails to appropriately capture the magnitude resulting in
substantial deviations from the actual values. A similar characteristic is observed for the predicted
forecasts of the 512-96 model in Figure 3 which yields very accurate best-fitting forecasts but the
worst-fitting forecasts, while seem to pick up some level of periodicity, completely fail at capturing
the real amplitude. The reason for this discrepancy is not immediately apparent, but we hypothesize
that the data used in the model’s pre-training is likely a contributing factor. Additionally, given the
use of hourly climate data, the data distribution is primarily influenced by periodic dynamics with a
24-hour frequency, as reflected in our observations. We hypothesize that this inherent daily pattern
influences the forecasts, leading the model to produce predictions that retain this periodicity even
when it is not present in the actual data. This discrepancy can lead to substantially divergent forecasts,
especially when the true data lacks the expected periodic behavior, see the bottom sub-panel of the
upper right panel in Figure 3 for an example. Additional forecasts showing this characteristic can be
seen in Appendix C. Although there are discrepancies between the results, it is interesting to see that
the fine-tuned model is able to capture non-obvious patterns, as those seen for the best results for
Seattle and Los Angeles, in which regions with irregular behavior are followed by periodic or nearly
periodic intervals. For further details on the behavior of the TTM models, see Appendix B.

4 Conclusion

In this study, we investigated the performance of the recently developed ‘small’ time series-based
MLP-Mixer FM TTM, in accurately forecasting real-world dynamical systems within practical
resource and cost constraints, evaluating their ability to generalize to new problems in both zero-shot
and fine-tuned scenarios. We found that the compact size of the pre-trained MLP-Mixer models used
in this study enabled us to implement a novel hyperparameter optimized fine-tuning and inference
pipeline with modest hardware and computational resources. We find a substantial variation in the
predicted forecasts from the fine-tuned TTM models: in some cases, the models capture the amplitude
and periodicity within the context window extremely well, while in others, they appear less sensitive
to the periodicity and fail to accurately predict the amplitude, resulting in significant forecasting
errors. The origin of this ‘hallucination’ like behaviour is not clear and to our knowledge has not
been reported on. We hypothesize that there could be at least two reasons for this behaviour. Firstly,
the data used for pre-training the TTM. Secondly, as we are using hourly climate data, the data
distribution is predominantly characterized by periodic dynamics with a 24-hour frequency. This
inherent periodic pattern contributes to the periodic nature of the predicted forecasts, causing the
model to retain this characteristic even when it is absent in the actual data. This results in significantly
divergent forecasts, particularly when true data does not exhibit the expected periodicity as observed
in many of our predicted forecasts. The origin of this behavior is further discussed in Appendix B and
will be explored in an upcoming study. This study highlights that while TTMs can capture dominant
periodic dynamics in the data, they also inherit these patterns even when absent in true observations,
leading to notable forecast deviations suggesting the need for further model refinement to better adapt

3



Seattle New York
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Figure 2: Predicted forecasts by our finetuned 1024-96 TTM model for the four cities: Seattle
(upper left), New York (upper right), Miami (lower left), Los Angeles (lower right). The best- and
worst-fitting forecasts are given by the upper and lower sub panels respectively. The vertical red line
is when the predicted forecasts begin at Time of 192.

Seattle New York

Miami Los Angeles

Figure 3: Predicted forecasts by our finetuned 512-96 TTM model for the four cities: Seattle (upper
left), New York (upper right), Miami (lower left), Los Angeles (lower right). The best- and worst-
fitting forecasts are given by the upper and lower sub panels respectively. The vertical red line is
when the predicted forecasts begin at Time of 192.

to varying data characteristics. Limitations: One of the limitations with the current framework is
the fixed context length and prediction window required by both the model and fine-tuning, which
would need to be adapted to be applied to domain specific SciML scenarios which typically have
variable datasize and forecast length requirements. Another limitation not addressed in this study is
the lack of inclusion of exogenous variables that could influence target predictions. These variables,
with known or estimated values throughout the forecast horizon, can provide valuable context to the
model. For instance, in the climate forecasting case presented, variables from the ERA5 dataset, such
as surface pressure, boundary layer height, and wind speed, could be incorporated. Including these
additional features would likely enhance the model’s forecasting capabilities post-finetuning.
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A Appendix: Data, Training, Hyperparameter Selection, and Model
Performance results

Climate data details: The longitude and latitude coordinates used to acquire the temperature data is
presented in Table 2.

Table 2: Coordinates of Selected Cities
City Latitude Longitude

New York, NY 40.7128° N 74.0060° W
Seattle, WA 47.6062° N 122.3321° W
Miami, FL 25.7617° N 80.1918° W

Los Angeles, CA 34.0522° N 118.2437° W

Training and Hyperparameter optimization details:

Table 3: Best metric and hyperparameter values obtained from our optimization framework used in
the 512-96 and 1024-96 model finetuning.

Context Length MSE Fewshot % Head Dropout Global Dropout MSE (Zero shot)
512 0.0921 5 0.815 0.482 0.0935
1024 0.1002 6 0.773 0.492 0.1008

We employed OPTUNA for hyperparameter optimization, leveraging its Sequential Model-Based Op-
timization (SMBO) approach, specifically the Tree-structured Parzen Estimator (TPE), to efficiently
explore the hyperparameter space. The objective was to minimize the evaluation loss on the time
series forecasting task. We used the optimizer AdamW, combined with an early-stopping mechanism
with patience of 10 epochs without improvement higher than 0. The learning rate is updated by an
OneCycleLR scheme with updating step equal to the number of batches in the train dataset. All the
tests were performed using a single NVIDIA V100 GPU and took less than 20 s to be finished. An
additional hyperparamter not included here is the possibility of updating or not the backbone. It was
not included in our experiments as we observed no significant effect over the results.
To further investigate the difference in forecast accuracy between the base and fine-tuned models,
we computed the mean and standard deviation values from the test batches. A total of 96 batches
were used to derive the statistics presented in Table 4. For the fine-tuned models, we applied the
best-fitting hyperparameter values obtained through our hyperparameter optimization framework. We
employed the relative Mean Squared Error (MSErel) as the evaluation metric for this analysis, which
is computed as follows:

MSErel =

(∑n(t)
i=1

(
Yi − Ŷi

)2
)1/2

(∑n(t)
i=1 (Yi)

2
)1/2

(1)

where Yi represents the true value and Ŷi represents the predicted value for each data point i within
the test set. The metric normalizes the error by the magnitude of the true values, thus providing a
relative measure of prediction accuracy.

Table 4: Performance Metrics for Zero-shot and Fine-tuned Models

Model variant Training Type Mean Standard Deviation

512-96
Zeroshot 0.4087 0.2756

Fewshot (best) 0.3873 0.2353

1024-96
Zeroshot 0.4235 0.2769

Fewshot (best) 0.4106 0.2581
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B Appendix: Additional Analysis of TTM Model Observations

B.1 Periodic ‘Hallucination’ in Forecasting Behavior

We note in the main text that the TTM model exhibits a tendency to "hallucinate" periodic behavior
in some instances. We attribute this phenomenon to two primary factors: (1) the nature of the
pre-training data, which may implicitly encode periodic patterns, and (2) the periodic characteristics
present in the fine-tuning datasets. Regarding (1), the datasets used to pre-train the TTM model
are described in detail in both the original paper [6] and on the dataset repository at https://
huggingface.co/ibm-granite/granite-timeseries-ttm-v1#training-data. While it is
difficult to definitively state that all pre-training datasets exhibit periodic trends, we hypothesize that
datasets such as ‘Australian Weather,’ ‘Australian Electricity Demand,’ ‘Sunspots,’ and ‘Saugeen
River Flow’ show significant periodic behavior. This assumption is reasonable, given that these
datasets represent natural phenomena, which frequently exhibit cyclical trends. Regarding (2), the
fine-tuning data consists of hourly temperature data, which clearly contains periodic characteristics
due to daily and seasonal cycles. This likely reinforces the model’s inclination to generate periodic
patterns.

B.2 Limitations of TTM in Handling High-Frequency Data and Potential Improvements

Another characteristic we observe is that the temperature curves learned by TTM tend to be
‘smoothened’ compared to the actual curves. We note that this could be a possible limitation
of the TTM framework on high-frequency data which suggests the potential to add Fourier features
to this architecture on this problem.
The original foundation model was trained using conventional activation functions, specifically
combinations of Linear and Softmax layers. During fine-tuning, we are somewhat constrained by the
model architecture, as we retain the pre-trained encoder as a backbone and only train a simple linear
decoder. As a result, this setup may not be optimal for capturing multiscale or high-frequency patterns
in the data. Techniques such as Fourier Features [15] or SIREN [13] could potentially enhance the
model’s ability to handle such data. To address this, two possible approaches could be explored: (1)
training a new foundation model from scratch that incorporates Fourier-based features, which would
significantly enhance the current architecture’s ability to represent high-frequency components, or (2)
designing a new type of decoder that utilizes these features. While the second approach may provide
some improvements, it may still be limiting in terms of the overall representation learning capacity
when compared to a full architectural overhaul.

C Appendix: Additional forecasting plots
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Figure 4: More examples for the 512 context length model. a) Seattle, b) Miami
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Figure 5: More examples for the 1024 context length model. a) New York, b) Los Angeles
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