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Abstract

The Sliced Wasserstein barycenter (SWB) is
widely acknowledged for generalizing the averag-
ing operation within probability measure spaces
but achieving marginal fairness SWB, ensuring
approximately equal distances from the barycen-
ter to marginals, remains unexplored as the uni-
form weighted SWB might not be the optimal
choice due to structure of marginals and the non-
optimality of the optimizations. We introduce
the marginal fairness sliced Wasserstein barycen-
ter (MFSWB) problem as a constrained SWB
problem, and proposes three surrogate MFSWB
problems that implicitly minimize distances to
marginals and encourage marginal fairness, then
discusses their relationship to the sliced multi-
marginal Wasserstein distance. Finally, we con-
duct experiments on finding 3D point-clouds aver-
aging, color harmonization, and training of sliced
Wasserstein autoencoder with class-fairness rep-
resentation to show the favorable performance of
the proposed surrogate MFSWB problems.

1. Introduction
Wasserstein barycenter (Agueh & Carlier, 2011) general-
izes ”averaging” to the space of probability measures. In
particular, a Wasserstein barycenter is a probability measure
that minimizes a weighted sum of Wasserstein distances
between it and some given marginal probability measures.
Due to the rich geometry, Wasserstein barycenter has been
applied widely to various applications in machine learning
such as Bayesian inference (Srivastava et al., 2018; Staib
et al., 2017), domain adaptation (Montesuma & Mboula,
2021), clustering (Ho et al., 2017), sensor fusion (Elvander
et al., 2018), text classification (Kusner et al., 2015), and
so on. Moreover, Wasserstein barycenter is also a powerful
tool for computer graphics since it can be used for texture
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Figure 1. The uniform SWB and the MFSWB of 4 Gaussian dis-
tributions.

mixing (Rabin et al., 2012), style transfer (Mroueh, 2020),
shape interpolation (Solomon et al., 2015), and many other
tasks on many other domains.

Computing Wasserstein barycenters is computationally ex-
pensive, ranging from O(n3 log n) using linear program-
ming (Anderes et al., 2016) to O(n2) with entropic regular-
ization (Cuturi, 2013). To address this, sliced Wasserstein
barycenter (SWB) was introduced by Bonneel et al. (Bon-
neel et al., 2015), offering a time complexity of O(n log n).
SWB benefits from the equivalence of sliced Wasserstein,
making it a scalable alternative choice for Wasserstein
barycenters.

In some applications, we might want to find a barycenter
that minimizes the distances to marginals and has equal dis-
tances to marginals at the same time e.g., constructing shape
template for a group of shapes (Bongratz et al., 2022; Sun
et al., 2023) that can be further used in downstream tasks,
exact balance style mixing between images (Bonneel et al.,
2015), fair generative modeling (Choi et al., 2020), and so
on. However, obtaining such a barycenter is challenging.
Even though uniform barycenter weights are commonly
used, they do not guarantee a marginal fairness barycenter
as shown in Figure 1. To the best of our knowledge, there is
no prior work that investigates finding a marginal fairness
barycenter.

In this work, we make the first attempt to tackle the
marginal fairness barycenter problem i.e., we focus on find-
ing marginal fairness SW barycenter (MFSWB) to utilize
the scalability of SW distance.

Contribution: Our main contributions are four-fold:

1. We define the marginal fairness SW barycenter (MF-
SWB) problem which is a constrained barycenter problem,
where the constraint tries to limit the average pair-wise ab-
solute difference between distances from the barycenter to
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marginals. We derive the dual form of MFSWB, discuss its
computation, and address its computational challenges.

2. We propose hyperparameter-free and computationally
tractable surrogate definitions of MFSWB. Inspired by Fair
PCA (Samadi et al., 2018), our first surrogate minimizes the
largest SW distance from the barycenter to the marginals.
Then, we introduce a second surrogate which is the improve-
ment of the first one, aiming to provide an unbiased gradient
estimator. We extend this to a third surrogate using slicing
distribution selection, proving it to be an upper bound of the
previous two.

3. We connect the proposed surrogate MFSWB problems
with sliced multi-marginal Wasserstein (SMW) distance
using the maximal ground metric. Solving our MFSWB
problems equals minimizing a lower bound of the SMW.

4. We conduct simulations with Gaussian and experiments
on various applications including 3D point-cloud averaging,
color harmonization, and sliced Wasserstein autoencoder
with class-fairness representation to demonstrate the favor-
able performance of the proposed surrogate definitions.

2. Preliminaries
Sliced Wasserstein distance. The sliced Wasserstein (SW)
distance (Bonneel et al., 2015) between two probability
measures µ1 ∈ Pp(Rd) and µ2 ∈ Pp(Rd) is defined as:

SWp
p(µ1, µ2) = Eθ∼U(Sd−1)[W

p
p(θ♯µ1, θ♯µ2)],

where the Wasserstein distance has a closed form in one-
dimension which is Wp

p(θ♯µ1, θ♯µ2) =
∫ 1

0
|F−1
θ♯µ1

(z) −
F−1
θ♯µ2

(z)|pdz where Fθ♯µ1
and Fθ♯µ2

are the cumulative
distribution function (CDF) of θ♯µ1 and θ♯µ2 respectively.

Sliced Wasserstein Barycenter. The definition of the
sliced Wasserstein barycenter (SWB) problem (Bonneel
et al., 2015) of K ≥ 2 marginals µ1:K ∈ Pp(Rd) with
marginal weights ω1:K > 0 (

∑K
i=k ωk = 1) is defined as:

minµ F(µ;µ1:K , ω1:K) := minµ
∑K
k=1 ωkSWp

p(µ, µk).

Computation of parametric SWB. Let µϕ be parameter-
ized by ϕ ∈ Φ, SWB can be solved by gradient-based
optimization. In that case, the interested quantity is the gra-
dient ∇ϕF(µϕ;µ1:K , ω1:K) =

∑K
k=1 ωk∇ϕSWp

p(µϕ, µk).
However, the gradient of SW term is intractable due to the
intractability of SW with the expectation with respect to the
uniform distribution over the unit-hypersphere. Therefore,
Monte Carlo estimation is used. With the stochastic gradi-
ent, the SWB can be solved by using a stochastic gradient
descent algorithm. We refer the reader to Algorithm 1 in
Appendix B for more detail. We discuss the discrete SWB
i.e., marginals and the barycenter are discrete measures in
Appendix B

Parametric SWB computation: The parameterized

barycenter µϕ with ϕ ∈ Φ enables solving SWB through
gradient-based optimization. In that case, the inter-
ested quantity is the gradient ∇ϕF(µϕ;µ1:K , ω1:K) =∑K
k=1 ωk∇ϕSWp

p(µϕ, µk). The intractable gradient of the
Sliced Wasserstein term requires Monte Carlo estimation
due to the expectation over the unit hypersphere. Utilizing
stochastic gradient descent, SWB can be solved. Further
details are provided in Algorithm 1 in Appendix B. The
barycenter µϕ can be expressed in two parameterizations:
either as µϕ = 1

n

∑n
i=1 δxi

with ϕ = (x1:n) (when ϕ de-
notes supports) or as µϕ =

∑n
i=1 ϕiδxi

(when ϕ represents
weights). Both parameterizations allow for the computation
of the gradient of SWB with respect to ϕ. When the supports
or weights of the barycenter are outcomes of a parametric
function, the gradient of the function’s parameters can be
estimated using the chain rule. The detailed computation of
the parametric SWB gradient in both settings is provided in
Appendix B.

Sliced Multi-marginal Wasserstein. Given K ≥ 1
marginals µ1:K ∈ Pp(Rd), sliced Multi-marginal Wasser-
stein (Cohen et al., 2021) (SMW) is defined as:

SMW p
p (µ1:K ; c) = E

[
inf

π∈Π(µ1:K)∫
c(θ⊤x1, . . . , θ

⊤xK)pdπ(x1:K)
] (1)

where the expectation is under θ ∼ U(Sd−1). When
using the barycentric cost i.e., c(θ⊤x1, . . . , θ⊤xK)p =∑K
k=1 βk

∣∣∣θ⊤xk −∑K
k′=1 βk′θ

⊤xk′
∣∣∣p for βk > 0∀k and∑

k βk = 1. Minimizing SMW p
p (µ1:K , µ; c) with respect

to µ is equivalent to a barycenter problem. We refer the
reader to Proposition 7 in (Cohen et al., 2021) for detail.

3. Marginal Fairness Sliced Wasserstein
Barycenter

3.1. Formal Definition

Now, we define the Marginal Fairness Sliced Wasserstein
barycenter (MFSWB) problem by adding marginal fairness
constraints to the SWB problem.

Definition 3.1. Given K ≥ 2 marginals µ1:K ∈ Pp(Rd),
admissible ϵ ≥ 0 for i = 1 : K and j = i + 1 : K, the
Marginal Fairness Sliced Wasserstein barycenter (MFSWB)
is defined as:

min
µ

1

K

K∑
k=1

SWp
p(µ, µk)

s.t.
2

(K − 1)K

K∑
i=1

K∑
j=i+1

|SWp
p(µ, µi)− SWp

p(µ, µj)| ≤ ϵ.

(2)
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Duality objective. For admissible ϵ > 0, there exist a La-
grange multiplier λ such that we have the dual form

Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), admissible
ϵ ≥ 0 for i = 1, . . . ,K and j = i+1, . . . ,K, the Marginal
Fairness Sliced Wasserstein barycenter (MFSWB) is defined
as:

L(µ, λ) = 1

K

K∑
k=1

SWp
p(µ, µk)+

2λ

(K − 1)K

K∑
i=1

K∑
j=i+1

|SWp
p(µ, µi)− SWp

p(µ, µj)| − λϵ.

(3)

Computational challenges. Firstly, MFSWB in Defini-
tion 3.1 requires an admissible ϵ > 0 for the barycenter
µ to exist, which is difficult to determine. Secondly, ob-
taining the optimal Lagrange multiplier λ⋆ in Equation (3)
to minimize the duality gap is challenging and can result
in weak duality. Thirdly, using Equation (3) requires hy-
perparameter tuning for λ and might not provide a good
optimization landscape. Additionally, unbiased gradient
estimates of ϕ for the parametric barycenter µϕ are not
possible due to the biased Monte Carlo estimation of the
distance between SW distances. Finally, Equation (3) has
quadratic time and space complexity, O(K2), relative to the
number of marginals.

3.2. Surrogate Definitions

First Surrogate Definition. Motivated by Fair
PCA (Samadi et al., 2018), we propose a practical surrogate
MFSWB problem that is hyperparameter-free.

Definition 3.2. Given K ≥ 2 marginals µ1:K ∈ Pp(Rd),
the surrogate marginal fairness sliced Wasserstein barycen-
ter (s-MFSWB) problem is defined as:

min
µ

SF(µ;µ1:K);

s.t. SF(µ;µ1:K) = max
k∈{1:K}

SW p
p (µ, µk).

(4)

The s-MFSWB problem tries to minimize the maximal dis-
tance from the barycenter to the marginals. Therefore, it
can minimize indirectly the overall distances between the
barycenter to the marginals and implicitly make the dis-
tances to marginals approximately the same. The downside
is that the gradient estimator is biased.

Second Surrogate Definition. To address the biased gra-
dient issue of the first surrogate problem, we propose the
second surrogate MFSWB problem.

Definition 3.3. Given K ≥ 2 marginals µ1:K ∈ Pp(Rd),
the unbiased surrogate marginal fairness sliced Wasserstein

barycenter (us-MFSWB) problem is defined as:

min
µ

USF(µ;µ1:K);

s.t. USF(µ;µ1:K) = Eθ∼U(Sd−1)

[
max

k∈{1:K}
W p
p (θ♯µ, θ♯µk)

]
.

(5)

In contrast to s-MFSWB which minimizes the maximal
SW distance among marginals, us-MFSWB minimizes the
expected value of the maximal one-dimensional Wasserstein
distance among marginals. By considering fairness on one-
dimensional projections, us-MFSWB can yield an unbiased
gradient estimate which is the reason why it is named as
unbiased s-MFSWB. Fortunately, the gradient estimator of
s-MFSWB is unbiased.

Proposition 3.4. Given K ≥ 2 marginals µ1:K ∈ Pp(Rd),
we have SF(µ;µ1:K) ≤ USF(µ;µ1:K).

Proof of Proposition 3.4 is given in Appendix A.1. From
the proposition, we see that minimizing the objective of us-
MFSWB also reduces the objective of s-MFSWB implicitly.

Proposition 3.5. Given K ≥ 2 marginals µ1:K ∈ Pp(Rd),
θ1:L

i.i.d∼ U(Sd−1), we have:

E

∣∣∣∣∣∇ϕ
1

L

L∑
l=1

Wp
p(θl♯µϕ,θl♯µk⋆θ )−∇ϕUSF(µϕ;µ1:K)

∣∣∣∣∣
≤ 1√

L
Var

[
∇ϕWp

p(θ♯µϕ, θ♯µk⋆θ )

] 1
2

,

where k⋆θ = argmaxk∈{1:K}W
p
p (θ♯µϕ, θ♯µk); and the ex-

pectation and variance are under the random projecting
direction θ ∼ U(Sd−1)

Proof of Proposition 3.5 is given in Appendix A.2. From
the proposition, we know that the approximation error of
the gradient estimator of us-MFSWB reduces at the order
of O(L−1/2). Therefore, increasing L leads to a better
gradient approximation. The approximation could be further
improved via Quasi-Monte Carlo methods (Nguyen et al.,
2024a).

Third Surrogate Definition. The us-MFSWB in Defini-
tion 3.3 utilizes the uniform distribution as the slicing dis-
tribution, which is empirically shown to be non-optimal in
statistical estimation (Nguyen et al., 2021). Following the
slicing distribution selection approach in (Nguyen & Ho,
2023), we propose the third surrogate with a new slicing
distribution that focuses on unfair projecting directions.

Definition 3.6. Given K ≥ 2 marginals µ1:K ∈ Pp(Rd),
the marginal fairness energy-based slicing distribution

3
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σ(θ;µ, µ1:K) ∈ P(Sd−1) is defined with the density func-
tion as follow:

fσ(θ;µ, µ1:K) ∝ exp

(
max

k∈{1:K}
W p
p (θ♯µ, θ♯µk)

)
, (6)

Marginal fairness energy-based slicing distribution in Defi-
nition 3.6 put more mass to a projecting direction θ that has
the larger maximal one-dimensional Wasserstein distance
to marginals. Therefore, it will penalize more marginally
unfair projecting directions. From the new proposed slic-
ing distribution, we can define a new surrogate MFSWB
problem, named energy-based surrogate MFSWB.

Definition 3.7. Given K ≥ 2 marginals µ1, . . . , µK ∈
Pp(Rd), the energy-based surrogate marginal fairness sliced
Wasserstein barycenter (us-MFSWB) problem is defined as:

min
µ

ESF(µ;µ1:K);

ESF(µ;µ1:K) = Eθ∼σ(θ;µ,µ1:K)

[
max

k∈{1:K}
W p
p (θ♯µ, θ♯µk)

]
(7)

Similar to the us-MFSWB, es-MFSWB utilizes the im-
plicit one-dimensional marginal fairness. Nevertheless, es-
MFSWB utilizes the marginal fairness energy-based slicing
distribution to reweight the importance of each projecting
direction instead of considering them equally.

Proposition 3.8. Given K ≥ 2 marginals µ1:K ∈ Pp(Rd),
we have USF(µ;µ1:K) ≤ ESF(µ;µ1:K).

Proof of Proposition 3.8 is given in Appendix A.3. From
the proposition, we see that minimizing the objective of
es-MFSWB reduces the objective of us-MFSWB implicitly
which also decreases the objective of s-MFSWB (Proposi-
tion 3.4). Moreover, the gradient estimator of es-MFSW is
asymptotically unbiased.

Computational complexities of proposed surrogates. The
three proposed surrogates have linear time and space com-
plexity, O(K), for the number of marginalsK, matching the
conventional SWB and outperforming the formal MFSWB’s
O(K2). For the number of projections L, supports n, and
dimensions d, the surrogates have a time complexity of
O(Ln(log n+ d)) and a space complexity of O(L(n+ d)),
similar to both the formal MFSWB and SWB.

Gradient estimators of proposed surrogates A detailed
discussion on the gradient estimators of all proposed surro-
gates is provided in Appendix B. In summary, the s-MFSWB
surrogate has a biased gradient estimator, whereas the us-
MFSWB and es-MFSWB surrogates have unbiased gradient
estimators.

3.3. Sliced multi-marginal Wasserstein distance with the
maximal ground metric

To shed light on the proposed substrates, we con-
nect them to a special variant of Sliced multi-marginal
Wasserstein (SMW) (see Equation 1) i.e., SMW with
the maximal ground metric c(θ⊤x1, . . . , θ

⊤xK) =
maxi∈{1:K},j∈{1:K} |θ⊤xi − θ⊤xj |. We first show that
SMW with the maximal ground metric is a generalized
metric on the space of probability measures.

Proposition 3.9. Sliced multi-marginal Wasserstein dis-
tance with the maximal ground metric is a generalized met-
ric i.e., it satisfies non-negativity, marginal exchangeabil-
ity, generalized triangle inequality, and identity of indis-
cernibles.

Proof of Proposition 3.9 is given in Appendix A.4. It is
worth noting that SMW with the maximal ground metric
has never been defined before. Since our work focuses on
the MFSWB problem, we will leave the careful investigation
of this variant of SMW to future work.

Proposition 3.10. Given K ≥ 2 marginals µ1:K ∈
Pp(Rd), the maximal ground metric c(θ⊤x1, . . . , θ⊤xK) =
maxi∈{1:K},j∈{1:K} |θ⊤xi − θ⊤xj |, we have:

min
µ1

USF(µ1;µ2:K) ≤ min
µ1

SMW p
p (µ1;µ2:K , c). (8)

The proof of Proposition 3.10 is in Appendix A.5. The
inequality holds for any µi with i = 2, . . . ,K. Com-
bining this with Proposition 3.4, we get the corollary
minµ1

SF(µ1;µ2:K) ≤ minµ1
SMW p

p (µ1;µ2:K , c). This
shows that minimizing us-MFSWB is equivalent to mini-
mizing a lower bound of SMW with the maximal ground
metric, which implies that us-MFSWB aims to minimize
the multi-marginal distance. Extending this, minimizing
es-MFSWB corresponds to minimizing a lower bound of
energy-based SMW with the maximal ground metric. See
Proposition B.1 in Appendix B for more details.

4. Experiments
We use two metrics i.e., the F-metric (F) and the
W-metric (W) which are defined as follows: F =

2
K(K−1)

∑K
i=1

∑K
j=i+1 |W p

p (µ, µi)−W p
p (µ, µj)|, W =

1
K

∑K
i=1W

p
p (µ, µi), where µ is the barycenter, µ1, . . . , µK

are the given marginals, and W p
p is the Wasserstein dis-

tance (Flamary et al., 2021) of the order p. Here, the
F-metric represents the marginal fairness degree of the
barycenter and the W-metric represents the centerness of
the barycenter. For all following experiments, we use p = 2
for the Wasserstein distance and barycenter problems.
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Figure 2. Barycenters from USWB, MFSWB with λ = 1, s-MFSWB, us-MFSWB, and es-MFSWB along gradient iterations with the
corresponding F-metric and W-metric.

Table 1. F-metric and W-metric along iterations in point-cloud
averaging application.

Methods Iteration 1000 Iteration 5000 Iteration 10000

F W F W F W

USWB 4.89 85.72 3.79 45.37 1.55 39.81
MFSWB λ = 0.1 4.76 84.86 3.78 45.2 1.32 39.73
MFSWB λ = 1 0.49 79.08 3.64 44.71 1.03 39.45
MFSWB λ = 10 4.03 71.24 7.32 45.21 4.13 42.56
s-MFSWB 2.52 81.84 4.01 44.9 1.15 39.58
us-MFSWB 0.3 78.69 3.74 44.38 0.87 39.26
es-MFSWB 0.2 78.1 3.5 44.37 0.84 39.18

Table 2. Results of training SWAE with different regularization
losses.

Methods RL W2
2,latent × 102 W2

2,image Flatent × 102 Wlatent × 102

SWAE 2.95 9.41 26.91 7.05 23.86

USWB 3.15 10.46 27.41 7.02 12.73
MFSWB λ = 0.1 3.11 8.52 26.62 8.66 20.01
MFSWB λ = 1.0 3.12 9.71 26.92 10.15 21.16
MFSWB λ = 10.0 2.79 10.32 26.95 8.27 23.39
s-MFSWB 3.22 10.50 28.69 1.30 13.71
us-MFSWB 3.05 7.79 27.81 2.29 9.11
es-MFSWB 3.35 9.60 28.27 0.98 9.92

4.1. Barycenter of Gaussians

We perform a Gaussian barycenter simulation with four
marginals and visualize the results over last iteration in
Figure 2. Settings and details are provided in the in Ap-
pendix D.

Result. USWB does not yield a fair barycenter, while the
three proposed surrogates achieve better and faster conver-
gence in both metrics. At iteration 50,000, USWB fails to
produce a fair barycenter, whereas the proposed surrogates
do. Among them, es-MFSWB achieves the highest marginal
fairness with competitive centerness. The formal MFSWB
(dual form with λ = 1) provides the fairest barycenter but
is sensitive to λ.

4.2. 3D Point-cloud Averaging

We aim to find the mean shape of point-cloud shapes. We
report F-metric and W-metric at iterations 1000, 5000, and
10000 in Table 1 and take average from three independent
runs. We refer the reader to Appendix D for a detailed
setting.

Result. As in the Gaussian simulation, proposed surrogates
help to reduce the two metrics faster than the USWB. With
the slicing distribution selection, es-MFSWB performs the
best at every iteration, even better than the formal MFSWB
with three choices of λ i.e., 0.1, 1, 10. We also observe a
similar phenomenon for two plane shapes in Figure 5 and
Table 3 in Appendix D.

4.3. Color Harmonization

We conducted an experiment to transform the color palette
of an image into a hybrid of two target images. Details of
the experiment and results are provided in Appendix D.

Result. As in previous experiments, we see that the three
proposed surrogates yield a better barycenter faster than
USWB. The proposed es-MFSWB is the best variant among
all surrogates since it has the lowest F-metric and W-metric
at all iterations. We refer the reader to Figure 9-Figure 11 in
Appendix D for additional flowers-images example, where
a similar relative comparison happens.

4.4. Sliced Wasserstein Autoencoder with Class-Fair
Representation

We consider training the sliced Wasserstein autoencoder
(SWAE)(Kolouri et al., 2018) with a class-fairness regular-
ization. Details of experiment is in Appendix D.

Results. From the Table 2, the proposed surrogate MF-
SWB generally yield better scores than USWB, except for
W2

2,image. The formal MFSWB performs well in reconstruc-
tion loss and W2

2,image, though its F and W scores are high.
The W2

2,latent varies slightly across runs, with minor differ-
ences in performance order, indicating relatively similar
results. Overall, es-MFSWB is the best variant among the
surrogates. Compared to SWAE, using a barycenter loss re-
sults in a more class-fair latent representation but sacrifices
image reconstruction and generative quality.

5. Conclusion
We introduced marginal fairness sliced Wasserstein barycen-
ter (MFSWB), a special case of sliced Wasserstein barycen-
ter (SWB) which has approximately the same distance to

5
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marginals. We first defined the MFSWB as a constrainted
uniform SWB problem. After that, to overcome the compu-
tational drawbacks of the original problem, we propose three
surrogate definitions of MFSWB which are hyperparameter-
free and easy to compute. We discussed the relationship of
the proposed surrogate problems and their connection to the
sliced Multi-marginal Wasserstein distance with the max-
imal ground metric. Finally, we conduct simulations with
Gaussian and experiments on 3D point-cloud averaging,
color harmonization, and sliced Wasserstein autoencoder
with class-fairness representation to show the benefits of the
proposed surrogate MFSWB definitions.
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Séjourné, T., Vialard, F.-X., and Peyré, G. Faster unbalanced
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We present skipped proofs in Appendix A. We then provide some additional materials which are mentioned in the main
paper in Appendix B. After that, related works are discussed in Appendix C. We then provide additional experimental results
in Appendix D. Finally, we report the used computational devices in Appendix E.

A. Proofs
A.1. Proof of Proposition 3.4

Proof. From Definition 3.2, we have

SF(µ, µ1:K) = max
k∈{1,...,K}

SW p
p (µ, µk)

= max
k∈{1,...,K}

Eθ∼U(Sd−1)[W
p
p (θ♯µ, θ♯µk)]

Let k⋆ = argmaxk∈{1,...,K} Eθ∼U(Sd−1)[W
p
p (θ♯µ, θ♯µk)], we have

SF(µ, µ1:K) = Eθ∼U(Sd−1)[W
p
p (θ♯µ, θ♯µk⋆)]

≤ Eθ∼U(Sd−1)

[
max

k∈{1,...,K}
W p
p (θ♯µ, θ♯µk)

]
= USF(µ, µ1:K),

as from Definition 3.3, which completes the proof.

A.2. Proof of Proposition 3.5

Using the Holder’s inequality, we have:

E

∣∣∣∣∣∇ϕ
1

L

L∑
l=1

Wp
p(θl♯µϕ, θl♯µk⋆θl

)−∇ϕUSF(µϕ;µ1:K)

∣∣∣∣∣
≤

E

∣∣∣∣∣∇ϕ
1

L

L∑
l=1

Wp
p(θl♯µϕ, θl♯µk⋆θl

)−∇ϕUSF(µϕ;µ1:K)

∣∣∣∣∣
2
 1

2

=

E

(
∇ϕ

1

L

L∑
l=1

Wp
p(θl♯µϕ, θl♯µk⋆θl

)−∇ϕE
[
Wp
p(θ♯µϕ, θ♯µk⋆θ )

])2
 1

2

=

E

(
1

L

L∑
l=1

∇ϕWp
p(θl♯µϕ, θl♯µk⋆θl

)− E
[
∇ϕWp

p(θ♯µϕ, θ♯µk⋆θ )
])2

 1
2

=

(
Var

[
1

L

L∑
l=1

∇ϕWp
p(θl♯µϕ, θl♯µk⋆θl

)

]) 1
2

=
1√
L

Var
[
∇ϕWp

p(θ♯µϕ, θ♯µk⋆θ )
] 1

2 ,

which completes the proof.

A.3. Proof of Proposition 3.8

We first restate the following Lemma from (Nguyen et al., 2024b) and provide the proof for completeness.
Lemma A.1. For any L ≥ 1, 0 ≤ a1 ≤ a2 ≤ . . . ≤ aL and 0 < b1 ≤ b2 ≤ . . . ≤ bL, we have:

1

L
(

L∑
i=1

ai)(

L∑
i=1

bi) ≤
L∑
i=1

aibi. (9)
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Proof. For L = 1, we directly have aibi = aibi. Assuming that for L the inequality holds i.e., 1
L (
∑L
i=1 ai)(

∑L
i=1 bi) ≤∑L

i=1 aibi which is equivalent to (
∑L
i=1 ai)(

∑L
i=1 bi) ≤ L

∑L
i=1 aibi. Now, we show that 1

L (
∑L
i=1 ai)(

∑L
i=1 bi) ≤∑L

i=1 aibi i.e., the inequality holds for L+ 1. We have

(

L+1∑
i=1

ai)(

L+1∑
i=1

bi) = (

L∑
i=1

ai)(

L∑
i=1

bi) + (

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 + aL+1bL+1

≤ L

L∑
i=1

aibi + (

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 + aL+1bL+1.

Since aL+1bL+1 + aibi ≥ aL+1bi + bL+1ai for all 1 ≤ i ≤ L by rearrangement inequality. By taking the sum of these
inequalities over i from 1 to L, we obtain:

(

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 ≤
L∑
i=1

aibi + LaL+1bL+1.

Then, we have

(
L+1∑
i=1

ai)(

L+1∑
i=1

bi) ≤ L

L∑
i=1

aibi + (

L∑
i=1

ai)bL+1 + (

L∑
i=1

bi)aL+1 + aL+1bL+1

≤ L

L∑
i=1

aibi +

L∑
i=1

aibi + LaL+1bL+1 + aL+1bL+1

= (L+ 1)(

L+1∑
i=1

aibi),

which completes the proof.

Now, we go back to the main inequality which is USF(µ;µ1:K) ≤ ESF(µ;µ1:K). From Definition 3.7, we have:

ESF(µ;µ1:K) = Eθ∼σ(θ;µ,µ1:K)

[
max

k∈{1,...,K}
W p
p (θ♯µ, θ♯µk)

]
= Eθ∼U(Sd−1)

[
max

k∈{1,...,K}
W p
p (θ♯µ, θ♯µk)

fσ(θ;µ, µ1:K)
Γ(d/2)
2πd/2

]
,

where fσ(θ;µ, µ1:K) ∝ exp
(
maxk∈{1,...,K}W

p
p (θ♯µ, θ♯µk)

)
. Now, we consider a Monte Carlo estimation of

ESF(µ;µ1:K) by importance sampling:

ÊSF(µ;µ1:K , L) =
1

L

L∑
l=1

[
max

k∈{1,...,K}
W p
p (θl♯µ, θl♯µk)

exp
(
maxk∈{1,...,K}W

p
p (θl♯µ, θl♯µk)

)∑L
i=1 exp

(
maxk∈{1,...,K}W

p
p (θi♯µ, θi♯µk)

)] ,
where θ1, . . . , θL

i.i.d∼ U(Sd−1). Similarly, we consider a Monte Carlo estimation of USF(µ;µ1:K):

ÛSF(µ;µ1:K , L) =
1

L

L∑
l=1

[
max

k∈{1,...,K}
W p
p (θl♯µ, θl♯µk)

]
,

for the same set of θ1, . . . , θL. Without losing generality, we assume that maxk∈{1,...,K}W
p
p (θ1♯µ, θ1♯µk) ≤

. . . ≤ maxk∈{1,...,K}W
p
p (θL♯µ, θL♯µk). Let maxk∈{1,...,K}W

p
p (θi♯µ, θi♯µk) = ai and

exp
(
maxk∈{1,...,K}W

p
p (θi♯µ, θi♯µk)

)
= bi, applying Lemma A.1, we have:

ÛSF(µ;µ1:K , L) ≤ ÊSF(µ;µ1:K , L) ∀L ≥ 1.

By letting L→ ∞ and applying the law of large numbers, we obtain:

USF(µ;µ1:K) ≤ ESF(µ;µ1:K),

which completes the proof.
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A.4. Proof of Proposition 3.9

We first recall the definition of the SMW with the maximal ground metric:

SMW p
p (µ1, . . . , µK ; c) = E

[
inf

π∈Π(µ1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
.

Non-negativity. Since maxi∈{1,...,K},j∈{1,...,K} |θ⊤xi − θ⊤xj |p ≥ 0 for any x1, . . . , xK and for any θ, we can obtain the
desired property SMW p

p (µ1, . . . , µK ; c) ≥ 0 which implies SMWp(µ1, . . . , µK ; c) ≥ 0.

Marginal Exchangeability. For any permutation σ : [[K]] → [[K]], we have:

SMW p
p (µ1, . . . , µK ; c) = E

[
inf

π∈Π(µ1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
= E

[
inf

π∈Π(µσ(1),...,µσ(K))

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
= SMW p

p (µσ(1), . . . , µσ(K); c).

Generalized Triangle Inequality. For µ ∈ Pp(Rd), we have :

SMW p
p (µ1, . . . , µK ; c)

= E
[

inf
π∈Π(µ1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
≤ E

[
inf

π∈Π(µ1,...,µK)

∫ K∑
k=1

max
i∈{1,...,K}\{k},j∈{1,...,K}\{k}

|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]

= E

[
inf

π∈Π(µ1,...,µK)

K∑
k=1

∫
max

i∈{1,...,K}\{k},j∈{1,...,K}\{k}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]

= E

[
K∑
k=1

∫
max

i∈{1,...,K}\{k},j∈{1,...,K}\{k}
|θ⊤xi − θ⊤xj |pdπ⋆(x1, . . . , xk−1, xk+1, . . . xK)

]

for π⋆ is the optimal multi-marginal transportation plan and π⋆(x1, . . . , xk−1, xk+1, xK ) is the marginal joint distribution by
integrating out xk. By the gluing lemma (Peyré & Cuturi, 2020), there exists optimal plans π⋆(x1, . . . , xk−1, y, xk+1, xK )
for any k ∈ [[K]] and y follows µ. We further have:

SMW p
p (µ1, . . . , µK ; c)

≤ E

[
K∑
k=1

∫
max

(
max

i∈{1,...,K}\{k},j∈{1,...,K}\{k}
|θ⊤xi − θ⊤xj |p,

max
i∈{1,...,K}\{k}

|θ⊤xi − θ⊤y|p ) dπ⋆(x1, . . . , xk−1, y, xk+1, . . . xK)]

=

K∑
k=1

E
[

inf
π∈Π(µ1,...,µk−1,µ,µk+1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]

=

K∑
k=1

SMW p
p (µ1, . . . , µk−1, µ, µk+1, . . . , µK ; c).

Applying the Minkowski’s inequality, we obtain the desired property:

SMWp(µ1, . . . , µK ; c) ≤
K∑
k=1

SMWp(µ1, . . . , µk−1, µ, µk+1, . . . , µK ; c).
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Identity of Indiscernibles. From the proof in Appendix A.5, we have:

SMW p
p (µ1, . . . , µK ; c) ≥ E

[
max

i∈{1,...,K},j∈{1,...,K}
W p
p (θ♯µi, θ♯µj)

]
≥ max
i∈{1,...,K},j∈{1,...,K}

E
[
W p
p (θ♯µi, θ♯µj)

]
= max
i∈{1,...,K},j∈{1,...,K}

SW p
p (µi, µj).

Therefore, when SMWp(µ1, . . . , µK ; c) = 0, we have SW p
p (µi, µj) = 0 which implies µi = µj for any i, j ∈ [[K]]. As a

result, µ1 = . . . = µK from the metricity of the SW distance. For the other direction, it is easy to see that if µ1 = . . . µK ,
we have SMWp(µ1, . . . , µK ; c) = 0 based on the definition and the metricity of the Wasserstein distance.

A.5. Proof of Proposition 3.10

Given the maximal ground metric c(θ⊤x1, . . . , θ⊤xK) = maxi∈{1,...,K},j∈{1,...,K} |θ⊤xi − θ⊤xj |, from Equation 1

SMW p
p (µ1, . . . , µK ; c) = E

[
inf

π∈Π(µ1,...,µK)

∫
c(θ⊤x1, . . . , θ

⊤xK)pdπ(x1, . . . , xK)

]
= E

[
inf

π∈Π(µ1,...,µK)

∫
max

i∈{1,...,K},j∈{1,...,K}
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
By Jensen inequality i.e., (x1, . . . , xK) → maxi∈{1,...,K},j∈{1,...,K} |θ⊤xi − θ⊤xj |p is a convex function, we have:

SMW p
p (µ1, . . . , µK ; c) ≥ E

[
inf

π∈Π(µ1,...,µK)
max

i∈{1,...,K},j∈{1,...,K}

∫
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
.

Using max-min inequality, we have:

SMW p
p (µ1, . . . , µK ; c) ≥ E

[
max

i∈{1,...,K},j∈{1,...,K}
inf

π∈Π(µ1,...,µK)

∫
|θ⊤xi − θ⊤xj |pdπ(x1, . . . , xK)

]
≥ E

[
max

i∈{1,...,K},j∈{1,...,K}
inf

π∈Π(µi,µj)

∫
|θ⊤xi − θ⊤xj |pdπ(xi, xj)

]
= E

[
max

i∈{1,...,K},j∈{1,...,K}
W p
p (θ♯µi, θ♯µj)

]
.

Therefore, minimizing two sides with respect to µ1, we have:

min
µ1

SMW p
p (µ1, . . . , µK ; c) ≥ min

µ1

E
[

max
i∈{1,...,K},j∈{1,...,K}

W p
p (θ♯µi, θ♯µj)

]
≥ min

µ1

E
[

max
i∈{2,...,K}

W p
p (θ♯µ1, θ♯µi)

]
= min

µ1

USF(µ1;µ2:K),

which completes the proof.

B. Additional Materials
Gradient of Discrete Sliced Wasserstein Barycenter We discuss the discrete SWB i.e., marginals and the barycenter are
discrete measures.

Free supports barycenter. In this setting, we have µϕ = 1
n

∑n
i=1 δxi

, µk = 1
n

∑n
i=1 δyi , and ϕ = (x1:n), we can compute

the (sub-)gradient with the time complexity O(n log n):

∇xi
Wp
p(θ♯µϕ, θ♯µk) = p|θ⊤xi − θ⊤yσ(i)|p−1

sign(θ⊤xi − θ⊤yσ(i))θ,
(10)
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where σ = σ1 ◦ σ−1
2 with σ1 and σ2 are any sorted permutation of {x1:n} and {y1:n}.

Fixed supports barycenter. In this setting, we have µϕ =
∑n
i=1 ϕiδxi

, µk =
∑n
i=1 βiδxi

,
∑n
i=1 ϕi =

∑n
i=1 βi and

ϕ = (ϕ1:n). We can compute the gradient as follows:

∇ϕWp
p(θ♯µϕ, θ♯µk) = f⋆, (11)

where f⋆ is the first optimal Kantorovich dual potential of Wp
p(θ♯µϕ, θ♯µk) which can be obtained with the time complexity

of O(n log n). We refer the reader to Proposition 1 in (Cuturi & Doucet, 2014) for the detail and Algorithm 1 in (Séjourné
et al., 2022) for the computational algorithm.

When the supports or weights of the barycenter are the output of a parametric function, we can use the chain rule to estimate
the gradient of the parameters of the function. For the continuous case, we can approximate the barycenter and marginals
by their empirical versions, and then perform the estimation in the discrete case. Since the sample complexity of SW is
O(n−1/2) (Nadjahi et al., 2019; Nguyen et al., 2021; Manole et al., 2022; Nietert et al., 2022), the approximation error will
reduce fast with the number of support n increases. Another option is to use continuous Wasserstein solvers (Fan et al.,
2021; Korotin et al., 2022; Claici et al., 2018), however, this option is not as simple as the first one.

Gradient estimator of s-MFSWB. Let µϕ be paramterized by ϕ ∈ Φ, and F(ϕ, k) = SW p
p (µϕ, µk), we

would like to compute ∇ϕmaxk∈{1,...,K} F(ϕ, k). By Danskin’s envelope theorem (Danskin, 2012), we have
∇ϕmaxk∈{1,...,K} F(ϕ, k) = ∇ϕF(ϕ, k⋆) = ∇ϕSWp

p(µϕ, µk⋆) for k⋆ = argmaxk∈{1,...,K} F(ϕ, k). Nevertheless,
k⋆ is intractable due to the intractablity of SW p

p (µϕ, µk) for k = 1, . . . ,K. Hence, we can form the estimation k̂⋆ =

argmaxk∈{1,...,K} ŜW
p

p(µϕ, µk;L) where ŜW
p

p(µϕ, µk;L) =
1
L

∑L
l=1 Wp

p(θl♯µϕ, θl♯µk) with θ1, . . . , θL
i.i.d∼ U(Sd−1).

The remaining work is to estimate ∇ϕSWp
p(µϕ, µk̂⋆), which is easy. We refer the reader to Algorithm 2 for the gradient

estimation and optimization procedure. The downside of this estimator is that it is biased.

Gradient estimator of us-MFSWB. Let µϕ be paramterized by ϕ ∈ Φ, and F(θ, ϕ, k) = W p
p (θ♯µϕ, θ♯µk), we would

like to compute ∇ϕEθ∼Sd−1 [maxk∈{1,...,K} F(θ, ϕ, k)] which is equivalent to Eθ∼Sd−1 [∇ϕmaxk∈{1,...,K} F(θ, ϕ, k)] due
to the Leibniz’s rule. By Danskin’s envelope theorem, we have ∇ϕmaxk∈{1,...,K} F(θ, ϕ, k) = ∇ϕF(θ, ϕ, k⋆) =
∇ϕWp

p(θ♯µϕ, θ♯µk⋆) for k⋆θ = argmaxk∈{1,...,K} F(θ, ϕ, k) where we can estimate ∇ϕWp
p(θ♯µϕ, θ♯µk⋆θ ) can be

computed as in Equation 10- 11. Overall, with θ1, . . . , θL
i.i.d∼ U(Sd−1), we can form the final estimation

1
L

∑L
l=1 ∇ϕWp

p(θl♯µϕ, θl♯µk⋆θl
) which is an unbiased estimate. We refer the reader to Algorithm 3 for the gradient

estimation and optimization procedure.

Gradient estimator of es-MFSWB. Let µϕ be parameterized by ϕ ∈ Φ, we want to estimate ∇ϕESF(µϕ;µ1:K). Since

the slicing distribution is unnormalized, we use importance sampling to form an estimation. With θ1, . . . , θL
i.i.d∼ U(Sd−1),

we can form the importance sampling stochastic gradient estimation:

∇̂ϕESF(µϕ;µ1:K , L) =
1

L

L∑
l=1

∇ϕ

W p
p (θl♯µ, θl♯µk⋆θl

)
exp

(
W p
p (θl♯µ, θl♯µk⋆θl

)
)

1
L

∑L
i=1

[
exp

(
W p
p (θi♯µ, θi♯µk⋆θi

)
)]
 ,

which can be further derived by using the chain rule and previously discussed techniques. It is worth noting that the above
estimation is only asymptotically unbiased. We refer the reader to Algorithm 4 for the gradient estimation and optimization
procedure.

Algorithms. As mentioned in the main paper, we present the computational algorithm for SWB in Algorithm 1, for
s-MFSWB in Algorithm 2, for us-MFSWB in Algorithm 3, and for es-MFSWB in Algorithm 4.
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Algorithm 1 Computational algorithm of the SWB problem
Input: Marginals µ1, . . . , µK , p ≥ 1, weights ω1, . . . , ωK , the number of projections L, step size η, the number of
iterations T .
Initialize the barycenter µϕ
for t = 1 to T do

Set ∇ϕ = 0
Sample θl ∼ U(Sd−1)
for l = 1 to L do

for k = 1 to K do
Set ∇ϕ = ∇ϕ +∇ϕ

ωk

L Wp
p(θl♯µϕ, θl♯µk)

end for
end for
ϕ = ϕ− η∇ϕ

end for
Return: µϕ

Algorithm 2 Computational algorithm of the s-MFSWB problem
Input: Marginals µ1, . . . , µK , p ≥ 1 the number of projections L, step size η, the number of iterations T .
Initialize the barycenter µϕ
for t = 1 to T do

Set ∇ϕ = 0
Sample θl ∼ U(Sd−1)
k⋆ = 1
for k = 1 to K do

for l = 1 to L do
if 1
L

∑L
l=1 Wp

p(θl♯µϕ, θl♯µk) >
1
L

∑L
l=1 Wp

p(θl♯µϕ, θl♯µk⋆) then
k⋆ = k

end if
end for

end for
∇ϕ = ∇ϕ +

1
L

∑L
l=1 ∇ϕWp

p(θl♯µϕ, θl♯µk⋆)
ϕ = ϕ− η∇ϕ

end for
Return: µϕ

Algorithm 3 Computational algorithm of the us-MFSWB problem
Input: Marginals µ1, . . . , µK , p ≥ 1 the number of projections L, step size η, the number of iterations T .
Initialize the barycenter µϕ
for t = 1 to T do

Set ∇ϕ = 0
Sample θl ∼ U(Sd−1)
for l = 1 to L do
k⋆l = 1
for k = 2 to K do

if Wp
p(θl♯µϕ, θl♯µk) > Wp

p(θl♯µϕ, θl♯µk⋆l ) then
k⋆l = k

end if
end for
∇ϕ = ∇ϕ +∇ϕ

1
LWp

p(θl♯µϕ, θl♯µk⋆l )
end for
ϕ = ϕ− η∇ϕ

end for
Return: µϕ

13
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Algorithm 4 Computational algorithm of the es-MFSWB problem
Input: Marginals µ1, . . . , µK , p ≥ 1 the number of projections L, step size η, the number of iterations T .
Initialize the barycenter µϕ
for t = 1 to T do

Set ∇ϕ = 0
Sample θl ∼ U(Sd−1)
for l = 1 to L do
k⋆l = 1
for k = 2 to K do

if Wp
p(θl♯µϕ, θl♯µk) > Wp

p(θl♯µϕ, θl♯µk⋆l ) then
k⋆l = k

end if
end for

end for
for l = 1 to L do
wl,ϕ =

exp(Wp
p(θl♯µϕ,θl♯µk⋆

l
))∑L

j=1 exp(Wp
p(θj♯µϕ,θj♯µk⋆

j
))

end for
∇ϕ = ∇ϕ +∇ϕ

wl,ϕ

L Wp
p(θl♯µϕ, θl♯µk⋆l )

ϕ = ϕ− η∇ϕ

end for
Return: µϕ

Energy-based sliced Multi-marginal Wasserstein. As shown in Proposition 3.10, us-MFSWB is equivalent to minimizing
a lower bound of SMW with the maximal ground metric. We now show that es-MFSWB is also equivalent to minimizing a
lower bound of a variant of SMW i.e., Energy-based sliced Multi-marginal Wasserstein with the maximal ground metric.
We refer the reader to Proposition B.1 for a detailed definition. The proof of Proposition B.1 is similar to the proof of
Proposition 3.10 in Appendix A.5.

Proposition B.1. Given K ≥ 2 marginals µ1, . . . , µK ∈ Pp(Rd), the maximal ground metric c(θ⊤x1, . . . , θ⊤xK) =
maxi∈{1,...,K},j∈{1,...,K} |θ⊤xi − θ⊤xj |, we have:

min
µ1

ESF(µ1;µ2:K) ≤ min
µ1

ESMW p
p (µ1, µ2, . . . , µK ; c), (12)

where

ESMW p
p (µ1, µ2, . . . , µK ; c) = E

[
inf

π∈Π(µ1,...,µK)

∫
c(θ⊤x1, . . . , θ

⊤xK)pdπ(x1, . . . , xK)

]
,

and the expectation is with respect to σ(θ) i.e.,

fσ(θ;µ1, µ2:K) ∝ exp

(
max

k∈{2,...,K}
W p
p (θ♯µ1, θ♯µk)

)
.

C. Related Works
Fair Learning with Wasserstein Barycenter. A connection between fair regression and one-dimensional Wasserstein
barycenter is established by deriving the expression for the optimal function minimizing squared risk under Demographic
Parity constraints (Chzhen et al., 2020). Similarly, Demographic Parity fair classification is connected to one-dimensional
Wasserstein-1 distance barycenter in (Jiang et al., 2020). The work (Hu et al., 2023) extends the Demographic Parity
constraint to multi-task problems for regression and classification and connects them to the one-dimensional Wasserstein-2
distance barycenters. A method to augment the input so that predictability of the protected attribute is impossible, by
using Wasserstein-2 distance Barycenters to repair the data is proposed in (Gordaliza et al., 2019). A general approach for
using one-dimensional Wasserstein-1 distance barycenter to obtain Demographic Parity in classification and regression is
proposed in (Silvia et al., 2020). Overall, all discussed works define fairness in terms of Demographic Parity constraints in
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applications with a response variable (classification and regression) in one dimension. In contrast, we focus on marginal
fairness barycenter i.e., using a set of measures only, in any dimensions.

Other possible applications. Wasserstein barycenter has been used to cluster measures in (Zhuang et al., 2022). In
particular, a K-mean algorithm for measures is proposed with Wasserstein barycenter as the averaging operator. Therefore,
our MFSWB can be directly used to enforce the fairness for averaging inside each cluster. The proposed MFSWB can be
also used to average meshes by changing the SW to H2SW which is proposed in (Nguyen & Ho, 2024).

D. Additional Experiments
Gaussians barycenter with the formal MFSWB. We first start with a simple simulation with 4 marginals which are
empirical distributions with 100 i.i.d samples from 4 Gaussian distributions i.e., N ((0, 0), I), N ((20, 0), I), N ((18, 8), I),
and N ((18,−8), I). We then find the barycenter which is represented as an empirical distribution with 100 supports
initialized by sampling i.i.d from N ((0,−5), I). We use stochastic gradient descent with 50000 iterations of learning rate
0.01, the number of projections 100. We show the visualization of the found barycenters with the corresponding F-metric
and W-metric by using USWB, s-MFSWB, us-MFSWB, and es-MFSWB at iterations 0, 1000, 5000, and 50000 in Figure 3.
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Figure 3. Barycenters from USWB, MFSWB with λ = 1, s-MFSWB, us-MFSWB, and es-MFSWB along gradient iterations with the
corresponding F-metric and W-metric.

3D Point-cloud averaging. We aim to find the mean shape of point-cloud shapes by casting a point cloudX = {x1, . . . , xn}
into an empirical probability measures PX = 1

n

∑n
i=1 δxi . We select two point-cloud shapes which consist of 2048 points in
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ShapeNet Core-55 dataset (Chang et al., 2015). We initialize the barycenter with a spherical point-cloud. We use stochastic
gradient descent with 10000 iterations of learning rate 0.01, the number of projections 10. We report the found barycenters
for two car shapes in Figure 4 at the final iteration and the corresponding F-metric and W-metric at iterations 0, 1000, 5000,
and 10000 in Table 1 from three independent runs. We also observe a similar phenomenon for two plane shapes in Figure 5
and Table 3.

Table 3. F-metric and W-metric along iterations in point-cloud averaging application.

Method Iteration 0 Epoch 1000 Epoch 5000 Epoch 10000

F (↓) W (↓) F (↓) W (↓) F (↓) W (↓) F (↓) W (↓)

USWB 746.67± 0.0 4814.71± 0.0 35.22± 1.04 161.11± 0.54 7.82± 0.26 109.82± 0.28 11.08± 0.06 108.52± 0.17
MFSWB λ = 0.1 746.67± 0.0 4814.71± 0.0 35.15± 0.36 159.84± 0.55 4.95± 0.23 109.14± 0.33 6.95± 0.8 107.83± 0.16
MFSWB λ = 1 746.67± 0.0 4814.71± 0.0 33.21± 2.72 151.24± 0.64 2.54± 1.5 109.66± 0.26 4.66± 2.1 108.1± 0.05
MFSWB λ = 10 746.67± 0.0 4814.71± 0.0 34.03± 22.6 158.66± 1.39 29.19± 14.29 122.66± 0.88 20.55± 13.57 123.65± 1.52
s-MFSWB 746.67± 0.0 4814.71± 0.0 36.23± 1.88 154.4± 0.67 0.66± 0.44 109.17± 0.34 2.54± 2.06 107.57± 0.19
us-MFSWB 746.67± 0.0 4814.71± 0.0 28.65± 1.37 144.27± 0.65 1.02± 0.8 109.67± 0.1 1.35± 0.77 108.2± 0.19
es-MFSWB 746.67± 0.0 4814.71± 0.0 28.05± 1.16 143.24± 0.76 0.99± 0.32 109.68± 0.14 1.36± 0.62 108.28± 0.07

Figure 4. Averaging point-clouds with USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB.

Figure 5. Averaging point-clouds with USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB.

Color Harmonization. We first present the harmonized images of different methods including USWB, MFSWB (λ = 1),
s-MFSWB, us-MFSWB, and es-MFSWB at iteration 5000 and 10000 for the demonstrated images in the main text in
Figure 6-Figure 7. Moreover, we report the results of MFSWB (λ = 0.1, 10) at iteration 5000, 10000, and 20000 in Figure 8.
Similarly, we repeat the same experiments with flower images in Figure 9- 11. Overall, we see that es-MFSWB helps to
reduce both F-metric and W-metric faster than USWB and other surrogates. For the formal MFSWB, the performance
depends significantly on the choice of λ.
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Source Image Target Image 1 Target Image 2

USWB F = 1663.415, W = 5638.846 MFSWB = 1, F = 769.439, W = 5219.855 s-MFSWB  F = 1150.143, W = 5413.16 us-MFSWB F = 1421.797, W = 5082.181 es-MFSWB F = 103.12, W = 3030.714

Figure 6. Harmonized images from USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB at iteration 5000.

Source Image Target Image 1 Target Image 2

USWB F = 1287.088, W = 3494.898 MFSWB = 1, F = 251.733, W = 3047.908 s-MFSWB  F = 539.51, W = 3241.862 us-MFSWB F = 874.584, W = 2867.402 es-MFSWB F = 109.643, W = 1718.495

Figure 7. Harmonized images from USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB at iteration 10000.

MFSWB = 0.1, F = 1547.639, W = 5590.296 MFSWB = 10, F = 48.953, W = 3149.456 MFSWB = 0.1, F = 1086.353, W = 3435.965 MFSWB = 10, F = 70.221, W = 2043.315

MFSWB = 0.1, F = 492.712, W = 1722.733 MFSWB = 10, F = 28.018, W = 1405.82

Figure 8. Harmonized images from MFSWB with λ = 0.1 and λ = 10 at iterations 5000, 10000, and 20000.
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Source Image Target Image 1 Target Image 2

USWB F = 4582.919, W = 7888.161 MFSWB = 1, F = 3562.971, W = 7408.885 s-MFSWB  F = 4074.09, W = 7627.971 us-MFSWB F = 4277.279, W = 7417.909 es-MFSWB F = 2269.199, W = 5220.856

Figure 9. Harmonized images from USWB, MFSWB (λ = 1) s-MFSWB, us-MFSWB, and es-MFSWB at iteration 5000.

Source Image Target Image 1 Target Image 2

USWB F = 3801.19, W = 5446.39 MFSWB = 1, F = 1966.134, W = 4898.801 s-MFSWB  F = 2852.586, W = 5112.62 us-MFSWB F = 3204.296, W = 4813.547 es-MFSWB F = 1003.603, W = 3131.569

Figure 10. Harmonized images from USWB, MFSWB (λ = 1), s-MFSWB, us-MFSWB, and es-MFSWB at iteration 10000.
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MFSWB = 0.1, F = 4481.706, W = 7832.764 MFSWB = 10, F = 639.082, W = 5363.916 MFSWB = 0.1, F = 3611.277, W = 5368.453 MFSWB = 10, F = 574.182, W = 2745.862

MFSWB = 0.1, F = 2314.042, W = 3072.12 MFSWB = 10, F = 26.742, W = 1486.442

Figure 11. Color harmonized images from MFSWB with λ = 0.1 and λ = 10 at iterations 5000, 10000, and 20000.

Sliced Wasserstein autoencoder with class-fairness representation. We have the data distributions of K ≥ 1 classes i.e.,
µk ∈ P(Rd) for k = 1, . . . ,K and we would like to estimate an encoder network fϕ : Rd → Rh (ϕ ∈ Φ) and a decoder
network gψ : Rh → Rd (ψ ∈ Ψ with Rh is a low-dimensional latent space. Given a prior distribution µ0 ∈ P(Rh), p ≥ 1,
κ1 ∈ R+, κ2 ∈ R+, and a minibatch size M ≥ 1, we perform the following optimization problem:

min
ϕ,ψ

E

[
1

KM

K∑
k=1

M∑
i=1

c(Xki, gψ(fϕ(Xki)) + κ1SW
p
p (PZ , P(fϕ(Xk))Kk=1

) + κ2B(PZ ;Pf(X1) : Pf(XK))

]
,

where (X1, . . . , XK) ∼ µ⊗M
1 ⊗ . . . ⊗ µ⊗M

K , Z ∼ µ⊗M
0 , c is a reconstruction loss, PZ = 1

M

∑M
i=1 δZi

, P(fϕ(Xk))Kk=1
=

1
KM

∑K
k=1

∑M
i=1 δfϕ(Xki), Pf(Xk) = 1

M

∑M
i=1 δXki

for k = 1, . . . ,K, and B denotes a barycenter loss i.e., USWB,
MFSWB, s-MFSWB, us-MFSWB, and es-MFSWB. This setting can be seen as an inverse barycenter problem i.e., the
barycenter is fixed and the marginals are learnt under some constraints (e.g., the reconstruction loss and the aggregated
distribution loss). We train the autoencoder on MNIST dataset (LeCun et al., 1998) (d = 28× 28) with κ1 = 8.0, κ2 = 0.5,
250 epochs, and µ0 is the uniform distribution on 2D ball (h = 2). Following the training phase, we evaluate the trained
autoencoders on the MNIST test set. Similar to previous experiments, we use the metrics F (denoted as Flatent) and W
(denoted as Wlatent) in the latent space distributions fϕ♯µ1, . . . , fϕ♯µK and the barycenter µ0. We use the reconstruction loss
(binary cross-entropy, denoted as RL), the Wasserstein-2 distance between the prior and aggregated posterior distribution
in latent space W2

2,latent := W 2
2

(
µ0,

1
K

∑K
k=1 fϕ♯µk

)
, as well as in image space W2

2,image := W 2
2

(
gψ♯µ0,

1
K

∑K
k=1 µk

)
.

During evaluation, we approximate µ0 by its empirical version of 10000 samples. We report the quantitative result in Table 2,
and reconstructed images, generated images, and images of latent codes in Figure 12 in Appendix D.

We use the RMSprop optimizer with learning rate 0.01, alpha=0.99, eps=1e− 8. As mentioned in the main text, we report
the used neural network architectures:

MNISTAutoencoder
encoder:

MNISTEncoder
features:

Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
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LeakyReLU(negative_slope=0.2, inplace=True)
Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
AvgPool2d(kernel_size=2, stride=2, padding=0)
Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
AvgPool2d(kernel_size=2, stride=2, padding=0)
Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
AvgPool2d(kernel_size=2, stride=2, padding=1)

fc:
Linear(in_features=1024, out_features=128, bias=True)
ReLU(inplace=True)
Linear(in_features=128, out_features=2, bias=True)

decoder:
MNISTDecoder

fc:
Linear(in_features=2, out_features=128, bias=True)
Linear(in_features=128, out_features=1024, bias=True)
ReLU(inplace=True)

features:
Upsample(scale_factor=2.0, mode=’nearest’)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
Upsample(scale_factor=2.0, mode=’nearest’)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
Upsample(scale_factor=2.0, mode=’nearest’)
Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
LeakyReLU(negative_slope=0.2, inplace=True)
Conv2d(32, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

We report some randomly selected reconstructed images, some randomly generated images, and the test latent codes of
trained autoencoders in Figure 12. Overall, we observe that the qualitative results are consistent with the quantitive results in
Table 2. From the latent spaces, we see that the proposed surrogates helps to make the codes of classes have approximately
the same structure which do appear in the conventional SWAE’s latent codes.

E. Computational Devices
For the Gaussian simulation, point-cloud averaging, and color harmonization, we use a HP Omen 25L desktop for conducting
experiments. Additionally, for the Sliced Wasserstein Autoencoder with class-fair representation experiment, we employ the
NVIDIA Tesla V100 GPU.
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Figure 12. Reconstructed images, generated images and latent space of all methods.

22


