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ABSTRACT

Extracting a visual interpretation of a learned representation of a machine learning
model applied to image data is a relevant task in eXplainable AI (XAI). Effective
visual explanations must reveal how specific features within the learned represen-
tation contribute to the model’s predictions. Pixel-level feature attributions are
a valuable tool for this, as they highlight the regions in the image that are most
influential in the classification process. The hierarchical Owen approximation
of the Shapley values has proved to be an effective strategy for this task. How-
ever, existing approaches lack data-awareness, leading to poor alignment between
the pixel-level attributions and the actual morphological features of the classified
image. This paper introduces ShapBPT, a novel XAI method that computes the
Owen approximation of the Shapley coefficients following a data-aware binary
hierarchical coalition structure, generated from the Binary Partition Tree com-
puter vision algorithm. By aligning with the morphological features of the image,
the proposed method significantly enhances the identification of relevant image
regions. Experimental results confirm the effectiveness of the proposed method.

1 INTRODUCTION

In the field of AI, understanding how a black-box machine learning (ML) model classifies images
is a task of critical importance to extract the representations the model has learned from the data.
We consider the problem of attributing importance scores to individual pixels in an image, which
reflect their contribution to the model’s decision-making process. This task is commonly referred to
as explaining a black-box machine learning (ML) model classifying images.

In recent years, several notable practical approaches were developed to address this task. A pio-
neering approach to this task was LIME (Local Interpretable Model-agnostic Explanations), which
reformulates the problem of explaining image classifications by leveraging an image segmentation
algorithm. This transformation passes from pixel-level attribution values to segment-level scores,
computed using a simple linear regression model (Ribeiro et al., 2016). Although lacking theoreti-
cal guarantees, the effectiveness of LIME lies in its ability to potentially pre-identify relevant regions
through segmentation.

Another influential method is SHAP (SHapley Additive exPlanations), which applies game-theoretic
principles to ML explainability. SHAP combines a feature removal (masking) technique (Lund-
berg & Lee, 2017) together with the use of a simple hierarchical image partitioning (Lundberg,
2020). Providing explanations over hierarchical image structures leverages multi-scale image fea-
tures, which provides better approximations of the representations learnt by the classification model.

In general, it is reasonable to assume that in any image classification task, an effective ML model
needs to learn some form of structured representation that combines some arbitrarily complex but
distinct morphological characteristics of the classified objects (shape, texture, color continuity, etc),
as we assume that the model has learned to recognize structured patterns from the image data.
Consequently, adopting hierarchical partitions that are adaptive and data-aware can improve the
model’s interpretability by aligning more closely with the learned representations, as long as the
partitions are flexible and adaptive and not imposed a-priori (as we cannot assume which structured
representation the model has learnt). Such an approach ensures that the explanations reflect the
underlying features in a way that is both accurate and interpretable, without distorting the model’s
internal hierarchy of representations.
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This paper provides the following contributions:

1. A novel hierarchical model-agnostic eXplainable AI (XAI) strategy that integrates an adap-
tive multi-scale partitioning algorithm with the Owen approximation of the Shapley coef-
ficients. We identify in the BPT (Binary Partition Tree) algorithm of Salembier & Garrido
(2000) a highly valuable candidate for such task. This approach overcomes the limitations
of the inflexible hierarchies adopted by existing state-of-the-art methods like SHAP.

2. An empirical assessment of the proposed method showcasing its efficacy across various
scoring targets, in comparison to established state-of-the-art XAI methods.

We show that the proposed approach surpasses existing Shapley-based model-agnostic XAI meth-
ods that do not leverage on data-awareness, and at the same time it achieves a significantly faster
convergence rate. This efficiency stems from the fact that, on average, fewer recursive applications
of the Owen formula (i.e. expansions of the partition hierarchy) are needed to accurately localize
objects when using a data-aware partition hierarchy, such as the proposed BPT hierarchy, compared
to other hierarchies. As far as we know, this is the first XAI method that combines the Owen formula
with a data-aware partition hierarchy for image data, and with this paper we prove the effectiveness
of this combined strategy for interpreting ML classifiers.

2 METHODOLOGY

A fundamental ML objective is to discover a function, denoted as f : X → Y , that effectively
approximates a response y ∈ Y corresponding to a given input x ∈ X . For the sake of simplicity,
we will assume Y ⊆ R and X ⊆ Rn. In many practical cases only a subset of x significantly
influences the resulting response y = f(x). Understanding the relative importance, or contribution,
of each component xi of x in determining the value of y by f is a central problem in XAI. One
important approach proposed by Covert et al. (2021) for assessing these contributions is through a
technique known as feature removal or masking, wherein certain values of x are replaced with values
from a specified context-dependent background set. Let νf,x : 2|X | → Y be a masking function for
f(x), where νf,x(S) represents the resulting model evaluation when only the elements in the subset
S of x are retained, while the remainders are masked. Hereafter we will denote νf,x as ν.

2.1 SHAPLEY VALUES FOR HIERARCHICAL COALITION STRUCTURES (HCS)

We consider the setup of a n-coalition game (N , ν), which can be considered analogous to an im-
portance scores attribution task in XAI (Rozemberczki et al., 2022). The finite set N = {1, . . . , n}
is the set of players (features). Each non-empty subset S ⊆ N is a coalition, and N is itself the
grand coalition. A characteristic function ν : 2n → R assigns to each coalition S a (real) worth
value ν(S), and it is assumed that ν(∅) = 01. A marginal contribution of a player i to a coalition S
(assuming i ̸∈ S) is given by

∆i(S) = ν(S ∪ {i})− ν(S) (1)
Semivalues (Dubey et al., 1981) are weighted sums of marginal contributions (1), and they were
proposed to address the issue of fairly distributing the total worth ν(N ) of the grand coalition N
among its members. The Shapley value, a well-known semivalue introduced in Shapley (1953),
demonstrates favorable axiomatic properties and it has been used effectively to explain ML models
(Rozemberczki et al., 2022).

A fixed a-priori coalition structure (López & Saboya, 2009; Owen, 2013; 1977) for the N players
is a finite set {T1 . . . Tm} of m partitions of N (i.e. ∪m

k=1Tk = N , and Ti ∩ Tj ̸= ∅ ⇔ i = j).
Elements Ti are usually called partitions, coalitions, teams or unions.

We consider a recursive definition of a hierarchical coalition structure, where each partition T can
be either an indivisible partition or a sub-coalition structure itself T = T1 ∪ . . . ∪ Tm. Let T↓ be
the (downward) recursive partitioning of T , defined as

T↓ =

{{T1 . . . Tm} if T admits a sub-coalition structure
⊥ if T is indivisible

(2)

1By translating the equation system, it is always possible to ensure ν(∅) = 0.
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We denote with T the HCS root, and assume w.l.o.g. that T contains all the elements of N .

A special case of HCS happens when each sub-coalition structure is made by two partitions, i.e. the
hierarchy forms a binary tree. We refer to these structures as binary hierarchical coalition structures
(BHCS). In that case the recursive downward partitioning of T can be simplified as

T↓ =

{{T1, T2} if T admits a binary sub-coalition structure
⊥ if T is indivisible

(3)

2.2 THE OWEN APPROXIMATION OF SHAPLEY VALUES FOR BINARY HCS

Computing Shapley values has exponential time complexity, which is unfeasible for image data with
hundreds or thousand of features (pixels). An approximate approach, introduced by Owen (1977)
can be used to drastically reduce the complexity by grouping features into hierarchical coalitions.
This concept has been pioneered for image data by the SHAP Partition Explainer (Lundberg, 2020;
Shrikumar et al., 2017; Lundberg & Lee, 2017).

A coalition value Ωi(T ) represents the worth of player i in a game with coalition structure T , and
is known as the Owen coalition value (Owen, 1977). Computing coalition values over a binary HCS
T as defined in (3) can be done with a recursive formula

ΩB
i (Q,T ) =


1

2
ΩB

i (Q ∪ T2, T1↓) +
1

2
ΩB

i (Q, T1↓) if T↓ = {T1, T2}
1
|T |∆T (Q) if T is indivisible

(4)

s.t. Ωi(T ) = ΩB
i (∅, T ). The former case of Eq. (4) deals with coalitions T that admit a sub-coalition

structure T↓ ̸= ⊥. We assume, for notational simplicity and without loss of generality, that i ∈ T1.
The latter case of Eq. (4) deals with indivisible coalitions. In that case, the formula assigns a single
coalition value to all players inside the coalition T , divided uniformly among all the members of T .

In the rest of the paper, we will refer to the Owen approximation of the Shapley values simply as
Shapley values. Note that Eq. (4) is not found in published literature (as far as we know), and its
complete derivation is therefore provided in Appendix A.1.
Theorem 1. Computational cost. Consider a BHCS consisting of a balanced tree of depth d. The
time complexity of Eq. (4) is in the order of O(4d) evaluations of the ν function.

Proof. In Appendix A.2.

Theorem 1 highlights the exponential cost of Eq. (4). However, practical implementation of Eq. (4)
do not rely on expanding a fully balanced BHCS tree to a fixed depth d. Instead , they employ an
adaptive splitting strategy that is not limited to balanced trees. In this adaptive case, a total budget b
of evaluations of the masked model ν is allocated. The adaptive algorithm then iteratively explores
the tree hierarchy, at each iteration splitting the partition T that maximizes the sum of its Shapley
values,

∑
i∈T ΩB

i (∅, T ). Each partition split requires 2 model evaluations. A pseudo-code of this
adaptive algorithm is provided in Appendix A.3. Despite adaptively ignoring certain coalitions, the
cost of exploring the hierarchy at depth d remains exponential, as stated in Theorem 1.

3 HIERARCHICAL COALITION STRUCTURES FOR IMAGE DATA

Calculating Owen coalition values for image data necessitates a well-defined hierarchical structure
that captures both spatial relationships and image semantics. Our approach is aimed at addressing
limitations in existing methods, by emphasizing the importance of these factors in coalition forma-
tion. We therefore consider and compare both data-agnostic and data-aware approaches.

In a data-agnostic approach, partitions are created based on simple geometric divisions, like grids
or quadrants. The Axis Aligned hierarchy (AA hereafter) is one such approach to building hier-
archical coalition structures, adopted by the SHAP’s Partition Explainer (Lundberg, 2020) and by
h-SHAP (Teneggi et al., 2022) In an AA hierarchy, each partition T corresponds to a rectangular re-
gion within the image, and T↓ splits the rectangular region of T in half along the longest axis. This
splitting process continues until individual, indivisible regions (unitary regions, with a single pixel)
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Figure 1: AA and BPT coalition structures for a sample image, explanations from a ResNet50 model.

are reached. The main limitation of this approach is that properly localizing the relevant regions
within an image may require a large number of recursive evaluation of the Owen’s formula (4), and
this evaluation follows the O(4d) time cost of Theorem 1.

In a data-aware approach, morphological features within the image guide the partitioning process.
This approach, pioneered by Ribeiro et al. (2016) with LIME, utilizes a pre-defined segmentation
algorithm to divide the image into regions (patches). Although effective, the main limitation is the
lack of an effective feedback loop within the explanation method. If the segmentation is inaccurate,
the resulting explanation is poor, and there is no opportunity for refinement.

A notable algorithm for hierarchical segmentation, that fits well with Eq. (4), is the Binary Partition
Tree (BPT) (Randrianasoa et al., 2018), originally developed for multiscale image representation in
MPEG-7 encoding (Salembier & Garrido, 2000). The intuitive principle is that portions of an image
with similar color and coherent shape are highly likely to have similar Shapley values, thereby
maximizing the effectiveness of Eq. (4).

Theorem 1 shows that the Owen approximation cost increases rapidly if a large number of coalitions
need to be evaluated recursively. Therefore, an effective BHCS needs to satisfy these requirements:

R1 As few recursive cuts as possible to reach the relevant regions, as each cut increases the
required evaluation budget b exponentially;

R2 Partitions should not be fixed, since the relevant regions are not known in advance.

AA hierarchies do no satisfy R1, and most a-priori segmentation algorithms do no satisfy R2. The
solution that we propose, which constitutes the main contribution of this paper, is a novel hybrid
method that finally statisfies the two aforementioned requirements by combining a dynamic a-priori
hierarchical coalition structure (the BPT) aligned with the morphological features of the image (e.g.,
color uniformity, pixel locality) together with an a-posteriori splitting strategy based on the distri-
bution of Shapley values (as in the Partition Explainer). This combination results in fewer recursive
applications of the Owen formula needed to accurately localize objects, compared to data-agnostic
coalition structures. As we shall see in the experimental section, this approach gets a significantly
faster convergence than other Shapley-based methods, paired with accurate shape recognition of the
classified objects.

3.1 GENERATING BPT HIERARCHIES.

A BPT hierarchy captures how we can progressively merge (Randrianasoa et al., 2018) the n pixels
of an image x into larger regions, forming a quasi-balanced binary tree. Such tree is built bottom-
up, starting from an initial coalition structure T[1] =

{
T1={1} . . . Tn={n}

}
made by n unitary and

indivisible partitions, where the features 1 . . . n represents the individual pixels of the image. Two
partitions Ti, Tj ∈ T[k] are adjacent if there is at least one pixel of Ti that is adjacent to a pixel of
Tj in the image. The BPT construction involves merging adjacent partitions iteratively. A coalition
merge of T[k] is a new coalition structure T[k+1] where two adjacent partitions Ti, Tj ∈ T[k] are
removed and replaced by a new partition Tn+k, s.t. Tn+k = Ti ∪ Tj and Tn+k↓ = {Ti, Tj}.

The two adjacent partitions Ti, Tj of T[k] being merged are selected by minimizing a data-aware
distance functions. While multi-criteria BPT are possible (Randrianasoa et al., 2021), we focus on a
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Figure 2: (A) BPT generating by bottom-up merging coalitions from the pixels (1–6) to the to the
root (11). (B) Details of one merging step T8↓ = {T4, T5} on some arbitrary coalition structure.

simple distance based on the intuitions found in Randrianasoa et al. (2018) and defined as

dist(Ti, Tj) = dist2color(Ti, Tj) · area(Ti, Tj) ·
√
perim(Ti, Tj) (5)

where dist2color(Ti, Tj) is the sum of the squared color ranges of Ti ∪ Tj , for all color channels, and
area(Ti, Tj) and perim(Ti, Tj) are the area and the perimeter of Ti∪Tj , respectively. This function
is a heuristic criterion that balances together color similarity and shape regularity (perimeter). The
area improves the construction of a (semi)-balanced tree, which is a desirable feature of such trees.

A merging sequence T[1] → T[2] → . . . → T[n] is a sequence of n − 1 coalition merges. The
sequence ends with the coalition structure T[n] =

{
T2n−1

}
, having a single partition with all pixels.

At this point, all non-unitary partitions T at any point in the merging sequence admit a binary sub-
coalition structure T↓. Therefore, the BPT T[n] satisfies Eq. 3, and may become the root T of the
BHCS. An illustration of the algorithm generating the BPT merging sequence is shown in Fig. 2/A,
where the unitary partitions are merged, one by one, until all pixels are merged into the root T .
The operations needed to perform a single merging step are illustrated in Fig. 2/B, while a detailed
pseudo-code of the BPT algorithm is provided in Appendix A.4.
Example 1. Figure 1 shows a sample image (A) alongside its Shapley explanations (B) obtained from
applying Eq. (4) on the AA and BPT hierarchical coalition structures (C), up to a predetermined
depth value d = 4. The first four depth levels of the tree hierarchy are depicted in (C), to show
how the BPT partitions are data-aware. In these explanations, each hierarchical coalition value is
computed through weighted sums of the eight marginals φ̂i(Q,T ), and those eight marginals for the
highest value are depicted in (D), where Q and T represent the grey and black regions, respectively.
Coalitions depicted in (D) are obtained by the application of Eq. (4).

4 EXPERIMENTAL ASSESSMENT

We present a comparative analysis of the performance of the proposed Shapley method using BPT
partitions, alongside other state-of-the-art image explainers.

Comparison scores. We consider a quantitative evaluation of the methods using six different
scores, summarized hereafter. The first two are the established metrics from Petsiuk et al. (2018).
These two area-under-curve scores measure how well the explanation coefficients (represented by
Shapley values) in rank order align with the black-box model’s output. Let S[q] ⊆ N be the subset
of the first q-th quantile of elements from N with the largest Shapley values. Define

AUC+ =

∫ 1

0

ν
(
S[q]

)
dq, AUC− =

∫ 1

0

ν
(
N \ S[q]

)
dq (6)

With this definition AUC+ (and AUC−) evaluate the model’s behavior as features are progres-
sively included (AUC+) or excluded (AUC−) from an empty set (for inclusion) or the full set (for
exclusion). Intuitively, both scores assess if features with higher Shapley values are indeed more
important for the model’s prediction.

We extend the previous scores by quantifying how fairly the sum of the Shapley values for the
features S contribute to the model output ν(S). Let η(S) be the sum of Shapley values for any
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Figure 3: Shapley values for AA and BPT coalition structures, for different values of the budget b.

subset S ⊆ N . Ideally, the change in model output ν(S) should be directly proportional to the
sum of Shapley values of the included features η(S), reflecting the efficiency axiom (Rozemberczki
et al., 2022). Therefore, we can consider the difference ν(S)−ν(∅) as an error, and take its squared
mean. The scores MSE+ and MSE− follow the same insertion/deletion logic of Eq. (6) while also
quantifying how proportionally the assigned Shapley values translate into their actual influence on
the model’s output.

MSE+ =

∫ 1

0

(
ν(S[q])− η(S[q])

)2
dq, MSE− =

∫ 1

0

(
ν(N \ S[q])− η(N \ S[q])

)2
dq (7)

We consider also two metrics that are specific for the Visual Recognition Challenge (VRC) problem.
Assume that there is a subset G ⊆ N that defines the features that should ideally contribute to the
classification, i.e. ν(G) = ν(N ). Assume that G, the ground truth, is known for the evaluation.
An explanation is a perfect recognition if there is a threshold q for which S[q] = G. Consider the
standard Intersection-over-Union score J (A,B) = |A∩B|

|A∪B| and define

AU -IoU =

∫ 1

0

J (S[q], G) dq, max -IoU = max
q∈[0,1]

(
J (S[q], G)

)
(8)

The Area Under IoU curve (AU -IoU ) score (Gangopadhyay et al., 2023) is the area of the curve of
the IoU value for all the thresholds q ∈ [0, 1], while max -IoU is the curve maximum. The AU -IoU
is maximal if the explanation is a perfect recognition, and in such case max -IoU = 1.
Example 2. Figure 3 shows the Shapley values computed using Eq. (4) on the AA and BPT coalition
structures, by refining the most significant coalition using a budget b of model evaluations (A), for
four budget values of 10, 100, 500 and 1000 samples, respectively. The five plots (B) depict the AU
curves for the five considered AUC scores (6), (7) and (8), for the case b=1000. The area identified
by the threshold q obtaining the maximal IoU is depicted in (C). In the example, BPT demonstrates
significantly faster convergence and improved object region recognition w.r.t. AA.

Compared methods. We run a comparative analysis using several state-of-the-art XAI methods,
categorized into two groups. The first group comprises Shapley-based methods, chosen for their
compatibility with our proposed approach. They include: BPT-b: our proposed Shapley explana-
tion method with BPT partitions, with sample budgets b of 100, 500, and 1000 samples; AA-b: the
SHAP Partition Explainer (Lundberg, 2020), utilizing Axis-Aligned partitions with b of 100, 500,
and 1000 samples; LIME-k: LIME2 explanation (Ribeiro et al., 2016) with k segments (with k be-
ing 50, 100 and 200) and a budget b = 5 · k.

2Although LIME does not generate Shapley values, it has theoretical and practical similarities to
them (Lundberg & Lee, 2017).
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Figure 4: Saliency maps for a few ImageNet-S50 images, classified by the ResNet50 model.

The second group consists of gradient-based methods, included in our analysis due to their
widespread usage. They include: GradExpl: The Gradient Explainer from the SHAP pack-
age (Lundberg & Lee, 2017), using the default of 20 samples; GradCAM: The Gradient-weighted
Class Activation Mapping introduced by Gildenblat & contributors (2021); IDG: The Integrated De-
cision Gradient method proposed by Walker et al. (2024); LRP: Layer-wise relevance propagation
of Bach et al. (2015); Ancona et al. (2018) from the Captum library; GradShap: Gradient Shap of
Sundararajan et al. (2017).
Explanations from LIME and gradient-based methods are normalized to the ν(N ) − ν(∅) value
before computing the MSE scores. For GradExpl and IDG, we utilize the absolute values of the
produced explanations, resulting in superior scores compared to the signed values.

Name Dataset Model Short description Reference
E1 ImageNet-S50 ResNet50 Common ImageNet setup Fig. 5
E2 ImageNet-S50 Ideal Controlled setup for exact IoU Appendix A.7
E3 ImageNet-S50 ResNet50 Multiple replacement values Appendix A.8
E4 ImageNet-S50 VGG-16 Common ImageNet setup Appendix A.9
E5 ImageNet-S50 Swin-ViT Vision Transformer model Appendix A.10
E6 MVTec VAE-GAN Explainable Anomaly Detection Appendix A.11
E7 CelebA CNN Facial attributes localization Appendix A.12

Table 1: Summary of the experiments

A summary of the experiments included in this paper is provided in Table 1. We focus on the
experiment E1, which is a typical ImageNet setup that is commonly used to benchmark explainable
AI methods. The remaining experiments are reported in the Appendix.

Experiment E1. We use the 1K-V2 pretrained (Vryniotis, 2021) ResNet50 (He et al., 2016) model
found in the PyTorch library, with accuracy 80.858%. Masking is performed by replacing pixels
with uniform gray. We consider the ImageNet-S50 dataset of Gao et al. (2022), which features
precise ground truth masks for a few selected images. For simplicity, we consider the images for
which the ground truth is available for the top predicted class, resulting in 574 images.

Saliency maps. Looking directly at the saliency maps of the explanations generated by the tested
models allows us to get a first intuition of the characteristics of the BPT method. Figure 4 shows a
few selected examples. Each row reports the image, the ground truth G, and the saliency maps for
the fourteen tested methods in the E1 setup. The boundaries of G are drawn overlapped to every
saliency map, to help identify the object. To illustrate the evaluation process, for the first image,
we also report the optimal IoU w.r.t. G. In general BPT explanations (columns 3–5) show a better
tendency of identifying the partition borders, cutting the recognized object from the background.
In that sense, they share similarities with the explanations of LIME, but without the typical LIME
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Figure 5: Results for the six metrics across 574 images from the ImageNet-S50 dataset, with methods
sorted to display the highest-performing one atop each column, for the experiments E1.

noise, and without relying on a fixed, inflexible segmentation. Moreover BPT explanations look a
lot more in accordance to those of GradCAM, but without the blurriness that the latter adds. While
all the tested methods seem to somewhat agree on the recognition area, the practical behaviour of
BPT seems in line with its theoretical assumption that splitting the image partitions following the
morphological image boundaries leads to better object recognition, and better separation from the
background. Additional saliency maps for E1 are included in Appendix A.6.

Numerical results. Figure 5 reports the results for E1, with one table for each of the six metrics,
plus one for the evaluation time3 (logscale). Scores are drawn as boxplots (treating values outside
10 times the interquantile range as outliers, drawn as fuchsia dots), with a method symbol on the
right (see the legend for the mapping). We conducted one-way ANOVA tests for each score to assess
whether the null hypothesis (H0) of equal means across all sample populations could be rejected,
with a p-value threshold of 0.05. All scores reject H0, implying that there is sufficient data to suggest
that the result is significant.
In E1, BPT is positioned close or at the top of every score. In this case, AA has a slightly better
AUC+ score, but a worse AUC− score than BPT. Interestingly, GradCAM and IDG get very low
MSE errors, which is unexpected since these are not Shapley-based methods and do not obey any
efficiency axiom. The BPT method seems to be particularly effective at the IoU scores max-IoU
and AU-IoU, which can be explained by the capacity of recognizing the borders of the objects, by
following a data-aware hierarchy. Only GradCAM reaches similar IoU scores, but in practice the
localization of GradCAM is more blurred and fuzzy (this limitation is apparently not well captured
by the two IoU scores).

As a side note, observe that the IoU scores make the assumption that the ground truth G is actually
aligned with the learned representation of the model. This is likely to be an approximation, as it is
known that deep learning models on problems like ImageNet tend to learn weak correlations between
objects, and focus on details. However, this approximation affects uniformly all XAI methods, as
they all explain the same model, and in principle should not introduce a bias favoring some specific
XAI method. We designed a separate experiment E2, reported in Appendix A.7, that avoids this
issue by using a linear model perfectly aligned with the ground truth. The AUC and MSE scores
are unaffected by this approximation, as they do not rely on any ground truth.

Descriptions and results of the remaining experiments in Table 1 are presented and discussed in
the appendix (A.7–A.12). While these findings may not be deemed conclusive, we observe that
BPT outperforms AA in the region localization problem and in several metrics, while also achieving
effective explanations with very little budget – sometimes even an order of magnitude less.

3All reported times were computed with an Intel Core9 CPU, an Nvidia 4070 GPU, and 16GB of RAM.
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5 DISCUSSION ON LIMITATIONS AND OTHER RELATED WORKS

The proposed method, as repeatedly mentioned in the text, combines the SHAP Partition Explainer
of Lundberg (2020) with the partition hierarchy of the BPT algorithm of Salembier & Garrido
(2000). The rationale behind this combination lies in the notion that image regions sharing sim-
ilar morphological characteristics are likely to exhibit comparable Shapley contributions. If this
rationale is not satisfied for a partition, such partition can be further subdivided, progressively local-
izing the regions activating model recognition. The proposed approach is general, but it is particu-
larly useful for the Visual Recognition Challenge (Russakovsky et al., 2015) problem. However, the
effectiveness of this approach is based on the assumption of a correlation between image morpho-
logical features and their corresponding explanations. While the assumption may appear reasonable,
assessing its complete impact is challenging.
A close concern is related to the introduction of potential biases. After extensive experimentation
with the proposed method, we hypothesize that BPT partitions do not introduce significant biases
w.r.t. other Owen approximations. However, we have not formally quantified this assertion, leaving
it as a subject for future research.

We considered also the h-Shap approach of Teneggi et al. (2022), which exhibits faster convergence
than the one derived in Theorem 1. Unfortunately, the different definition of the object recognition
task makes the comparison challenging, and we have not included it in the evaluation. However, we
believe that also h-Shap would greatly benefit from using BPT partitions.

We used the quickshift algorithm to generate the fixed a priori partitions for LIME. We also evaluated
the more recent SegmentAnything partitioning algorithm, which offers some improvements over
quickshift, albeit at the cost of being significantly slower. However, the rigidity of working with a
priori partitions that may not align with the model’s internal representation persists, a limitation that
is addressed by the proposed BPT approach.

We initially considered incorporating the relevance mass and rank accuracy scores from Arras et al.
(2022) into our analysis of the experiment results. However, we ultimately decided against it, as
these metrics rely on non-negative values, which are incompatible with Shapley values.

While Eq. (5) provides reasonable partitionings in the experimental setup, it is also well recognised
to be a critical (Randrianasoa et al., 2021) component of the BPT algorithm. A complete analysis
and optimization of this heuristic equation has not beed carried out, and it is left for a future work.

As a side note, we empirically observed that the AUC+ and AUC− scores (Petsiuk et al., 2018),
which are considered among the gold standards for XAI evaluation (Nauta et al., 2023), do not al-
ways align with our intuition. For example, in Figure 3/B, AUC+ shows a significant overshoot
above the ν(N ) prediction value. While this is beyond the goal of this paper, we believe further
investigation into this class of XAI scores is needed, particularly regarding the behavior of over-
shooting beyond the prediction range of ν(N ) and ν(∅) (more details in Appendix A.8).

6 CONCLUSIONS

This paper introduces a novel eXplainable AI method, named ShapBPT, that generates image ex-
planations by computing the the Owen approximation of the Shapley coefficients following a data-
aware Binary Partition Tree hierarchy. We provide the formulation of the method, including the
approximation at the indivisible partitions, its computational cost, and the algorithms. An evalua-
tion is performed on multiple settings, models and datasets, with a full scale comparison with other
state-of-the-art XAI methods. We believe that our method produces explanations that are noticeably
better both visually and quantitatively compared to existing methods, as they are built following a
coalition structure that is hierarchically and adaptively expanded to better follow the morphological
features of the image data, which are assumed to be the representation learnt by the model.

Reproducibility Statement: We provide as Supplementary Material: I) the ShapBPT library code;
II) all the notebooks needed to reproduce the benchmark and generate the figures included in this
paper; III) instructions on how to obtain the datasets and how to install and run the whole benchmark.
In addition we provide a link to an anonymous repository containing all the trained model weights
and all the precomputed results. All supplementary material will be made publicly available upon
acceptance.
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A APPENDIX

A.1 DERIVATION OF EQUATION (4)

We present a clear formulation of the Owen approximation of Shapley values within a hierarchical
coalition structure, as this specific approach appears to be absent from existing published literature.
To ease our formulation, we start from a simple extension of the Shapley formula:

φi(Q,N ) =
∑

S⊆N\{i}

1

n ·
(
n−1
|S|

)∆i(Q ∪ S) (9)

where n is the cardinality of N . Eq. (9) assigns a unique distribution of the total worth ν(N ) gener-
ated by cooperation among players in a coalition game, and is extended by assuming that all coali-
tions S are supported by a persistent set of players Q. The regular Shapley value (Shapley, 1953,
Eq.12) are obtained from (9) as φi(∅,N ). The persistent set Q is used for the Owen approximation.

The Owen coalition value (Owen, 1977) is an extension of the Shapley value, and it is a quantity
Ωi(T ) that represents the worth of player i in a game with coalition structure T . The original
formulation for a two-level coalition structure hierarchy4 works as follows. Consider a player i
belonging to team Tj ∈ T ↓. Then

Ωi(T ) =
∑

H⊂M
j ̸∈H

∑
S⊂Tj

i ̸∈S

h!(m− h− 1)! s! (tj − s− 1)!

m! tj !
∆i(QH ∪ S) (10)

where M = {1 . . .m} is the set of structured coalition indices of T , QH =
⋃

k∈H Tk, and the
values h, s, tj are the cardinalities of the sets H , S and Tj , respectively.

Eq. (10) can be seen as a two-level Shapley value, where inside a team Tj all coalitions are possible,
but once a coalition S ⊂ Tj is formed, only a restricted all-or-nothing form of cooperation with the
other teams is possible. In fact, it is possible to rewrite (10) by explicitly identifying the Shapley
value for the subsets S of Tj . By doing so with (9) and applying simple algebraic transformations,
we get

Ωi(T ) =
∑

H⊆M\{j}

1

m ·
(
m−1
|H|

)φi(QH , Tj) (11)

i.e. the Owen coalition value is defined on the basis of the Shapley value (extended as in Eq. (9)),
similarly to the approach of the so-called “two-steps value” formulation of (Owen, 2013, p.300).

Example 3. Consider a coalition structure T =
{
{1, 2}, {3, 4, 5}, {6}

}
. The coalition value

Ω1(T ) = η1(∅, T ) is the weighted sums of eight marginals:

1
6∆1(∅) 1

6∆1({2}) 1
6∆1({3, 4, 5, 6}) 1

6∆1({3, 4, 5, 6, 2})
1
12∆1({6}) 1

12∆1({6, 2}) 1
12∆1({3, 4, 5}) 1

12∆1({3, 4, 5, 2})
Since player 1 is in an a-priori coalition with player 2, the other two teams {3, 4, 5} and {6} can
only appear as a whole. As a consequence, the Owen approximation of the Shapley coefficients only
observes some coalitions, that preserve the integrity of the teams that are in a separate branch of
the tree hierarchy.

Observe that Ωi(T ) ̸= φi(∅,N ), as only a selected structured subsets of coalitions are formed (see
López & Saboya (2009) for an in-depth analysis of this relation).

The two-level formulation is easily extended to an arbitrary hierarchy of coalitions, and this idea
has been pioneered for image data by the SHAP Partition Explainer (Lundberg, 2020; Shrikumar
et al., 2017; Lundberg & Lee, 2017). Therefore a hierarchical Owen coalition value can be obtained
rewriting Eq. (11) on top of other Owen coalition values for a coalition T , as long as T is not an
indivisible coalition. The concept is also briefly sketched in (Owen, 1977, p.87), but we rewrite
the equation to have a simple recursive formula that is general for m-ary and binary hierarchical
coalition structures, as in Eqs. (2) and (3), respectively.

4In a two-level coalition structure hierarchy T , we have T ↓ = {T1 . . . Tm}, and ∀ 1 ≤ i ≤ m: Ti↓ = ⊥.
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binary and multi-way tree hierarchies (i.e. m > 2).

Consider Eq. (11) and replace the summation over the subsets of indices M with a uniform subset
U of the sub-coalition structure of T↓, making the marginal contribution of Eq. (1) as the base case
of the recursion, and adding a persistent set Q as done for Eq. (9).

Ωi(Q,T ) =


∑

U⊆T↓\{Tj}

1

m ·
(
m−1
|U |

)Ωi(Q ∪QU , Tj↓) if T↓ = {T1 . . . Tm}

1
|T |∆T (Q) if T is indivisible

(12)

where QU =
⋃|U |

k=1 Uk, and assuming Tj contains i. As before, indivisible coalitions receive uni-
form attributions among all players. The Owen coalition value for player i using Eq. (12) is ob-
tained from Ωi(∅, T ), with T the HCS root. When T = {N}, T ↓ = ⊥, then Eq. (12) reduces to
φi(Q,N ), which is trivially equivalent to Eq. (9). Using a two-level HCS, then Eq. (12) is equiva-
lent to Eq. (10) and Eq. (11). For arbitrary nested hierarchies, the equation expands, generating the
coalitions Q that may pair with the set T containing player i, following the hierarchy constraints.

Example 4. Consider a three-level HCS T =
{{

{1, 2}, {3, 4}
}
,
{
{5, 6}, {7}, {8}

}}
. The hierar-

chical coalition value Ω1(∅, T ) is the weighted sums of eight marginals:

1
8∆1(∅) 1

8∆1({2}) 1
8∆1({5, 6, 7, 8}) 1

8∆1({5, 6, 7, 8, 2})
1
8∆1({3, 4}) 1

8∆1({3, 4, 2}) 1
8∆1({5, 6, 7, 8, 3, 4}) 1

8∆1({5, 6, 7, 8, 3, 4, 2})

Coalitions can pair with player 1 following the hierarchy. Therefore {3, 4} and {5, 6, 7, 8} can only
appear as a whole block from the point-of-view of player 1, even if the partition {5, 6, 7, 8} is not a
single coalition.

Eq. (12) applies to m-ary coalition structure, but the case for binary hierarchies is simpler. By as-
suming m = 2, the formula Ωi(Q,T ) of Eq. (12) can be simplified, obtaining Eq. (4) and completing
our derivation.

A.2 PROOF OF THEOREM 1

Applying Eq. (4) to a partition T that admits a sub-coalition structure T↓ = {T1, T2} creates four
branches (two for i ∈ T1 and two for i ∈ T2) and necessitates two ν evaluations. Since we are
assuming the BHCS hierarchy to be a balanced tree with depth d, we can define the total number
a(d) of ν evaluations for the expansion of all nodes up to depth d. Such quantity a(d) follows a
linear recurrence sequence represented by Eq. (13):

a(d) =

{
4 · a(d− 1) + 2 if d > 0

0 if d = 0
(13)

Recursion from Eq. (13) can be eliminated, since the equation is a well-known non-homogeneous
linear recurrence with constant coefficients, having solution

a(d) = α · a(d− 1) + β =
β(αd−1 − 1)

α− 1

By using α = 4 and β = 2, Eq. (13) simplifies to:

a(d) =
2

3
(4d−1 − 1) (14)

Thus, the time complexity of Eq. (4) exhibits exponential growth, approximately O(4d).

A.3 PSEUDO-CODE OF THE OWEN APPROXIMATION ALGORITHM

A limitation of equation Eq. (4) is that the same coalitions are generated in the recursive expansion
of ΩB

i (∅, T ), for different players i ∈ N . This issue may severely limit the performance, but it can
be easily solved either by memoization, or by generating all the coalitions using a tree visit.
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Algorithm 1: Iterative implementation of Equation Eq. (4).
1 function OwenValues(ν, T , b)
2 foreach i ∈ N do ΩB[i]← 0

3 queue .push
(
⟨1,∅, T , ν(∅), ν(N )⟩

)
4 while queue is not empty do
5 w,Q, T, vQ, vQ∪T ← queue.pop()
6 if T is indivisible or b ≤ 1 then
7 foreach i ∈ T do ΩB[i]← ΩB[i] + w

|T |

(
vQ∪T − vQ

)
8 else
9 T1, T2 ← T↓

10 vQ∪T1 ← ν(Q ∪ T1); vQ∪T2 ← ν(Q ∪ T2); b← b− 2

11 queue .push
(
⟨w
2
, Q, T1, vQ, vQ∪T1⟩, ⟨w2 , Q ∪ T2, T1, vQ∪T2 , vQ∪T ⟩

⟨w
2
, Q, T2, vQ, vQ∪T2⟩, ⟨w2 , Q ∪ T1, T2, vQ∪T1 , vQ∪T ⟩

)
12 return ΩB

An efficient iterative implementation of the latter is sketched in Algorithm 1, and it is conceptually
equivalent to the Partition Explainer of SHAP (Lundberg, 2020). Therefore it does not constitute a
novel paper contribution, but we report it for reader’s convenience and self-containment.

Algorithm 1 operates at the partition level. It starts from the full coalition at the root T of the BPT
hierarchy (measuring the difference ν(N )− ν(∅)). Partitions are inserted into a queue, assumed to
be ordered by a priority w. It then proceeds by splitting the next partition with the highest w, using
Eq. (4). Each split requires two model evaluations (line 10), thus reducing the budget b by 2. The
splitting continues until the budget b is consumed, or all partitions left are indivisible.

A.4 PSEUDO-CODE OF THE BPT ALGORITHM

Detailed pseudo-code for the BPT algorithm can be found in (Salembier & Garrido, 2000; Randri-
anasoa et al., 2018; 2021), but a pseudo-code is provided in Algorithm 2. The algorithm is made by
three functions:

• init bpt: initializes the unitary partitions i of the BPT hierarchy from the individual pixels
px of the input image x, and creates the heap of all the pairs of adjacent pixels.

• get dist: computes the distance between two (adjacent) partitions i and j using Eq. (5).
• build bpt: ieratively merges adjacent partitions in distance-order, each time creating a new

merged partition k, and updates the weights in the heap accordingly. The function proceeds
as long as there are adjacent partitions, i.e. it stops when all pixels are merged into a single
root partition.

Once Algorithm 2 has generated a merging sequence, it can be efficiently stored into 6 arrays:

• leaf idx [i]: the image pixel of unitary coalition i, with i ∈ [1, n];
• left branch[k] and right branch[k]: the two partition indexes resulting from the split Tk↓

of each non-unitary coalition k, with k ∈ [n+ 1, 2n− 1];
• start [k] and end [k]: the index interval of pixels for the non-unitary partition k;
• pixels: the sorted array of pixel indexes, indexed by start and end .

Therefore, the space needed to store the BPT hierarchy in memory is Θ(6n) integers.

The core data structure is a graph of the partitions (nodes), paired with the list of adjacencies (edges).
The adjacency list needs to be sorted efficiently in order to extract the edge adj = (i, j) having the
smallest dist(i, j), as defined by Eq. (5) and computed by function get dist. To do so, a heap data
structure is a reasonable choice. Merging coalitions therefore requires to both modify the nodes and
update the edges. This process, described at line 11 of build bpt and depicted in Figure 2/B, shows
that each merge operation requires to traverse the adjacency list of the merged partitions. Further
details are provided in the paper of Randrianasoa et al. (2018).
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Algorithm 2: Pseudo-code of the BPT algorithm.
1 function init bpt(X :image)
2 foreach pixel px of image x do
3 i← make partition()
4 minR[i]← maxR[i]← R[px]
5 minG[i]← maxG[i]← G[px]
6 minB [i]← maxB [i]← B [px]
7 area[i]← 1; perimeter [i]← 4; root [i]← i

8 foreach pair of partitions i, j that are adjacent pixels in x do
9 heap push(heap, make adjacency(i, j, weight=get dist(i, j)) )

1 function get dist(i, j)
2 rangeR ← max(maxR[i]−maxR[j])−min(minR[i]−minR[j])
3 rangeG ← max(maxG[i]−maxG[j])−min(minG[i]−minG[j])
4 rangeB ← max(maxB [i]−maxB [j])−min(minB [i]−minB [j])
5 area ← area[i] + area[j]
6 perimeter ← perimeter [i] + perimeter [j]− 2 ∗ adjacent perimeter [i , j ]

7 return (rangeR2 + rangeG2 + rangeB2) ∗ area ∗
√
perimeter

1 function build bpt()
2 while heap is not empty do
3 adj ← heap pop(heap)
4 i, j ← partitions in adj; k ← make partition()
5 minR[k]← min(minR[i],minR[j]); maxR[k]← max(maxR[i],maxR[j])
6 minG[k]← min(minG[i],minG[j]); maxG[k]← max(maxG[i],maxG[j])
7 minB [k]← min(minB [i],minB [j]); maxB [k]← max(maxB [i],maxB [j])
8 area[k]← area[i] + area[j]; perimeter [k]← perimeter [i] + perimeter [j]
9 root [k]← k; root [i]← root [j]← k

10 left branch[k]← i; right branch[k]← i
11 merge linked lists of adjacencies of i and j into a single linked list for partition k, updating the heap

weights using get dist since partitions i and j are now merged together.

A.5 PYTHON IMPLEMENTATION

A Python implementation, named ShapBPT, is provided. A snippet of the python code using the
ShapBPT module to obtain a Shapley explanation for a given image using the masking function ν is
provided in Algorithm 3. While not detailed in the paper, the implementation supports multi-class
explanations, similarly to (Lundberg, 2020).

Algorithm 3: Example Python code.
1 from shap bpt import Explainer
2 explainer = Explainer(ν, image to explain, num explained classes)
3 shap values = explainer.explain instance(max evals=b)
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A.6 ADDITIONAL SALIENCY MAPS FOR EXPERIMENT E1

Figure 6 shows additional saliency maps for the E1 experiment, generated by explaining the classi-
fication of the ResNet50 model on the samples from the ImageNet-S50 dataset.
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Figure 6: Additional saliency maps generated for the E1 experiment.

A.7 EXPERIMENT E2

One important limitation of experiment E1 is that the ground truth may not be faithful, as the black-
box model may classify an object based on partial details or using weak correlations. To overcome
this limitation, we repeat the experiment adopting an ideal model which perfectly follows the ground
truth. Let

νlin(S) =
|S∩G|
|G| (15)

be an ideal linear model that outputs the proportion of pixels of S that belong to the ground truth
G. Since νlin is not a neural network, CAM methods cannot be used and are excluded. To better
compare BPT and AA, we also add two other AA variations, with a budget of 5000 and 10000
samples. By using a linear model, the experimental environment has minimal noise, is therefore
simpler to interpret, and provides a better baseline for assessment, even if it is less realistic than a
deep learning model.

Figure 7 shows the results of experiment E2, while a subset of the generated saliency maps are
depicted in Figure 8. The results shows the effectiveness of the BPT explanation strategy: all BPT-b
achieve better scores that their AA-b counterpart, for the same budget b. Interestingly we observe
that, in terms of both AUC+ and AU -IoU , the BPT strategy achieves comparable scores to the
AA strategy while employing only a tenth of the evaluation samples (relations highlighted by red
brackets in Figure 7).
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Figure 7: Results for the six metrics across 574 images from the ImageNet-S50 dataset, with methods
sorted to display the highest-performing one atop each column, for the experiments E2.
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Figure 8: Saliency maps obtained from the ideal linear model νlin.
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A.8 EXPERIMENT E3

We also consider a third experimental setup E3, whose results are depicted in Figure 9. In this setup,
the masking function ν(S) is defined as the average of the model evaluation when using multiple
replacement values instead of a single one. The considered replacement values are: I. gray value
(0.5); II. black value (0.0); III. white value (1.0); IV. Gaussian noise, with average 0.5; V. input image
passed through a Gaussian blur filter with kernel size of 8. The limit of using a single replacement
strategy/value is that an image region may be replaced with a value that is close to the original one.
By using multiple different replacement values, such risk is reduced, and the obtained values can be
expected to be more robust. The limit is that an evaluation of ν(S) for a set S now requires multiple
evaluations of the explained model f(x).
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Figure 9: Results of the experimental setup E3 using five replacement values.

Even if we consider five replacement values instead of just one,the results in E3 for the BPT, AA
and LIME methods remains similar to the ones of E1. Again, BPT stands close to the top of most
scores, and it always surpasses AA except for AUC+.

The case of AUC+ is very interesting and revealing. We empirically observed that, in several in-
stances, the behavior of AA resembles that depicted in Figure 3(B). In this case, the model classifies
the input x as the class indigo bunting with a probability of 0.444. As pixels are added in decreasing
Shapley order, the BPT explanation reaches approximately 0.444 and remains stable as background
pixels are included (red curve). Conversely, the AA explanation exhibits a significant overshoot:
the probability increases above 0.444 and then gradually decreases (blue curve). We observed this
behaviour also in E1 and E3 experiments. Although this behavior yields higher area-under-curve
scores, we suspect that the expected behavior should align with the former, not the latter. Further
investigation is required in this area.

A.9 EXPERIMENT E4

All evaluations in experiments E1 and E3 were conducted using the ResNet50 model. While the
proposed strategy is model-agnostic, it is nonetheless interesting to observe its behaviour with dif-
ferent deep learning model architectures. In experiment E4 we replicate the same setup of E1 but
using the VGG-16 model of Simonyan (2015), using the pretrained 1K V1 weights found in the
pytorch library that have 90.382% Top-5 accuracy. Numerical results are reported in Figure 11, and
a subset of the generated saliency maps is depicted in Figure 10.

As for the previous experiments, the BPT strategy shows top scores in almost all the tested scores
except one (AUC−)
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Figure 10: Saliency maps from selected instances in the E4 experiment (using VGG-16 model).
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Figure 11: Results for the six metrics across 525 images from the ImageNet-S50 dataset, with
methods sorted to display the highest-performing one atop each column, for the experiments E4.
The explained model is the VGG-16 model.
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A.10 EXPERIMENT E5

Similarly to experiment E4, we also tested the proposed method on Vision Transformer models. We
selected the Swin-ViT model of Liu et al. (2021), and the summary of the results is shown in Figure
13. Again, a few saliency maps from the same set of selected examples is also shown in Figure 12.

The LRP method implementation we used does not support this transformer model architecture,
therefore we excluded it from the results. As a first observation, it is interesting to see that all meth-
ods except BPT produce significantly more confused explanation, attributing a lot of importance to
background features and with little focus to the actual classified objects. On the contrary, saliency
maps obtained by the BPT method are more clear and focused. Again, BPT seems to excel in all
scores, being surpassed on MSE scores by a small margin only by AA.

This experiment is particularly revealing, as ViT models appears to be more robust at input mask-
ing, and are therefore more difficult to explain using model-agnostic methods (w.r.t. convolutional
models) that require feature replacement to probe the model behaviour.
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Figure 12: Saliency maps from selected instances in the E5 experiment (using Swin-ViT model)
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Figure 13: Results for the six metrics across 621 images from the ImageNet-S50 dataset, with
methods sorted to display the highest-performing one atop each column, for the experiments E5.
The explained model is the Swin-ViT vision transformer model.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

VAE-GAN model

-

Input 
Reconstructed

image 
Anomaly
map 

Saliency map

Recombined images

...

eXplainable AI
using 

 = MSE loss obtained by
combining pixels from  and 

Figure 14: Workflow of the explainable AI applied to the Anomaly Detection system of E6.

A.11 EXPERIMENTS E6

All the results presented so far are variations of the ImageNet classification challenge. However,
given the broad applicability of explainable AI to different practical problems, it is also interesting
to see how it behaves in other settings. For experiment E6 we consider the problem of explain-
ing anomalies detected by an Anomaly Detection (AD) system on image data. This experiment is
based on the work of Ravi et al. (2021) where anomalies in images are detected using a Variational
AutoEncoder-Generative Adversarial Network (VAE-GAN) model by means of anomaly localiza-
tion. We use the MVTec benchmark dataset (Bergmann et al., 2019) which has 5000 high quality
images with defective and non-defective samples from 15 different categories of objects. We se-
lected the hazelnut object category from the dataset.

The pipeline of this system is depicted in Figure 14. An input image x is reconstructed into x′ using
a one-class VAE-GAN classifier. The anomaly map am captures the reconstruction error, which
sums up both the potential anomalies of x as well as the noise. An XAI method can be employed
to separate the noise from the detected anomalies, thus localizing if and where the anomalies are
present. In this contest, the function ν(S) is a MSE loss on the anomaly map am itself. Since ν(S)
is not a neural network, we cannot use CAM methods. Therefore, we generate saliency maps using
BPT, AA and LIME. We use values 100, 500, and 1000 for the budget value b. For LIME, we use
50,100 and 200 a-priori segments, respectively.
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Figure 15: Selected examples in the Anomaly Detection system for experiment E6.

As the MVTech dataset has proper ground truth masks for the expected anomalous regions, we
can compute all the six scores defined in Section 4. Figure 15 shows the AD problem on three input
images. For each input, a row shows: the input x, its reconstruction x′ through the VAE-GAN model,
the anomaly map am, the explanation generated by BPT with b=500, by AA with b=500 and by
LIME with b=500 and 100 segments. The best intersection-over-union is also shown, highlighting
the True Positives (TP), the False Positives (FP) and the False Negatives (FN). The ground truth g is
also shown, for reference.

Results are reported in Figure 16. Again, all three XAI method are capable of identifying the real
anomalous regions on the various samples, but BPT significantly outperforms the others. This is
particularly true for the task of identifying the exact region, which is highlighted by the very high
max-IoU scores.
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Figure 16: Results for the six metrics with methods sorted to display the highest-performing one
atop each column, for the experiments E6.

A.12 EXPERIMENTS E7

As a last experiment, we consider a third setting that adopts a multiclass regression model instead
of a classification model. The goal is to determine the presence (positive prediction) or absence
(negative prediction) of a given facial feature, like brown-hair of eye-glasses, while the XAI task
consists in localizing the regions that drive such prediction. The dataset is CelebA-HQ (Karras
et al., 2018). Among the 40 attributes, we tested two attributes brownhairs , and eyeglasses whose
ground-truth could also be established from a segmentation mask. This results in 106 images tested.
We use a pre-trained sequential CNN model, provided by (Batra, 2020). An example of the XAI task
is shown in Figure 17. Three instances are shown: (a) a subject with brown hair, who is recognized
having brown-hair (score is positive); (b) a subject with black hair, who is recognized not having
brown-hair (score is negative);; (c) a subject wearing eyeglasses who is recognized having them. For
case (a) and (c), Shapley values are positive in the areas that drive the positive score. Conversely,
for case (b), Shapley values are negative in the areas that drive the negative score. CAM methods do
not have this property (as they are not Shapley values and do not obey the efficiency axiom), so we
take them in absolute value.

Results of the evaluation are reported in the tables in Figure 18. This experiment shows again the
capacity of BPT-based methods to adaptively follow the borders of the activating regions, achieving
high performances particularly on IoU scores. Note that also in this case, as previously discussed
for E1, the ground truth can only be considered as a weak approximation of the model’s learnt
representation, as the model is likely to use multiple features of the subject face to determine the
presence or the absence of a specific attribute, not just the shape of the hair or the eyeglasses.
Nonetheless, the localization of that area remains more precise when data-awareness is used.
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Figure 17: Examples of the E7 experiment, explaining facial attributes using the CelebA dataset.
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Figure 18: Results for the 6 metrics across selected images from the CelebA dataset, with methods
sorted to display the highest-performing one atop each column, for the experiments E7
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