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Abstract

Diffusion distillation is a widely used technique
to reduce the sampling cost of diffusion models,
yet it often requires extensive training, and the
student performance tends to be degraded. Re-
cent studies show that incorporating a GAN ob-
jective may alleviate these issues, yet the under-
lying mechanism remains unclear. In this work,
we first identify a key limitation of distillation:
mismatched step sizes and parameter numbers be-
tween the teacher and the student model lead them
to converge to different local minima, rendering
direct imitation suboptimal. We further demon-
strate that a standalone GAN objective, without
relying a distillation loss, overcomes this limita-
tion and is sufficient to convert diffusion models
into efficient one-step generators. Based on this
finding, we propose that diffusion training may be
viewed as a form of generative pre-training, equip-
ping models with capabilities that can be unlocked
through lightweight GAN fine-tuning. Supporting
this view, we create a one-step generation model
by fine-tuning a pre-trained model with 85% of
parameters frozen, achieving strong performance
with only 0.2M images and near-SOTA results
with 5M images. We further present a frequency-
domain analysis that may explain the one-step
generative capability gained in diffusion training.
Overall, our work provides a new perspective for
diffusion training, highlighting its role as a power-
ful generative pre-training process, which can be
the basis for building efficient one-step generation
models.
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1. Introduction
Diffusion Models (DMs) (Song & Ermon, 2020a;b; Ho
et al., 2020) have emerged as powerful tools for generative
tasks, such as image and video synthesis, surpassing tradi-
tional methods such as Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) in terms of sample qual-
ity. However, the generation process in DMs is slow and
requires a series of iterative steps that impose significant
computational overhead.

To speed up the generation process, several distillation tech-
niques (Salimans & Ho, 2022; Gu et al., 2023; Song et al.,
2023; Yin et al., 2023; Zhou et al., 2024a;c; Hsiao et al.,
2024) have been proposed to reduce the multi-step diffusion
process into a few- or one-step model. While promising,
these methods necessitate large computational resources for
the distillation and often fall short of matching the perfor-
mance of the original multi-step diffusion models. However,
recent advances (Sauer et al., 2023; Xu et al., 2023; Kang
et al., 2024; Sauer et al., 2024; Li et al., 2024a; Kim et al.,
2024a) have shown that incorporating a GAN objective in
the distillation process can improve efficiency, demonstrat-
ing the potential of GAN-based ’distillation’ approaches.

In this work, we first identify a fundamental limitation of ex-
isting distillation methods: the local minima of the teacher
and student models may differ significantly, hindering ef-
fective knowledge transfer. In contrast, the GAN objective
naturally circumvents this issue. Building on this insight,
we propose D2O (Diffusion to One-Step), a novel approach
that relies solely on an exclusive GAN objective, eliminating
the need for instance-level distillation losses. D2O achieves
competitive performance with drastically reduced data re-
quirements, while conventional distillation methods demand
vast training images when trained without a GAN objective.
This significant reduction suggests that the D2O model is
likely not learning from scratch, as that typically requires
tens or millions of images.

Based on these results, we propose that the diffusion ob-
jective can be viewed as a generative pre-training process,
wherein the model learns generalized generative capabilities
that can be rapidly adapted to downstream tasks. To verify
this idea, we create the D2O-F model, with most parameters
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Figure 1. A. Comparison between our methods (D2O and D2O-F) and other methods on ImageNet 64x64. Our models show competitive
results with a much smaller training set than the competing models. B. D2O-F model. We initialize the generator with a pre-trained
diffusion model and freeze most convolutional layers during the fine-tuning. A simple GAN objective is adopted. C. A detailed illustration
of the freezing method used in D2O-F blocks. Most convolutional layers (blue) are frozen. Only the normalization layer and the skip
connection (red) are fine-tuned.

frozen during the fine-tuning. The D2O-F model shows
high efficiency similar to D2O and exhibits even better per-
formance. The success of the freezing method supports our
theory that diffusion models possess universal generative
capabilities and can be efficiently converted into an efficient
one-step generator with a GAN objective.

2. Potential Limitation of Distillation Methods
2.1. Diffusion Models

There are several ways to interpret diffusion models, such
as the score-matching approach (Song & Ermon, 2020a)
and the probabilistic perspective (Ho et al., 2020). For the
training process, given a clean image x0 and random noise
ϵ, the training objective typically involves combining these
with varying proportions and asking the model to predict
the clean image. This task is equivalent to predicting the
noise or the differences between image and noise.

In the EDM framework (Karras et al., 2022), a clean image
x0 is perturbed by adding Gaussian noise xti ∼ N (x0, t

2
i I),

where ti is the standard deviation determined by a time-step
scheduling function T (i,N). Here, N denotes the total
number of discrete time steps, and i refers to the current
step index. A score model gϕ(xti , ti) is then tasked with
predicting the clean image x0 using this perturbed image.

With this pre-trained score model, an ODE solver Sϕ can be
defined as:

Sϕ(xti , ti, ti−1) =
ti−ti−1

ti

(
gϕ(xti , ti)− xti

)
+ xti

There are many different types of Sϕ, e.g., the Heun solver
introduced in EDM (Karras et al., 2022), or other high-order

solvers (Lu et al., 2022a;b; Zhou et al., 2024b; Xue et al.,
2024). We use the Euler solver as an example here. With
this solver, we can sample iteratively to get the final results.

2.2. Diffusion Distillation

A diffusion distillation method typically consists of a series
of teacher models H and student models Fθ. These teacher
models often have more steps than the student models. For
example, in Progressive Distillation (PD) (Salimans & Ho,
2022), teacher models are defined as:

H =

{
Sϕ(Sϕ((xti , ti, tj), tj , tk), i− j = j − k = 1

Fsg
θ (Fsg

θ ((xti , ti, tj), tj , tk), i− j = j − k ̸= 1

where sg is the stop gradient to prevent gradient leakage to
the teacher models.

Recently, an increasing number of distillation methods have
found that adding an extra GAN loss alongside the distilla-
tion loss can be highly effective (Sauer et al., 2023; Xu et al.,
2023; Kang et al., 2024; Sauer et al., 2024; Li et al., 2024a;
Kim et al., 2024a). This observation motivates us to explore
the mechanism underlying the performance gap between
the original distillation methods and the gain provided by a
simple GAN loss.

2.3. Inconsistent Local Minima

In these distillation methods, a teacher model H must pass
through the neural network multiple times and contain more
parameters than the student, while the student model Fθ

passes through the neural network in a single iteration and
has fewer parameters. We reveal the potential problem
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introduced by such a setup.

The difference between the teacher models and the student
models leads to a significant inductive bias: the teacher
model can transform between pixel space and latent space
several times while the student model can only perform the
transformation once. We speculate that this may produce
different optimization landscapes and different local min-
ima between the teacher and student model. Forcing the
student model to approximate the teacher model’s results
may, therefore, yield sub-optimal results.

To verify our hypothesis, we use the Fréchet Inception Dis-
tance (FID) (Heusel et al., 2018) to compare two image sets.
Specifically, we compute the FID between the teacher and
student models, as well as the FID against the training-set
images. FIDs are calculated using 50,000 images generated
by each model with fixed seeds ranging from 0 to 49,999,
and features for FID computation are extracted using an
Inception model.

We define a series of teacher models with 2, 4, 6, 8, and 10
steps in a progressive distillation (PD) manner. For instance,
a two-step teacher model is parameterized as:

H = Fθ(Fθ(xt2 , t2, t1), t1, t0),

where ti ∈ {T (2, 2), T (1, 2), T (0, 2)}, and similarly for
other configurations. Both teacher and student models are
trained using only the GAN loss and initialized from a well-
trained score model in EDM (Karras et al., 2022). All
teacher models achieve FID ≤ 2.2 within a few training
steps (less than 5 million training images), ensuring com-
parable performance across models. Finally, we compute
the FID between the student model and each teacher model,
following the evaluation protocol in EDM (Karras et al.,
2022).

Figure 2A. illustrates the FIDs for teacher models with
varying numbers of steps. While the FID values computed
with the target dataset are similar across teacher models,
those with more steps show higher FID values when com-
pared with the one-step student model. This suggests a
greater divergence from the student model as the number
of teacher steps increases. Additionally, when we fix the
teacher model’s steps to two and vary the sigma of the in-
termediate time step, the FID computed with the one-step
student decreases (Figure 2B.) Teacher models with higher
sigma values generate images that are more similar to those
produced by the one-step student model. More details of
the loss function, time scheduler, and student/teacher model
in distillation methods can be found in Appendix B.

These results reveal that the teacher and student models
may achieve similar performance, but in different ways.
Teachers with fewer steps are more similar to the one-step
student, but there is still a significant difference between

A. B.

Figure 2. The FIDs of teacher models. The FIDs are similar when
computed against the target dataset across different teacher steps
(gray in A) or sigmas of the intermediate steps (gray in B). When
computed against the student model, the FID increases as the steps
grow (blue in A) and decreases as the sigma decreases (steps=2,
blue in B).

them (FID=1.78 between a two-step teacher and a one-step
student). The student model fails to mimic the teacher model
at the instance level, which might be the reason that limits
the performance of distillation methods.

3. Fast Converge With An Exclusive GAN
Objective

3.1. Training Without Distillation Objective

We have demonstrated that the key issue with distillation
methods arises from the fact that the teacher and student
models, despite sharing the same architecture, are optimized
differently due to the teacher’s multi-step process. Directly
aligning the student’s output with the teacher’s at each in-
stance, which forces the student into the teacher’s specific
local minima (e.g., requiring xstudent to match xteacher),
may be suboptimal for the student model. A simple GAN
objective can bypass this issue, guiding the student to align
with the overall data distribution rather than replicating pre-
cise instances, allowing it to refine xstudent even when it
differs from xteacher, and thus find an optimal solution in
its own parameter space. In addition, using the real im-
ages instead of the teacher model’s results (Lin et al., 2024)
in GAN objective pushes the student toward the real data
distribution, thus bypassing imperfections in the teacher’s
distribution and achieving better performance.

3.2. Baseline

Based on this reasoning, we create the D2O (Diffusion to
One-Step) model based on a diffusion U-Net architecture
with only a GAN objective. We first test its performance in
a small-scale experiment on CIFAR-10 (Krizhevsky, 2009)
as the baseline. The non-saturating GAN objective is used
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Table 1. Discriminators that are either too strict or too weak can
lead to model collapse. Multi-scale discriminators (LPIPS and PG)
show better performance.

Discriminator FID (↓)

StyleGAN2 (Scratch) collapse
StyleGAN2 (Pre-trained) collapse

VGG16 4.04
LPIPS 3.49

PG 2.21

for the discriminator and the generator, respectively:

max
D

Ex[log(D(x))] + Ez[1− log(D(Gθ(z)))]

min
Gθ

Ez[− log(D(Gθ(z)))]

With a pre-trained diffusion U-Net model, the score model
gϕ is used as the generator Gθ, and a pre-trained VGG16
(Simonyan & Zisserman, 2015) is used as a discriminator by
default. EDM with NCSN++ (Song et al., 2021) architecture
is used as the generator. We choose VGG16 (Simonyan &
Zisserman, 2015) as a baseline discriminator. Adaptive
augmentation (ADA) (Karras et al., 2020a) is adopted with
r1 regularization (Mescheder et al., 2018) where γr1 = 0.01
as suggested in StyleGAN2-ADA (Karras et al., 2020a). Our
baseline setting shows good performance on the CIFAR-10
dataset with only 5M training images and already achieves
performance (FID=4.04) close to that of the Consistency
Distillation (Song et al., 2023) (FID=3.55) .

3.3. Discriminator

An appropriate discriminator is crucial since it represents the
overall target distribution and determines the performance of
the generator. The StyleGAN2 (both scratch and pre-trained
with GAN objective) (Karras et al., 2020b), VGG, LPIPS
(Zhang et al., 2018) , and Projected GAN (PG) (Sauer et al.,
2022) discriminators are compared. Adaptive augmenta-
tion (ADA) is adopted for StyleGAN2, VGG, and LPIPS
discriminators with r1 regularization where γr1 = 0.01.

For the PG discriminator, we use a non-saturating version
of PG objective:

max
{Dl}

∑
l∈L

(
Ex[logDl(Pl(x))] + Ez[1− log(Dl(Pl(Gθ(z))))]

)
min
Gθ

∑
l∈L

(
Ez[− log(Dl(Pl(Gθ(z))))

)
We use VGG16 with batch normalization (VGG16-BN)
(Simonyan & Zisserman, 2015; Ioffe & Szegedy, 2015) and
EfficientNet-lite0 (Tan & Le, 2020) as feature networks
P. We adopt differentiable augmentation (diffAUG) (Zhao
et al., 2020) without a gradient penalty by default, following

Table 2. Augmentation leads to poor results. R1 regularization
improves performance significantly.

Augmentation γr1 FID (↓)

✓ — 2.21
✗ — 1.98
✗ 1e-3 1.77
✗ 1e-4 1.66
✗ 1e-5 1.66

the original work.

As illustrated in Table 1, discriminators with multiple scales
are better than the vanilla VGG discriminator. Overall, the
PG discriminator with a fusion feature based on VGG16-BN
and EfficientNet-lite0 achieves the best results. Therefore,
we will use the PG discriminator and objective in the fol-
lowing experiments.

3.4. Augmentation and Regularization

Differentiable augmentation (diffAUG) was introduced in
(Zhao et al., 2020) to prevent the overfitting of discrimina-
tors, but we find that it leads to poor results in our method
(Table 2). This may be because EDMs are pre-trained with
data augmentation. We disable all augmentation in all of
our further experiments.

In the original PG, regularization for the discriminator was
not used. However, our experiments show that it is im-
portant to apply r1 regularization on the discriminator to
prevent overfitting and it improves performance significantly
(Table 2). The value of γr1 should be kept small since the
discriminator of the Projected GAN generates multiple out-
put logits, and a large γr1 may lead to a numerical explosion.
With optimal settings, this setup can obtain satisfying results
with only 0.2 million training images (FID=3.62). With 5
million training images, the results are close to SOTA results
(FID=1.66).

4. Diffusion Objective as Generative
Pre-training

4.1. Generative Pre-training

D2O attains strong results using far fewer training images
than most previous distillation methods (See Appendix F
for more detail). These gains are unlikely to come from the
brief GAN fine-tuning alone, since 0.2 million images are
insufficient for the model to learn a complex distribution
from scratch. GAN training typically requires tens of mil-
lions of images, and training diffusion models often needs
hundreds of millions or even billions of images.
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Table 3. D2O-F: ablation experiments. ✓ indicates the correspond-
ing layer can be tuned and ✗ indicates frozen layers. The percent-
age in the brackets is the proportion of the total parameters in these
layers.

Norm(7.9%) Conv (85.8%) QKV (2.1%) Skip(4.0%) FID (↓)

✓ ✓ ✓ ✓ 1.66
✓ ✗ ✓ ✓ 1.54
✓ ✗ ✗ ✓ 1.60
✓ ✗ ✗ ✗ 2.51

Therefore, we speculate that the diffusion U-Net acquires an
intrinsic generative capability during its original diffusion
training, which the GAN fine-tuning phase merely unlocks.
While directly using the pre-trained diffusion model for in-
ference may be inefficient (Ma et al., 2023; Li et al., 2023a;
Zou et al., 2024; Li et al., 2024b; Zhao et al., 2024; Chen
et al., 2024a; Kim et al., 2024b; Chen et al., 2024b), it can
be fine-tuned with a more direct and effective generative
objective, such as a GAN-based objective, to utilize these
intrinsic generative capabilities and produce a fast and effi-
cient generative model.

This approach avoids redundancy by eliminating the role
of noise as a redundant information destroyer during the
iterative inference process. Instead, the noise serves as an
index that maps a sample from the perturbed distribution
onto its counterpart in the target distribution, similar to
Consistency Models (Song et al., 2023; Song & Dhariwal,
2023) and GANs.

4.2. Achieving One-Step Generation via Freezing

To verify the feasibility, efficiency, and generality of this per-
spective, particularly in fine-tuning generative pre-training
models for one-step generation, we create the D2O-F (Diffu-
sion to One-Step Generators with Freezing) model in which
most of the diffusion model’s parameters are frozen during
the fine-tuning with a GAN objective. If the model indeed
relies on its pre-trained generative capabilities, we should
expect to observe a performance similar to D2O.

To find the optimal setting, we conduct the ablation ex-
periments in which different sets of parameters are frozen
or tunable during training (Table 3). The results indicate
that freezing most of the convolutional layers leads to the
best performance. Further freezing the QKV projections
(Vaswani et al., 2023) causes a slight decrease in the per-
formance, and freezing the skip layers on the residual con-
nections leads to worse results, suggesting that tuning these
two types of layers is necessary.

Based on these results, the D2O model is trained with most
of the original parameters locked (85.8% of the parame-
ters contained in the convolutional layers) in the pre-trained

A. B.

Figure 3. A. Performance of the D2O and CD models with (D2O-F
and CD-F) and without (D2O and CD) freezing the convolutional
layers. B. Effects of adding an extra CD loss to the D2O and
D2O-F models.

diffusion U-Net. D2O-F produces satisfying images with
as few as 0.2 million training steps (FID=4.12). The per-
formance further reaches near the SOTA level with only 5
million steps (FID=1.54). In comparison, training a gen-
erative model with similar performance typically requires
tens or hundreds of millions of training steps (100M for
StyleGAN2-ADA, 200M for EDM, on CIFAR-10). These
results strongly support our theory that the initial diffusion
training already provides a sufficient generative capability
that can be rapidly fine-tuned for one-step generation.

Notably, with the majority of parameters in both the dis-
criminator and the generator frozen, the training process of
D2O-F is stable with minimal instances of mode collapse.
Thereby, the freezing method circumvents the inherent in-
stability of using GANs.

Finally, freezing parameters is different from lora-based
methods (Luo et al., 2023; Lin et al., 2024). Lora-based
methods adjust the convolutional parameters, although in
a low-dimensional manner. By freezing the convolution
layer, our method suggests that the diffusion models already
possess the capacity for one-step generation.

4.3. Freezing Is Not Suitable for Distillation

The freezing method does not work well for the distillation
methods. To demonstrate this, we compare the original
CD and the CD with frozen convolutional layers (CD-F)
(Fig. 3A.). CD-F performs poorly, which suggests that
forcing the student model to emulate the teacher model re-
quires adjustments in the convolutional layers. This further
supports our hypothesis that forcing the student model to
replicate the teacher model’s outputs at the instance level
will lead to suboptimal results due to the mismatch between
their optimal local minima. This explains the inefficiency
of distillation methods as a fine-tuning target: they require
the model to learn generative capabilities anew.
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Figure 4. A. Spatial and frequency domain visualization. First row: Inputs at different time steps. Second row: Outputs at different time
steps. Third and Fourth row: the difference between the current outputs and the previous outputs in the spatial domain (enhanced for
clearer visualization) and the frequency domain. Fifth and Sixth row: the difference between the current outputs and the current inputs in
the spatial and frequency domain. B. Radial Averaging of DFFT (Ot, Ot−1), corresponding to the fourth row in A. Smaller radii indicate
lower frequencies. During inference, the model selectively enhances increasingly higher frequency components at later time steps. C.
Radial Averaging of DFFT (Ot, It), corresponding to the last row in A. All frequency bands are suppressed, which is more so in early
time steps. That is because the model removes the redundant noise at each time step.

4.4. Extra Distillation Objective

Previous works (Sauer et al., 2023; Xu et al., 2023; Kang
et al., 2024; Sauer et al., 2024; Li et al., 2024a; Kim et al.,
2024a) employ both the distillation objective and the GAN
objective. To assess their contribution to performance, we
test our model with an additional distillation loss incorpo-
rated. We use the Consistency Distillation (CD) objective
(Song et al., 2023) here, as it is easy to implement and per-
forms well. Detailed information about the CD objective can
be found in Appendix C. The comparisons are conducted
on the CIFAR-10 dataset.

We find that the extra CD loss significantly slows down the
convergence in the early stage. Although it performs slightly
better than D2O, this advantage disappears when compared
against D2O-F (Figure 3B.). In addition, adding CD loss
nearly doubles the training resources and time.

Although the extra distillation loss may offer potential bene-
fits, such as in image editing or classifier-free guidance (Ho
& Salimans, 2022), these benefits may be achieved in our
model with other methods such as adjusting the downstream
task.

4.5. Frequency-Specific Processing

Though our experiments provide evidence for the general
generative capabilities in diffusion models, the exact mech-
anism by which these capabilities emerge during training

with the diffusion objective remains unclear. We speculate
that these generative capabilities might involve frequency-
specific processing.

We use the log-frequency difference as a core metric to
quantify frequency response:

DFFT (x1, x2) = log (|FFT (x1)|+ 1)− log (|FFT (x2)|+ 1) ,

where x1 and x2 represent two quantities to be compared.

Global Frequency Evolution We first notice that the in-
formation across the entire frequency range changes be-
tween the input and the output at different time steps, mea-
sured by DFFT (Ot, It) (Figure 4 A. and C.). This is con-
sistent with the denoising process carried out by the model,
which suppresses noise across the entire spectrum. Further-
more, when examining the frequency differences between
the outputs of two consecutive time steps DFFT (Ot, Ot−1),
we observe a distinct pattern: low-frequency components
are enhanced in the earlier time steps, while the enhanced
frequencies shift toward the middle and high ranges in later
time steps (Figure 4 A. and B.). This pattern provides quan-
titative support for the commonly observed phenomenon
that diffusion inference progressively restores signals from
low to high frequencies (Rissanen et al., 2023; Dieleman,
2023). It suggests that diffusion models may process differ-
ent frequency components in a time-step-dependent manner
during inference.
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Table 4. A comprehensive comparison between D2O, D2O-F, and
previous models on CIFAR-10.

Method NFE (↓) Unconditional Conditional
FID (↓) IS (↑) FID (↓)

Training From Scratch

DDPM (Ho et al., 2020) 1000 3.17
DDIM (Song et al., 2022) 100 4.16

Score SDE (Song et al., 2021) 2000 2.20
DPM-Solve-3 (Lu et al., 2022a) 48 2.65

EDM (Karras et al., 2022) 35 1.98 1.79
BigGAN (Brock et al., 2019) 1 14.73

StyleGAN2-ADA (Karras et al., 2020a) 1 2.92 9.82 2.42
SAN (Takida et al., 2024) 1 1.36

iCT (Song & Dhariwal, 2023) 1 2.83 9.54
iCT (Song & Dhariwal, 2023) 2 2.46 9.80

iCT-deep (Song & Dhariwal, 2023) 1 2.51 9.76
iCT-deep (Song & Dhariwal, 2023) 2 2.24 9.89

Post-training

PD (Salimans & Ho, 2022) 1 9.12
DFNO (Zheng et al., 2023) 1 3.78

CD (Song et al., 2023) 1 3.55
CD (Song et al., 2023) 2 2.93

CTM (Kim et al., 2024a) 1 1.98 1.73
CTM (Kim et al., 2024a) 2 1.87 1.63
DMD (Yin et al., 2023) 1 2.62

SiD (Zhou et al., 2024a), α = 1.0 1 2.02 10.01 1.93
SiD (Zhou et al., 2024a), α = 1.2 1 1.92 9.98 1.71

D2O (ours) 1 1.66 10.11 1.58
D2O-F (ours) 1 1.54 10.10 1.44

Block-wise Frequency Specialization We also examine
the frequency response of the U-Net blocks. Our analyses
reveal a natural frequency-specific processing pattern, influ-
enced by the diffusion U-Net structure (Figure 6). The deep
blocks, operating at lower resolutions, are limited in their
ability to process high-frequency information. In contrast,
the shallow blocks, operating at higher resolutions, are bet-
ter suited for capturing a broader range of high-frequency
information. In addition, there is evidence of frequency-
specific processing across different blocks at various time
steps. High-frequency components often undergo more sig-
nificant changes in the shallower layers, particularly during
later time steps (See Appendix E for more details).

These results hint that frequency-specific processing may
underlie the generative capabilities observed in diffusion
models, which could be rapidly adapted and integrated with
a simple GAN objective to efficiently produce a one-step
generator.

5. Comprehensive Performance Test
5.1. Basic Setting

Finally, we conduct a comprehensive evaluation of both
D2O and D2O-F on CIFAR-10, AFHQv2 64x64 (Choi et al.,
2020), FFHQ 64x64 (Karras et al., 2019), and ImageNet
64x64 (Deng et al., 2009). The results for class-conditional
generation and the comparison against previous studies
are reported on CIFAR-10 and ImageNet 64x64. The pre-

Table 5. A comprehensive comparison between D2O, D2O-F, and
previous work on AFHQv2 64x64 and FFHQ 64x64.

Method NFE (↓) FID (↓)
AFHQv2 FFHQ

Training From Scratch

EDM (Karras et al., 2022) 79 1.96 2.39

Post-training

BOOT (Gu et al., 2023) 1 9.0
SiD (Zhou et al., 2024a), α = 1.0 1 1.62 1.71
SiD (Zhou et al., 2024a), α = 1.2 1 1.71 1.55

D2O (ours) 1 1.23 1.08
D2O-F (ours) 1 1.31 0.85

Figure 5. Sample comparison between EDM (Top), D2O (Middle)
and D2O-F (Bottom) on AFHQv2 (left) and FFHQ (right).

trained diffusion models are from EDM. We report FID for
all datasets, Inception Score (IS) (Salimans et al., 2016) for
CIFAR-10, precision and recall metric (Kynkäänniemi et al.,
2019) for ImageNet 64x64 following previous works. For
the discriminator, we use VGG16 with batch normalization
and EfficientNet-lite0 as the feature network for CIFAR-
10, DeiT (Touvron et al., 2021) , and EfficientNet-lite0 for
the other datasets. The optimal settings for discriminator,
augmentation, and regularization determined in previous
experiments are used. More implementation details can be
found in Appendix C.

5.2. Results

The results can be found in Table 4, 5 , and 6. Both D2O
and D2O-F achieve competitive results on all datasets tested.
Our methods not only are suitable for unconditional genera-
tion but also show great performance on class-conditional
generation tasks. Moreover, D2O-F outperforms D2O by a
significant margin in most datasets, except AFHQv2 64x64.
On CIFAR-10, our methods achieve an FID of 1.54 and an
IS of 10.11. Similarly, superior performance is found on
AFHQv2 64x64 (FID=1.23) and FFHQ 64x64 (FID=0.85).
In ImageNet 64x64, the model also achieves SOTA perfor-
mance (FID=1.16, precision=0.77).

We further compare the outputs from the converted one-step
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Table 6. A comprehensive comparison between D2O, D2O-F, and
the competing models on ImageNet 64x64 (class-conditional).

Method NFE (↓) FID (↓) Prec. (↑) Rec. (↑)

Training From Scratch

RIN (Jabri et al., 2023) 1000 1.23
DDPM (Ho et al., 2020) 250 11.00 0.67 0.58

ADM (Dhariwal & Nichol, 2021) 250 2.07 0.74 0.63
EDM (Karras et al., 2022) 79 2.64

iCT (Song & Dhariwal, 2023) 1 4.02 0.70 0.63
iCT (Song & Dhariwal, 2023) 2 3.20 0.73 0.63

iCT-deep (Song & Dhariwal, 2023) 1 3.25 0.72 0.63
iCT-deep (Song & Dhariwal, 2023) 2 2.77 0.74 0.62
BigGAN-deep (Brock et al., 2019) 1 4.06 0.79 0.48
StyleGAN2-XL (Sauer et al., 2022) 1 1.51

Post-training

PD (Salimans & Ho, 2022) 1 15.39
BOOT (Gu et al., 2023) 1 16.3 0.68 0.36

DFNO (Zheng et al., 2023) 1 7.83 0.61
CD (Song et al., 2023) 1 6.20 0.68 0.63
CD (Song et al., 2023) 2 4.70 0.69 0.64

CTM (Kim et al., 2024a) 1 1.92 0.70 0.57
CTM (Kim et al., 2024a) 2 1.73 0.64 0.57
DMD (Yin et al., 2023) 1 2.62

SiD (Zhou et al., 2024a), α=1.0 1 2.02 0.73 0.63
SiD (Zhou et al., 2024a), α=1.2 1 1.52 0.74 0.63

sCD-S (Lu & Song, 2025) 1 2.97
sCD-S (Lu & Song, 2025) 2 2.07
ECM-S (Geng et al., 2024) 1 4.05
ECM-S (Geng et al., 2024) 2 2.79
DMD2 (Yin et al., 2024) 1 1.51

DMD2 (Yin et al., 2024), longer training 1 1.26
MSD (Song et al., 2024), 4 students, DM 1 2.37

MSD (Song et al., 2024), 4 students, ADM 1 1.20
D2O(ours) 1 1.42 0.77 0.59

D2O-F(ours) 1 1.16 0.75 0.60

generator and the original diffusion model EDM (Figure 5,
more samples can be found in Appendix G). The produced
images are similar, and there is a certain degree of variation,
as we do not force the student model to replicate the teacher
model at the instance level, allowing it to perform differently
to surpass the original model. Based on FID (calculated
using EDM’s results on CIFAR-10), D2O-F (1.87) performs
similarly to the other distillation methods like CD (1.76)
and significantly better than StyleGAN-XL (2.60). Together,
these results demonstrate the robustness and effectiveness
of our methods, supporting our hypothesis that one-step
generation utilizes the generative capabilities gained from
pre-training.

6. Discussion
6.1. Generative Pre-training

Here, we propose that diffusion model training can be
viewed as a generative pre-training process. With this view,
the generative pre-training should consist of two key pro-
cesses: a destruction process that reduces information to a
known noise distribution and a self-supervised training pro-
cess that trains the model to recover samples with varying

noise levels. The training process helps the model learn the
necessary generative capabilities. The destruction process
allows the model to sample from a known distribution and
generate or edit images according to the task.

An architecture based on discrete tokens, such as auto-
regressive models, could also be framed within this frame-
work with a few simple adjustments. Specifically, instead
of merely removing tokens, we could replace them with
tokens randomly sampled from a discrete uniform distribu-
tion (mixing these tokens is also a viable option). After the
pre-training process, we can fine-tune the pre-trained model
by sampling a set of random tokens and adopting a simple
GAN objective to achieve one-step generation.

6.2. Limitation and Future Work

Our model is based on the diffusion U-Net architecture. The
effectiveness of our approach on different architectures, such
as DiT (Peebles & Xie, 2023), remains to be explored. Addi-
tionally, while the proposed generative pre-training method
demonstrates good performance on the one-step generation
task across several datasets, including the relatively com-
plex ImageNet 64x64, it has yet to be tested on datasets with
higher resolution and more complex generation tasks, such
as the COCO (Lin et al., 2015) dataset. Finally, our efforts
to explore the generative capabilities through the diffusion
models’ frequency response are only preliminary and need
to be expanded. In the future, we will focus on extending
our methods to more architectures, datasets, and tasks, as
well as exploring the underlying mechanisms of how the
diffusion objective provides universal capacities to diffusion
models.

7. Conclusion
In this work, we aim to improve the efficiency of training
one-step generative models from diffusion models. We first
identify a fundamental limitation of distillation methods:
the teacher and student models may converge to distinct lo-
cal minima and the discrepancy hinders knowledge transfer.
Therefore, we create the D2O model with a GAN objective
to circumvent this issue. The D2O model produced results
beyond our expectations, and we further explored the un-
derlying mechanism. We propose that the training of the
original model with the diffusion objective can be viewed as
generative pre-training, where the model learns generaliz-
able capabilities that can be rapidly fine-tuned and integrated
into a one-step generator. To demonstrate the feasibility of
the idea, we build the D2O-F model in which a significant
portion of the original model parameters are frozen during
fine-tuning. The model achieves competitive performance
with far fewer training images, supporting our hypothesis
that the one-step generation can be achieved through rapid
fine-tuning of the pre-trained generative capabilities in diffu-
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sion models. The frequency analysis provides a preliminary
explanation for the freezing technique by revealing the tem-
poral and block-wise frequency specialization in diffusion
models. Together, our work provides key intuition for de-
veloping efficient and high-performance generative models
in the future.

Impact Statement
The primary advantage of transforming diffusion models
into one-step generators lies in increased efficiency, which
reduces the computational resources needed for generation.
This not only leads to energy savings but also makes high-
performance models accessible to users with standard com-
puting resources, promoting fairness in AI usage.

However, similar to other generative models, there are po-
tential risks, such as the misuse of these models to generate
harmful content like violence or pornography. These risks
are already part of ongoing industry discussions, and re-
sponsible deployment, along with clear ethical guidelines,
is essential to prevent misuse.
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A. Related Work
Image Generation GAN (Goodfellow et al., 2014; Brock et al., 2019; Karras et al., 2020b) models have dominated the
image generation field for a long time. Quantization-based generative models (Esser et al., 2021; Chang et al., 2022; Li
et al., 2023b) first encode images into discrete tokens, then use a transformer to model the probability distribution between
the tokens. Diffusion Models (Sohl-Dickstein et al., 2015; Song & Ermon, 2020a; Ho et al., 2020; Song & Ermon, 2020b;
Song et al., 2021) or score-based generative models try to learn an accuracy estimation of scores (the gradient of the log
probability density) to sample from a perturbed distribution with a Gaussian kernel to the image distribution. Diffusion
models have achieved great success in image generation (Dhariwal & Nichol, 2021; Nichol et al., 2022; Ramesh et al., 2022;
Saharia et al., 2022) and are widely used in different fields.

Accelerating Diffusion Inference Many recent works tried to accelerate the inference process of diffusion models, often
focusing on the redundancy inherent in these models. This typically involves both architectural and temporal redundancy
(Ma et al., 2023; Li et al., 2023a; Zou et al., 2024; Li et al., 2024b; Zhao et al., 2024; Chen et al., 2024a; Kim et al., 2024b;
Chen et al., 2024b). These methods often involve reusing feature maps or outputs from neighboring time steps to reduce the
computational cost of inference.

Diffusion Distillation One of the challenges of diffusion models in practice is the high computational cost incurred
during fine multi-step generation. A series of distillation methods (Salimans & Ho, 2022; Gu et al., 2023; Song et al.,
2023; Yin et al., 2023; Zhou et al., 2024a;c; Hsiao et al., 2024) have been proposed to distill diffusion models to one-step
generators. Distillation models with GAN were introduced recently. GAN loss has been used as an auxiliary loss of
distillation loss (Sauer et al., 2023; Xu et al., 2023; Kang et al., 2024; Sauer et al., 2024; Li et al., 2024a; Kim et al., 2024a),
or a replacement of instance-level loss (L2 or LPIPS) as in (Lin et al., 2024). Both of these approaches achieved good
performance, demonstrating the potential of GAN-based distillation.

Frequency Perspective Recently, several studies investigated diffusion models from a frequency perspective. For example,
in (Rissanen et al., 2023), the authors analyze the changes induced by the diffusion forward process on images from a
frequency viewpoint. In (Lee et al., 2024), analysis was conducted based on the frequency differences between inputs and
outputs. In (Wang et al., 2023; Huang et al., 2024), a frequency-based improvement method was proposed, enhancing the
model’s efficiency and performance.

B. Definition of Typical Distillation Methods
Progressive Distillation (PD) uses a progressive distillation strategy. Using Sϕ with a sufficient number of steps, e.g.,
Nmax = 1024, as a teacher, PD first distills a student model Fθ with fewer steps, typically N1 = 1

2Nmax = 512.
Then with the fixed student model Fsg

θ as teacher where sg means stop gradient, PD further distills the student with
N2 = 1

4Nmax = 256. This progress is repeated until a one-step generator is produced.

Consistency Distillation (CD) and Consistency Trajectory Model (CTM) are similar. Both of these two methods adopt a joint
training strategy in which student model Fθ is used to be part of the teacher model H(xt, t, u, s) = Fsg

θ (Sϕ(xt, t, u), u, s) at
the same time. CTM uses an iterative solver S∗

ϕ here and it further projects vs and v̄s to the pixel space by Fsg
θ (vs, s, σmin)

and Fsg
θ (v̄s, s, σmin) and then calculates D(vσmin

, v̄σmin
) as loss. The three models are summarized in Table 7, 8 and 9.

We modify the definition of PD with a EDM manner here to be consistent. t, u, s are the start, intermediate and end time
steps of the trajectory, respectively. PD sets the u to the ”middle” of t and s. CD sets the u as the successor of t and fixes the
s to zeros. PD uses a separate training strategy since the teacher model is student model from previous training, and PD
supervises fθ with the intersection of x = 0 and Slope(xt, v̄s), where Slope(xt, v̄s) is the slope between xt and v̄s.

Table 7. Sampling strategies for time steps of commonly used distillation methods

Method t u s

PD T(i,N), 2 ≤ i ≤ N T( 1
2
(i+ j), N) T(j,N), 0 ≤ j < (i− 1)

CD T(i,N), 1 ≤ i ≤ N T(i− 1, N) T (0, N)
CTM T(i,N), 2 ≤ i ≤ N T(j,N), 1 ≤ j ≤ i T(k,N), 0 ≤ k ≤ j
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Table 8. Loss function of commonly used distillation methods

Method Loss Function (L)

PD D(fθ(xt, t),
t

t−s
(H(xt, t, u, s)− xt) + xt)

CD D(Fθ(xt, t, s),H(xt, t, u, s))
CTM D(Fsg

θ (Fθ(xt, t, s), s, σmin),F
sg
θ (H(xt, t, u, s), s, σmin))

Table 9. Definition of teacher and student model of commonly used distillation methods

Method Student Model (Fθ) Teacher Model (H)

PD
t− s

t
(fθ(xt, t)− xt) + xt

{
Sϕ(Sϕ(xt, t, u), u, s), Ni = Nmax

Fsg
θ (Fsg

θ (xt, t, u), u, s), Ni ̸= Nmax

CD
t− s

t
(fθ(xt, t)− xt) + xt Fsg

θ (Sϕ(xt, t, u), u, s)

CTM fθ(xt, t, s) Fsg
θ (S∗

ϕ(xt, t, u), u, s)

C. Implementation Details
We use EDMs as the original models for all datasets and methods to ensure a fair comparison. EMA decay is applied to
the weights of the generator for sampling following previous work. EMA decay rate is calculated by EMA Halflife and
EMA warmup is used as in EDM. EMA warmup ratio is set to 0.05 for all datasets, and this leads to a gradually growing
EMA decay rate. We use Adam optimizer with β1 = 0, β2 = 0.99 without weight decay for both the generator and the
discriminator. No gradient clip is applied. For class-conditional generation, we use no classifier-guidance but simple class
embedding in the discriminator following StyleGAN2-XL. Mixed precision training is adopted for all experiments with
BFloat16 data type, and results with Float16 and Float32 are similar. We apply no learning rate scheduler. Images are
resized to 224 first before they are fed to the PG discriminator or CD-LPIPS loss. All models are trained on a cluster of
NVIDIA A100 GPUs. Hyperparameters used for D2O and D2O-F training can be found in Table 10. D2O and D2O-F share
the same hyperparameters except for the number of training images, since D2O-F will not overfit when D2O gets worse FID.

Table 10. Hyperparameters used for training D2O and D2O-F

Hyperparameter CIFAR-10 AFHQ 64× 64 FFHQ 64× 64 ImageNet 64× 64

G Architecture NSCN++ NSCN++ NSCN++ ADM
G LR 1e-4 2e-5 2e-5 8e-6
D LR 1e-4 4e-5 4e-5 4e-5
Optimizer Adam Adam Adam Adam
β1 of Optimizer 0 0 0 0
β2 of Optimizer 0.99 0.99 0.99 0.99
Weight decay No No No No
Batch size 256 256 256 512
γr1 (Regularization) 1e-4 1e-4 1e-4 4e-4
EMA half-life (Mimg) 0.5 0.5 0.5 50
EMA warmup ratio 0.05 0.05 0.05 0.05

Training Images (Mimg) 5 (D2O) 5 (D2O) 5 (D2O) 5 (D2O)
5 (D2O-F) 10 (D2O-F) 10 (D2O-F) 5 (D2O-F)

Mixed-precision (BF16) Yes Yes Yes Yes
Dropout probability 0.0 0.0 0.0 0.0
Augmentations No No No No
Number of GPUs 8 8 8 8
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We follow the parameterization in Consistency Model for all of our models:

cskip(t) =
σ2

data

(t− ϵ)2 + σ2
data

, cout(t) =
σdata(t− ϵ)√
σ2

data + t2

We set t = σmax when applying D2O/D2O-F with cskip ≈ 0 and cout ≈ 1. When training with CD loss, we use Heun solver.
The time step scheduler is slightly different from the scheduler defined in EDM. We reverse the index and define it as a
function of the current step and total steps:

T (i,N) =

(
σmax

1
ρ +

(
1− i

N

)(
σmin

1
ρ − σmax

1
ρ

))ρ

Following Consistency Distillation, we set N = 18, ρ = 7, σmin = 0.002 and σmax = 80.

D. CLIP-FID Results
Potential data leakage in FID when using a discriminator pre-trained on ImageNet has been a concern (Kynkäänniemi
et al., 2023). We provide CLIP-FID in Table D. Our method consistently shows superior or competitive performance with
significantly less training data. The result indicates that the superior performance is not due to information leakage but the
pretrained ability gained in diffusion training.

Table 11. Performance comparison across datasets: CLIP-FID, FID, and training images

Dataset Model CLIP-FID FID Training Images

CIFAR10 EDM 0.53 1.98 -
CD 1.26 4.10 ∼100M
SiD 0.65 1.92 ∼400M
D2O-F 0.66 1.56 ∼5M

FFHQ EDM 1.18 2.39 -
SiD 0.80 1.55 ∼500M
D2O-F 0.81 0.83 ∼9M

AFHQv2 EDM 0.40 1.96 -
SiD 0.32 1.62 ∼300M
D2O-F 0.18 1.24 ∼7M

ImageNet EDM 0.82 2.64 -
CD 2.93 6.87 ∼1000M
SiD 0.75 1.52 ∼930M
D2O-F 0.51 1.13 ∼6M

E. Details of Block-Wise Frequency Analysis
We first notice a natural correlation between the U-Net architecture and spatial frequency (Figure 6A.). The deeper layers,
which operate at lower resolutions, are limited in their ability to process high-frequency information. The shallower layers,
operating at higher resolutions, are better equipped to capture a broader range of high-frequency information.

Next, we examine how frequency contributions evolve over time across layers and their alignment with the overall frequency
response in the diffusion process. We calculate the frequency difference between the input and output of each layer at
different time steps Db

t = DFFT (x
b
t , x

b−1
t ), where t refers to the time step and b refers to the block index. There are

significant specialization patterns of different blocks (Figure 6 B. and C.).
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B.A.

C.

Figure 6. A. Average feature maps at different depths. The inner region corresponds to the skip path, while the outer region corresponds
to the convolution path consisting of normalization, activation, and convolutional layers. From deeper to shallower layers, the decoder
exhibits a transition from low to high-frequency contributions in the spatial domain. B. Radial averaging of the log difference between
the output and input of a shallow layer reveals that the high-frequency component increases over time. C. Radial averaging of the log
difference between the output and input of a deep layer. Due to the lower resolution, this layer exhibits a smaller radius and frequency
range.

F. Training Efficiency Comparison
We provide further training efficiency comparisons between our methods and the other approaches on ImageNet 64×64.
The name in the quote is the pre-trained diffusion model. With similar teacher models (EDM and EDM2), our methods
require significantly fewer training images while delivering better performance.

Table 12. Comparison of distilled one-step generators on ImageNet 64×64

Method FID ↓ Training Images (M)↓ Params (M)

BOOT (EDM) 16.30 307 280
DMD (EDM) 2.62 117 280
ECM-S (EDM2) 5.51 12 280
ECM-S, longer training (EDM2) 4.05 102 280
ECM-XL (EDM2) 3.35 12 1119
ECM-XL, longer training (EDM2) 2.49 102 1119
sCD-S (EDM2+TrigFlow) 2.97 819 280
sCD-XL (EDM2+TrigFlow) 2.44 819 1119
D2O-F (EDM) 1.16 5 280

G. Samples
We include EDM’s results for comparison. The initial noises are the same as in all models. D2O and D2O-F generate images
similar to the original model (EDM). But they are not identical, because our methods allow the student model to perform
differently from the teacher model.
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Figure 7. CIFAR-10, EDM, NFE=18, FID=1.96

Figure 8. CIFAR-10, D2O, NFE=1, FID=1.66

Figure 9. CIFAR-10, D2O-F, NFE=1, FID=1.54
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Figure 10. CIFAR-10 (conditional), EDM (VE), NFE=18, FID=1.82

Figure 11. CIFAR-10 (conditional), D2O, NFE=1, FID=1.58

Figure 12. CIFAR-10 (conditional), D2O-F, NFE=1, FID=1.44
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Figure 13. AFHQv2 64x64, VE, NFE=79, FID=2.17

Figure 14. AFHQv2 64x64, D2O, NFE=1, FID=1.23

Figure 15. AFHQv2 64x64, D2O-F, NFE=1, FID=1.31
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Figure 16. FFHQ 64x64, EDM (VE), NFE=79, FID=2.60

Figure 17. FFHQ 64x64, D2O, NFE=1, FID=1.08

Figure 18. FFHQ 64x64, D2O-F, NFE=1, FID=0.85
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Figure 19. ImageNet 64x64 (conditional), EDM (VE), NFE=79, FID=2.36

Figure 20. ImageNet 64x64 (conditional), D2O, NFE=1, FID=1.42

Figure 21. ImageNet 64x64 (conditional), D2O-F, NFE=1, FID=1.16
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