
Input Space Mode Connectivity in Deep Neural
Networks

Jakub Vrabel ∗†

CEITEC, Brno University of Technology
Ori Shem-Ur and Yaron Oz

Tel Aviv University
David Krueger ‡

Mila

Abstract

We extend the concept of loss landscape mode connectivity to the input space
of deep neural networks. Initially studied in parameter space, mode connectivity
describes the existence of low-loss paths between solutions (loss minimizers) found
via gradient descent. We present theoretical and empirical evidence of its presence
in the input space of deep networks, thereby highlighting the broader nature of
the phenomenon. We observe that different input images with similar predictions
are generally connected, and for trained models, the path tends to be simple, with
only a small deviation from being a linear path. We conjecture that input space
mode connectivity in high-dimensional spaces is a geometric phenomenon, present
even in untrained models, and can be explained by percolation theory. We exploit
mode connectivity to obtain new insights about adversarial examples and show its
potential for adversarial detection and interpretability.

1 Introduction

The high-dimensional nature of the parameter space in deep neural networks (DNNs) gives rise to the
phenomenon of loss landscape mode connectivity, where different solutions achieved via stochastic
gradient descent (SGD) are connected by simple low-loss paths [1, 2]. Connections between the
modes can be as simple as linear in specific cases [3], while they are often quadratic in the majority
of cases. Mode connectivity was utilized for enhanced ensembling strategies [1], which can boost
generalization capabilities of models [4]. Known causes of mode connectivity include architectural
symmetries, like node permutations [5], and common loss functions, though the full mechanism
remains elusive. Our work further explores the hypothesis that mode connectivity is a more general
phenomenon of high dimensional geometry, as partially studied in Fort and Jastrzebski [6].

We demonstrate that mode connectivity can be extended to the input space of neural networks. Unlike
the originally studied parameter space, where data are fixed and model parameters vary, we use an
inverted setup (fixed model, variable data) with real, interpolated, and synthetic (optimized [7]) inputs.
Considering cross-entropy loss, we prepare several examples of optimal inputs (natural images, high-
freq. patterns, adversarial examples) and show that they are mode connected in vision classification
models. This connectivity offers insights into adversarial detection and DNN interpretability. We
conjecture that input space mode connectivity can be explained by high-dimensional percolation,
a purely geometric phenomenon. Additionally, trained networks exhibit approximate linear mode
connectivity for many real examples, which may reflect the implicit regularization in deep learning.

Contributions: 1) We extend the concept of mode connectivity from the original parameter space
to the input space of (vision) DNNs. 2) We propose a novel method for adversarial detection that
outperforms baselines for advanced attacks (deepfool [8] and C&W [9]). 3) We conjecture that
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Figure 1: Barrier between two input modes. Two examples (A and C) that minimize loss for the class
jackfruit are shown. The interpolated point B exhibits maximal loss. Left bottom Cross-entropy
loss for interpolated points between A and C; diagram for the interpolation paths and subsequent
constrained optimization of B. Middle bottom The optimized point B’ minimizes the loss and is
nearly indistinguishable from B. Right bottom: Normalized difference pattern B’−B (max pixel
value of the pattern is 1–5% of the max pixel in the original image).

arbitrary inputs with the same prediction are mode connected in randomly initialized neural networks
and provide a proof sketch based on percolation theory.

2 Related work

Prior work [10] studied excessive input invariance in neural networks, which inspired [11] to explore
a specific form of input space connectivity between real inputs and invariance-based adversarial
examples (or “blind spots”). In contrast, we study connectivity between nearly any pair of inputs
with similar model outputs. Additionally, we offer empirical and theoretical evidence that input space
mode connectivity occurs more generally, even in untrained networks.

In neuroscience, distinct visual stimuli (inputs) that produce identical responses are referred to as
metamers. These have been studied to understand how deep learning models diverge from human
perceptual systems [12], although connectivity has not been discussed..

Our work is inspired by seminal research on parameter space mode connectivity [1, 2], using
established methods to explore input space connectivity. We adapted a simplified algorithm to bypass
loss barriers from [6]. Simsek et al. [13] demonstrated that adding a single neuron per layer connects
originally discrete minima, emphasizing the role of space dimensionality.

3 Methodology

We define an input space mode for a class yi as a single data example that minimizes the loss L
xi = argmin

x
L(f(xi; θ), yi), (1)

where f(xi; θ) is the output of the neural network for the input xi. Input modes could be either real
or synthetic (see App. A) data examples with loss below a certain small threshold δ. After observing
two (or more) modes xA and xC, we linearly interpolate them to create virtual points xA→C(α) as

x(α) = αxi + (1− α)xj , (2)
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Figure 2: Bypassing the barrier. After optimizing the intermediate point B, we obtained the updated
point B’, which linearly connects to both A and C. Note that small secondary barriers, below the
threshold of δ = 0.001 loss, are disregarded.

where α ∈ [0, 1] is uniformly sampled. In general, a loss barrier exists between the two modes
(Fig. 1 left bottom). The barrier can be bypassed via optimization of the highest-loss input xB , which
results in modes connected by a partially linear path of low loss. The barrier optimization is based
on a systematic manipulation of pixels in order to minimize the loss (see App. A for details). In the
following sections, we use a simplified notation xA ≡ A for points/images, and A→C denotes a path
between A and C.

4 Results

In this section, we provide empirical and theoretical evidence for the input space mode connectivity
in vision models and discuss potential applications of the phenomenon.

Input space connectivity: To demonstrate this phenomenon in a realistic and practically relevant
setting, we used GoogLeNet (Inception v1) [14] that was pretrained on the ImageNet [15]. Two low
loss examples A and C were linearly interpolated with 1,000 uniformly distributed points. After
identifying the interpolated point of maximum loss B, we started a constrained optimization process,
encompassing 1024 iterations, which resulted in a good loss minimizer B’ (see Fig. 1) (optimization
details in App. B). A new path (A→B’→C) was created by merging the linear interpolations between
A and B’, and between B’ and C. We sampled 500 intermediate points equally from both segments of
the new path, disregarding the fact that the barrier typically does not lie exactly at the midpoint of
A→C. The A→B’→C path exhibits low loss while connecting two input modes (Fig. 2). Furthermore,
images along the two studied paths closely resemble each other in corresponding pairs (see App. B.1).
Although small secondary barriers are still present in the A→B’→C path, we neglect them as they
are below a threshold (δ = 0.001 considered here). By repeating the whole optimization procedure,
we can easily bypass secondary barriers. More examples and qualitatively consistent results from
ResNet18 [16] trained on CIFAR-10 [17] are shown in the Appendix F.

Adversarial examples: We find that adversarial examples, even when significantly different in terms
of human visual perception, are mode-connected to “true” real images (correct class minimizers). The
details about employed adversarial examples are in Appendix B.2. Using ImageNet and GoogLeNet,
we picked a low loss example from a selected class (here golf ball) as the mode A. Then, a source
image K from a different class (revolver) was optimized to obtain an adversarial example K’ (K’
minimizes the same class as the A). From this point, we followed the mode connecting procedure
described above. A single instance of the iterative procedure (i.e., optimization of a single barrier) is
not enough to connect modes A and K’ as secondary barriers emerge on the new path A→B’→K. By
repetitive utilization of the procedure we can get rid of all barriers. The whole process is depicted in
Fig. 3 and experimental details in App. B.2.1.

In addition to the higher complexity of the paths, we observed statistically significant differences in
the barrier heights and shapes between two key scenarios: barriers between real–adversarial modes
and real–real modes (see App. B.2.2 and Fig. 5). We exploit such behavior for adversarial detection.

Adversarial detection: Improving adversarial robustness is crucial, especially in safety-critical
areas [18]. Many defenses, like adversarial training, fail against advanced and adaptive attacks [19].
Rather than preserving model accuracy, an alternative is detecting attacks and rejecting predictions
for compromised inputs [20, 21]. We proposed a simple a detection algorithm that leverages the
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Figure 3: Adversarial attack. From the left: i) real input A that minimizes the loss for class golf
ball, ii) source input K from a different class, iii) optimized pattern added to the K, iv) adversarial
example K’ that minimizes the loss for the same class as A. The network predicts K’ as a golf ball,
and v) interpolated paths between reference and attack. The primary barrier was bypassed through
the optimized point B’. Small secondary barriers emerged on the new path A→B’→K’ and can be
further bypassed by a repeated application of the procedure to both segments of the new path.

relative lack of linear connectivity in natural–adversarial image pairs (Fig. 5). We simply compute
loss curves to class-specific preselected images and train a classifier to distinguish between them
(detailed description in App. B.3). We compared our approach against the benchmark [21], where we
outperformed baselines on advanced attacks (C&W [9] by 6.9/3.9% on CIFAR10/100, and deepfool
[8] by 5.3% on CIFAR10), but underperformed on simpler attacks (FGSM [22], BIM [23], and PGD
[24]). Comprehensive results and full discussion is presented in App. B.4.1.

Theoretical work: Here, we summarize the main theoretical result, beginning with the definitions.
We denote our input and output spaces as X = RdX and Y = Bdy =

{
y ∈ Rdy | ∥y∥ ≤ 1

}
⊆ Rdy ,

respectively. A path connecting x(0) ∈ X to x(1) ∈ X is defined as a continuous function
x : [0, 1] → X . We define a network that maps the input space to the output space as any function
within the framework of the tensor program formalism [25–27], featuring Lipschitz continuity-
bounded point-wise nonlinearities. Specifically, for a parameter vector θ, such a network accepts
inputs and returns outputs f(·; θ) : X → Y. Given any δ > 0, network f , parameter vector θ, and
loss function L : Y × Y → R+, we say that a path x(·) is δ-connected around y ∈ Y for this loss
function if and only if ∀α ∈ [0, 1] : L(f(x(α); θ), y) ≤ δ, with arbitrarily large probability. Note
that our paths are conceptually similar to “representational geodesics” [28], although we don’t require
the length of the path to be minimal.

We present the concept of geometric mode connectivity, suggesting that almost all inputs on which
a neural network makes similar predictions tend to be connected, as dX grows to infinity. We find
this is the case empirically for both trained networks and untrained, randomly initialized networks.
We believe the latter finding can be proven as a consequence of high-dimensional geometry, and
formalize it in the following conjecture:

Conjecture 4.1 (Geometric Input Space Connectivity).

Given a subset of the input space X ′ ⊆ X , a network f(·; θ) at initialization, and a loss function L,
as described in appendix D.1, the following holds: For any probability 0 < p < 1 arbitrarily close to
1, and any arbitrarily small 0 < δ′ < δ (assuming for simplicity that 1

δ ∈ N), any two random inputs
x0, x1 ∈ X ′ with similar predictions are almost always connected as dX → ∞:

P (x0, x1 are δ-connected | L (f (x0; θ) , f (x1; θ)) ≤ δ′) = 1−O
(
e−dX δ̃

)
, (3)

where δ̃ = O (δ), and x0, x1, θ are chosen randomly as described in appendix D.1.

We justify the conjecture for L (y, y′) = ∥y − y′∥, and the case where the network’s outputs are
numbers between zero and one, f(·; θ) : X → [0, 1]. The generalization to more general cases is
straightforward.

We include a detailed proof sketch for this conjecture in appendix D, which we believe provides
significant insight into the phenomenon of mode connectivity but note that it is not a fully complete
and rigorous proof:

(i) First, in appendix D.1.4, we demonstrate that the network is Lipschitz continuous, by leveraging
the Lipschitz continuity of the network’s activation functions, and its semi-linear structure.
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Using this property, we show that for every 0 < δ, there exists 0 < ε, such that if we divide the input
space into ε-sized hypercubes, then for every cube inside the lattice, all the points’ outputs (f (x; θ))
belong to one of the following overlapping intervals:

Yδ =

{
[0, δ],

[
δ

2
,
3δ

2

]
, [δ, 2δ], . . . , [1− δ, 1]

}
. (4)

We can then label each input by the interval (or intervals), that corresponds to the output of all the
inputs in the cube.

We show that if there exists a sufficiently small ε, then for any two points x0, x1 ∈ X ′ that satisfy the
conjecture’s condition (L (f (x0; θ) , f (x1; θ)) ≤ δ′), their respective cubes share the same interval.
This ε is chosen as the length of our graph’s hypercubes.

(ii) Second, we demonstrate in appendix D.1.5 that to find a δ-connected path between the two inputs,
it suffices to find a connected path of cubes between the cube of the first input and the cube of the
second input, with the same interval-label.

Assuming the cube’s intervals are drawn randomly and independently from each other with similar
probability p ≈ δ, we encounter a classic high-dimensional percolation problem [29–33], where
the cubes represent the points in the graph, and they are connected if they share the same interval. It
is well known that in such a case, the probability that two points are connected grows rapidly with
the dimension, as shown in the conjecture 4.1.

It is important to note that the assumption of independent probability is not realistic, as there are
strong correlations among nearby inputs of wide neural networks, even at initialization. This is why
we decided not to consider statement 4.1 as a theorem, but rather as a conjecture. However, we expect
that in general, assuming independence only underestimates the true connectivity in the system, as the
correlation between outputs of nearby inputs in neural networks at initialization tends to be positive.

We provide empirical evidence for the connectivity in untrained models in App. B.5. For trained
networks, we observed that inputs not only tend to be connected but are also connected approximately
linearly, with only a relatively small barrier. We hypothesize that this can be manifestation of the
implicit regularization of neural networks (discussed in App. E).

5 Conclusion and future work

We demonstrated mode connectivity in the input space of deep networks trained for image classifica-
tion, extending the original concept beyond parameter space. This phenomenon was shown with both
real and synthetic images in various controlled setups. For tested examples, we were always able to
find low-loss paths between any two modes. We explored potential applications of this connectivity,
particularly for the adversarial detection and interpretability of DNNs (Appendix B.6). Our findings
reveal that natural inputs can be distinguished from adversarial attacks by the height of the loss barrier
on the linear interpolant path between modes. While for real–real mode pairs, the loss barrier is
small or even negligible, real–adversarial pairs often have high and complex barriers. By exploring
connections between different types of class-optimal inputs we obtained a novel perspective on DNN
interpretability. The new evidence for mode connectivity beyond the parameter space supports the
hypothesis that mode connectivity is an intrinsic property of high-dimensional geometry and can be
studied through percolation theory. This hypothesis, however, requires additional investigation to
fully understand its implications.

Future work can focus on formalizing the theory for our conjecture of geometric mode connectivity
and explain minimal requirements for its manifestation. An additional direction involves developing
a proper theory and conducting further experiments to better understand the implicit regulariza-
tion phenomenon in the input space. Regarding the potential applications, creating an efficient
implementation of the proposed naïve algorithm for adversarial example detection is an important
next step. Leveraging insights from the input space connectivity might also inform more effective
adversarial training, e.g., through enhanced sampling of adversarial examples along low-loss paths
for model retraining – a concept analogous to utilizing parameter space connectivity for improving
deep ensembles [4]. Additionally, investigating the geometric properties of the (input space) loss
landscape around significant points and exploring the entire class-optimal manifold could provide
deeper insights into model interpretability.
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Figure 4: Images along two paths. We sampled and compared images along the updated path
A→B’→C (dashed rectangle) and the original linear path A→C (bottom row). These paths are
illustrated in the diagram in Figure 1. The high-loss intermediate point B and its optimized version B’
are denoted by the blue vertical rectangle.
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A Feature visualization by optimization (FVO)

FVO is a technique for post-hoc interpretability of DNNs [7]. It starts from a small noise xi at the
input of a network that is forward propagated to the layer of interest. We aim to find inputs that
activate a selected neuron (or neurons) within the layer of interest. Neurons can be either maximized
or activated to a specific pattern through a loss function. The input is iteratively updated w.r.t. the
gradient of the loss, similarly to the standard gradient descent training. Note that FVO does not
produce a unique result, and so multiple distinct examples can be generated and their (input space)
mode connectivity studied.

The optimization procedure can be easily adapted for real images. We start from the max loss
intermediate point B and optimize until we reach B’, which minimizes the loss (see left bottom
diagram in Figure 1). The optimization is constrained within the orthogonal hyperplane to the vector
AC, representing a simplified method for connecting modes inspired by Fort and Jastrzebski [6].

B Experimental details

To optimize the high loss point B (in Section 4), the Adam optimizer [34] was used with a learning
rate of 0.005. We added regularization to the optimization with two additional terms: the mean
squared error (MSE) between B and B’, and a high-frequency term that penalizes changes in adjacent
pixels. The weights for these terms, λMSE = 0.1 for the MSE and λHF ranging from 1e− 8 to 5e− 6
for the high-frequency term, were determined heuristically, varying by class and setup.

B.1 Comparison of two paths

Images along the two studied paths closely resemble each other in corresponding pairs, as shown
in Figure 4. In fact, their difference is the identical pattern depicted in the right bottom of Figure 1,
scaled in intensity proportionally to the interpolation factor α. This is likely due to the process we
use to find B’, which resembles the way gradient descent is used to find adversarial examples, the
differences being that we restrict the search to a hyperplane and do require B’ to remain close to B.

B.2 Adversarial examples

Adversarial examples in vision models are images that are generated by perturbing a source image in
a way that either minimizes the loss for a selected target class (in targeted attacks) or maximizes the
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Figure 5: Barrier height statistics. Boxplots depict the maximum barrier heights and gaps (i.e., the
difference between the barrier height and loss value of the higher-loss mode) for selected pairs from
the ImageNet validation dataset. The barriers for real–real and real–adversarial example pairs are
compared. A total of 5,000 representative pairs (5 per class) were utilized for each scenario.

loss for the true class (in untargeted attacks), causing the model to misclassify the image. The source
image and the optimized adversarial example are often almost indistinguishable to a human observer.
The process of generating and employing adversarial images to deceive the model is known as an
adversarial attack (see Fig. 3).

B.2.1 Experiment

We used Adam (learning rate 0.005), 1024 iterations, cross-entropy loss with penalizations (0.1*MSE
for image deviation and 1e-7*high-frequency penalty). From here, the mode connecting procedure
is identical to the previously described: 1) Detect the max loss point B, 2) Optimize B to get B’,
3) Interpolate over the new path A→B’→K’. However, after a single round of this procedure, non-
negligible secondary barriers emerge in paths A→B’ and B’→K’, which exceed the loss threshold δ
by a considerable margin (as depicted in Fig. 3). Secondary barriers can be successfully bypassed by
a repeated application of the procedure to both segments of the A→B’→K’ path individually. As a
result, the final low-loss path will necessarily be more complex than for real–real modes addressed in
Section 4.

B.2.2 Barrier height statistics

We observed significant differences in the barrier heights and shapes between two key scenarios:
barriers between real–real modes and real–adversarial modes. To assess the statistical significance
of this effect, we conducted the following experiment. Seven unique pairs of images per class
were selected from the validation subset of ImageNet, encompassing 1,000 classes in total. Two
pairs from each class, having the highest loss difference between the inputs, were excluded. The
remaining 5,000 pairs were interpolated with 250 steps in between, and loss curves were generated.
In the adversarial branch, pairs were formed by combining one example from the selected class
with one from a randomly chosen different class. Adversarial examples were created in the same
way as described above with the following settings: learning rate 0.005, deviation penalty weight
0.1, frequency penalty weight 1e-8, and 512 iterations. The subsequent procedure mirrored the one
described earlier, yielding another set of 5,000 filtered pairs (5 per class). Descriptive statistics for
the maximum barrier height and the gap (the difference between the peak height and the loss value of
the higher mode/image) are depicted in Figure 5.

Real–adversarial mode pairs exhibit significantly higher barrier max, with mean and median 5.82
and 5.99, respectively. In contrast, real–real pairs have mean 2.27 and median 1.79. The effect is
even more pronounced for barrier gaps, where real–adversarial have mean 5.19 and median 5.30, but
real–real have mean 1.00 and median only 0.47. The described behavior was utilized to design a new
method for adversarial detection.
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Table 1: (adapted from [21]) Comparison of detection methods. Accuracy/AUC (%). The attacks are
applied on the CIFAR-10/100 test set and the VGG-16 NET. Attacks are described in Appendix B.4.

Dataset Detector FGSM BIM PGD Deepfool C&W
CIFAR-10 LID 86.4 / 90.8 85.6 / 93.3 80.4 / 90.0 78.9 / 86.6 78.1 / 85.3

Mahalanobis 95.6 / 98.8 97.3 / 99.3 96.0 / 98.6 76.1 / 84.6 76.9 / 84.6
InputMFS 98.1 / 99.7 93.5 / 97.8 93.6 / 97.9 58.0 / 60.6 54.7 / 56.1
LayerMFS 99.6 / 100 99.2 / 100 98.3 / 99.9 72.0 / 80.3 69.9 / 77.7
LayerPFS 97.0 / 99.9 98.0 / 99.9 96.9 / 99.6 86.1 / 92.2 86.8 / 93.3
Mode connectivity (ours) 69.8 / 76.8 95.2 / 98.6 91.8 / 97.4 91.4 / 96.9 93.7 / 98.3

CIFAR-100 LID 72.9 / 81.1 76.5 / 85.0 79.0 / 86.9 58.9 / 64.4 61.8 / 67.2
Mahalanobis 90.5 / 96.3 73.5 / 81.3 76.3 / 82.1 89.2 / 95.3 89.0 / 94.7
InputMFS 98.4 / 95.5 89.1 / 94.1 90.9 / 95.1 58.8 / 62.2 53.3 / 54.6
LayerMFS 99.5 / 100 97.1 / 99.5 97.0 / 99.7 83.8 / 91.0 87.1 / 93.0
LayerPFS 96.9 / 99.3 90.3 / 96.7 92.6 / 97.6 78.8 / 84.4 79.1 / 84.0
Mode connectivity (ours) 67.3 / 72.8 84.3 / 92.5 88.9 / 95.2 86.8 / 94.0 92.9 / 97.3

B.3 Adversarial detection

Our simple detection leverages the relative lack of linear connectivity in natural–adversarial image
pairs (as shown in Figure 5); First, we compute the (linear-path) loss curves for all training images xi.
Each loss curve is obtained from an input pair consisting of xi (a training image) and xtemplate,yi (a
low-loss reference image from the same class, yi = argmax f(xi, θ)), which is preselected for each
class. Second, concatenate the loss curves with logits f(xi, θ), sorted in descending order, which
provide information about prediction confidence. This step slightly enhances performance against
simpler attacks, though it can be fully ablated for attacks like deepfool and C&W). Third, resulting
feature vectors (loss curves+logits) are then used to train a classifier. Test images are processed
through the same pipeline and classified by the model.

B.4 Adversarial detection benchmark

Here, we briefly overview benchmark by Harder et al. [21], our results, and employed attacks. The
benchmark uses VGG-16 [35] model, CIFAR10/100 datasets, and employs a representative selection
of adversarial attacks (FGSM [22], BIM [23], PGD [24], deepfool [8], and C&W [9]) in their
untargeted forms.

B.4.1 Results

Interestingly, our method outperformed baselines for more advanced attacks (deepfool and the
particularly challenging C&W) but underperformed on simpler (FGSM, BIM, PGD). This is a
consequence of the nature of untargeted attacks, which generally aim to alter the prediction by
maximizing the loss for the correct class. However, unlike FGSM, BIM, and PGD, both deepfool
and Carlini & Wagner (C&W) also minimize the loss for a specific incorrect class, making the
misclassification more controlled. Our algorithm relies on the existence of a distinct loss barrier,
which is less pronounced in simpler attacks but more defined in advanced ones like deepfool and
C&W. Complete results are provided in Table 1. Note that we used a classifier (KNN) that was
optimized jointly for all attacks on validation data (in contrast to attack-dependent classifiers and
hyperparameters in the benchmark). Additionally, unlike the best-performing baseline, our method
does not require access to the feature maps.

B.4.2 Adversarial attacks

• Fast Gradient Sign Method (FGSM): A rapid untargeted attack method that adjusts an
input xi by adding a small perturbation in the direction of the loss function’s gradient:

xi,adv = xi + ϵ · sign(∇xiL(xi, y)). (5)

• Basic Iterative Method (BIM): An iterative enhancement of FGSM, applying small,
repeated perturbations, ensuring each update remains within an ϵ-bounded range:

x
(n+1)
i,adv = Clipxi,ϵ

(x
(n)
i,adv + ϵ · sign(∇xi

L(x(n)
i,adv, y))). (6)
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Figure 6: Input connectivity in untrained model. Loss curves for synthetic optimal inputs computed
for an untrained model. Left: Primary loss curve, connecting the two optimal inputs. Middle:
Secondary loss curves, connecting two original inputs through the intermediate point B′ (optimized
from the primary barrier). Right: Tertiary loss curves, four-segment path connecting two original
inputs through intermediate points B′

S1, B′, and B′
S2 (optimized first secondary barrier, optimized

primary barrier, optimized second secondary barrier, respectively).

• Projected Gradient Descent (PGD): A generalization of BIM that begins from a random
point near xi within the ϵ-ball.

• Deepfool (DF): Iteratively modifies xi to cross the closest decision boundary by minimizing
the perturbation required to alter the model’s classification.

• Carlini & Wagner (C&W): A powerful optimization-based attack that minimizes the L2

norm of the perturbation while ensuring misclassification by optimizing a loss function
designed to reduce the model’s confidence in the correct class. The attack solves the
following objective:

min

∥∥∥∥12(tanh(xi,adv) + 1)− xi

∥∥∥∥2 + c · f
(
1

2
(tanh(xi,adv) + 1)

)
, (7)

where f(z) is a function that encourages the logits to either lower the true class’s score
(untargeted) or raise the target class’s score (targeted). The parameter c is optimized to
balance minimizing the perturbation and ensuring successful misclassification. The C&W
attack can be applied in both targeted and untargeted forms.

B.5 The existence of connectivity in untrained models

Motivated by our theoretical findings, we demonstrate that class-optimal inputs are connected even in
untrained, randomly initialized models.

As there are no natural datasets for untrained models, we followed the analogous strategy as in the
previous subsection and computed synthetic optimal inputs. The optimization procedure failed to
converge on GoogLeNet, likely due to the high input dimension (3, 224, 224). Using the ResNet18,
adapted for CIFAR10 (input shape (3, 32, 32), output (10)), starting from Gaussian noise N (0, 0.01),
we were able to find inputs with losses below the specified threshold 0.0005. Adam optimizer with
learning rate 0.05 and weight decay 1e-7 was used for a maximum of 4096 iterations or until reaching
the desired loss. A diversity of inputs was achieved through high-frequency penalization with a
weight 2.5e-7 of one of the inputs in each pair.

The two modes were linearly interpolated, and the loss curve is shown in Fig. 6 left. After two
iterations of the standard mode-connecting procedure, we obtained a four-segment piece-wise linear
path. A→B′

S1→B′→B′
S2→C that has los below δ = 0.001 everywhere. Note that points B′

S1 and
B′
S2 were obtained by optimizing the secondary barriers BS1 and BS2. All the loss curves and barriers

are depicted in Fig. 6. In Appendix E.1, we also show how the connectivity (primary loss curve, i.e.,
loss on the linear interpolant path) changes during the training.

B.6 Towards optimal input manifold

Synthetic images offer a controlled environment for examining input space mode connectivity. Here,
images were generated using the feature visualization by optimization technique on GoogLeNet
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Figure 7: Synthetic modes. Synthetic images generated through input optimization from Gaussian
noise. Top row: Modes A and C, interpolated high-loss point B and its optimized counterpart B’.
Bottom row: The primary loss barrier was bypassed by a single round of optimization. The new
path segments A→B’ and B’→C are barrier-free up to several orders lower loss threshold.

trained on ImageNet. Starting from Gaussian noise N (0, 1), we optimized a surrogate objective
function (dot product × sqrt of cosine similarity × 1/2), instead of directly optimizing for cross-
entropy. We used this heuristic approach to generate synthetic inputs that better match human visual
perception, as cross-entropy optimization, for unclear reasons, is less effective for this purpose [36].
Through varied regularizations and transformations during optimization, we obtained two distinct
modes, each exhibiting virtually zero cross-entropy loss, as illustrated in Figure 7. Mode A exhibits
partial resemblance to natural objects of its class (golf ball). Mode B contains only high-frequency
patterns or noise, lacking obvious semantic structure, and was chosen intentionally for this purpose.
The bottom row of Figure 7 demonstrates that even such different types of synthetic modes can be
connected. Moreover, since the modes exhibited effectively zero loss, there are no secondary barriers
after optimizing the max loss intermediate point B (almost up to the numerical precision).

It is evident that a continuum of optimal inputs exists for a given class within the model. By
employing a systematic approach to find and connect these optimal modes, the class-optimal manifold
can be partially explored and analyzed. This approach would provide a novel perspective on DNN
interpretability, especially as it extends the concept of feature visualization by optimization [7],
beyond discrete optimal inputs or activation atlases.

C Percolation theory

Percolation theory, originally developed to describe the structure of a porous material, turned into a
widely studied model in statistical physics and graph theory [29].

Let G be an N ×N grid, where at each cell, one inserts a ball with (Bernoulli distribution) probability
p and leaves it empty with probability 1− p. Site percolation theory considers the question: what
is the probability that for any two nonempty cells A and B in G, there is a path of nonempty cells
that connects the two. When p is small, the probability is zero, while when p → 1, there is almost
certainly a connecting path. The latter phase case is called percolation. In the limit N → ∞ there is
a sharp transition at a critical probability p = pc, that separates the two phases. Figure 8 shows site
percolation in two dimensions near the critical probability.

The percolation model has a straightforward generalization to higher dimensions, as well as to more
than the two labels (empty and nonempty), and to a general probability distribution for choosing the
labels. In particular, the choice of labels between different cells can be correlated. The structure of
the correlation affects the transition to percolation. Intuitively, one expects that higher correlations
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imply a higher probability of having connecting paths. Correlated percolation is an active field of
research in physics and mathematics (see e.g. [37–40]).

Figure 8: An illustration of site percolation in two dimensions near the critical probability [40]
(the critical probability for two-dimensional site percolation is around 0.59). In this illustration, an
“infinite” cluster can be observed. However, it is notable that a significant number of points do not
belong to it.

In the framework of our work, the grid is defined by the ε-cells in the data space, while the labels are
the intervals. Since the dimension of the grid is very large, the percolation probability pc, which is
inversely proportional to the dimension, is very small. Hence, our analysis at initialization is at the
percolation phase.

We provide a dictionary (see Table 2) for the terms used in percolation theory in statistical physics
and graph theory communities.

Table 2: Dictionary for percolation theory terms used in statistical physics and graph theory.

statistical physics graph theory
site vertex (node)
bond edge
cluster connected component
infinite cluster infinite connected component
percolation threshold critical probability
order parameter size of the largest component
lattice animal connected subgraph (not infinite)

D Conjecture 4.1 - Proof Sketch

We believe that Conjecture 4.1 offers valuable insight into the phenomenon of mode connectivity,
though it is not a fully rigorous proof. Here, we present a detailed derivation of the proof sketch,
extending the overview in the main text.

D.1 Assumptions and Generalizations

D.1.1 The Network

We justify conjecture 4.1 for fully connected neural networks defined by a set of L ∈ N layers,
characterized by L weight matrices and L bias vectors, denoted as {θl,l−1, θl | l = 1, . . . , L}. The
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first layer is defined as:
f1 = θ1,0x+ θ1. (8)

Each subsequent layer l = 2, . . . , L satisfies:

f l = θl,l−1ϕ(f l−1) + θl, (9)

where ϕ is a Lipschitz-bounded activation function that acts on the vector in a pointwise manner.

We then define the network’s prediction using a non-linear final activation φ : R → [0, 1] such that:

f = φ(fL). (10)

The generalization to other networks within the tensor programs formalism [25–27] (and then using
φ) is straightforward, as long as the nonlinearities are Lipschitz. The classes of networks described
by this formalism is very diverse, and includes most of the relevant types of neural networks, such as
fully connected neural networks, recurrent neural networks, long short-term memory units, gated
recurrent units, convolutional neural networks, residual connections, batch normalization, graph
neural networks, and attention mechanisms.

The reason that we can generalize our result to any network in this class is that in our justification, we
only use the semi-linear structure of fully connected neural networks, and, by definition, any network
in this class can be described as a composition of global linear operations and pointwise non-linear
functions.

D.1.2 Initialization and Input Distribution

As we will see, we can always divide the input space into sufficiently small hypercubes. Therefore, it
is not crucial how we initialize our network, as long as it remains well-defined as dx → ∞.

The only requirement is that for every 0 < p < 1 and x ∈ X ′, the probability for having every label
in Yδ is at least δ̃, where δ̃ = O(δ), except for a subset of intervals, whose combined probability is
less than 1− p.

We conjecture that this holds for most well-normalized initializations and networks, and any finite,
arbitrarily large 0 < R-radius balls:

X ′ = Bdx

R =
{
x ∈ Rdx | ∥x∥ ≤ R

}
. (11)

D.1.3 The Loss Function

We work with L (y, y′) = ∥y − y′∥. However, the generalisation to any loss function that satisfies
L : Y × Y → R+, such as it is Lipschitz continues in both arguments, and for every y ∈ Y :

L (y, y) = 0 , (12)

is straightforward.

D.1.4 Dividing the Input Space

Now that we have provided all of the necessary definitions, we can proceed to justify the conjecture.
We will begin by demonstrating that small changes in the input space generate small changes in the
network’s output.
Lemma D.1 (Lipschitz Continuity of the Network).

A neural network, as described above, is almost always Lipschitz continuous at initialization. This
means that for any probability arbitrarily close to one, 0 < p < 1, there exists some 0 < M , such
that for every x,∆x ∈ X:

∥f(x+∆x; θ)− f(x; θ)∥ ≤ M ∥∆x∥ . (13)

An immediate consequence of this lemma is that for the situation described in conjecture 4.1, for
any probability arbitrarily close to one, 0 < p < 1, there exists some 0 < ε such that for every
x,∆x ∈ X , if ∥∆x∥ < ε, then:

∥f(x+∆x; θ)− f(x; θ)∥ ≤ δ − δ′ ≤ δ. (14)

14



This result implies that we can divide our input space into O(2N) classes, as in equation 4. This means
that if we divide our input space into cubes of size ε√

dx
, not only does every input in each cube belong

to the same class, but also that if two different inputs x0, x1 ∈ X satisfy ∥f(x0; θ)− f(x1; θ)∥ ≤ δ′,
then their cubes share the same interval.

Proof of Lemma D.1.

We prove the lemma by induction. We start with the induction base - the first layer. Since ϕ is
Lipschitz continuous, we know that there exists some 0 < m such that for every r,∆r ∈ R:

|ϕ(r +∆r)− ϕ(r)| ≤ m |∆r| , (15)

which means that for every x,∆x ∈ Rdx :

∥ϕ(x+∆x)− ϕ(x)∥2 =

dx∑
i=1

(ϕ(xi +∆xi)− ϕ(xi))
2 ≤

dx∑
i=1

(m∆xi)
2 = m2 ∥∆x∥2 . (16)

Thus, for every x,∆x:
∥ϕ(x+∆x)− ϕ(x)∥ ≤ m ∥∆x∥ . (17)

Multiplying by θ1,0 and adding θ1, we get:

f1(x+∆x)− f1(x) = θ1,0ϕ(x+∆x) + θ1 − (θ1,0ϕ(x) + θ1) = θ1,0(ϕ(x+∆x)− ϕ(x)). (18)

Using the subordinate norm of the matrix, we find:∥∥f1(x+∆x)− f1(x)
∥∥ ≤

∥∥θ1,0∥∥ ∥ϕ(x+∆x)− ϕ(x)∥ ≤
∥∥θ1,0∥∥m ∥∆x∥ . (19)

Which means that for every 0 < p < 1, we can bound the change in f1(x+∆x)− f1(x) by:∥∥f1(x+∆x)− f1(x)
∥∥ ≤ m′ ∥∆x∥ . (20)

We can continue this process by induction, showing that the same holds for every layer, which
completes our proof.

Remark D.1.

It should be noted that the bound we found using the subordinate norm was sufficient for our needs,
however, it is far from being the optimal one.

This is not a problem for our work, as all that we require is any Lipschitz bound, and then we can
take ε to be arbitrarily small. However, if one wishes to find a better bound, which also depends on
the distance between inputs, or to investigate neural networks in the infinite limit appropriately, more
care will be needed.

D.1.5 Finding the Path

To find now a δ-connected path between the two inputs, all we need to do is to find a connected path
of cubes between the cube of the first input to the cube of the second with the same intervals.

Assuming that the cube’s intervals are drawn randomly and independently from each other with
similar probability p = O(δ), we encounter a classic high-dimensional percolation problem, where
the cubes represent the points in the graph, and they are connected if they share the same interval. It
is well known that in such cases, the probability that two points are connected grows rapidly with the
dimension, as shown in the conjecture. Specifically, if we ask what is the probability that a certain
point will be part of the infinite cluster, we know that in the high-dimensional limit, we can neglect
closed loops [30]. This is known as a “mean field approximation.”

The probability that one input is not part of the infinite cluster is the probability that all nearby cubes
connected to it are also not part of the infinite cluster. Thus, the probability that a point is part of the
infinite cluster P satisfies:

1− P = (1− pP )
dx ≲ e−dxpP → P ≳ 1− e−dxpP . (21)

Defining q = dxp, we find a lower bound for P by solving the equation:

P = 1− e−qP . (22)
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Defining Q = 1− P , we get:

1−Q = 1− e−q(1−Q) = 1− e−qeqQ ≈ 1− e−q(1− qQ+O(q2Q2)) →
Q = e−q(1− qQ+O(q2Q2)) → (1 + qeq)Q = e−q +O(q2Q2).

(23)

Which implies:

Q =
e−q

1 + qeq
+O(q2Q2) = O(e−q) = O(e−pdx), (24)

thus completing our justification.

E Linear Connectivity

As discussed above, we justified conjecture 4.1 only for neural networks at initialization, which raised
the question, whether this property persists after training. In practice, we observed that not only
do the inputs tend to remain connected, but they also tend to be connected approximately linearly,
with only a relatively small barrier. Furthermore, by combining only a few linear paths, we can
almost completely eliminate this barrier. We speculate that this phenomenon results from implicit
regularization. Implicit regularization refers to an inherent tendency of a learning system to prefer
simpler hypothesis functions [41–48]. We propose that one kind of simplicity preferred by deep
learning is generally not to change between similar inputs if possible. This tendency, combined with
geometric considerations, could explain the observed behavior; however, more work is needed to
substantiate this.

Intuitively, this is not particularly surprising. For any system to generalize effectively, it must
exhibit a preference for simpler hypothesis functions. In the context of overparameterized models,
this preference is often referred to as regularization, and when not explicitly imposed, it is termed
“implicit regularization”. A reasonable form of simplicity involves not varying drastically between
similar inputs.

Extensive research has been conducted on implicit regularization from the perspective of parameter
space. However, its understanding from the input space perspective remains limited. A notable study
[48] demonstrated that at equilibrium, the second derivative of neural networks with respect to the
inputs is bounded and can be minimized as the learning rate increases.

Another possible approach is to consider the Neural Tangent Kernel (NTK) limit. It is known
that, in the infinite-width limit, neural networks exhibit linear-like behavior [46, 47]. In this limit,
their evolution over time can be described by a kernel, a two-point matrix function Θ(x, x′), which
generally tends to be larger where the two inputs x ≃ x′ are similar.

In this regime, for gradient descent, the final prediction can be viewed as an “averaged sum” [47]
of the data, where for every x ∈ X , more weight is assigned to label of inputs that were closer to x
(according to the kernel). And as it is reasonable to assume that a linear combination of two inputs
will be closer to the original inputs than to any other input, that could partially explain the linear
mode connectivity.

Another avenue that could be promising is to consider f(αx0 + (1− α)x1, θ), and decompose it as
f(αx0, θ) + f((1− α)x1, θ) plus an additional term, whose magnitude should be shown to be small.
If both f(αx0, θ) and f((1− α)x1, θ) align in the same direction, we would obtain the correct label
after applying the softmax function.

It is important to emphasize that the ideas presented here are speculative, and only represent our
preliminary conjectures. We have not yet validated these concepts, and more rigorous research is
needed to confirm or refute these notions.

E.1 Connectivity evolution throughout training

Following the observation of connectivity in untrained models (Sec. B.5) and hypothesizing the role
of implicit regularization in trained models, we studied the temporal evolution of the connectivity
over training batches and epochs. To maintain comparability for the early stages of training, where the
model performs poorly on real data, we again employed synthetic optimal inputs. The optimization
process was adapted from Sec. B.5 (ResNet18, input shape (3, 32, 32), output shape 10, starting
from Gaussian noise N (0, 0.01), Adam optimizer with learning rate 0.05 and weight decay 1e-7,
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Figure 9: Batch evolution of the averaged loss barriers. Batches are indexed starting from one; zero
means an untrained model. Shaded area and error bars show standard deviation.

Figure 10: Epoch evolution of the averaged loss barriers Epochs are indexed starting from one; zero
means untrained model. Shaded area and error bars show standard deviation.

maximum of 4096 iterations or until reaching the desired loss), with difference of using the loss
threshold δ = 0.005 for convenience and faster convergence. A diversity of inputs was achieved
through high-frequency penalization with weight 2.5e-7 of one of the inputs in each pair. We prepared
5 pairs for each class and computed primary loss curves. Averaged loss curves (over all pairs, classes
and model stages) for the first 30 batches are shown in Fig. 9, and similarly for the first 30 epochs in
Fig. 10.

While we observe the increase of connectivity (decrease of loss barriers) in the early phases of
training, it saturates and variance begins to grow at some point. There are likely more competing
effects taking part over the training. It is important to note that the barrier height and complexity
depend on the losses of the interpolated inputs.

F Extra results for the Section 4

Here, we present additional examples of connectivity on pairs drawn from the validation datasets of
ImageNet (see Figure 11) and CIFAR10 (see Figure 12), using GoogLeNet and ResNet18, respectively.
Note that the loss barrier can be negligibly small for some pairs even before the initial round of barrier
optimization.

G Limitations

G.1 Section 4

Experiments were carried out on common vision models. The potential generalization of the concept
to other data modalities was not tested. Our approach requires a continuous input space up to standard
numerical precision. Therefore, technical adjustments would be necessary for applications beyond
vision models, such as language models that use tokenization.

The main limitation, other than the basic assumptions discussed in section D.1, is that we treated
our problem as a standard model of percolation, assuming no correlation between different sites.
However, this assumption does not hold for neural networks, not even at initialization. We argue,
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Figure 11: GoogLeNet(ImageNet) loss curves. Representative examples of connectivity in a trained
GoogLeNet for selected classes. Each row contains a pair of same-class images. The primary loss
curve is obtained from linear interpolation A→B, and a secondary loss curve A→B’→C. Note that
the highest loss value in the secondary curves is at least one magnitude lower than in the primary
curves.

however, that since correlations in neural networks are positive, the actual scenario should be more
favorable. Nevertheless, diligent investigation and exact proofs are necessary to confirm this.

G.2 Section E

The ideas discussed in that section are speculative and represent our initial hypotheses. These
concepts have not yet been validated, and further rigorous research is required to either confirm or
disprove them.
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Figure 12: ResNet18(CIFAR10) loss curves. Representative examples of connectivity in a trained
ResNet18 for selected classes. Each row contains a pair of same-class images. The primary loss
curve is obtained from linear interpolation A→B, and a secondary loss curve A→B’→C. Note that
the highest loss value in the secondary curves is at least one magnitude lower than in the primary
curves.
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