
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IN-CONTEXT LEARNING IS PROVABLY BAYESIAN IN-
FERENCE: A GENERALIZATION THEORY FOR META-
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper develops a finite-sample statistical theory for in-context learning (ICL),
analyzed within a meta-learning framework that accommodates mixtures of di-
verse task types. We introduce a principled risk decomposition that separates the
total ICL risk into two orthogonal components: Bayes Gap and Posterior Vari-
ance. The Bayes Gap quantifies how well the trained model approximates the
Bayes-optimal in-context predictor. For a uniform-attention Transformer, we de-
rive a non-asymptotic upper bound on this gap, which explicitly clarifies the de-
pendence on the number of pretraining prompts and their context length. The
Posterior Variance is a model-independent risk representing the intrinsic task un-
certainty. Our key finding is that this term is determined solely by the difficulty
of the true underlying task, while the uncertainty arising from the task mixture
vanishes exponentially fast with only a few in-context examples. Together, these
results provide a unified view of ICL: the Transformer selects the optimal meta-
algorithm during pretraining and rapidly converges to the optimal algorithm for
the true task at test time.

1 INTRODUCTION

Large language models (LLMs) have moved far beyond classic NLP benchmarks into complex,
real-world workflows (Naveed et al., 2024; Zhao et al., 2025) such as code assistants and genera-
tors (GitHub, 2025; Team et al., 2025) in software engineering, Med-PaLM 2 (Singhal et al., 2025)
in healthcare, text-to-SQL systems (Gao et al., 2024; Shi et al., 2024) in business intelligence, and
vision-language-action models (Kim et al., 2024b; Zitkovich et al., 2023) in robotics. In particu-
lar, since GPT-3, modern LLMs have demonstrated a striking ability to adapt to new tasks from
only a handful of input-output exemplars, without parameter updates (Brown et al., 2020). This
phenomenon, known as in-context learning (ICL), appears across diverse datasets and task formats
and is at the heart of these workflows (Min et al., 2022; Dong et al., 2024). These deployments
share common constraints: inference-time (test-time) prompts are short, and upstream pretraining
covers heterogeneous task types. A concrete, finite-sample account of predictive error under these
constraints is therefore of key importance to practitioners.

Numerous studies aim to elucidate the behavior of ICL. Wang et al. (2023); Akyürek et al. (2023);
von Oswald et al. (2023); Li et al. (2023); Bai et al. (2023); Garg et al. (2022); Mahankali et al.
(2024) have empirically or theoretically shown that Transformers can implement canonical esti-
mators and learning procedures in context (e.g., least squares, ridge, and Lasso, gradient-descent
steps, model selection), sometimes achieving near-Bayes-optimal performance on linear tasks. Con-
currently, Jeon et al. (2024) provide information-theoretic analysis and Kim et al. (2024a) present
nonparametric rates for particular architectures and settings, with subsequent progress (Wang et al.,
2024; Oko et al., 2024; Nishikawa et al., 2025). A compelling perspective frames ICL as a form of
implicit Bayesian inference (Xie et al., 2022; Wang et al., 2023; Panwar et al., 2024; Arora et al.,
2025; Reuter et al., 2025; Zhang et al., 2025). Although this viewpoint provides an explanatory
framework for ICL’s capabilities, the aforementioned theories have not fully leveraged the theoret-
ical relationship between ICL and Bayes. Hence, they lack a statistical theory that can (i) jointly
couple pretraining sizeN and prompt length p and (ii) accommodate heterogeneous mixtures of task
types, the regime in which modern LLMs operate.
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We develop a Bayes-centric framework that offers a concrete account of the sources of error and
clarifies how they shrink with p and N . Specifically, viewing ICL risk as the Bayes risk (e.g.,
§5.3.1.2 of Murphy, 2022), we treat the Bayes-optimal predictor as the optimal in-context predictor
and derive the following orthogonal decomposition under squared loss (Theorem 1):

ICL risk = Bayes Gap + Posterior Variance,

where the Bayes Gap measures the discrepancy between a pretrained model and the optimal in-
context (Bayes) predictor, and the Posterior Variance is independent of the model and shrinks as the
observed context length grows. Conceptually, performance limits at inference time are governed by
Bayesian uncertainty about the test task (i.e., the task at inference time), not by pretraining alone.
We summarize the further contributions below:

1. Provide non-asymptotic upper bounds that couple the number of pretraining prompts N
and their context length p (Theorem 2). For uniform-attention Transformers, we leverage se-
quential learning theory (Rakhlin et al., 2010), develop optimal transport-based approximation
theory, and then obtain

ERBG(Mθ̂) ≲ m−2α/deff︸ ︷︷ ︸
approximation

+m(pN)−1 +N−1︸ ︷︷ ︸
pretraining generalization

(ignoring logarithmic factors)

Here m is the number of learned features in the Transformer, deff is the effective dimension,
and α is a Hölder exponent. The rate ∝ m/(pN) clarifies the dependence on both p and N ,
which earlier theories on ICL (Kim et al., 2024a; Wu et al., 2024; Zhang et al., 2024) have not
fully captured. Importantly, the result suggests that Transformers select the optimal meta-
algorithm during pretraining.

2. Explain in-context error via the test-task difficulty (Theorem 3). In a mixture of task types,
the posterior over the task index concentrates exponentially fast with respect to the observed
context length, and the irreducible term RPV is upper bounded by the minimax risk of the
test (true) task family. Without assuming specific algorithms (Akyürek et al., 2023; Bai et al.,
2023; Zhang et al., 2024), our result implies that even in mixed-task settings the optimal meta-
algorithm rapidly converges to the optimal algorithm for the true task at inference time.
This finding is consistent with empirical reports (Panwar et al., 2024; Arora et al., 2025), which
show that ICL often behaves like Bayesian inference, particularly in task-mixture settings.

3. Characterize stability under input-distribution shift (Theorem 4). We demonstrate that
under input-distribution shift from pretraining data to inference-time prompt, the Bayes Gap
incurs an out-of-distribution (OOD) penalty proportional to the Wasserstein distance between
the distributions, while the Posterior Variance is intrinsic to the target domain. Zhang et al.
(2024) have noted that ICL is vulnerable to input-distribution shift in some settings, whereas
our results specifically show that only the Bayes Gap increases in proportion to the magnitude
of the shift.

The paper is organized as follows. Section 2 formalizes the meta-learning prompt model, introduces
the Transformer architecture, and states assumptions, followed by a primer on the Bayes-optimal
in-context predictor. Section 3 presents the risk decomposition and then analyzes (i) the Bayes
Gap (Section 3.1), (ii) the Posterior Variance (Section 3.2), and (iii) OOD stability under input-
distribution shift (Section 3.3). Section 4 concludes with limitations and future work. The Appendix
contains a list of notation, all technical proofs, auxiliary lemmas, and extended discussions.

Related Work

(A) ICL as Bayesian inference. ICL has been framed as (implicit) Bayesian inference under struc-
tured pretraining. Xie et al. (2022) show that mixtures of hidden Markov model-style documents
enable Transformers to perform posterior prediction; Panwar et al. (2024) show that Transformers
mimic Bayes across task mixtures. Lin & Lee (2024) reconcile task retrieval versus task learning
with a probabilistic pretraining model. Wang et al. (2023) view LLMs as latent-variable predic-
tors enabling principled exemplar selection. Reuter et al. (2025) empirically show full Bayesian
posterior inference in-context and Arora et al. (2025) demonstrate Bayesian scaling laws predicting
many-shot reemergence of suppressed behaviors. Our results explicitly use Bayesian properties for
ICL theory and provide a concrete non-asymptotic validation both in pretraining and at inference
time.
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(B) ICL as Meta-learning. ICL is widely understood as meta-learning. Transformers implement
gradient-descent-style updates within their forward pass, acting as meta-optimizers that perform
implicit fine-tuning (von Oswald et al., 2023; Dai et al., 2023). Models can be meta-trained to
execute general-purpose in-context algorithms across tasks (Kirsch et al., 2022). From a learning-
to-learn perspective, ICL’s expressivity explains few-shot strength while exposing generalization
limits (Wu et al., 2025). Beyond single tasks, meta-in-context learning shows recursive adaptation
of ICL strategies without parameter updates (Coda-Forno et al., 2023). From this perspective, we
theoretically clarify how ICL identifies the task at inference time and solves the true task.

2 PROBLEM SETUP

2.1 META-LEARNING: MIXTURE OF MULTIPLE REGRESSION TYPES

We consider a meta-learning framework that accommodates a finite number of distinct task types
(task families).

Definition 1 (Prompt-Generating Process). The data generating process for prompts proceeds as
follows:

1. Sample a task type: I ∼ PI = Categorical(α), i.e., Pr(I = i) = αi > 0 for i = 1, . . . , T .

2. Given I = i, sample a task function: f ∼ PFi
where PFi

is a distribution on the i-th function
space Fi = {f : Rdfeat → R}.

3. For k = 1, . . . , p+ 1:

• Sample an Rdfeat -dimensional input: xk
i.i.d.∼ PX

• Generate output: yk = f(xk) + εk, where εk
i.i.d.∼ Pε is sub-Gaussian random noise with

E[εk] = 0, Var(εk) = σ2
ε , and εk ⊥ (f,xk).

4. Form the length-p (complete) prompt: P = (x1, y1, . . . ,xp, yp︸ ︷︷ ︸
context Dp

,xp+1︸ ︷︷ ︸
query

).

This setting allows for a mixture of T (< ∞) different task types (task families), such as linear
regression type F = {x 7→ w⊤x+ b}, sparse regression type F = {x 7→ w⊤x+ b : ∥w∥0 ≤ s},
and basis-function regression type F = {x 7→

∑R
j=0 ajgj(x)}, where gj are, for example, Hermite

polynomials or Fourier basis functions. Note that Step 1 of Definition 1 selects the task family Fi
(via I), and Step 2 samples a particular function f from that family; in the linear-regression case,
this corresponds to choosing coefficients such as w and b.

A length-k partial prompt is denoted by P k = (x1, y1, . . . ,xk, yk,xk+1) and its context dataset by
Dk = {(xj , yj)}kj=1 ∈ Rkdeff , where deff := dfeat + 1. We fix a maximum context length p. At
inference time, after observing k ≤ p examples, we sequentially evaluate the risk of predicting yk+1

from P k.

2.2 TRANSFORMER ARCHITECTURE

We begin by briefly reviewing the standard Transformer architecture. The standard
Transformer (Vaswani et al., 2017) processes sequences through self-attention mechanisms:
Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V , where queries Q, keys K, and values V are linear projec-

tions of the input embeddings. Each Transformer layer consists of self-attention and a position-wise
feed-forward network.

In this work, we adopt a specialized uniform-attention (Q = K = 0) Transformer architecture. The
components of our prompts are generated independently conditional on the task function (Defini-
tion 1). Therefore, a permutation-invariant mechanism like uniform attention is sufficient, which
motivates our choice of the following architecture. Further justification is provided in Appendix B.

3
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Definition 2 (Uniform-attention Transformer Architecture). We study a uniform-attention (mean-
pooling) Transformer of the form:

Mθ(P
k) := ρθ

( 1

k

k∑
i=1

ϕθ(xi, yi),xk+1

)
.

Here, the feature encoder ϕθ : U → ∆m−1 and the decoder ρθ : ∆m−1 × C → R, where ∆m−1

denotes the (m− 1)-dimensional probability simplex, U denotes the example domain (the space of
(xi, yi) ∈ Rdeff ) and C denotes the query domain (the space of xk+1), have the following structures:

Feature Encoder Network ϕθ: The feature encoder consists of a depth-Dϕ feedforward ReLU net-
work followed by a renormalization layer:

ϕθ(x, y) := Renormτ ◦ gθ(x, y),
gθ(u) :=W (Dϕ)σ

(
W (Dϕ−1)σ

(
· · ·σ

(
W (1)u+ b(1)

)
· · ·
)
+ b(Dϕ−1)

)
+ b(Dϕ),

where u = [x⊤, y]⊤ ∈ Rdeff , σ(·) = max{0, ·} is the ReLU activation applied element-wise,
W (ℓ) ∈ Rnℓ×nℓ−1 are weight matrices with n0 = deff and nDϕ

= m, and the renormalization layer

is defined as Renormτ (s) =
σ(s)+ τ

m1

1⊤σ(s)+τ
(τ ∈ (0, 1]). This ensures ϕθ(x, y) ∈ ∆m−1.

Decoder Network ρθ: The decoder is a depth-Dρ feedforward ReLU network that jointly processes
the aggregated features and query:

ρθ(z, c) := clip[−BM ,BM ]

(
hθ(z, c)

)
,

hθ(v) :=W (Dρ)σ
(
W (Dρ−1)σ

(
· · ·σ

(
W (1)v + b(1)

)
· · ·
)
+ b(Dρ−1)

)
+ b(Dρ),

where v = [z⊤, c⊤]⊤ ∈ Rm+dfeat , W (ℓ) ∈ Rnℓ×nℓ−1 with n0 = m + dfeat and nDρ
= 1, and the

clipping operation ensures |Mθ(P
k)| ≤ BM .

Size of the Networks: Throughout, ∥·∥2 denotes the Euclidean norm for vectors and the spectral norm
for matrices. For depth-D ReLU network Tθ, define the spectral product S(Tθ) :=

∏D
d=1

∥∥W (d)
∥∥
2
.

There exist fixed constants Cϕ, Cρ > 0 (independent of p,N ) such that S(ϕθ) ≤ Cϕm
1/deff

and S(ρθ) ≤ Cρm
1/2. For the feature encoder ϕθ, we assume a depth of Dϕ = O(logm) and

the number of trainable parameters is O(m logm). Also, we assume the decoder ρθ is uniformly
Lipschitz in both arguments:

∣∣ρθ(z, c)− ρθ(z
′, c′)

∣∣ ≤ Ls∥z − z′∥2 +Lc∥c− c′∥2, with Ls, Lc ≤
S(ρθ). Finally, let Θ denote the parameter space that satisfies these conditions.

Averaging simplex-valued features produces a summary statistic that is permutation-invariant and
has a fixed total mass of 1 irrespective of k. Thus, the summary carries only distributional informa-
tion about the context, rather than scale information due to sequence length.

2.3 RISK, TRAINING, AND ASSUMPTIONS

Throughout, we use the squared loss ℓ(u, v) = (u − v)2. The ICL risk of a predictor M averages
the mean-squared error over k = 1, . . . , p and the aforementioned generative process:

R(M) =
1

p

p∑
k=1

EI∼PI ,f∼PFI
,Dk∼P⊗k

X,Y |f ,xk+1∼PX

[
(f(xk+1)−M(P k))2

]
,

where PX,Y |f is the joint distribution of (X,Y ) conditional on the task function f . Pretraining is
performed with N i.i.d. length-p prompts; the empirical risk minimizer (ERM) is

θ̂ = argmin
θ∈Θ

1

pN

N∑
j=1

p∑
k=1

(
yj,k+1 −Mθ(P

k
j )
)2
. (1)

Remark 1 (Meta-train/test protocol). The pretraining dataset consists of N i.i.d. prompts {Pj}Nj=1,
each generated by first sampling Ij , next drawing fj , and then sampling context examples and a
query from the same PX . At inference time, I test and f test are drawn from the same mixture, and the
risk R(M) is averaged over new prompts from the same meta-distribution.
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For the subsequent discussion and analysis, we make the following assumptions about the task
function and the input data.
Assumption 1 (Bounded task functions). There exists Bf > 0 such that for any i and f ∈ Fi,
|f(x)| ≤ Bf for all x in the support of PX .
Assumption 2 (Bounded inputs and conditional independence). There exists BX < ∞ such that
∥x∥2 ≤ BX , PX -almost surely. {xk}pk=1 are i.i.d. samples from PX and, conditional on a sampled
task function f , the pairs {(xk, yk)}k are conditionally independent across k.

2.4 PRIMER ON THE BAYES-OPTIMAL IN-CONTEXT PREDICTOR

In this section, we characterize the optimal predictor that minimizes the ICL risk. Since the ICL risk
is equivalent to the Bayes risk (e.g., §5.3.1.2 of Murphy, 2022), the theoretically optimal in-context
predictor is the Bayes predictor, i.e., the posterior mean of the function value given the context in
this setting. We explain this point below.

The ICL risk minimization problem is to find a predictor M that solves:

min
M

R(M) = min
M

1

p

p∑
k=1

EI∼PI
Ef∼PFI

EDk∼P⊗k
X,Y |f

Exk+1∼PX

[
ℓ
(
f(xk+1),M(P k)

)]
.

Using the law of total expectation, we can rewrite the risk as an expectation over the context Dk.
For each context, we aim to minimize the conditional expectation of the loss:

min
M

EDk∼P⊗k
X,Y

EI∼P
I|Dk

Ef∼P
FI |Dk

Exk+1∼PX

[
ℓ
(
f(xk+1),M(P k)

)]
.

To minimize the outer expectation, it suffices to minimize the inner conditional expectation for
each fixed context Dk. The minimizer is exactly the definition of the Bayes estimator (Bernardo
& Smith, 1994; Robert, 2007) because the inner conditional expectation is the Bayes risk, which is
the expected predictive loss Exk+1∼PX

[
ℓ
(
f(xk+1),M(P k)

)]
with respect to the Bayes posterior

distribution EI∼P
I|Dk

[PFI |Dk ]. Specifically, for the squared error loss, the value M(P k) that mini-
mizes the conditional mean squared error, EI∼P

I|Dk
Ef∼P

FI |Dk
Exk+1∼PX

[
ℓ
(
f(xk+1),M(P k)

)]
,

is the Bayes posterior mean (e.g., Murphy, 2022; Lehmann & Casella, 1998). Thus, the optimal
predictor MBayes that minimizes the ICL risk is the posterior mean:

MBayes(P
k) := EI∼P

I|Dk
Ef∼P

FI |Dk
[f(xk+1)] ≡ argmin

M
R(M).

This Bayes predictor serves as the theoretical target during pretraining. (See Figure 1.) The Bayes
Gap, which we introduce next, measures how well the pretrained model Mθ̂ emulates this predictor.

Posterior notation.
Let πi(Dk) := Pr(I = i | Dk) and P(f | Dk) =

∑T
i=1 πi(D

k)PFi
(f | Dk, I = i). We write

the Bayes predictor as MBayes(P
k) = Ef∼P(f |Dk)[f(xk+1)]. Note that, throughout, we work on

standard Borel spaces so that regular conditional distributions exist. Accordingly, Pr(f ∈ · | Dk)
and the quantities E[f(xk+1) | Dk] and Var(f(xk+1) | Dk) are well-defined.

Permutation invariance of the Bayes predictor.
For each k, we write uk = (xk, yk) ∈ U and c = xk+1 ∈ C and view the Bayes pre-
dictor MBayes(P

k) as MBayes(u1:k, c) here. Since the posterior P(f | Dk) depends on Dk

only through the multiset {(xi, yi)}ki=1, for any permutation π of {1, . . . , k}, MBayes(u1:k, c) =
MBayes

(
uπ(1), . . . ,uπ(k), c

)
. Thus, the Bayes predictor is a symmetric set functional, which justi-

fies using the uniform-attention Transformer to emulate it. See Appendix B for more details.

3 RISK ANALYSIS OF IN-CONTEXT LEARNING

In this section, we first present a risk identity (Theorem 1), then control each term separately: Sec-
tion 3.1 bounds the Bayes Gap (pretraining approximation and generalization), while Section 3.2
analyzes the Posterior Variance (inference-time uncertainty in mixtures).

The following identity, using the Bayes predictor, decomposes the ICL risk into a model-dependent
term and a model-independent term.

5
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Pretrained model

In-context examples from 
a test task 

Bayesian updateDistribution on functions

New query

Bayes predictor 
at query Posterior distribution Bayes predictor

ICL  predictor 

In-context learning via pretrained model

Pretraining data
from 

Figure 1: Bayesian view of in-context learning (ICL). The upper path: the process of computing
the optimal prediction is (Dk,xk+1) 7→ Ef∼P(f |Dk)[f(xk+1)] given P(f). The lower path: since
P(f) is unknown, the model Mθ̂, pretrained on data from P(f), aims to emulate this process via
(Dk,xk+1) 7→Mθ̂(D

k,xk+1).

Theorem 1 (Risk decomposition for in-context learning). Consider the prompt-generating process
from Definition 1 and assume that Assumption 1 holds. For a measurable, bounded map M , the ICL
risk decomposes as

R(M) = RBG(M)︸ ︷︷ ︸
Bayes Gap

+ RPV︸︷︷︸
Posterior Variance

where:
1. Bayes Gap: RBG(M) := 1

p

∑p
k=1 EPk

[ (
M(P k)−MBayes(P

k)
)2 ]

. This measures how
closely the model M approximates the optimal Bayes predictor. In other words, this is the
excess risk to the Bayes predictor.

2. Posterior Variance: RPV := 1
p

∑p
k=1 EPk

[
Varf∼P(f |Dk)(f(xk+1))

]
, which is independent

of M and irreducible. This represents the behavior of the Bayes estimator given the context.

This decomposition reveals how each term can be reduced. The Bayes Gap can be controlled through
architecture design and pretraining scale (N, p). In contrast, the Posterior Variance stems from the
inference-time uncertainty of the test task and can be reduced only by increasing the context length
k at inference time because E[Varf∼P(f |Dk+1)(f)] ≤ E[Varf∼P(f |Dk)(f)] follows from the law of
total variance. Therefore, under sufficiently large pretraining, the final error bottleneck is the latter.
Also, relative to information-theoretic decompositions under log-loss (Jeon et al., 2024), our identity
is exact under squared loss and directly interprets the irreducible term as the Posterior Variance.

3.1 BAYES GAP: PRETRAINING GENERALIZATION ERROR AND APPROXIMATION ERROR

This section answers “Can Mθ emulate the hypothetical map P k 7→ Ef∼P(f |Dk)[f(xk+1)] ?”

For the uniform-attention Transformers, the following theorem decomposes the Bayes Gap into an
approximation term and a pretraining generalization term, and provides a non-asymptotic upper
bound that depends jointly on both p and N .
Theorem 2 (Bayes Gap upper bound). Consider the prompt-generating process defined in Def-
inition 1 under Assumptions 1 and 2. For k = 1, . . . , p, assume the Bayes predictor MBayes :
(Rdeff )k × Rdfeat → R satisfies the Hölder condition:

∣∣MBayes(u1:k, c) − MBayes(u
′
1:k, c

′)
∣∣ ≤

L 1
k

∑k
i=1

∥∥(ui, c) − (u′
i, c

′)
∥∥α
2

for bounded ui,u
′
i ∈ U , c, c′ ∈ C, and α ∈ (0, 1]. Let θ̂ be the

ERM (1) with Dtrain = {{(P kj , yj,k+1)}pk=1}Nj=1. Then, for any p ≥ 2,

ERBG(Mθ̂) ≲ m
− 2α

deff︸ ︷︷ ︸
Approximation error

+
m

pN
polylog(pN) +

1

N
polylog(pN)︸ ︷︷ ︸

Pretraining generalization error

,

6
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where the expectation is taken over Dtrain and polylog(·) ≍ logr(·) with some r ∈ N. Choosing

m⋆ ≍ (pN)
deff

deff+2α and ignoring polylog(pN) yield ERBG(Mθ̂) ≲
(
(pN)

− 2α
deff+2α +N−1

)
.

Proof Idea: Regarding the pretraining generalization error, we handle the N meta-training prompts
via conventional learning theory across j (van der Vaart & Wellner, 2023; Shalev-Shwartz & Ben-
David, 2014), and the p context examples per prompt via a sequential learning theory across
k (Rakhlin et al., 2015; Block et al., 2021). Concerning the approximation error, we build a mol-
lified partition-of-unity (“soft histogram”) over the example domain U and mean-pool it to encode
prompts. Then the Bayes predictor on empirical measures is approximated by a decoder defined
via a McShane extension over a discrete 1-Wasserstein metric between histograms (Peyré & Cuturi,
2019), yielding a Lipschitz, piecewise-linear target. Both encoder and decoder are then realized by
moderate-size ReLU networks.

The key point of Theorem 2 is that RBG decomposes into (i) an approximation error m−2α/deff

stemming from the expressiveness of the Transformer, and (ii) a generalization error Õ
(
m/(pN) +

1/N
)

coming from a finite dataset. This decomposition clarifies the respective roles of the two
terms. The feature dimension m governs the expressive power of the Transformer, and increasing
m allows a smoother approximation of the Bayesian predictor. On the other hand, p represents the
amount of information within one task, while N represents the coverage of the meta-distribution.
The rate ∝ m/(pN) makes explicit the joint effect of pN , which earlier non-asymptotic theories on
ICL (Kim et al., 2024a; Wu et al., 2024; Zhang et al., 2024) have not fully captured, as they typically
considered the effect of p and N separately or focused on only one of them. Many works (e.g.,
Akyürek et al., 2023; Bai et al., 2023; Zhang et al., 2024) have theoretically and empirically shown
that Transformers approximate ridge regression and gradient descent in linear settings. By contrast,
we non-asymptotically demonstrate that in more general settings (nonparametric, nonlinear, meta-
learning), the optimal meta-algorithm is selected.

We also highlight its ability to avoid the curse of dimensionality with respect to context length
p. Since the Bayes predictor is unchanged no matter the order in which the context arrives, we
can compress a long input sequence into a single mean vector without losing information, and the
network only needs to handle that fixed-length vector of dimension deff rather than pdeff + dfeat.

The Hölder condition holds, intuitively, if (i) each task function is smooth (e.g., Hölder) with respect
to the input, (ii) inputs and responses are effectively bounded (e.g., sub-Gaussian noise), and (iii)
Bayesian updates are stable (e.g., distributions of parameters are light-tailed or log-concave), so
perturbing any single context point by O(δ) changes the posterior mean by at most O(δα/k) under
the prompt metric. These conditions are typically met for mixtures of common task families (e.g.,
linear regression, basis-function regression, finite convex-dictionary regression). Further discussion
is deferred to Appendix D. Moreover, the rate (pN)

− 2α
deff+2α matches the minimax lower bound

for estimating, for example, the density of the joint distribution of (xi, yi) ∈ U under the standard
Hölder smoothness assumption (Tsybakov, 2009).

In practice, as the token budget used for pretraining LLMs is enormous (say, infinite), the only risk
that essentially remains is the inference-time risk (RPV) analyzed in the following section.

3.2 POSTERIOR VARIANCE: INFERENCE-TIME ERROR

Having established bounds on the Bayes Gap, we now turn to the other component of the ICL risk:
the Posterior Variance, RPV. This term represents the irreducible error of the Bayes predictor itself.
A key question is: How does this Posterior Variance, arising from a mixture of T task types, relate
to the intrinsic difficulty of the true task at inference time?

The following theorem shows that, under some assumptions on the data (discussed later), the Bayes
predictor quickly identifies the true task type at inference time.

Theorem 3 (Gap between Posterior Variance and minimax risk of the true task type). Suppose
Assumption 1 holds. Let i⋆ be the true task index. For each wrong task j ̸= i⋆ and each t ≥ 1, define
the predictive log-likelihood ratio increment Zj,t := log

pj(yt|xt,D
t−1)

pi⋆ (yt|xt,Dt−1) . Under the true task, there
exist a task type divergence Dj > 0 and constants (νj , bj) such that, for all t ≥ 1 and the filtration
Gt−1, E

[
Zj,t | Gt−1, I = i⋆

]
≤ −Dj and E [exp{λ(Zj,t +Dj)} | Gt−1, I = i⋆] ≤ exp

(
λ2ν2j /2

)
7
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hold for all |λ| ≤ 1/bj . Let Dmin := minj ̸=i⋆ Dj > 0 and C := minj ̸=i⋆
D2

j

8(ν2
j+bjDj/2)

> 0. Then,

for all k ≥ 1,

EDk,x|I=i⋆
[

Varf |Dk{f(x)}︸ ︷︷ ︸
mixture Posterior Variance

]
≤ inf

M
sup
f∈Fi⋆

EPk

[(
f(xk+1)−M(P k)

)2∣∣∣f]︸ ︷︷ ︸
the true task type’s minimax risk

+ 5B2
f

(
1− αi⋆

αi⋆
e−Dmink/2 + (T − 1)e−Ck

)
︸ ︷︷ ︸

task type identification error

.

This theorem quantitatively justifies the empirical observation that ICL can quickly adapt to the
specific task at hand, even when pretrained on a diverse mixture. Concretely, the posterior distri-
bution over the task index, PI|Dk , concentrates exponentially fast on the true index i⋆ as k grows.
This result is consistent with empirical demonstrations. Panwar et al. (2024) show that in hierar-
chical mixtures, Transformers mimic the Bayes predictor based on the true task distribution. Also,
the above theorem explains the “Bayesian scaling laws” of Arora et al. (2025), which model ICL’s
error curves as repeated Bayesian updates, and under an ideal Bayesian learner, the task posterior
converges to the true task as context grows.

Compared to prior ICL theories, Theorem 3 can be seen as the general form of the result in Kim
et al. (2024a), which showed that even when the function class used at pretraining is wider than the
one at inference, the inference error depends only on the hardness of the latter class. Although Jeon
et al. (2024) also mentions an irreducible error of ICL, our addition is to show that it manifests as
Posterior Variance and that it approaches the minimax risk for the “true family” up to a small gap.
Moreover, this phenomenon of ICL “selecting algorithms on the fly” is consistent with the theoret-
ical results on in-context algorithm selection in generalized linear models and the Lasso (Akyürek
et al., 2023; Bai et al., 2023; Zhang et al., 2024). Our result proves that even without assuming a
specific algorithmic form, behavior close to optimal algorithm selection emerges through posterior
concentration in mixture settings.

The assumptions are fairly standard in the theory of sequential data and ensure that the in-context
examples provide sufficient signal to rapidly rule out incorrect task types: (i) the supermartingale
condition E[Zj,t | Gt−1, I = i⋆] ≤ −Dj < 0 (Williams, 1991) means each new observation, on
average, decreases the predictive log-likelihood ratio of any wrong type j against the true type;
(ii) the Bernstein-type condition E [exp{λ(Zj,t +Dj)} | Gt−1, I = i⋆] ≤ exp

(
λ2ν2j /2

)
(Bercu

et al., 2015) yields the concentration of the cumulative log-likelihood ratio, so occasional mislead-
ing samples cannot outweigh the overall trend. Note that Dj is the per-step information gap that
favors the true task over the wrong type j, νj is the sub-exponential scale of the log-likelihood
ratio, bj bounds the tail via the moment-generating-function (smaller means heavier tails), and
minj ̸=i⋆ D

2
j/8(ν

2
j + bjDj/2) sets the uniform exponential rate at which posterior mass on wrong

types decays with more context.

In Appendix E, we consider a concrete regression problem (linear vs. series regression) and specify
νj , bj , Dj and C that appear in Theorem 3. The results show that to make the task type identification
error at most η, one requires the context length: k ≍ error variance+within-task variance

true-task signal log # of task types
η .

Remark that if the likelihood does not have a density function (with respect to Lebesgue measure),
assume that all predictive distributions Pi(yt | xt, Dt−1) are dominated by a common reference
measure so that the Radon-Nikodym derivative exists. Then Zj,t can be rigorously defined as a
log-likelihood ratio.

3.3 OOD STABILITY OF THE ICL RISK

This section investigates how the ICL risk changes under a distributional shift in the input between
pretraining data and inference-time prompt. Note that the task distribution and the noise distribution
are unchanged. Since RPV represents the uncertainty of the task at inference time, it depends only
on the prompt distribution at inference time. In contrast, the Bayes Gap RBG(Mθ̂), which measures
the performance of the pretrained model Mθ̂, is directly affected by the discrepancy between the
pretraining (source domain) and inference-time (target domain) distributions.

8
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To formalize the problem, let P denote the prompt distribution based on the source input distribution
PX used during pretraining, and Q be the prompt distribution based on a target input distribution
QX at inference time. Denote the Bayes Gap evaluated under a distribution R by

R
(R)
BG(Mθ) :=

1

p

p∑
k=1

EPk∼R

[{
Mθ(P

k)−MBayes(P
k)
}2]

.

We measure the shift at the prompt level. For 0 < α ≤ 1 and k ∈ {1, . . . , p}, define the ground met-
ric dk,α

(
(u1:k, c), (u

′
1:k, c

′)
)
:= 1

k

∑k
i=1 ∥ui−u′

i∥α2 +∥c−c′∥α2 , and the associated 1-Wasserstein
distance W

(k)
α

(
LP(P

k),LQ(P
k)
)
:= W1

(
LP(P

k),LQ(P
k); dk,α

)
. Assume U and C have finite

diameters (e.g., by truncating on a high-probability event under the sub-Gaussian noise model)
for brevity, and recall that the decoder is uniformly Lipschitz in its two arguments with constants
(Ls, Lc), while Lip(ϕθ) denotes the encoder’s Lipschitz constant.

Theorem 4 (Wasserstein stability of the Bayes Gap). Consider the prompt-generating process de-
fined in Definition 1 under Assumptions 1 and 2. Suppose that the Bayes predictor satisfies the same
α-Hölder condition as in Theorem 2 with exponent α ∈ (0, 1] and constant L. Then, for every
parameter θ,

∣∣R(Q)
BG(Mθ)−R

(P)
BG(Mθ)

∣∣ ≤ 2(BM +Bf )

p

p∑
k=1

(
L+ Λα

)
W(k)
α

(
LP(P

k),LQ(P
k)
)
,

where Λα :=
(
Ls Lip(ϕθ) + Lc

) (
diam(U) + diam(C)

)1−α
.

This result implies that the Bayes Gap is distributionally Lipschitz: its change across domains is
controlled by (i) the smoothness L of the Bayes predictor and (ii) the architectural regularity of Mθ

through Ls, Lc, and Lip(ϕθ). The penalty scales with the prompt-level Wasserstein shift and does
not depend on the number of pretraining prompts N . In line with the findings of Zhang et al. (2024)
that ICL is susceptible to input-distribution shifts, we find that only the Bayes Gap is affected by
such shifts and quantify the magnitude of this effect.

For additional theories and detailed discussions, please see Appendix C.

4 CONCLUSION

In this work, we introduced a Bayesian-centric framework to dissect the ICL phenomenon. Our
central contribution is an orthogonal decomposition of the ICL risk into two conceptually distinct
components: a model-dependent Bayes Gap and a model-independent Posterior Variance. This
decomposition provides a principled lens through which to understand the sources of error in ICL
and how they are reduced by pretraining and in-context examples.

Our analysis of the Bayes Gap (Theorem 2) yielded non-asymptotic bounds that jointly couple the
number of pretraining prompts N and their context length p. This result clarifies their synergistic
role in learning an optimal meta-algorithm, showing that the model’s ability to emulate the ideal
Bayes predictor improves as the total number of pretraining examples (pN ) grows. The analysis of
the Posterior Variance (Theorem 3) revealed that in a heterogeneous mixture of tasks, ICL rapidly
identifies the true underlying task family at inference time. The irreducible error converges expo-
nentially fast to the minimax risk of the true task, explaining ICL’s adaptability without explicit
algorithm selection. Finally, we characterized the model’s stability under distribution shift (The-
orem 4), demonstrating that the Bayes Gap increases moderately in proportion to the Wasserstein
distance between the pretraining and inference input distributions, while the Posterior Variance re-
mains intrinsic to the target domain.

Limitations and Future Work. Our analysis focuses on a uniform-attention Transformer, moti-
vated by the permutation invariance of the Bayes predictor in our setup. Future work could explore
how these results extend to more complex architectures with non-uniform attention, particularly in
settings where sequential dependencies within the context are significant.

9
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Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023.

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 1999.

Aryaman Arora, Dan Jurafsky, Christopher Potts, and Noah Goodman. Bayesian scaling laws for
in-context learning. 2025. URL https://openreview.net/forum?id=I4YU0oECtK.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as Statisticians:
Provable In-Context Learning with In-Context Algorithm Selection. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension
and Pseudodimension Bounds for Piecewise Linear Neural Networks. Journal of Machine
Learning Research, 20(63):1–17, 2019. URL http://jmlr.org/papers/v20/17-612.
html.

Bernard Bercu, Bernard Delyon, and Emmanuel Rio. Concentration Inequalities for Sums
and Martingales. SpringerBriefs in Mathematics. Springer, Cham, 2015. doi: 10.1007/
978-3-319-22099-4.
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APPENDIX

A NOTATION AND DEFINITIONS

This section provides a comprehensive list of notations and definitions used throughout the paper
for ease of reference.

General Mathematical Notation

• Rd: The d-dimensional Euclidean space.
• ∥ · ∥2: The Euclidean (ℓ2) norm for vectors and the spectral (operator) norm for matrices.
• ∥ · ∥1: The ℓ1 norm of a vector.
• ∥ · ∥0: The ℓ0 pseudo-norm of a vector, counting the number of non-zero elements.
• 1: A vector of all ones, with its dimension inferred from the context.
• ∆m−1: The standard probability simplex in Rm, defined as ∆m−1 = {s ∈ [0, 1]m :∑m

j=1 sj = 1}.

• U , C: The example domain (the space of (xi, yi)) and the query domain (the space of xk+1),
respectively.

• Fi: The function space for tasks of type i.
• Θ: The parameter space for the neural network model Mθ.
• diam(A) := supx,y∈A ∥x− y∥2: The diameter of a set A.

• B(a, R): The closed Euclidean ball of radius R ≥ 0 centered at a, B(a, R) := {x ∈ Rd :
∥x− a∥2 ≤ R}, where the ambient dimension d is understood from context.

• Lip(f): The Lipschitz constant of a function f .
• f ≍ g: Indicates that f and g are of the same order, i.e., there exist constants c1, c2 > 0 such

that c1g ≤ f ≤ c2g.
• f ≲ g: Indicates that f is less than or equal to g up to a constant factor, i.e., f ≤ Cg for some

universal constant C > 0.
• Õ(·): Asymptotic notation that hides polylogarithmic factors.

• polylog(·) := (log(·))O(1), i.e., logc(·) for some constant c > 0.
• σ(·): The Rectified Linear Unit (ReLU) activation function, σ(u) = max{u, 0}, applied

element-wise.
• clip[a,b](x) := max(a,min(b, x)): The clipping function.

Probability and Statistics

• PX ,Pε, . . . : Probability distributions of random variables X, ε, . . . .
• EX∼PX

[·] or simply E[·]: The expectation with respect to the distribution of the random vari-
able(s) specified in the subscript. If no subscript is present, the expectation is taken over all
relevant random variables.

• Var(·): The variance of a random variable.

• Empk(u1:k) :=
1
k

∑k
t=1 δut : The empirical measure of the context.

• ΣX := E
[
(x− Ex)(x− Ex)⊤

]
: The covariance matrix of x.

• Pr(·): The probability of an event.
• X ∼ PX : The random variable X is drawn from the distribution PX .

• i.i.d.∼ : A symbol for “is independently and identically distributed as”.
• X ⊥ Y : The random variables X and Y are statistically independent.
• PX,Y |f : The joint distribution of (X,Y ) conditional on a function f .
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• P⊗k: The k-fold product measure, corresponding to k i.i.d. draws from the distribution P .
• I ∼ Categorical(α): I is a discrete random variable on {1, . . . , T} with Pr(I = i) = αi.∑T

i=1 αi = 1.

• P(f | Dk): The marginal posterior distribution of the task function f given the context data
Dk.

• πi(Dk) := Pr(I = i | Dk): The marginal posterior probability of task type (task family) i
given the context Dk.

• Gk: The σ-algebra generated by the random variables Dk, representing the information avail-
able at step k.

• G′
k: The σ-algebra generated by the random variables (Dk,xk+1).

• Sub-Gaussian: A centered random variable X is sub-Gaussian with proxy variance σ2 if
EeλX ≤ exp(σ2λ2/2) for all λ ∈ R.

• Sub-exponential: A centered random variable X is (ν, b)-sub-exponential if EeλX ≤
exp(ν2λ2/2) for all |λ| ≤ 1/b.

• KL(P∥Q): Kullback–Leibler divergence between distributions P and Q, used to quantify sep-
aration between task types.

• mi(D
k) :=

∫ ∏k
t=1 p(yt | xt, f)PFi

(df): The marginal likelihood of the context Dk under
task type i.

• µi,t(x), s2i,t(x): Predictive mean and variance for task type i after observing t−1 examples.

• N (µ, σ2): Gaussian (normal) distribution with mean µ and variance σ2.
• Truncated Gaussian: A Gaussian distribution restricted to a bounded support set and renormal-

ized to integrate to 1.
• dP

dQ : Radon–Nikodym derivative of P with respect to Q (when P is absolutely continuous with
respect to Q).

Meta-learning Setup

• T : The total number of distinct task types (task families).
• p: The maximum number of in-context examples (i.e., the context length).
• i⋆: The index of the true task type at inference time.
• N : The number of prompts in the pretraining dataset.
• dfeat: The dimensionality of the input features x.
• deff := dfeat + 1: The effective dimensionality of an example pair (xi, yi).
• m: The dimensionality of the feature vector produced by the encoder, ϕθ(xi, yi).
• P = (x1, y1, . . . ,xp, yp,xp+1): A full prompt of length p.

• P k = (x1, y1, . . . ,xk, yk,xk+1): A partial prompt of length k.
• Dk = {(xj , yj)}kj=1: The context data, consisting of k example pairs.
• M,Mθ,Mθ̂: A generic predictor, the uniform-attention Transformer parameterized by θ, and

the uniform-attention Transformer obtained by empirical risk minimization (ERM), respec-
tively.

• ϕθ: The feature encoder network that maps an example (x, y) to a feature vector in ∆m−1.
• ρθ: The decoder network that predicts the output from the aggregated features and the query

input.
• ℓ(u, v) = (u− v)2: The squared error loss function used throughout the paper.

• S(Tθ) =
∏L
ℓ=1 ∥W (ℓ)∥2: The spectral product of the weight matrices of a neural network Tθ.

• Renormτ (s): A specific renormalization layer that maps a vector s ∈ Rm to the probability
simplex ∆m−1.

• Bf , BX , BM : Uniform bounds on |f(x)|, ∥x∥2, and |M(P k)|, respectively (as assumed).
• S(ϕθ), S(ρθ): Layerwise spectral-product bounds (or induced Lipschitz budgets) for the fea-

ture network ϕθ and decoder ρθ used in generalization and stability analyses.
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Theoretical Quantities

• R(M): The in-context learning (ICL) risk of a predictor M . R(M) := 1
p

∑p
k=1 E[(M(P k)−

f(xk+1))
2]

• MBayes(P
k) := E[f(xk+1) | Dk,xk+1]: The Bayes predictor, which corresponds to the

posterior mean of the query output given the context and is the optimal predictor for the squared
error loss.

• RBG(M): The Bayes Gap, measuring the squared difference between the predictor M and the
Bayes predictor, averaged over prompts. This term is reducible by training the model.

• RBG,k(M) := E[{M(P k) −MBayes(P
k)}2], RPV,k := E[Var(f(xk+1) | Dk)]: Per-k ver-

sions used in the risk decomposition.

• R(P)
BG(M) := 1

p

∑p
k=1 EPk∼P[{M(P k) − MBayes(P

k)}2]: Bayes Gap evaluated under a
prompt distribution P (used in OOD analysis).

• RPV: The Posterior Variance, which is the irreducible error corresponding to the variance of
the posterior predictive distribution. This term is independent of the model M .

• R⋆k(Fi⋆): The minimax risk for predicting a function from the true task class Fi⋆ given k
examples.

• R⋆k(Fi⋆ ;R): The minimax risk for predicting a function from the true task class Fi⋆ under
prompt distribution R (default R is the pretraining domain).

• L,α: Constants that define the Hölder condition on the Bayes predictor (see Lemma 5 and
Theorem 2).

• Zj,t := log
pj(yt|xt,D

t−1)
pi⋆ (yt|xt,Dt−1) : The predictive log-likelihood ratio increment.

• Dj , νj , bj , C: Identification-rate constants for the wrong task j ̸= i⋆; Dj is the negative
drift, (νj , bj) are sub-exponential parameters, and C controls exponential concentration of the
posterior mass on incorrect types.

• Sk: The symmetric group on {1, . . . , k}; S[M ] denotes the symmetrized predictor obtained by
averaging M over all permutations in Sk.

• Predictable tree: A depth-p tree z = {zt(ξ1:t−1)}t≤p whose node zt depends only on past signs
ξ1:t−1 ∈ {±1}t−1.

• ℓ2 sequential metric: For a depth-p tree z and predictable sequences v, v′, and for a path ξ ∈
{±1}p, define

d2,ξ(v, v
′; z) :=

[
1

p

p∑
t=1

{vt(zt(ξ1:t−1))− v′t(zt(ξ1:t−1))}
2

]1/2
.

• N seq
2 (α,F ; z): The sequential covering number (Rakhlin et al., 2010; 2015) is the minimal

size of a predictable α-cover on a predictable tree z with respect to d2,ξ(·, ·; z) such that, for all
ξ ∈ {±1}p and all f ∈ F , there exists v in the cover with d2,ξ(f ◦ z, v; z) ≤ α.

• N seq
2 (α,F , p): The depth-p ℓ2 sequential covering number is the worst–tree version

N seq
2 (α,F , p) := supz N

seq
2 (α,F ; z), where the supremum ranges over all predictable trees z

of depth p.

• Sequential Rademacher complexity: Rseq
p (F) := supz Eξ

[
supf∈F

1
p

∑p
t=1 ξtf

(
zt(ξ1:t−1)

)]
,

where ξt
i.i.d.∼ Unif{±1}.

• W1(µ, ν; d): The 1-Wasserstein distance between probability measures µ, ν with ground metric
d. The specialized distances W (u)

α and W
(k)
α below are instances of W1(·, ·; ·) with particular

choices of d.

• W (u)
α (s, t): Discrete 1-Wasserstein on ∆m−1 with grid {rj} ⊂ U and cost c(u)(j, ℓ) = ∥rj −

rℓ∥α2 (0 < α ≤ 1); W (u)
α (s, t) = minπ≥0

∑
j,ℓ c

(u)(j, ℓ)πjℓ subject to the usual marginal

constraints. On the simplex, W (u)
α (s, t) ≤ diam(U)α

2 ∥s− t∥1.
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• PX , QX : Source (pretraining) and target (test) input distributions used in OOD analysis.
• LP (P k), LQ(P k): Distributions of length-k prompts under the source and target domains,

respectively.

• dk,α
(
(u1:k, c), (u

′
1:k, c

′)
)
:= 1

k

∑k
i=1 ∥ui − u′

i∥α2 + ∥c − c′∥α2 : Prompt-level ground metric
(0 < α ≤ 1).

• W
(k)
α

(
LP (P k),LQ(P k)

)
:= W1

(
LP (P k),LQ(P k); dk,α

)
: Prompt-level Wasserstein dis-

tance used in OOD bounds.
• P, Q: Generic prompt distributions used when evaluating risks.

B PERMUTATION INVARIANCE AND JUSTIFICATION FOR
UNIFORM-ATTENTION TRANSFORMERS

This section formalizes the permutation invariance of the Bayes predictor under the prompt-
generating process (Definition 1). In summary, by Proposition 1, the Bayes predictor depends on
Dk only via its empirical measure. Hence, any architecture that can approximate functionals of
empirical distributions, e.g., uniform-attention Transformers, matches the symmetry of the optimal
predictor. Moreover, in view of Theorem 5, replacing any non-invariant model by its permutation
average never increases risk.

Recall that the loss is the squared error, and all random objects live on standard Borel spaces, so
regular conditional distributions exist.

Under Definition 1, once the task (I, f) is fixed, the context pairs (xt, yt) are i.i.d. draws. The
following lemma says that the context can be treated as a multiset rather than an ordered list.
Lemma 1 (Conditional exchangeability). Fix (I, f) with I ∈ {1, . . . , T} and f ∈ FI . Under
Definition 1, the context pairs (xt, yt)

k
t=1 are i.i.d. from PX,Y |f ; hence for any permutation π of

{1, . . . , k},

L((x1, y1, . . . ,xk, yk) | I, f) = L
(
(xπ(1), yπ(1), . . . ,xπ(k), yπ(k))

∣∣ I, f) ,
where L(Z |W ) denotes the conditional law (distribution) of Z given W .

If the order of the context is uninformative, averaging any predictor over all permutations should not
increase risk. This symmetrization principle justifies restricting attention to permutation-invariant
models.
Theorem 5 (Risk–reducing symmetrization). For any measurable predictor M and any k ∈
{1, . . . , p}, define the permutation–averaged predictor

S[M ](P k) := EΠ

[
M
(
(xΠ(1), yΠ(1), . . . ,xΠ(k), yΠ(k)), xk+1

)
| Dk,xk+1

]
,

where Π is uniform on the symmetric group Sk and independent of everything else. Then the ICL
risk satisfies

R(S[M ]) ≤ R(M).

Hence, by convexity of the squared loss and conditional exchangeability (Lemma 1), permutation-
averaging is a risk-reducing ensembling step. This is an instance of Rao–Blackwellization by group
averaging under convex loss (Lehmann & Casella, 1998). Therefore, uniform-attention (mean-
pooling) architectures are not only natural but also without loss of optimality in this setting.

Proof of Theorem 5. Write R(M) = 1
p

∑p
k=1Rk(M) with Rk(M) := E

[
(f(xk+1) −M(P k))2

]
.

Fix k and condition on (Dk,xk+1, I, f). By Jensen’s inequality applied to the convex map v 7→
(f(xk+1)− v)2,

EΠ

[
(f(xk+1)−MΠ)

2 | Dk,xk+1, I, f
]
≥
(
f(xk+1)− S[M ]

)2
,

whereMΠ :=M
(
(xΠ(1), yΠ(1)), . . . , (xΠ(k), yΠ(k)),xk+1

)
. By Lemma 1, EΠ[(f(xk+1)−MΠ)

2 |
I, f ] = E[(f(xk+1) −M(P k))2 | I, f ]. Taking expectations proves Rk(S[M ]) ≤ Rk(M) and
summing over k yields the claim.
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The previous theorem immediately yields that an optimal predictor can be chosen permutation-
invariant:
Corollary 1 (Existence of permutation-invariant minimizers). There exists a risk minimizer that
is permutation-invariant in the k context items. In particular, when analyzing architectures it is
without loss of generality to restrict to permutation-invariant (set-valued) models, e.g., uniform-
attention/mean-pooling Transformers.

Analytically, we may restrict our hypothesis class to set-function architectures (e.g., uniform-
attention Transformers) without sacrificing optimality.

With a mixture over task families, the optimal predictor must both identify the task type and perform
within-family inference. Bayes’ rule exposes this computational structure explicitly.
Theorem 6 (Hierarchical posterior factorization). Assume that for each i all predictive distributions
Pi(y | x, f) are dominated by a common reference measure so that Radon–Nikodym derivatives
p(y | x, f) exist. Then for any context Dk,

PFi(df | Dk, I = i) ∝
{ k∏
t=1

p(yt | xt, f)
}
PFi(df), πi(D

k) =
αimi(D

k)∑T
j=1 αjmj(Dk)

,

where mi(D
k) :=

∫ ∏k
t=1 p(yt | xt, f)PFi

(df) and πi(Dk) := Pr(I = i | Dk). Consequently,
the Bayes predictor decomposes as

MBayes(P
k) =

T∑
i=1

πi(D
k) Ef∼PFi

(·|Dk,I=i)[f(xk+1)] .

The Bayes predictor is a mixture of within-family posterior means with weights πi(Dk) determined
by marginal likelihoodsmi(D

k). Because these weights depend on the product of likelihood factors,
they are invariant to permutations of the context, foreshadowing the permutation invariance results
below and validating architectures that first summarize the context before decoding.

Proof of Theorem 6. Bayes’ rule and conditional i.i.d. of (xt, yt) given (I, f) yield the displayed
formulas. The final expression follows from the tower property applied to E[f(xk+1) | Dk,xk+1].

Corollary 2 (Permutation invariance of the Bayes predictor). For any permutation π of {1, . . . , k},

MBayes((x1, y1), . . . , (xk, yk),xk+1) =MBayes

(
(xπ(1), yπ(1)), . . . , (xπ(k), yπ(k)),xk+1

)
.

Proof of Corollary 2. In Theorem 6, both the within-family posterior PFi
(· | Dk, I = i) and the

weight πi(Dk) depend on Dk only through the product
∏k
t=1 p(yt | xt, f), which is invariant under

reindexing t 7→ π(t). Substituting this into the mixture formula yields the claim.

Proposition 1 (Empirical–measure representation). Let Empk : Uk → P(U) be the empirical
measure map Empk(u1:k) =

1
k

∑k
t=1 δut , where P(U) is endowed with the Borel σ-algebra of the

weak topology. Then there exists a measurable map Ψ : P(U)× C → R such that

MBayes(u1:k, c) = Ψ(Empk(u1:k), c) (∀u1:k ∈ Uk, c ∈ C).

Once the context is summarized as an empirical distribution, a mean-pooled soft histogram is a
faithful finite-dimensional proxy. This is precisely the representation approximated by our feature
map ϕθ and decoder ρθ (cf. Lemma 5, Theorem 2). It also explains why the analysis avoids a
dependence on the sequence length p beyond averaging.

Proof of Proposition 1. By Corollary 2, MBayes(·, c) is invariant under permutations on Uk. The
quotient of a standard Borel space by a finite group action is standard Borel; thus any measur-
able, permutation-invariant map factors measurably through the canonical invariant Empk. Define
Ψ(µ, c) to be the common value of MBayes(u1:k, c) on the fiber {u1:k : Empk(u1:k) = µ}; well-
definedness follows from invariance, measurability from the quotient factorization.
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Remark 2 (When permutation invariance may fail). The invariance arguments rely on the condi-
tional i.i.d. structure of Definition 1. If inputs are chosen adaptively (active learning, bandit-style
data acquisition), or if the within-prompt distribution drifts over time, (xt, yt) are not conditionally
i.i.d. given (I, f) and order may carry information. In such cases, non-uniform attention or explic-
itly sequential models can be beneficial, and our uniform-attention analysis should be viewed as the
principled baseline for the i.i.d. prompt regime.

For further investigation of exchangeability of the Bayes predictor in the standard Bayesian statistics
context, refer to Bernardo & Smith (1994); Gelman et al. (2013); Ghosal & van der Vaart (2017).

C FURTHER DETAILS ON OUT-OF-DISTRIBUTION GENERALIZATION

Throughout this section, PX denotes the source input distribution used during pretraining and QX an
input distribution at inference time. The task distribution and the noise distribution are unchanged.
We work with ground metrics and assume compact supports (finite diameters) so that constants
remain finite; in particular, diam(U) < ∞ and diam(C) < ∞. (Unit-diameter rescaling, e.g.,
diam(U) ≤ 1 and diam(C) ≤ 1, is a convenient normalization and only rescales constants.)
Remark 3 (High-probability boundedness). As in Step 0 of Theorem 2, define Eδ :=

{maxt≤p+1 |εt| ≤ tδ} with tδ = σε
√
2 log(4p/δ). On Eδ , the domains U , C have finite diameters

since |y| ≤ Bf + tδ . Theorems in this section can thus be established on Eδ , while the contribution
of Ec

δ is controlled by sub-Gaussian tails, yielding an additional O(δ log(1/δ)) term.

For a metric space (Z, d), we write W1(µ, ν; d) := infπ∈Π(µ,ν)

∫
d(z, z′)π(dz,dz′) for the 1-

Wasserstein distance with ground metric d. For 0 < α ≤ 1 and k ∈ N+, define the prompt-level
ground metric

dk,α
(
(u1:k, c), (u

′
1:k, c

′)
)
:=

1

k

k∑
i=1

∥ui − u′
i∥α2 + ∥c− c′∥α2 ,

and abbreviate W
(k)
α (·, ·) := W1(·, ·; dk,α). Likewise, for a random pair U = (X, Y ), we write

Wα(·, ·) := W1(·, ·; ∥ · ∥α2 ). Note that for any metric d and 0 < α ≤ 1, dα is a metric by concavity
of t 7→ tα.

Define

R
(P)
BG(Mθ) :=

1

p

p∑
k=1

EPk∼P

[(
Mθ(P

k)−MBayes(P
k)
)2]

,

so thatR(PX)
BG (resp. R(QX)

BG ) means the expectation under LP (P k) (resp. LQ(P k)). Since |f | ≤ Bf ,
we have |MBayes| ≤ Bf and hence |Mθ −MBayes| ≤ BM +Bf .
Theorem 7 (Wasserstein stability: OOD upper bound for the Bayes Gap). Under Definition 1,
Definition 2 and Assumptions 1–2, assume the Bayes predictor MBayes satisfies the same α-Hölder
condition as in Theorem 2 with exponent α ∈ (0, 1] and constant L. Then, for any θ,∣∣R(QX)

BG (Mθ)−R
(PX)
BG (Mθ)

∣∣ ≤ 2(BM +Bf )

p

p∑
k=1

(
L+ Λα

)
W(k)
α

(
LP (P k),LQ(P k)

)
,

where
Λα :=

(
LsLip(ϕθ) + Lc

)(
diam(U) + diam(C)

)1−α
.

In particular, when α = 1, Λ1 = Ls Lip(ϕθ) + Lc.

Proof of Theorem 7. Fix k ∈ {1, . . . , p} and abbreviate z = (u1:k, c) ∈ Uk × C, s(z) :=
1
k

∑k
i=1 ϕθ(ui) ∈ ∆m−1, and Mθ(z) := clip[−BM ,BM ]

(
ρθ(s(z), c)

)
. Write the Bayes predictor as

MBayes(z) :=MBayes(u1:k, c) and introduce

gk(z) :=
(
Mθ(z)−MBayes(z)

)2
, hk(z) :=Mθ(z)−MBayes(z).

Step 1 (Lipschitz modulus of Mθ under dk,α). By the network size assumption and the 1-
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Lipschitzness of clipping,∣∣Mθ(z)−Mθ(z
′)
∣∣ ≤ Ls

∥∥s(z)− s(z′)
∥∥
2
+ Lc∥c− c′∥2.

Let Lϕ := Lip(ϕθ) (for our encoder with Renormτ , Lϕ ≤ 2
√
m
τ S(gθ)). Since ϕθ is Lϕ–Lipschitz,

∥s(z)− s(z′)∥2 ≤ 1

k

k∑
i=1

∥ϕθ(ui)− ϕθ(u
′
i)∥2 ≤ Lϕ

k

k∑
i=1

∥ui − u′
i∥2.

Let DU := diam(U) and DC := diam(C), and put D := DU + DC . For 0 < α ≤ 1 and any
t ∈ [0, D] one has t ≤ D1−αtα; hence

1

k

k∑
i=1

∥ui − u′
i∥2 ≤ D1−α

U

1

k

k∑
i=1

∥ui − u′
i∥α2 , ∥c− c′∥2 ≤ D1−α

C ∥c− c′∥α2 .

Using the prompt-level metric dk,α(z, z′) = 1
k

∑k
i=1 ∥ui − u′

i∥α2 + ∥c− c′∥α2 , we obtain∣∣Mθ(z)−Mθ(z
′)
∣∣ ≤ (LsLip(ϕθ) + Lc

)
D1−αdk,α(z, z

′) = Λαdk,α(z, z
′).

Step 2 (Lipschitz modulus of hk and gk). By the assumption on the Bayes predictor, MBayes is
α–Hölder with constant L under the dk,α, hence

|hk(z)− hk(z
′)| =

∣∣Mθ(z)−Mθ(z
′)−

(
MBayes(z)−MBayes(z

′)
)∣∣ ≤ (Λα + L

)
dk,α(z, z

′).

Because |Mθ| ≤ BM and |MBayes| ≤ Bf , the range of hk is contained in [−(BM+Bf ), BM+Bf ].
Therefore, using |a2 − b2| = |(a− b)(a+ b)| ≤ 2(BM +Bf )|a− b|,∣∣gk(z)− gk(z

′)
∣∣ ≤ 2(BM +Bf )

∣∣hk(z)− hk(z
′)
∣∣ ≤ 2(BM +Bf )(L+ Λα)dk,α(z, z

′).

Thus gk is dk,α–Lipschitz with modulus 2(BM +Bf )(L+ Λα).

Step 3 (Kantorovich–Rubinstein duality and averaging over k). Let LP (P k) and LQ(P k) de-
note the distributions of the length-k prompts under the source and target domains, respectively.
Kantorovich–Rubinstein duality for W1(·, ·; dk,α) implies, for any Lipschitz gk,∣∣EQgk(P k)− EP gk(P k)

∣∣ ≤ Lipdk,α
(gk)W

(k)
α

(
LP (P k),LQ(P k)

)
,

where W
(k)
α :=W1(·, ·; dk,α). By the definition of the Bayes Gap under a prompt distribution P,

R
(P)
BG(Mθ) =

1

p

p∑
k=1

EP

[
gk(P

k)
]
.

Combining the last two displays and the Lipschitz bound from Step 2 yields∣∣∣R(QX)
BG (Mθ)−R

(PX)
BG (Mθ)

∣∣∣ ≤ 2(BM +Bf )

p

p∑
k=1

(
L+ Λα

)
W(k)
α

(
LP (P k),LQ(P k)

)
,

which is exactly the claimed inequality.

The prompt P k = (U1, . . . ,Uk,C) contains dependent coordinates in general, because the context
responses Ui = (Xi, Yi) share the latent task function f within a prompt. Therefore, a direct
product of coordinate-wise optimal couplings is not a valid coupling of the prompt distributions.
The following conditional coupling fixes this.
Remark 4 (Prompt-level Wasserstein via conditional coupling). Let S be a latent seed that is shared
across domains and determines the task index and task function. For instance, one may take S =
(I, f). Conditional on S, the prompt coordinates factorize as

LP (P k | S) =
(
LP (U | S)

)⊗k × PX , LQ(P k | S) =
(
LQ(U | S)

)⊗k ×QX ,

where U = (X, Y ) and PX ,QX are the (source/target) input distributions. In particular, condi-
tional on S the k context pairs are i.i.d. under each domain. (If one prefers to carry a coupling
of the additive noise across domains, introduce an exogenous noise seed that determines the noise
distribution but not its realized sample path; this preserves conditional i.i.d.)
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Lemma 2 (Conditional product-type upper bound for prompt-level Wasserstein). Under the setting
of Remark 4, for every k ≥ 1 and 0 < α ≤ 1,

W(k)
α

(
LP (P k),LQ(P k)

)
≤ ES

[
Wα

(
LP (U | S),LQ(U | S)

)]
+Wα(PX ,QX),

where the prompt-level ground metric is

dk,α
(
(u1:k, c), (u

′
1:k, c

′)
)
:=

1

k

k∑
i=1

∥ui − u′
i∥α2 + ∥c− c′∥α2 ,

and for single pairs U = (X, Y ) we write Wα(·, ·) :=W1(·, ·; ∥ · ∥α2 ).

Proof of Lemma 2. Step 1 (conditional product coupling). Fix S = s. By Remark 4, under
each domain the k context coordinates are i.i.d. with common conditional distribution LP (U | s)
(resp. LQ(U | s)), while the query coordinate has distribution PX (resp. QX ) independent of the
context. Let πsU be an optimal coupling for Wα

(
LP (U | s),LQ(U | s)

)
with ground metric

dα(u,u
′) := ∥u − u′∥α2 , and let πC be an optimal coupling for Wα(PX ,QX) with ground metric

dα(c, c
′) := ∥c − c′∥α2 . Construct a coupling Πs of LP (P k | s) and LQ(P k | s) by drawing

(Ui,U
′
i)

i.i.d.∼ πsU for i = 1, . . . , k and (C,C ′) ∼ πC , all independent across coordinates. Then, by
the definition of the prompt-level ground metric,

EΠs

[
dk,α

(
(U1:k,C), (U ′

1:k,C
′)
)]

=
1

k

k∑
i=1

Eπs
U

[
dα(Ui,U

′
i)
]
+ EπC

[
dα(C,C

′)
]

= Wα

(
LP (U | s),LQ(U | s)

)
+Wα(PX ,QX).

Therefore,

W(k)
α

(
LP (P k | s),LQ(P k | s)

)
≤ Wα

(
LP (U | s),LQ(U | s)

)
+Wα(PX ,QX).

Step 2 (disintegration and convexity). Write the unconditional prompt distributions as mixtures
over S: LP (P k) =

∫
LP (P k | s)ν(ds) and LQ(P k) =

∫
LQ(P k | s)ν(ds), where ν is the

(shared) distribution of S under both domains (task distribution and noise distribution are kept the
same across domains). By convexity of W1(·, ·; dk,α) in each argument,

W(k)
α

(
LP (P k),LQ(P k)

)
≤
∫

W(k)
α

(
LP (P k | s),LQ(P k | s)

)
ν(ds)

≤ ES
[
Wα

(
LP (U | S),LQ(U | S)

)]
+Wα(PX ,QX),

which is the desired bound.

Corollary 3 (Input-only reduction under Lipschitz tasks). Assume Y = f(X) + ε with a shared
noise coupling across domains (possibly conditional on S) and a task family that is uniformly Lf -
Lipschitz in x: |f(x)− f(x′)| ≤ Lf∥x− x′∥2 for all tasks. Then for every k ≥ 1 and 0 < α ≤ 1,

W(k)
α

(
LP (P k),LQ(P k)

)
≤ (2 + Lαf )Wα(PX ,QX).

Proof of Corollary 3. Under the shared-noise coupling, by subadditivity of t 7→ tα for α ∈ (0, 1],
∥U − U ′∥α2 ≤ ∥X − X ′∥α2 + |f(X) − f(X ′)|α ≤ (1 + Lαf )∥X − X ′∥α2 . Hence Wα(LP (U |
S),LQ(U | S)) ≤ (1 + Lαf )Wα(PX ,QX) for every S. Plug this into Lemma 2 and add the
Wα(PX ,QX) term for the query coordinate C.

Combining Theorem 1, Theorem 2, Theorem 7 with either Lemma 2 or Corollary 3, and absorbing
polylogarithms into Õ(·), yields the same end-to-end OOD risk bound as in the main text, with
the prompt-level Wasserstein term. The additional terms quantify distribution shift incurred during
pretraining (via LP (P k) vs. LQ(P k)); once θ is fixed, the inference-time predictor risk RPV is
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evaluated under the target domain alone and does not carry extra estimation error from pretraining.
Putting everything together, for the target domain QX we obtain

ER(QX)(Mθ̂) ≤
1

p

p∑
k=1

R⋆k(Fi⋆ ;QX)︸ ︷︷ ︸
oracle risk under the true task type in the target domain

+Õ

(
m

− 2α
deff +

m

pN
+

1

N

)

+
2(BM+Bf )

p

p∑
k=1

(
L+ Λα

)
W(k)
α

(
LP (P k),LQ(P k)

)
︸ ︷︷ ︸

OOD penalty on the Bayes Gap

+
5B2

f

p

(
1−αi⋆

αi⋆

eDmin/2 − 1
+

T − 1

eC − 1

)
︸ ︷︷ ︸

mixture identification remainder

,

where R⋆k(Fi⋆ ;QX) denotes the minimax risk for predicting a function from the true task class Fi⋆
under prompt distribution QX .

D ON THE HÖLDER CONDITION OF THE BAYES PREDICTOR

Although y is not bounded in the prompt-generating process, the theorem imposes Hölder condition
on bounded examples and queries. This is because if the noise follows a sub-Gaussian distribution,
boundedness holds with high probability. Hence, the unbounded cases do not significantly affect the
final result. Moreover, since the statement of the Theorem 2 is a bound on the expectation, it suffices
that the Hölder condition holds with high probability.

In addition to Assumptions 1-2, assume the noise is Gaussian for simplicity. Under these conditions,
the Bayes predictor MBayes is Hölder (α = 1), with the family-specific Hölder constants listed
below:

• Linear regression. f(w,b)(x) = w⊤x + b with ∥w∥2 ≤ Bw, |b| ≤ Bb and feature map
ψ(x) = [x⊤, 1]⊤. Then x 7→ f(w,b)(x) is Bw-Lipschitz.

• Finite-order series regression. fa(x) =
∑R
j=1 ajgj(x) with ∥a∥1 ≤ A, basis functions satis-

fying ∥gj∥∞ ≤ 1 and ∥∇gj(x)∥2 ≤ Lg uniformly; take ψ(x) = [g1(x), . . . , gR(x)]
⊤. Then

x 7→ fa(x) is ALg-Lipschitz.

• Finite convex dictionary. fa =
∑J
j=1 ajf

(j) with a ∈ ∆J−1, each atom obeying |f (j)(x)| ≤
Bf and ∥∇f (j)(x)∥2 ≤ Lf uniformly; take ψ(x) = [f (1)(x), . . . , f (J)(x)]⊤. Then x 7→
fa(x) is Lf -Lipschitz. (An example of a distribution on ∆J−1 is the logistic-normal distribu-
tion (Aitchison & Shen, 1980).)

We consider these three regression models. For these models, we additionally assume the following
conditions:

• For task family i, there exist a dimension di ∈ N and a parameter space Θi ⊂ Rdi such that
fθ : C → R for every θ ∈ Θi. Moreover, the model is uniformly bounded and Hölder in the
query: supθ∈Θi

supx∈C |fθ(x)| ≤ Bf and supθ∈Θi
supx̸=x′

|fθ(x)−fθ(x′)|
∥x−x′∥α

2
≤ Lf,i.

• The distribution on θ given I = i has a density πi(θ) ∝ exp{−V (θ)} on Θi, where V is
twice continuously differentiable and ∇2V (θ) ⪰ λ0Idi for all θ ∈ Θi, for some λ0 > 0. In
particular, a Gaussian distribution N (0,Λ−1

0 ) satisfies this with λ0 = λmin(Λ0).

• Let u = (x, y) ∈ U and define the per-sample loss ℓ̃(θ;u) := 1
2σ2

ε

(
fθ(x)− y

)2
. There exists a

constant Lθ,i <∞ such that, for all θ ∈ Θi and all u, ũ ∈ U ,
∥∥∇θ ℓ̃(θ;u)−∇θ ℓ̃(θ; ũ)

∥∥
2

≤
Lθ,i ∥u− ũ∥α2 .

• There exists b such that 1
k

∑k
t=1 ψ(xt)ψ

⊤(xt) ⪰ bI .

In the mixture setting, the Bayes predictor decomposes as MBayes(P
k) =

∑T
i=1 πi(D

k)µi(D
k, c)

with µi(D
k, c) := E[f(c) | Dk, I = i] and πi(D

k) ∝ αimi(D
k), mi(D

k) :=
∫
exp
{
−

(2σ2
ε)

−1
∑k
r=1(fθ(xr) − yr)

2
}
dPi(θ). The above single-family arguments and the assumptions
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imply that each µi is α-Hölder with a constant Lµ,i independent of k. However, the mixture
weights πi depend on the entire context through the marginal evidences mi(D

k). Then, there exists
Ci such that logmi(D

k) is kCi-Hölder in Dk when measured by the average per-sample metric:
| logmi(D

k) − logmi(D̃
k)| ≤ k Ci

1
k

∑k
r=1

(
∥ur − ũr∥2

)
. Hence, in the worst case, the softmax

gating Dk 7→ π(Dk) is O(k)-Hölder under the same metric, and |MBayes(P
k) −MBayes(P̃

k)| ≤(
maxi Lµ,i +BfCk

)
1
k

∑k
r=1 ∥(ur, c)− (ũr, c̃)∥2 for some C.

If, in addition, the standard log-likelihood-ratio conditions in Theorem 3 hold, the task posterior
PI|Dk concentrates exponentially fast on the true index i⋆. From Step 3 in proof of Theorem 3, with
probability at least 1− e−C1k,

∑
i ̸=i⋆ πi(D

k) ≤ C2Tke
−C3k holds for some C1, C2, and C3, im-

plying |MBayes(P
k)−MBayes(P̃

k)| ≤
(
Lµ,i⋆ +2BfC2Tke

−C3k
)
1
k

∑k
r=1 ∥(ur, c)−(ũr, c̃)∥2. In

particular, the effective Hölder constant is independent of k up to an exponentially small remainder.
Also, a uniform margin assumption mini ̸=j

1
k | logmi(D

k) − logmj(D
k)| ≥ γ > 0 implies the

same conclusion with e−γk in place of e−C3k.

E DETAILS OF THEOREM 3

We concretely investigate Theorem 3 for a pair of task families: linear regression versus a series
(basis) regression that excludes constant and linear terms.

Standing assumptions.

• Inputs are bounded and i.i.d.: X ∼ PX with ∥X∥2 ≤ BX a.s. and E[X] = 0. Let ΣX :=
E[XX⊤], which we assume is positive definite on Rdfeat with λmin(ΣX) > 0.

• Noise is Gaussian (a special case of sub-Gaussian): ε i.i.d.∼ N (0, σ2
ε) independent of (f,X).

• Boundedness of tasks. For the linear class

Flin =
{
fw,b(x) = w⊤x+ b : ∥w∥2 ≤ Bw, |b| ≤ Bb

}
,

we have |fw,b(x)| ≤ BwBX +Bb =: Bf on the support of PX . For the series class

Fser =
{
fa(x) =

Rmax∑
r=r0

argr(x) : ∥a∥2 ≤ Ba

}
,

assume r0 ≥ 2 (so constant and linear terms are excluded), the basis {gr}Rmax
r=r0 is orthonormal

in L2(PX), orthogonal to linear functions, and bounded pointwise, i.e. supx |gr(x)| ≤ Gmax.
Then |fa(x)| ≤ ∥a∥2 · ∥

(
gr(x)

)Rmax

r=r0
∥2 ≤ Ba

√
Rmax − r0 + 1Gmax =: Bf .

• Within each family we use a truncated Gaussian parameter distribution supported on the above
bounded parameter sets (to respect |f | ≤ Bf ) and otherwise conjugate:

θlin := (w, b) ∼ N (0, τ2linI) truncated to {∥w∥ ≤ Bw, |b| ≤ Bb},
θser := a ∼ N (0, τ2serI) truncated to {∥a∥2 ≤ Ba}.

The truncation preserves boundedness; the standard Gaussian formulas below give upper
bounds (hence valid constants) for the truncated case because the posterior covariances are
⪯ their untruncated analogues on the bounded domain.

A generic Gaussian–predictive bound for Zj,t Fix a time t and condition on Gt−1 and Xt = x.
Under any task type (task family) i, the (posterior) predictive distribution is Gaussian

pi(y | x,Gt−1) = N
(
µi,t(x), s

2
i,t(x)

)
,

with mean µi,t(x) (the posterior mean of f(x)) and predictive variance

s2i,t(x) = σ2
ε +Var

(
f(x) | Gt−1, I = i

)
.
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For our conjugate priors,

µlin,t(x) = ϕ(x)⊤mt−1, s2lin,t(x) = σ2
ε + ϕ(x)⊤Σt−1 ϕ(x), ϕ(x) :=

[
x
1

]
,

and similarly

µser,t(x) = ψ(x)⊤m̃t−1, s2ser,t(x) = σ2
ε + ψ(x)⊤Σ̃t−1 ψ(x), ψ(x) :=

(
gr(x)

)Rmax

r=r0
.

Because ∥ϕ(x)∥2 ≤ Bϕ :=
√
B2
X + 1 and ∥ψ(x)∥2 ≤ Bψ :=

√
Rmax − r0 + 1Gmax and the

posterior covariances are bounded by the prior covariances, we have a uniform variance upper bound

s2i,t(x) ≤ σ2
ε + V̄ , V̄ := max{τ2linB2

ϕ, τ
2
serB

2
ψ}. (2)

For two types i (true) and j (wrong), define the log-predictive increment1

Zj,t := log
pj(Yt | Xt,Gt−1)

pi(Yt | Xt,Gt−1)
.

A direct Gaussian calculation (writing Yt = µi,t(Xt) + si,t(Xt) ε with ε ∼ N (0, 1)) yields

E[Zj,t | Gt−1,Xt] = −KL
(
N (µi,t, s

2
i,t)
∥∥∥N (µj,t, s

2
j,t)
)

= −1

2

{
log

s2j,t
s2i,t

+
s2i,t
s2j,t

− 1 +
(µi,t − µj,t)

2

s2j,t

}
.

Consequently, for every (t,x),

E[Zj,t | Gt−1,Xt = x] ≤ − (µi,t(x)− µj,t(x))
2

2 s2j,t(x)
≤ − (µi,t(x)− µj,t(x))

2

2(σ2
ε + V̄ )

. (3)

Moreover, the centered increment Zj,t + Dj,t with Dj,t := −E[Zj,t | Gt−1,Xt] is a quadratic
polynomial in a standard normal,

Zj,t +Dj,t = at ε+ bt (ε
2 − 1), at := − (µi,t − µj,t) si,t

s2j,t
, bt := −1

2

(
s2i,t
s2j,t

− 1

)
,

hence sub-exponential. Calculating the mgf

Eeλ(atε+bt(ε
2−1)) = e−λbt(1− 2λbt)

−1/2 exp

(
λ2a2t

2(1− 2λbt)

)
,

and the elementary bound − ln(1− u)− u ≤ u2 valid for |u| ≤ 1/2 (note that |bt| ≤ V̄ /(2σ2
ε), so

u = 2λbt ∈ [−1/2, 1/2] whenever |λ| ≤ 1/bj), we obtain the uniform sub-exponential parameters
(νj , bj) in Theorem 3 with

ν2j ≤
8B2

f

(
σ2
ε + V̄

)
σ4
ε

+
V̄ 2

σ4
ε

, bj :=
2V̄

σ2
ε

.

Pair A: true linear vs. wrong series (degree ≥ 2) Assume the data are generated by some
f⋆(x) = w⊤

⋆ x + b⋆ ∈ Flin and the wrong family is Fser with orthonormal {gr}Rmax
r=r0 , r0 ≥ 2,

orthogonal to 1 and to all linear functionals of X . Let Πser denote the L2(PX)–orthogonal projec-
tion onto span{gr}.

By orthogonality, Πserf
⋆ ≡ 0, hence the L2–gap between the true function and the wrong family is

∆2
lin→ser :=

∥∥f⋆ −Πserf
⋆
∥∥2
L2(PX)

= E
[
(w⊤

⋆ X + b⋆)
2
]
= w⊤

⋆ ΣXw⋆ + b2⋆.

1If the likelihood does not have a density function with respect to Lebesgue measure, assume that all predic-
tive distributions are dominated by a common reference measure so that the Radon-Nikodym derivative exists.
Then Zj,t can be rigorously defined.
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For conjugate normal models with bounded regressors ϕ, ψ and positive definite design covariances,
standard ridge-risk bounds in series regression (§3.4 in van der Vaart & Wellner, 2023) give

∥µlin,t − f⋆∥2L2(PX) = O

(
dfeat + 1

t

)
, ∥µser,t −Πserf

⋆∥2L2(PX) = O

(
Rmax − r0 + 1

t

)
.

Thus, taking t0 = Õ
(
dfeat+Rmax−r0+1

∆2
lin→ser

)
, for all t ≥ t0, we have

EX
[
(µlin,t(X)− µser,t(X))2

]
≥ 1

2
∆2

lin→ser.

Combining with (3) and s2ser,t ≤ σ2
ε + V̄ gives the uniform negative drift (for all t ≥ t0)

E[Zj,t | Gt−1] ≤ −Dj , Dj :=
∆2

lin→ser

4
(
σ2
ε + V̄

) .
From Theorem 3, the posterior mass on the wrong family is

1− αi⋆

αi⋆
exp

(
−Dj

2
k

)
+ exp(−Cjk), Cj :=

D2
j

8
(
ν2j + bjDj/2

) .
Therefore, to make the mixture identification remainder ≤ η, it suffices (up to absolute constants
and polylog factors) to take

k = Õ

(
σ2
ε + V̄

∆2
lin→ser

log
1

η
∨
[ (σ2

ε + V̄ )2

∆4
lin→ser σ

4
ε

(
B2
f (σ

2
ε + V̄ ) + V̄ 2

)
+

(σ2
ε + V̄ ) V̄

∆2
lin→ser σ

2
ε

]
log

1

η

)
.(4)

The first term is the dominant, interpretable signal-to-noise scaling:

k ≍ σ2
ε + V̄

w⊤
⋆ ΣXw⋆ + b2⋆

log
1

η
.

Pair B: true series (degree ≥ 2) vs. wrong linear Now the data come from f⋆(x) =∑Rmax

r=r0
a⋆rgr(x) with ∥a⋆∥2 ≤ Ba and the wrong family is linear. Orthogonality gives Πlinf

⋆ ≡ 0

(since r0 ≥ 2 and E[X] = 0), hence

∆2
ser→lin :=

∥∥f⋆ −Πlinf
⋆
∥∥2
L2(PX)

= ∥f⋆∥2L2(PX) =

Rmax∑
r=r0

(a⋆r)
2.

Exactly the same argument as above yields, for t ≥ t0 = Õ
(
dfeat+Rmax−r0+1

∆2
ser→lin

)
,

Dj =
∆2

ser→lin

4
(
σ2
ε + V̄

) , ν2j ≤
8B2

f (σ
2
ε + V̄ ) + V̄ 2

σ4
ε

, bj =
2V̄

σ2
ε

,

and the same k–order as in (4) with ∆lin→ser replaced by ∆ser→lin.

Remarks and extensions All bounds above use only: (i) |f | ≤ Bf on the support of PX ; (ii) the
uniform predictive variance upper bound (2); and (iii) L2(PX)–orthogonality for the two families
considered. Using truncated conjugate priors guarantees (i) and keeps (ii) finite with the explicit
V̄ given. The sub-exponential constants remain valid for truncated conjugate posteriors because
truncation can only decrease posterior covariances, hence decrease |at| and |bt|.
If {gr} is merely linearly independent (non-orthonormal) let Πser be the L2(PX)–projection onto
span{gr}. Then the formulas hold with

∆2
lin→ser =

∥∥f⋆ −Πserf
⋆
∥∥2
L2(PX)

, ∆2
ser→lin =

∥∥f⋆ −Πlinf
⋆
∥∥2
L2(PX)

,

and the same (νj , bj) (with the same V̄ ) because the mgf bound depended only on boundedness and
Eq. (2).
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F TECHNICAL LEMMAS

Lemma 3 (Posterior variance is bounded by the true task’s minimax risk). Suppose the prompt-
generating process is as described in Definition 1 and that Assumptions 1-2 hold. Fix a task-type
index i⋆ ∈ {1, . . . , T} and recall that Fi⋆ = supp(PFi⋆

) is the corresponding function class (sup-
port of the true task type prior). For any k ≥ 1,

Ef∼PFi⋆
EDk∼P⊗k

X,Y |f
Ex∼PX

[
Varf∼P

Fi⋆ |Dk
(f(x))

]
≤ inf

M
sup
f∈Fi⋆

EPk

[(
f(xk+1)−M(P k)

)2∣∣∣f] ,
where the left-hand side is the conditional Posterior Variance average under the true task type and
M belongs to the bounded and measurable function space.

This suggests that if the true task type is given, the Posterior Variance is smaller than the minimax
L2 prediction error.
Lemma 4 (Sequential covering bound). Fix k ∈ N+. Let U ⊂ Rdeff and C ⊂ Rdfeat be bounded with
supu∈U ∥u∥2 ≤ RU and diam(C) <∞. For θ ∈ Θ, consider the uniform-attention architecture

Mθ(P
k) = ρθ

(
1

k

k∑
i=1

ϕθ(ui), c

)
, P k = (u1, . . . ,uk, c) ∈ Uk × C,

where the query c is shared across the k context items within each P k (i.e., c does not depend on i
inside the mean 1

k

∑k
i=1 ϕθ(ui)). Assume:

(i) ϕθ : U → ∆m−1 is Lϕ–Lipschitz, where Lϕ := Lip(ϕθ) ≤ 2
√
m
τ S(gθ) for our encoder with

Renormτ , and the ReLU component satisfies S(gθ) ≤ Cϕm
1/deff . Moreover, (ϕθ)j ∈ [0, 1]

and
∑m
j=1(ϕθ)j ≡ 1, and ϕθ admits a realization with Õ(m)-weights and O(logm)-layers.

Put Bϕ := supj ∥(ϕθ)j∥∞ ≤ 1.

(ii) ρθ : ∆m−1 × C → R is a ReLU network with spectral product S(ρθ) ≤ Cρm
1/2, is jointly

Lipschitz,

|ρθ(s, c)− ρθ(s
′, c′)| ≤ Ls∥s− s′∥2 + Lc∥c− c′∥2, Ls, Lc ≤ Cρm

1/2,

and its (clipped) output is bounded, |ρθ| ≤ BM .

Let H := {P k 7→ Mθ(P
k) − MBayes(P

k) : θ ∈ Θ} be the centered class for any fixed target
MBayes. Denote by N seq

2 (δ, ·; z) the sequential covering number under the ℓ2 sequential metric on
a depth-k predictable tree z. Then, for all δ ∈ (0, 2BM ],

sup
z

logN seq
2 (δ,H; z) ≲ m log

(√
m

δ

)
+ k log

(
1

δ

)
.

Lemma 5 (Approximation error of the Bayes predictor by a uniform-attention Transformer). Let
U ⊂ Rdeff and C ⊂ Rdfeat be non-empty compact sets with diam(U) ≤ 1. For every k ∈ N+,
consider a permutation-invariant map MBayes : Zk → R on Z := U × C satisfying the Hölder
condition

|MBayes(z1:k)−MBayes(z
′
1:k)| ≤ L

1

k

k∑
i=1

∥zi − z′
i∥α2 , α ∈ (0, 1], zi = (ui, c), z

′
i = (u′

i, c
′).

Then, for any η ∈ (0, e−1), there exists an integer m ≍ η−deff/α and a C∞ partition of unity
ϕ = (ϕ1, . . . , ϕm) : U → [0, 1]m with

∑m
j=1 ϕj ≡ 1 such that, writing s(u1:k) :=

1
k

∑k
i=1 ϕ(ui) ∈

∆m−1, one can construct a (clipped) ReLU decoder ρθ : ∆m−1 × C → R so that

sup
c∈C

sup
u1:k∈Uk

|MBayes(u1:k, c)− ρθ (s(u1:k), c)| ≤ C(deff)Lη.

Furthermore, ρθ is uniformly Lipschitz and bounded with respect to (s, c), and the layer-wise spec-
tral product can be controlled as follows:∣∣ρθ(s, c)− ρθ(s

′, c′)
∣∣ ≤ Ls∥s− s′∥2 + Lc∥c− c′∥2, |ρθ| ≤ BM ,

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Ls ≤ CL
√
m, Lc ≤ CLm(1−α)/deff ≤ CL

√
m, S(ρθ) ≤ CL

√
m.

In addition, ϕ can be uniformly approximated by a ReLU network with O(logm)-layers and
O(m logm)-weights, and its implementation satisfies

∑
j(ϕθ)j ≡ 1, (ϕθ)j ∈ [0, 1], with the spec-

tral product satisfying S(ϕθ) ≤ Cϕm
1/deff .

This lemma guarantees that the uniform-attention Transformer we are analyzing has the capacity to
adequately represent smooth Bayesian predictors. This yields a fixed-length, permutation-invariant
representation independent of context length p with provable approximation rates that feed directly
into the sequential generalization analysis.

Lemma 6 (Oracle inequality for RBG). Let Dtrain =
{
{(P kj , yj,k+1)}pk=1

}N
j=1

be draws from the
prompt-generating process in Definition 1. Let Mθ̂ be the ERM (1) of the Transformer (Definition
2). Suppose Assumptions 1–2 hold. If infθ∈ΘRBG(Mθ) = O( 1

N (mp + 1)),

ERBG(Mθ̂) ≲ inf
θ∈Θ

RBG(Mθ) +
m

pN
polylog(pN) +

1

N
polylog(pN),

where polylog(pN) denotes a factor that is a polynomial in log pN , the expectation is taken with
respect to Dtrain and M := {Mθ : θ ∈ Θ}.

The generalization error is Õ( mpN )+N−1. Here, m represents the complexity of M, and increasing
m improves the approximation ability (Lemma 5), but also increases the variance, which appears
here.

G PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. LetRk(M) := Ei=I∼PI ,f∼PFi
,Dk∼P⊗k

X,Y |f ,xk+1∼PX

[
(f(xk+1)−M(P k))2

]
.

Then, R(M) = 1
p

∑p
k=1Rk(M).

For any k-context Dk and query xk+1, define MBayes(P
k) = Ef∼P(f |Dk)[f(xk+1)]. By simple

algebra:

Rk(M) = EI,f,Pk [(f(xk+1)−M(P k))2]

= EI,f,Pk [(f(xk+1)−MBayes(P
k))2] + EI,f,Pk [(MBayes(P

k)−M(P k))2]

+ 2EI,f,Pk [(f(xk+1)−MBayes(P
k))(MBayes(P

k)−M(P k))]. (5)

Let G′
k be the σ-algebra generated by (Dk,xk+1). Since f is almost surely finite and (MBayes(P

k)−
M(P k)) is G′

k-measurable, by the tower property of conditional expectation:

EI,f,Pk [(f(xk+1)−MBayes(P
k))(MBayes(P

k)−M(P k))]

= EI,f,Pk

[
(MBayes(P

k)−M(P k))EI,f [f(xk+1)−MBayes(P
k) | G′

k]
]
.

MBayes(P
k) = Ef∼P(f |Dk)[f(xk+1)] implies the inner expectation equals zero.

From (5) with vanishing cross-term, Rk(M) is decomposed as Rk(M) = RPV,k + RBG,k(M),
where

RPV,k := EI,f,Pk [(f(xk+1)−MBayes(P
k))2]

= EPk [Ef∼P(f |Dk)(f(xk+1)−MBayes(P
k))2]

= EDk,xk+1
[Varf∼P (f |Dk)(f(xk+1))],

and
RBG,k(M) := EPk [{MBayes(P

k)−M(P k)}2]
= EPk [{Ef∼P(f |Dk)[f(xk+1)]−M(P k)}2].

Hence,

R(M) =
1

p

p∑
k=1

RPV,k +
1

p

p∑
k=1

RBG,k(M) = RPV +RBG(M).
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Proof of Theorem 2. Step 0 (clipping via a high-probability event). Let tε := σε
√

2 log(4p/δ)
for δ ∈ (0, e−1), and define

E :=

{
max

1≤i≤p+1
|εi| ≤ tε

}
.

By sub-Gaussian tails and a union bound, Pr(Ec) ≤ δ. On E , writing zi := (xi, yi,xk+1), we have
zi ∈ B(0, Rrad) with radiusRrad := C(BX+Bf+tε), hence zi ∈ ZR := B(0, Rrad) ⊂ R2dfeat+1

(compact). Rescale z̃ := z/(2Rrad) so that diam(Z̃R) ≤ 1.

Step 1 (approximation & aggregation noise on E). Apply Lemma 5 with the shared variable
c := xk+1 and zi = (xi, yi,xk+1). With grid scale η ≍ m−1/deff , on E , squared error is

C1(2Rrad)
2αη2α

SinceRrad ≲
√
log(p/δ), the factor (2Rrad)2α is polylogarithmic and is absorbed into Õ(). Choos-

ing η ≍ m−1/deff gives m−2α/deff up to polylogarithmic factors.

Step 2 (estimation error and combination). From Lemma 6, the estimation term Õ
(
m
pN + 1

N

)
.

Combining with Step 1 gives

m
− 2α

deff +
m

pN
+

1

N
.

Optimizing over m yields the displayed rate (polylog factors absorbed into Õ).

Step 3 (contribution of Ec). As in Step 7 of Lemma 6, using (Bf+BM )2 + σ2
ε as an envelope

and sub-Gaussian tails, the contribution on Ec is O
(
δ + δ log(p/δ)

)
. With δ := (pN)−2, this is

negligible compared to the main terms.

Proof of Theorem 3. Recall that Dk = (x1, y1, . . . ,xk, yk). By the chain rule and the definition of
Zj,t,

pj(D
k)

pi⋆(Dk)
=

k∏
t=1

pj(xt, yt | Dt−1)

pi⋆(xt, yt | Dt−1)
=

k∏
t=1

pj(yt | xt, Dt−1)

pi⋆(yt | xt, Dt−1)
= exp

( k∑
t=1

Zj,t

)
. (6)

Write πi(Dk) := Pr(I = i | Dk) and µi(x) := E
[
f(x) | I = i,Dk

]
. By the law of total variance

conditioning on I ,

Var
(
f(x) | Dk

)
= EI|Dk

[
Var

(
f(x) | I,Dk

)]︸ ︷︷ ︸
(A)

+ VarI∼P
I|Dk

(µI(x))︸ ︷︷ ︸
(B)

. (7)

We compare the right-hand side with Var
(
f(x) | I = i⋆, Dk

)
.

Step 1 (term (A)). Using |f(x)| ≤ Bf ,∣∣EI|Dk

[
Var(f(x) | I,Dk)

]
−Var

(
f(x) | I = i⋆, Dk

)∣∣ ≤ ∑
j ̸=i⋆

πj(D
k) |Varj −Vari⋆ |

≤ B2
f

∑
j ̸=i⋆

πj(D
k),

where Varj := Var(f(x) | I = j,Dk) ≤ B2
f .

Step 2 (term (B)). For any G′
k-measurable scalar a, VarI∼P

I|Dk
(µI) ≤ EI|Dk(µI − a)2. Choosing

a = µi⋆(x) and using |µi(x)| ≤ Bf ,

VarI∼P
I|Dk

(µI(x)) ≤
∑
j

πj(D
k) (µj(x)− µi⋆(x))

2 ≤ 4B2
f

∑
j ̸=i⋆

πj(D
k).

Combining the two steps with (7),

Var
(
f(x) | Dk

)
≤ Var

(
f(x) | I = i⋆, Dk

)
+ 5B2

f

∑
j ̸=i⋆

πj(D
k).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Taking Ex∼PX
and then EDk|I=i⋆ yields

EDk,x|I=i⋆
[
Varf |Dk{f(x)}

]
(8)

≤ EDk,x|I=i⋆
[
Var

(
f(x) | I = i⋆, Dk

) ]
+ 5B2

fEDk|I=i⋆
[
1− πi⋆(D

k)
]
.

Step 3 (posterior concentration of the task index). Let Sj,k :=
∑k
t=1 Zj,t and λj,k := eSj,k . By

the assumption, {Zj,t+Dj} are conditionally sub-exponential supermartingale differences. Apply-
ing a Bernstein-type supermartingale inequality (Theorem 2.6 in Fan et al., 2015), for each j ̸= i⋆,

Pr
(
Sj,k + kDj ≥ 1

2kDj | I = i⋆
)
≤ e−Cjk, Cj :=

D2
j

8(ν2j + bjDj/2)
.

Hence, by a union bound, there is an event Ek :=
{
λj,k ≤ e−Djk/2∀j ̸= i⋆

}
with Pr(Ek) ≥ 1 −

(T − 1)e−Ck, where C := minj ̸=i⋆ Cj . On Ek, using (6),

Sk :=
∑
j ̸=i⋆

αj
αi⋆

λj,k ≤ 1− αi⋆

αi⋆
e−Dmink/2, πi⋆(D

k) =
1

1 + Sk
≥ 1− Sk.

Hence 1− πi⋆(D
k) ≤ Sk on Ek, while trivially 1− πi⋆(D

k) ≤ 1 on Ec
k. Therefore

EDk|i⋆
[
1− πi⋆(D

k)
]
≤ 1− αi⋆

αi⋆
e−Dmink/2 + (T − 1)e−Ck.

Step 4 (conclusion). Plug the last inequality into (8) to obtain the displayed
bound for EDk,x|I=i⋆

[
Varf |Dk{f(x)}

]
. Finally, apply Lemma 3 to bound

EDk,x|I=i⋆
[
Var

(
f(x) | I = i⋆, Dk

) ]
by infM supf∈Fi⋆

EPk

[(
f(xk+1)−M(P k)

)2 | f
]
.

H PROOFS OF THE TECHNICAL LEMMAS

Proof of Lemma 3. Define the MSE at step k under f , rk(M,f) :=

EPk

[(
f(xk+1)−M(P k)

)2 | f
]
, and the minimax risk at step k for the true task type

R⋆k(Fi⋆) := infM supf∈Fi⋆
rk(M,f). For any fixed M and any measure Π supported on

Fi⋆ ,

sup
f∈Fi⋆

rk(M,f) ≥
∫
rk(M,f)dΠ(f).

Taking Π = PFi⋆
and then infimum over M ,

R⋆k(Fi⋆) ≥ inf
M

∫
rk(M,f)dPFi⋆

(f).

By Tonelli’s theorem and the tower property,∫
rk(M,f)dPFi⋆

(f) = EDk,xk+1|I=i⋆
[
Ef∼P

f|I=i⋆,Dk

[(
f(xk+1)−M(P k)

)2] ]
.

Since M(P k) is G′
k-measurable, the inner expectation is minimized pointwise (for each real-

ized Dk,xk+1) by the posterior mean E
[
f(xk+1) | I = i⋆, Dk,xk+1

]
, and its minimum value is

Var
(
f(xk+1) | I = i⋆, Dk

)
. Therefore

inf
M

∫
rk(M,f)dPFi⋆

(f) = Ef∼PFi⋆
EDk∼P⊗k

X,Y |f
Exk+1∼PX

[
Varf∼P

Fi⋆ |Dk
(f(xk+1))

]
which proves the claim.

Proof of Lemma 4. Step 1: Contraction via triangle inequality. Let S := {P k 7→ 1
k

∑k
i=1 ϕθ(ui)}

and R := {(s, c) 7→ ρθ(s, c) : (s, c) ∈ ∆m−1 × C}. For any two predictors ρθ ◦ Sθ and ρθ′ ◦ Sθ′
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evaluated along a predictable tree z, the (Ls, Lc)–Lipschitz property of ρθ in s and the triangle
inequality give∣∣ρθ(Sθ(P t), ct)− ρθ′(Sθ′(P

t), ct)
∣∣

≤ Ls
∥∥Sθ(P t)− Sθ′(P

t)
∥∥
2
+
∣∣ρθ(Sθ′(P t), ct)− ρθ′(Sθ′(P

t), ct)
∣∣ .

Consequently, a (δ/(2Ls))–cover of the pooled-feature class S together with a (δ/2)–cover of the
decoder outputs R produces a δ–cover of the composite class {ρθ ◦ Sθ} under the ℓ2 sequential
metric. Equivalently,

sup
z

logN seq
2 (δ, {ρθ ◦ Sθ}; z) ≤ sup

z
logN seq

2

(
δ

2Ls
,S; z

)
+ sup

z
logN seq

2

(
δ
2 ,R; z

)
.

This single reduction step subsumes the earlier contraction and triangle-inequality arguments and
will be followed by separate bounds for S (Step 2) and R (Step 3).

Step 2: Cover of the pooled features S. Let Φ = {ϕθ : θ ∈ Θ}. For any θ, θ′ ∈ Θ and any prompt
P k,

∥Sθ(P k)− Sθ′(P
k)∥2 =

∥∥∥∥∥1k
k∑
i=1

(ϕθ(ui)− ϕθ′(ui))

∥∥∥∥∥
2

≤ sup
u∈U

∥ϕθ(u)− ϕθ′(u)∥2.

Fix η ∈ (0, 1) and set r := η/(4Lϕ), where Lϕ := Lip(ϕθ). Take an r-net N ⊂ U of input space of
ϕθ with

|N | ≤ C(deff)
(

diam(U)
r

)deff
= C(deff)

(
4Lϕ diam(U)

η

)deff
.

By triangle inequality and Lipschitzness, for every u ∈ U , there exists u′ ∈ N such that

∥ϕθ(u)− ϕθ′(u)∥2 ≤ ∥ϕθ(u′)− ϕθ′(u
′)∥2 + 2Lϕ r ≤ ∥ϕθ(u′)− ϕθ′(u

′)∥2 + η/2.

Hence a cover of {ϕθ(·)} on N at scale η/2 yields a uniform cover on U at scale η.

Note that logN∞,2(η,Φ;N ) ≤
∑m
j=1 logN∞

(
η√
m
,Φj ;N

)
≤
∑m
j=1 Pdim(Φj) log

C|N |
√
m

η .

From Anthony & Bartlett (1999); Bartlett et al. (2019), using Pdim(Φ) = Õ(m) for the coordinate-
wise [0, 1]-bounded ReLU features, the finite-set (size |N |) covering bound gives

logN∞,2

(
η
2 ,Φ;N

)
≲ Pdim(Φ)

[
log
(
C
√
m
η

)
+ deff log

(
C′Lϕdiam(U)

η

)]
≲ m

[
log
(
C
√
m
η

)
+ deff log

(
C′Lϕdiam(U)

η

)]
.

Substituting η = δ/(2Ls) from Step 1 yields the sequential bound

sup
z

logN seq
2

(
δ

2Ls
,S; z

)
≲ m

[
log
(
C̃Ls

√
m

δ

)
+ deff log

(
C̃′Lϕdiam(U)Ls

δ

)]
,

uniformly in z.

Step 3: Uniform cover of the decoder R. Fix a predictable input tree z =
{(st(ξ1:t−1), ct(ξ1:t−1))}t≤k with nodes in ∆m−1 × C. Fix δ ∈ (0, 2BM ] and build a uniform
grid on the output range:

G := {−BM ,−BM + δ,−BM + 2δ, . . . ,−BM + Jδ} , J :=
⌈
2BM

δ

⌉
,

so that for any y ∈ [−BM , BM ] there exists q(y) ∈ G with |y − q(y)| ≤ δ/2. Now consider the
family V of depth-wise constant predictable trees v = {vt}t≤k defined by choosing, independently
for each depth t, a grid value gt ∈ G and setting vt(·) ≡ gt (constant on all nodes at depth t). Then
|V| = |G|k = (J + 1)k.

Fix any decoder ρθ ∈ R and any path ξ ∈ {±1}k. Along this path, we observe the length-k
sequence of decoder outputs yt := ρθ (st(ξ1:t−1), ct(ξ1:t−1)) ∈ [−BM , BM ]. Define the depth-
wise grid sequence gt := q(yt) ∈ G and take the corresponding v⋆ ∈ V with v⋆t (·) ≡ gt. Then,
along the path ξ,

1

k

k∑
t=1

(v⋆t (ξ1:t−1)− yt)
2 ≤ 1

k

k∑
t=1

(
δ

2

)2

=

(
δ

2

)2

,
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that is, d2,ξ (ρθ ◦ z, v⋆; z) ≤ δ/2. Since this holds for every ρθ and every path ξ, the set V is a
sequential (δ/2)–cover of R on z. Therefore,

N seq
2

(
δ
2 ,R; z

)
≤ |V| = (J + 1)k ≤

(
2BM

δ + 2
)k
.

Taking logarithms yields

sup
z

logN seq
2

(
δ
2 ,R; z

)
≤ k log

(
2BM

δ + 2
)
≲ k log

(
CBM

δ

)
.

Proof of Lemma 5. We will write C,C(d), . . . for positive constants depending only on displayed
arguments. Note that, w.r.t. ℓ2, the renormalization layer with parameter τ has Lipschitz constant
Lrenorm ≤ 2

√
m
τ . Since ReLU is 1-Lipschitz and biases do not affect Lipschitz constants, the global

Lipschitz modulus satisfies Lip
(
Tθ
)
≤ S(Tθ) for ReLU network Tθ.

Step 1 (feature map: soft histogram). Fix

δ :=

(
η

8
√
deff

)1/α

∈ (0, 1), r := δ/4.

Let U ⊃ U be an axis-aligned cube with dist(U , ∂U) ≥ r, where dist(U , ∂U) := inf{∥u − u′∥ :
u ∈ U ,u′ ∈ ∂U} denotes the Euclidean distance between U and the boundary of U . Partition U
into a regular grid of closed cubes {Qj}mj=1 of side length δ, so that m ≍ δ−deff ; denote by qj the
center of Qj and set the representative point

rj ∈ argmin
u∈U

∥u− qj∥2.

Let η ∈ C∞
c (Rdeff ) be a nonnegative and radially symmetric mollifier with

∫
η = 1 and suppη ⊂

B(0, 1). Put ηr(x) := r−deffη(x/r) and define

ϕj(x) := (1Qj ∗ ηr)(x).

Then suppϕj ⊂ Q+
j := {q : dist(q, Qj) ≤ r}. Since the pairwise intersections of the grid

cells have Lebesgue measure zero, we have
∑
j 1Qj = 1U almost everywhere, and because

B(x, r) ⊂ U for all x ∈ U , convolution with the unit-mass mollifier ignores these measure-
zero discrepancies, yielding

∑
j ϕj(x) = (

∑
j 1Qj ) ∗ ηr(x) = 1U ∗ ηr(x) = 1 pointwise on

U . Also, by Young’s inequality, ∥∇ϕj∥∞ ≤ ∥1Qj
∥∞∥∇ηr∥1 = ∥∇η∥1 r−1. Since r = δ/4, we

get ∥∇ϕj∥∞ ≤ (4∥∇η∥1) δ−1 =: Cδ−1, uniformly in j. For u1:k ∈ Uk, define the soft histogram

sj :=
1

k

k∑
i=1

ϕj(ui), s = (s1, . . . , sm) ∈ ∆m−1.

Step 2 (decoder construction). For each fixed c, define the ground cost on indices by

c(u)(j, ℓ) := ∥rj − rℓ∥α2 , 0 < α ≤ 1,

and letW (u)
α be the discrete 1-Wasserstein distance on the simplex ∆m−1 = {s ∈ [0, 1]m :

∑
j sj =

1} with cost c(u):

W (u)
α (s, t) := min

π≥0

∑
j,ℓ

c(u)(j, ℓ)πjℓ s.t.
∑
ℓ

πjℓ = sj ,
∑
j

πjℓ = tℓ.

where s, t ∈ ∆m−1. Note that c(u) is a metric since 0 < α ≤ 1. Let ∆k := {n
k : n ∈

{0, . . . , k}m,
∑
j nj = k}. For v = n/k ∈ ∆k, define

ρc (v) :=MBayes((r1, c), . . . , (r1, c)︸ ︷︷ ︸
n1

, . . . , (rm, c), . . . , (rm, c)︸ ︷︷ ︸
nm

).
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This is well-defined by permutation invariance of MBayes.

Let s = n/k and t = n′/k be points of ∆k. Construct an integer matrix A = (Ajℓ) with row
sums n and column sums n′ (e.g., by the Northwest corner rule (Peyré & Cuturi, 2019)), and set
π := A/k. Then π ∈ Π(s, t) is a feasible transport plan. Enumerating the k pairs so that (rj(i), rℓ(i))
appears exactly Ajℓ times, the Hölder condition yields

|ρc(s)− ρc(t)| ≤
L

k

k∑
i=1

∥rj(i) − rℓ(i)∥α2 = L
∑
j,ℓ

c(u)(j, ℓ)
Ajℓ
k

= L
∑
j,ℓ

c(u)(j, ℓ)πjℓ,

where c(u)(j, ℓ) := ∥rj − rℓ∥α2 . Since this bound holds for π∗ ∈ Π(s, t),

|ρc(s)− ρc(t)| ≤ LW (u)
α (s, t), (9)

which proves the L-Lipschitz property on ∆k.

Extend to all s ∈ ∆m−1 by the McShane-type formula

ρ⋆c(s) := inf
v∈∆k

{
ρc(v) + LW (u)

α (s,v)
}
, (10)

which satisfies ρ⋆c(v) = ρc(v) for v ∈ ∆k and, by the inequality (9), the Lipschitz property

|ρ⋆c(s)− ρ⋆c(t)| ≤ LW (u)
α (s, t) (∀s, t).

By this construction, ρ⋆c(v) = ρc(v) holds. Indeed, for v ∈ ∆k, taking t = v in Eq. (10) gives
ρ⋆c(v) ≤ ρc(v). Conversely, the inequality (9) implies ρc(v) ≤ ρc(t) + LW

(u)
α (t,v) for every

t ∈ ∆k, hence ρc(v) ≤ inft{ρc(t) + LW
(u)
α (v, t)} = ρ⋆c(v). Therefore ρ⋆c(v) = ρc(v).

We next show its L-Lipschitzness. For any s, t and any v ∈ ∆k, the triangle inequality yields
W

(u)
α (s,v) ≤ W

(u)
α (s, t) +W

(u)
α (t,v). Taking infima over v, ρ⋆c(s) ≤ ρ⋆c(t) + LW

(u)
α (s, t) and

ρ⋆c(t) ≤ ρ⋆c(s) + LW
(u)
α (s, t), so |ρ⋆c(s)− ρ⋆c(t)| ≤ LW

(u)
α (s, t).

We also note its piecewise linearity. By the Kantorovich–Rubinstein dual (Peyré & Cuturi, 2019) on
a finite space,

W (u)
α (s,v) = sup

φ∈Rm:|φj−φℓ|≤c(u)(j,ℓ)

⟨φ, s− v⟩,

so s 7→ ρ⋆c(s) is the lower envelope of finitely many support functions and thus piecewise linear on
∆m−1.

Step 3 (error decomposition and bounds). Adopt a half-open tie-breaking so that each ui belongs
to a unique cell Qj(i). Let the hard histogram be h := 1

k (n
hard
1 , . . . , nhard

m ) with nhardj := #{i :
ui ∈ Qj}. Then, with zi = (ui, c) and using the Hölder condition while keeping c fixed,

|MBayes(u1:k, c)− ρθ(s, c)| ≤
∣∣MBayes(u1:k, c)−MBayes

(
(rj(1), c), . . . , (rj(k), c)

)∣∣︸ ︷︷ ︸
quantization in u

+ |ρ⋆c(h)− ρ⋆c(s)|︸ ︷︷ ︸
hard-to-soft transport

+ |ρ⋆c(s)− ρθ(s, c)|︸ ︷︷ ︸
network approximation

.

Quantization: ∥ui − rj(i)∥2 ≤
√
deffδ, the Hölder condition gives

∣∣MBayes(u1:k, c)−MBayes

(
(rj(1), c), . . . , (rj(k), c)

)∣∣ ≤ L

k

k∑
i=1

∥ui − rj(i)∥α2 ≤ C(deff)Lδ
α.

Moreover, MBayes

(
(rj(1), c), . . . , (rj(k), c)

)
= ρc(h) = ρ⋆c(h).

Transport: Define a coupling π between h and s by moving, for each i, the mass 1/k placed at rj(i)
to the mixture

∑m
j=1 ϕj(ui)δrj

:

π
(i)
j(i)→j :=

1

k
ϕj(ui), π :=

k∑
i=1

m∑
j=1

π
(i)
j(i)→j .
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Because
∑
j ϕj ≡ 1, π has marginals h and s, hence is feasible for W (u)

α . If ϕj(ui) > 0 then
ui ∈ Q+

j , and by the triangle inequality together with Step 1,

∥rj(i) − rj∥2 ≤ ∥rj(i) − ui∥2 + ∥ui − rj∥2 ≤ C(deff)δ.

Therefore, with W (u)
α ,

W (u)
α (h, s) ≤

k∑
i=1

m∑
j=1

π
(i)
j(i)→j∥rj(i) − rj∥α2 ≤ C(deff)δ

α,

and since ρ⋆c is L-Lipschitz w.r.t. W (u)
α ,

|ρ⋆c(h)− ρ⋆c(s)| ≤ LW (u)
α (h, s) ≤ C(deff)Lδ

α.

Combining the three bounds and using diam(U) ≤ 1 (so that c(u)(j, ℓ) ≤ 1 and W (u)
α ≤ TV =

1
2 ∥·∥1), we obtain

|MBayes(u1:k, c)− ρθ(s, c)| ≤ C(deff)Lδ
α + |ρ⋆c(s)− ρθ(s, c)| .

Finally choose ρθ so that sup(s,c) |ρ⋆c(s)− ρθ(s, c)| ≤ CLδα (Step 4(iii)). Then

sup
c

sup
u1:k∈Uk

|MBayes(u1:k, c)− ρθ(s, c)| ≤ C(deff)Lδ
α.

Choosing δ ≍ η1/α and m ≍ δ−deff yields the claimed bound C(deff)Lη.

Step 4 (Neural implementation). We first consider the joint regularity of (s, c) 7→ ρ⋆c(s) on the
compact domain ∆m−1 × C.

(i) Joint Lipschitz in (s, c). By Step 2, for each fixed c and all s, s′ ∈ ∆m−1,

|ρ⋆c(s)− ρ⋆c(s
′)| ≤ LW (u)

α (s, s′).

On the simplex, we have W (u)
α (s, s′) ≤ diam(U)α

2 ∥s − s′∥1 ≤ diam(U)α

2

√
m∥s − s′∥2: it fol-

lows from the trivial plan that transports the total variation mass across at most diam(U)α. Since
diam(U) ≤ 1,

|ρ⋆c(s)− ρ⋆c(s
′)| ≤ CL

√
m∥s− s′∥2.

Next, fix s and vary c, c′. From the Hölder assumption on MBayes applied to zi = (rj(i), c) and
z′
i = (rj(i), c

′) we obtain |ρc(v)−ρc′(v)| ≤ L∥c−c′∥α2 for all v ∈ ∆k. By the McShane envelope
(10), (s, c) 7→ ρ⋆c(s) is α-Hölder in c:|ρ⋆c(s)−ρ⋆c′(s)| ≤ L∥c−c′∥α2 . To meet the size of networks in
Definition 2, we first apply a McShane-type α-Hölder extension to the whole space Rdfeat , and then
convolve only in the c-direction with a standard mollifier (Appendix C.5 in Evans, 2010) ηh. This
yields, for any (s, c), |ρ⋆c(s)− ρ♯c(s)| ≤

∣∣∫ (ρ⋆c(s)− ρ⋆c−hz(s)
)
η(z) dz

∣∣ ≤ ∫ L ∥hz∥α η(z) dz ≤
Cη Lh

α, and Lipc(ρ
♯) ≲ hα−1 uniformly in (s, c). In what follows we approximate ρ♯ by a ReLU

network and keep the same notation ρθ.

(ii) ReLU approximation of the feature map. As in the current proof, each u 7→ ϕj(u) is C∞

on [0, 1]deff with ∥∇ϕj∥∞ ≲ δ−1, hence by ReLU approximation (Yarotsky, 2017) there exists
a ReLU network of depth O(log(1/ηϕ)) and size O(m log(1/ηϕ)) that uniformly approximates
ϕ = (ϕ1, . . . , ϕm) on U with error ηϕ ∈ (0, e−1). Additionally, we set spectral product

S(ϕθ) ≍ δ−1 = m1/deff ,

matching size of the Transformer in Definition 2. After applying the fixed renormalization layer
Renormτ : Rm → ∆m−1, the features are simplex-valued

(iii) ReLU approximation of the decoder. On the compact set ∆m−1 ×C, the map (s, c) 7→ ρ♯c(s) is
jointly Lipschitz with moduli (Ls, Lc) from (i), and for each fixed c it is piecewise-linear in s (lower
envelope of affine forms by the KR dual). Therefore, by standard approximation results for Lipschitz
targets on a compact domain (Yarotsky, 2017), there exists a ReLU network ρθ : ∆m−1 × C → R
such that

sup
(s,c)

|ρ♯c(s)− ρθ(s, c)| ≤ CLδα.
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Moreover, by spectral normalization of the linear layers, we can enforce

Lips(ρθ) ≤ cLs = cCL
√
m, Lipc(ρθ) ≤ cLc = cLδα−1,

so the decoder’s spectral product can be taken as

S(ρθ) = O
(
L
√
m+ Lδα−1

)
under the ℓ2-metric used. Note that δα−1 = O(m(1−α)/deff ) = O(

√
m) as deff ≥ 2. Note that

the number of parameters of the decoder does not affect the upper bound of the predictive risk in
Theorem 2. Instead, we evaluate the complexity regarding the decoder by counting the number of
δ-cubes to cover the space of length-k sequences (see proof of Lemma 4, Step 3).

Finally, combining (ii)–(iii) with Step 4 and taking ηϕ = 1/m, we obtain

sup
c

sup
u1:k∈Uk

∣∣∣MBayes(u1:k, c)− ρθ

(
1
k

k∑
i=1

ϕ(ui), c
)∣∣∣ ≤ C(deff)Lδ

α.

Choosing δ ≍ η1/α and m ≍ δ−deff yields the lemma.

Proof of Lemma 6. Recall that we work on standard Borel spaces (the Borel spaces associated with
Polish spaces) so that regular conditional distributions (Durrett, 2019) exist. Accordingly, Pr(f ∈
· | Dk) and the quantities E[f(xk+1) | Dk], Var(f(xk+1) | Dk) are well-defined.

A technical point concerns the measurability of suprema over the parameter space Θ, which is
required for expectations to be well-defined. Note that under our assumptions, the parameter space
Θ is separable and, for any fixed sample, θ 7→ (y −Mθ(P ))

2 is continuous, so the relevant random
suprema are measurable.

Step 1 (Reduction via a centered, Bayes-offset objective). For each block j, write

Λj(θ) :=
1

p

p∑
k=1

(
yj,k+1 −Mθ(P

k
j )
)2

= Aj(θ) +Bj(θ) + Cj ,

with

Aj(θ) :=
1

p

p∑
k=1

(
MBayes(P

k
j )−Mθ(P

k
j )
)2
,

Bj(θ) :=
2

p

p∑
k=1

(
yj,k+1 −MBayes(P

k
j )
) (
MBayes(P

k
j )−Mθ(P

k
j )
)
,

and Cj := 1
p

∑p
k=1

(
yj,k+1 −MBayes(P

k
j )
)2

, which does not depend on θ. Define the centered
(Bayes-offset) empirical objective

R̂(θ) :=
1

N

N∑
j=1

Λ̃j(θ), Λ̃j(θ) := Λj(θ)− Cj = Aj(θ) +Bj(θ).

Then argminθ
1
N

∑
j Λj(θ) = argminθ R̂(θ), i.e., the ERM θ̂ is unchanged by the offset. Define

the population counterpart R(θ) := E[Λ̃j(θ)]; using E[y −MBayes(P ) | P ] = 0,

R(θ) = E
[
(MBayes(P )−Mθ(P ))

2
]
= RBG(Mθ).

Let θ⋆ ∈ argminθR(θ). Then

RBG(Mθ̂)−RBG(Mθ⋆) = R(θ̂)−R(θ⋆)

= R(θ̂)− R̂(θ̂) + R̂(θ̂)− R̂(θ⋆) + R̂(θ⋆)−R(θ⋆)

≤ R(θ̂)− R̂(θ̂) + R̂(θ⋆)−R(θ⋆) (11)
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and hence

E[RBG(Mθ̂)−RBG(Mθ⋆)] ≤ E[R(θ̂)− R̂(θ̂)] ≤ E
[
sup
θ

|R(θ)− R̂(θ)|
]
.

Step 2 (Localization at worst–path sequential radius). Let hθ :=Mθ −MBayes. Fix a Z–valued
predictable treeZ = (Zk)

p
k=1 of depth p that is decoupled tangent to the prompt process, in the sense

that for each depth k and each past ξ1:k−1 ∈ {±1}k−1, the conditional distribution of Zk(ξ1:k−1)
equals the conditional distribution of P k given Dk−1 (Peña & Giné, 1999; Rakhlin et al., 2015);
namely Zk(ξ1:k−1) | Dk−1 d

= P k | Dk−1. Conditioning on a realization Z = z, we refer to such
z as a data-containing tangent tree. For any realization z of Z, define the worst–path sequential ℓ2
radius on z by

∥h∥seq,2;z :=

{
sup

ξ∈{±1}p

1

p

p∑
k=1

h (zk(ξ1:k−1))
2

}1/2

.

For r > 0, we localize by the uniform worst–path radius

H(r) :=

{
hθ =Mθ −MBayes : sup

z
∥hθ∥seq,2;z ≤ r

}
.

Then, for any θ such that hθ ∈ H(r), since hθ is a bounded measurable function,

RBG(Mθ) =
1

p

p∑
k=1

EPk

[
hθ
(
P k
)2]

= EZ,ξ

[
1

p

p∑
k=1

hθ
(
Zk(ξ1:k−1)

)2] ≤ sup
z

∥hθ∥2seq,2;z ≤ r2.

Hence, hθ ∈ H(r) implies RBG(Mθ) ≤ r2.

Step 3 (High–probability envelope for the squared loss). Let δ := (pN)−2 and define the event

E :=

{
max

j∈[N ],k∈[p]
|εj,k+1| ≤ tδ

}
, tδ := σε

√
2 log

(2pN
δ

)
.

By the sub-Gaussian tail bound and a union bound, Pr(Ec) ≤ δ. On E , for every (j, k) and every
θ ∈ Θ we have∣∣yj,k+1 −Mθ(P

k
j )
∣∣ ≤ |f(xj,k+1)|+ |εj,k+1|+ |Mθ(P

k
j )| ≤ Bf + tδ +BM =: B̃,

hence, using δ = (pN)−2,

B̃ = Bf +BM + σε

√
2 log

(2pN
δ

)
≤ Bf +BM + σε

√
6 log(2pN).

We first carry out the analysis on E (where the above envelope holds) and add a negligible O(δ)
contribution to expectations in Step 7.

Step 4 (Block symmetrization for the centered objective). We work directly with the centered
blocks Λ̃j(θ) = Aj(θ) +Bj(θ) and their mean:

sup
θ∈Θ

∣∣∣(R̂ − R)(θ)
∣∣∣ = sup

θ∈Θ

∣∣∣∣∣∣ 1N
N∑
j=1

Λ̃j(θ)− EΛ̃j(θ)

∣∣∣∣∣∣ .
Since Λ̃1, . . . , Λ̃N are i.i.d., standard symmetrization with Rademacher variables (ϵj)

N
j=1,

Cauchy–Schwarz inequality and Jensen inequality give

E sup
θ

∣∣∣(R̂ − R)(θ)
∣∣∣ ≤ 2

N
E sup

θ

∣∣∣∣∣∣
N∑
j=1

ϵj Λ̃j(θ)

∣∣∣∣∣∣ ≤ C√
N

(
E sup

θ
Λ̃1(θ)

2

)1/2

.

We decompose Λ̃1(θ) = A1(θ)+B1(θ). From the definition of H(r), E[supθ∈H(r)A
2
1(θ)]

1/2 ≤ r2.
We then analyze B2

1(θ) = { 2
p

∑p
k=1(y1,k+1 −MBayes(P

k
1 ))(MBayes(P

k
1 )−Mθ(P

k
1 ))}2. Note that
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|MBayes(P
k
1 ) −Mθ(P

k
1 )| ≤ Bf + BM and B1 is constructed by a martingale difference sequence

with filtration G′
k. Since E[X2] = 2

∫∞
0
tPr(|X| > t)dt ≤ 2

∫∞
t0
tPr(|X| > t)dt + 2

∫ t0
0
tdt,

evaluation of the tail probability from Lemma 8 in Rakhlin et al. (2015) yields

E
[
sup
θ

|B1(θ)|2
]1/2

≲ B̃ log3 pRseq
p (H(r)) ,

where Rseq
p (F) := supz Eξ

[
supf∈F

1
p

∑p
t=1 ξtf(zt(ξ1:t−1))

]
is the depth-p sequential

Rademacher complexity. Therefore

E sup
θ∈H(r)

∣∣∣(R̂ − R)(θ)
∣∣∣ ≲

1√
N

{
log3 pRseq

p (H(r)) + r2
}
.

Step 5 (Sequential Dudley bound). The sequential Dudley integral bound (Block et al., 2021,
Corollary 10) gives, for an absolute constant C > 0,

Rseq
p (H(r)) ≤ C inf

α>0

{
α+

1
√
p

∫ diam(H(r))

α

sup
z

√
logN ′ (δ,H(r); z)dδ

}
,

where N ′ denotes the fractional covering number (Block et al., 2021). Note that since every h ∈
H(r) satisfies ∥h∥seq,2;z ≤ r, the diameter under the path ℓ2 metric is at most 2r, so the upper limit
can be replaced by 2r, from Lemma 7 in Block et al. (2021),

Rseq
p (H(r)) ≤ C inf

α>0

{
α+

1
√
p

∫ 2r

α

sup
z

√
logN seq

2 (δ,H(r); z)dδ

}
. (12)

From Lemma 4, for universal constants C0, C1 > 0 and all δ ∈ (0, 2r],

sup
z

logN seq
2 (δ,H(r); z) ≤ C0m log

(√
m
δ

)
+ C1p log

(
1
δ

)
. (13)

Plugging (13) into (12) and optimizing over α absorbs polylogarithmic factors to give the succinct
bound

Rseq
p (H(r)) ≲ r

√
m+ p
√
p

√
log
(m
r

)
.

Step 6 (Self–bounding fixed point).

Let ∆θ(P
k) :=Mθ(P

k)−MBayes(P
k), ℓθ(P k, yk+1) := {yk+1−Mθ(P

k)}2, ℓBayes(P k, yk+1) :=
{yk+1 −MBayes(P

k)}2. Then RBG(Mθ) =
1
p

∑p
k=1 E[∆θ(P

k)2] and

ℓθ − ℓBayes = ∆2
θ − 2∆θ{y −MBayes(P

k)}.

Hence E[ℓθ − ℓBayes | P k] = ∆2
θ, and using |∆θ| ≤ BM + Bf and E{y − MBayes(P

k)}2 ≤
C(Bf , BM , σε),

E
[
(ℓθ − ℓBayes)2

]
≤ C0 E[∆2

θ] = C0RBG(Mθ),

that is, a Bernstein condition with exponent 1 for the excess loss holds.

For r > 0, set

Θ(r) :=

{
θ ∈ Θ : RBG(Mθ)− inf

ϑ∈Θ
RBG(Mϑ) ≤ r

}
.

By the standard symmetrization, we have E supθ∈Θ(r)

∣∣(R̂ − R)(θ) − (R̂ − R)(θ⋆)
∣∣ ≲

1√
N
{Rseq

p

(
H(r)

)
+
√
r +RBG(Mθ⋆) }. Then, from Lemma 4 and Corollary 10 in Block et al.

(2021), there exists a constant c > 0 (range rescaling absorbed into c) such that E supθ∈Θ(r)

∣∣(R̂ −

R)(θ)− (R̂ − R)(θ⋆)
∣∣ ≲√ r+RBG(Mθ⋆ )

N

(
1 +

√
log c1

r+RBG(Mθ⋆ )
+
√

m
p

√
log c2

√
m

r+RBG(Mθ⋆ )

)
.

By the basic inequality in (11), if E supθ∈Θ(r)

∣∣∣ (R̂ − R)(θ)− (R̂ − R)(θ⋆)
∣∣∣ ≤ r

8 + cRBG(Mθ⋆)

with c = o(1), then the ERM satisfies RBG(Mθ̂)− (1+ c)RBG(Mθ⋆) ≤ r/2. Let the critical radius
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r⋆ be the smallest r > 0 solving r
8 ≍

√
r
N (
√

m
p + 1). Hence r⋆ ≍ 1

N (mp + 1). Then, the ERM

obeys ERBG(Mθ̂) ≲ infθ∈ΘRBG(Mθ) +
1
N (mp + 1).

Step 7 (Control on Ec). Recall E := {maxj,k |εj,k+1| ≤ tδ} with tδ := σε
√
2 log(2pN/δ). By

sub-Gaussian tails and a union bound,

Pr(Ec) = Pr
(
∃(j, k) : |εj,k+1| > tδ

)
≤ 2pN exp

(
− t2δ

2σ2
ε

)
≤ δ.

Let
T̃ := sup

θ∈Θ

∣∣∣(R̂ − R)(θ)
∣∣∣

and note that, by the identity (y−Mθ)
2 − (y−MBayes)

2 = (MBayes −Mθ){2y−Mθ −MBayes},
Assumptions 1 and 2 imply a quadratic envelope of the form

T̃ = sup
θ∈Θ

∣∣∣(R̂ − R)(θ)
∣∣∣ ≤ C

{
(Bf+BM )2 +

1

pN

∑
j,k

ε2j,k+1 + Eε2
}
.

for some constant C > 0 (where C,C ′, . . . below are universal constants). Thus,

T̃ ≤ C

{
(Bf+BM )2 +

1

pN

∑
j,k

ε2j,k+1 + σ2
ε

}
. (14)

To bound the expectation of T̃ on Ec, we bound the tail of the second moment of each ε. For any
t > 0, from the sub-Gaussian (ψ2) tail probability,

E
[
ε21{|ε|>t}

]
=

∫ ∞

t

2xPr(|ε| > x)dx ≤ 2

∫ ∞

t

2x exp
(
− x2

2σ2
ε

)
dx ≤ 4σ2

ε exp
(
− t2

2σ2
ε

)
.

Substituting t = tδ yields E[ε21{|ε|>tδ}] ≤ 2σ2
εδ/(pN). Furthermore, by the decomposition

ε2j,k+11Ec ≤ ε2j,k+11{|εj,k+1|>tδ} + t2δ1Ec ,

it follows that
1

pN

∑
j,k

E
[
ε2j,k+11Ec

]
≤ 1

pN

∑
j,k

E
[
ε2j,k+11{|εj,k+1|>tδ}

]
︸ ︷︷ ︸

≤2σ2
εδ/(pN)

+ t2δ Pr(Ec). (15)

Combining (14) and (15), we get

E
[
T̃1Ec

]
≤ C

{
(Bf+BM )2 + σ2

ε

}
Pr(Ec) + C ′ {σ2

εδ + t2δ Pr(Ec)
}
.

Substituting t2δ = 2σ2
ε log

2pN
δ and Pr(Ec) ≤ δ,

E
[
T̃1Ec

]
≤ C(Bf+BM )2δ + C ′σ2

εδ log
2pN

δ
+ C ′′σ2

εδ.

Finally, by using δ = (pN)−2, the right-hand side becomes O
(
σ2
ε(log pN)/(pN)2

)
, which is neg-

ligible compared to the main term from Step 5.
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