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Abstract

Learning meaningful representations of complex
objects that can be seen through multiple (k ≥ 3)
views or modalities is a core task in machine
learning. Existing methods use losses originally
intended for paired views, and extend them to k
views, either by instantiating 1

2k(k−1) loss-pairs,
or by using reduced embeddings, following a one
vs. average-of-rest strategy. We propose the multi-
marginal matching gap (M3G), a loss that bor-
rows tools from multi-marginal optimal transport
(MM-OT) theory to simultaneously incorporate
all k views. Given a batch of n points, each seen
as a k-tuple of views subsequently transformed
into k embeddings, our loss contrasts the cost of
matching these n ground-truth k-tuples with the
MM-OT polymatching cost, which seeks n opti-
mally arranged k-tuples chosen within these n×k
vectors. While the exponential complexity O(nk)
of the MM-OT problem may seem daunting, we
show in experiments that a suitable generalization
of the Sinkhorn algorithm for that problem can
scale to, e.g., k = 3 ∼ 6 views using mini-batches
of size 64 ∼ 128. Our experiments demonstrate
improved performance over multiview extensions
of pairwise losses, for both self-supervised and
multimodal tasks.

1. Introduction
Learning meaningful representations of complex objects
that can be seen through multiple views or modalities is a
core task in machine learning. These representations may be
trained separately for each modality, as a preliminary step
towards zero-shot learning (Palatucci et al., 2009; Socher
et al., 2013; Frome et al., 2013). In that scenario, modalities
can be heterogeneous, as with images and text (Radford
et al., 2021; Schuhmann et al., 2022), or beyond (Deldari

*Equal contribution 1Apple 2Hebrew University Jerusalem. Cor-
respondence to: Marco Cuturi <cuturi@apple.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

et al., 2022); or homogeneous, e.g. various channels of
the same timeseries (Khaertdinov et al., 2021; Cheng et al.,
2020; Wen et al., 2020; Brüsch et al., 2023; Banville et al.,
2021; Tonekaboni et al., 2021; Kiyasseh et al., 2021). In
the closely related task of self-supervised learning (SSL),
a single embedding backbone may be considered instead,
and applied to multiple views/augmentations of the same
object (Chen et al., 2020; Caron et al., 2020; Bardes et al.,
2022b; Assran et al., 2023; Tsai et al., 2021).

Learning with Pairs. Whether applied to multiview or
multimodal learning, these approaches were originally pro-
posed for k = 2 different representations (e.g. arising from
two modalities or two augmentations). Most of them rely
on contrastive learning (Gutmann & Hyvärinen, 2010; Oord
et al., 2018) as a blueprint, using, for instance, the InfoNCE
loss. The InfoNCE loss promotes encoders that produce
nearby representations for two inputs that arise from the
same object (either with different views or modalities), and
far-away representations for any other pair. Alternatively,
BYOL (Grill et al., 2020) uses only positive pairs, and relies
instead on a pair of encoders with tied parameters.

Learning with k ≥ 3 Representations. As represen-
tation learning eyes more ambitious tasks, practitioners
are tempted to incorporate more than two views/modali-
ties (Alayrac et al., 2020; Akbari et al., 2021; Girdhar et al.,
2023). Various strategies have been proposed to handle
k ≥ 3 representations that can cope with the limitation of
pairwise losses (Bachman et al., 2019; Tian et al., 2020; Tsai
et al., 2020). For instance, one may handle k representations
by averaging all possible 1

2k(k − 1) pairwise losses (Bach-
man et al., 2019; Tian et al., 2020); Alternatively, one may
average embeddings (Pototzky et al., 2022), effectively com-
paring each of the k representations to the average of the
remaining k − 1 embeddings. None of these approaches
do leverage, however, the knowledge that these k represen-
tations should be simultaneously coherent, by looking at
k-tuple of points rather than 1

2k(k − 1) pairs.

Our Contributions. We propose a novel approach that
fully leverages the ground-truth knowledge that a single
input data point should be viewed, holistically, as k-tuples
of embeddings. Our contrastive loss is tailored for multiple
(k ≥ 3) views, without a reduction to pairwise compar-
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Figure 1: (left) Embeddings for n = 4 points (identified using 4 colors), each given in k = 3 views (differentiated using
3 shapes) in d = 2 dimensions. The ground-truth polymatching of these points is known: to each color its 3 shapes, as
illustrated with colored cliques, and described mathematically as a tensor J4,3. Their initial configuration in space indicates,
assuming one solves a multi-marginal optimal transport problem parameterized with the cost tensor C(X), a different
polymatching P0(C(X)). That difference (quantified as a difference in their matching objectives) defines the M3G loss
(see Def. 3.1 for a precise definition of what c, ε refer to). A high M3G indicates, as shown on the left, a large discrepancy
between the ground-truth matching’s cost and that of the optimal polymatching. This loss will gradually displace points so
that, ideally, upon convergence and after consecutive updates (visualized in (middle) and (right) plots), both ground-truth
and optimal polymatchings coincide in their objective. For additional intuition see Animation 1, presenting the gradient flow
of M3G over a toy problem.

isons. This global view is provided by solving polymatching
problems using entropy-regularized multi-marginal optimal
transport (MM-OT). More precisely:

• After providing background on SSL and MM-OT in § 2,
we present in § 3 the M3G loss to measure the contrast
of a configuration of an n-batch of k-tuples of points.
M3G subtracts the lowest matching cost achieved by an
MM-OT solver (MM-Sinkhorn) to the matching cost of
the ground-truth identity matching tensor available to the
user. We study computational and theoretical properties
of M3G, highlight the freedom to choose any multiway
cost function defined on k-tuple of points, and show how
to use M3G for representation learning.

• We provide experimental evidence in § 4 that the M3G
loss improves on extensions of pairwise losses in a va-
riety of self-supervised and multimodal tasks, using the
ImageNet-1k dataset (Deng et al., 2009), DomainNet (He
et al., 2020)) and time-series electroencephalography
(EEG) data from PhysioNet (Goldberger et al., 2000;
Ghassemi et al., 2018; Kemp et al., 2000).

Notation. We use bold fonts for vectors x,y, . . . in Rd and
matrices X,Y,P,C . . . in Rn×d or Rn×n; curved fonts
X,Y,P,C . . . for tensors of dimension 3 and more. For an
integer k, we set JkK := (1, . . . , k), and for two integers
ℓ < m, Jℓ,mK := (ℓ, ℓ+ 1, . . . ,m).

2. Background: SSL and MM-OT
2.1. Joint embeddings with student-teacher architecture

We rely in this work on joint embedding student-teacher
architectures (Balestriero et al., 2023; Grill et al., 2020).
This setting consists of a tied pair of online (student) and
target (teacher) networks. The student network contains
three components–an encoder, a projector and a predictor.
The teacher is based on the online network, omitting the
predictor head. Importantly, the parameters of the latter are
updated using an exponential moving average (EMA) of the
student’s parameters. Setting, for instance, the index s to be
the student, and t the teacher, the parameters θt are simply
updated as θt ← (1− ρ)θs + ρθs after each θs update, with
EMA parameter 0 < ρ < 1.

2.2. Learning embeddings with pairwise losses

Learning with k = 2 views. In a standard SSL setup, one
selects a batch of n items (zi)i := (z1, · · · , zn) alongside
two augmentation pipelines A1 and A2; applies both aug-
mentations to each item in the batch, yielding a list of n
pairs of objects, (A1(zi),A2(zi))i. These are then passed
through parameterized neural networks, fθ1 , gθ2 , that pro-
duce vector representations x1

i := fθ1(A1(zi)) and x2
i :=

gθ2(A2(zi)). This results in X1 := (x1
i )i,X

2 = (x2
i )i, two

n× d matrices of embeddings, which we assume through-
out the paper to lie on the d-sphere, i.e. their norms are
equal to 1. These views are then fed to a pairwise loss,
Lpair

(
X1,X2

)
used to fit either or both parameters θ1, θ2.

The seminal approach of SimCLR (Chen et al., 2020) con-
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sidered a variant of the InfoNCE loss (Oord et al., 2018;
Gutmann & Hyvärinen, 2010) defined as:

LInfoNCE(X
1,X2) = − 1

n

n∑
i=1

log

 e
⟨x1

i ,x
2
i ⟩

τ∑
j e

⟨x1
i ,x

2
j⟩

τ

 . (1)

Grill et al. (2020) propose an alternative that leverages an as-
symetric student-teacher setting (§ 2.1), to focus exclusively
on paired positive examples:

LBYOL(X
1,X2) = 2− 2

n

n∑
i=1

⟨x1
i ,x

2
i ⟩. (2)

Extending pairwise losses to k ≥ 3 views. Recent con-
trastive approaches rely on k ≥ 3 views to improve model
performance (Caron et al., 2020; Tian et al., 2020; Zhou
et al., 2022; Bardes et al., 2022a). For example, a multi-
crop strategy for images adds various views at different
resolutions, rather than two full-resolution views (Caron
et al., 2020), to extract more information from a single
input object (Balestriero et al., 2023; Hoffer et al., 2020).
The number of samples the model sees is effectively in-
creased at each batch to n × k instances, k views for a
batch of n images. Each of these instances is then rep-
resented as a d-dimensional vector, all of which can be
stored as a 3D tensor: k-views for n points in d-dimensions,
X ∈ Rk×n×d, X = [X1, . . . ,Xk] where each Xl gathers
the n objects as seen from the ℓ-th view, namely an n× d
matrix Xℓ = [xℓ

1, . . . ,x
ℓ
n]. To handle multiple views, a pair-

wise contrastive loss Lpwe can be defined by aggregating all
possible pairs, 1

2k(k − 1) in total, of Lpair losses,

Lpwe(X) =
2

k(k − 1)

k∑
ℓ<m

Lpair

(
Xℓ,Xm

)
, (3)

The summation can be performed on all, a subset of the pairs,
e.g. restricting ℓ to sweep 1, 2 and taking m ∈ JkK (Caron
et al., 2021; Grill et al., 2020), or with a different aggregation
method (Shidani et al., 2024). An alternative way to fall
back on using a parwiese loss, is averaging representations
beforehand, and applying the loss in a one vs. average-
of-rest fashion. That is, for each view ℓ, the embeddings
Xℓ, are compared to the average of all remaining views,
X̄−ℓ := 1

k−1

∑
m̸=ℓ X

m as presented in (Pototzky et al.,
2022; Liang et al., 2024), defining the loss,

Lave(X) =
1

k

k∑
ℓ=1

Lpair

(
Xℓ, X̄−ℓ

)
. (4)

These two approaches only look at the entire representa-
tion tensor X two slices at a time, either by comparing

Xℓ to another Xm, X̄−ℓ, or Xℓ to a combination of the
other (Xm)m ̸=ℓ. MM-OT, introduced next, will serve as
the workhorse to provide the first holistic loss for multiple
views, leveraging the entire distribution described in X.

2.3. Multi-Marginal Optimal Transport (MM-OT)

We borrow notations from (Peyré & Cuturi, 2019, Chap.
4), restricting our attention to matching problems (uniform
marginals of the same size). As a warm-up to the multi-
marginal case, we start with two marginals.

Regularized Bistochastic Matching. Consider a cost ma-
trix C ∈ Rn×n.The entropy regularized matching cost of
C, parameterized by regularization ε ≥ 0, is the output of
the following minimization:

OT2,ε(C) = min
P∈Bn,2

⟨P,C⟩+ ε⟨P, logP− 1⟩ , (5)

where Bn,2 is the Birkhoff polytope of bistochastic matrices,

Bn,2 := {P ∈ Rn×n
+ |P1n = PT1n = 1n/n} . (6)

For ε = 0, one recovers the optimal assignment problem,
used for instance to compute a loss between lists of anno-
tations in an image (Carion et al., 2020). When ε > 0, the
problem can be solved with the Sinkhorn fixed point itera-
tions, with faster execution on accelerators (Cuturi, 2013).

Regularized Polystochastic Matchings. We consider
the generalization to multidimensional cost tensors of the
matching problem, moving away from the bipartite set-
ting described above. Such problems arise when com-
paring k ≥ 3 families of points simultaneously, to solve
polypartite matching problems. The MM-OT (Gangbo &
Świech, 1998; Pass, 2015) problem and its entropic reg-
ularization (Benamou et al., 2015) generalize Eq. (5) by
searching for k-polymatchings, represented with their relax-
ation as polystochastic tensors (Benson-Putnins, 2014). To
introduce these approaches, we need a few more notations.

Polystochastic Tensors. We consider the set of k-
dimensional tensors, of size n for each slice:

Tn,k := R
k times︷ ︸︸ ︷

n × · · · × n.

Let 1n,k be the tensor in Tn,k containing ones, including
1n := 1n,1 the n-vector of ones. For a tensor P ∈ Tn,k,
and ℓ ≤ k, we write mℓ for the contraction of the tensor
along all of its slices expect for the ℓ-th one. Using the
tensordot operator (with 1-indexing, not 0 as used by default
in python), this is equivalent to, writing Iℓ = (JkK \ ℓ, Jk −
1K) for the pair of contraction indices,

mℓ(P) = tensordot(P,1n,k−1, Iℓ) ∈ Rn .
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We define, by analogy to Eq. (6), the polytope of k-
polystochastic tensors,

Bn,k := {P ∈ Tn,k | ∀ℓ ≤ k, mℓ(P) = 1n/n} . (7)

We can now generalize Eq. (5) by replacing the suffix 2 by k
in these expressions, to define, for any cost tensor C ∈ Tn,k,

OTk,ε(C) := min
P∈Bn,k

hk,ε(P,C), where

hk,ε(P,C) := ⟨P,C⟩+ ε⟨P, logP− 1⟩ . (8)

Dual Formulation. Eq. (8) admits an unconstrained dual
formulation, using a few more notations: For an n×k matrix
F, stored as k column vectors of size n, F = (f1, . . . , fk) ∈
Rn×k, we define the tensor sum operator, which to a matrix
in Rn×k associates a tensor in Tn,k as follows,⊕

F := f1 ⊕ · · · ⊕ fk, i.e.
[⊕

F
]
i1...ik

= f1i1 + · · ·+ fkik .

where all indices 1 ≤ i1, . . . , ik ≤ n. In that case, one has
the following equivalence with Eq. (8),

OTk,ε(C) = max
F

1
n1

T
nF1k − ε⟨e

⊕
F−C

ε ,1n,k⟩ (9)

and the following primal-dual relationship among the opti-
mal solutions P⋆ of Eq. (8) and F⋆ of Eq. (9):

P⋆ = exp
((⊕

F⋆ − C
)
/ε
)
. (10)

Multi-Marginal Sinkhorn. Eq. (9) can be solved using the
multi-marginal Sinkhorn (MM-S) algorithm described in
Alg. 1. This algorithm outputs, using Eq. (10), the optimal
polystochastic tensor associated to C:

Pε(C) := argmin
P∈Bn,k

hk,ε(P,C), (11)

Note that Alg. 1 requires introducing the log-sum-exp oper-
ator: For a tensor A ∈ Tn,k, and a subset I ⊂ JkK of slices,
LSE(A, I) denotes the log-sum-exp operator on such slices
(this corresponds to log sum(exp(A),axis = I), with
a 1 indexing convention).

The theoretical complexity of MM-S (Lin et al., 2022) is
O(k3nkε−2), and involves in practice k tensor reductions
at each step, as highlighted in the for loop of Alg. 1. As with
the standard Sinkhorn algorithm, smaller ε requires a larger
number of iterations, and early stopping can be controlled
with the tolerance parameter α. In our experiments, we
set α = 10−3 and study the impact of ε on the number of
iterations needed to converge in §4.

Algorithm 1 Multi-marginal Sinkhorn (MM-S)

input: cost tensor C ∈ Tn,k, regularization ε, tol. α.
F = [f1, . . . , fk] = 0n×k

repeat
for ℓ, 1 ≤ ℓ ≤ k do
f ℓ ← −ε

(
LSE

(⊕
F−C

ε , JkK \ ℓ
)
+ log n

)
end for
P← exp ((

⊕
F− C) /ε),

δ ← ∑k
ℓ=1 ∥mℓ(P)− 1n

n ∥1
until δ < α
output:

Polystochastic tensor P ∈ Tn,k ,
MM-OT cost OTk,ε(C) =

1
n ⟨F,1n×k⟩ − ε⟨P,1n,k⟩ .

3. Multi-Marginal Matching Gap (M3G)
We present our main contribution, the multi-marginal match-
ing gap (M3G) loss. The loss takes a k × n × d tensor
X of k views for n points of a batch, all represented as
d-dimensional vectors. As sketched in Figure 1, the loss
quantifies, informally speaking, whether the k views for
each of the n points cluster sufficiently when taken as a
whole, relative to all other points.

3.1. Ground-Truth and Multiway Costs

We introduce two crucial elements needed to define the
M3G: the ground-truth polymatching provided by batches
of aligned points, and a cost function that quantifies the
concentration of a k-tuple of vectors.

Ground-Truth Polymatching. Let Jn,k be the identity
tensor in Tn,k divided by n. This is the tensor of zeros,
except for the n diagonal indices, which are all equal to 1

n :

[Jn,k]i1,...,in = 1
n1i1=···=in .

Naturally, Jn,k ∈ Bn,k. The polymatching described in that
tensor could not be more simple: the k views

(
x1
i , . . . ,x

k
i

)
of each point i ≤ n are matched together.

From Embeddings to Cost Tensors. We use a multiway

cost function c : R
k times︷ ︸︸ ︷

d × · · · × d → R to construct, using the
information contained in X, a cost tensor that evaluates that
multiway cost on all nk possible combinations of points (for
each of the k views, choose one among n available points).
We call Mc the operator from Rk×n×d to Tn,k, defined as:

Mc(X) = [c
(
x1
i1 , · · · , xk

ik

)
]i1,...,ik ,

where all indices 1 ≤ i1, . . . , ik ≤ n. The multiway cost
function c can be seen equivalently as a function from Rn×d

to R. While several costs have been considered in the MM-
OT literature, e.g. repulsive Coulomb costs in density func-
tional theory (Pass, 2015)), we use the simplest cost in our
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Algorithm 2 Cost Tensor from Embeddings Mccv(X)

input: embeddings tensor X ∈ Rk×n×d

A = 0 ∈ Tn,k
W = X(None, :,None) · X(:,None, :,None)
D = 2− 2W.sum(−1))
for ℓ, 1 ≤ ℓ ≤ k do

for m, ℓ+ 1 ≤ m ≤ k do
I = Jℓ− 1K + Jℓ+ 1,m− 1K + Jm+ 1, kK
A = A+ expand dims(D[ℓ,m, ...], I − 1)

end for
end for
output: Cost tensor Mccv(X) =

(
2

k−1

)2

A ∈ Tn,k

setting, quantified as the norm of the average of k points
on the sphere (whose norm is necessarily smaller than 1),
following insights from directional statistics (Ley & Verde-
bout, 2017). We define first the resultant length of a set of a
points on the sphere,

R2(z1, . . . , zk) := ∥ 1k
∑
ℓ

zℓ∥2 = 1−2 k
k−1

∑
ℓ<m

∥zℓ−zm∥2

Note that the rightmost reformulation above, using pairwise
distances, allows for a more efficient computation, provided
in Algorithm 2. The circular variance can quantify disper-
sion for these k points as:

ccv(z1, . . . , zk) = 1−R2(z1, . . . , zk) . (12)

We have also tested an alternative, the MLE variance param-
eter of the wrapped Gaussian given these k points, a.k.a. the
circular standard deviation,

ccsd(z1, . . . , zk) = − log(R2(z1, . . . , zk)) . (13)

We use ccv by default in all experiments, and only consider
ccsd in the ablation studies in § 5.

3.2. Multi-Marginal Matching Gap

With these definitions, we can define the M3G loss:

Definition 3.1. The multimodal multi-marginal matching
gap (M3G) of data tensor X, parameterized by a multiway
cost c and ε > 0, is the gap to optimality of the ground-truth
matching tensor Jn,k:

M3Gc,ε(X) :=hk,ε(Jn,k,Mc(X))− inf
P∈Bn,k

hk,ε(P,Mc(X))

= ⟨Jn,k,Mc(X)⟩+ ε log n−OTk,ε(Mc(X)) . (14)

The idea of contrasting the loss of a ground-truth solution to
that achieved by a solver parameterized by actionable inputs
(here, ultimately, the encoder parameters) can be traced back
to, e.g. structured SVMs (Tsochantaridis et al., 2005), and

was investigated in more depth in the elegant framework of
Fenchel-Young losses (Blondel et al., 2020). In the context
of OT, a similar idea was used to define a regularizer for
vector-to-vector mappings (Uscidda & Cuturi, 2023).

Proposition 3.2. The M3G loss is non-negative. The gradi-
ent of the M3G losses only requires applying the vector-
Jacobian operator (Blondel & Roulet, 2024, §2.3.5) of
M, ∂M(·)∗[·], evaluated at X, to the difference of two
polystochastic tensors, the ground-truth Jn,k and the op-
timal Pε(M(X)) given in Eq. (11):

∇M3G(X) = ∂M (X)
∗
[Jn,k − Pε(M(X))] ∈ Rk×n×d .

These results come from an application of Fenchel-Young
losses (Blondel et al., 2020). Briefly, the first result comes
from the fact that M3G is an optimality gap; the second
follows from the fact that OTk,ε is an unconstrained con-
vex optimization problem, and therefore an application of
Danskin’s theorem (assuming Alg. 1 is run to low toler-
ance α, which we do by setting it to 10−3) states that
∇OTk,ε(C) = Pε(C). This, combined with the chain-rule,
gives the result.

Deeper Dive into k = 2. Although the case k = 2 is not
the main focus of our work, we highlight that M3G does not
reduce to an InfoNCE-like loss, even for two views. Indeed,
for k = 2 only, and using notations from § 2.2 one recovers,
up to the constant ε log n, that:

M3Gc,ε([X
1,X2]) = 1

n∥X1−X2∥2−OT2,ε

([
c(x1

i ,x
2
j )
]
ij

)
.

For k = 2, the M3G loss provides an alternative to the
classic InfoNCE loss, and is related, but not equivalent to,
the recent “inverse optimal transport” approach advocated
in (Shi et al., 2023). We briefly discuss this link in §6.1.

3.3. Learning Representations with M3G

Suppose we are given a batch of n objects z1, . . . , zn,
and that each of these objects is available in k multiple
views, either through data collection or augmentations
((z1i , . . . , z

k
i ))i. Broadly speaking, we consider parame-

terized networks, fθℓ , ℓ ≤ k, in which case θ would stand
for the list of all parameters (θℓ)ℓ. We assume that all net-
works take values in the d-sphere, {x ∈ R : ∥x∥ = 1}. We
propose to minimize the M3G loss on the n× k encodings
of all these objects, for each minibatch.

L(θ) := M3Gc,ε

(
[fθℓ(z

ℓ
i )]ℓ,i

)
.

4. Experiments
We test the M3G loss in an SSL setting (ImageNet-1k)
and two multimodal tasks (DomainNet and PhysioNet). In
§ 4.1 and § 4.2, we use a joint embedding student-teacher
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Table 1: Multiview models performance as a function of number of views, k, for models pre-trained on ImageNet-1k.
Evaluation of classification performance of M3G (ε = 0.2) in comparison to paiwise losses, BYOL and InfoNCE extended
to multiview using either the pairwise sum across views (Lpwe), or a one vs. average-of-rest (Lave). We evaluate the
performance for varying k views, with n = 64 batch size, trained for 300 epochs. Reported are mean and standard variation
over five independent repetitions per setting. In bold is the top performing method per setting.

# Views Method

BYOLave BYOLpwe InfoNCEave InfoNCEpwe M3G

k = 2 74.62± 0.14 74.61± 0.16 74.75± 0.48
k = 3 74.60± 0.16 75.16± 0.09 74.24± 0.13 75.36± 0.10 75.61± 0.12
k = 4 75.04± 0.18 75.06± 0.10 74.80± 0.09 75.26± 0.16 75.75± 0.11

architecture, see § 2.1. The student network is evaluated on
all modalities [1, k]− i, apart from one index 1 ≤ i ≤ k, for
which the teacher is used. Gradients are aggregated on the
k− 1 evaluations. Index i loops then across all k modalities
to form an aggregated loss. In§ 4.3 we use a single common
network, as proposed by (Brüsch et al., 2023).

4.1. Multiview SSL Performance on ImageNet-1k

We use k random augmentations for each image, and study
the impact of k on the linear performance of encoder mod-
els pre-trained on ImageNet-1k (Deng et al., 2009). We
compare our loss M3G, with the previously suggested ex-
tensions of contrastive losses to k ≥ 3, using either aggre-
gation of pairwise contributions (Lpwe, Eq. (3)), or the one
vs. average-of-rest approach (Lave, Eq. (4)). We train and
evaluate each setting in five independent repetitions, and
report mean and standard deviation.

Augmentations. We use the augmentations introduced
in BYOL (Grill et al., 2020) and SimCLR (Chen et al.,
2020). These vary in the parameters used for the aggregated
transformations–cropping, random flipping, random color
jittering, Gaussian blur, and grayscale or solarization. See
§A for details on the k augmentation stacks.

Architecture. The backbone encoder is a ViT-B/16 archi-
tecture (Dosovitskiy et al., 2020), followed by an MLP
projection head (see §A for details). We use a batch size of
n = 64 per GPU. We train all models for 300 epochs.

Results. Table 1 indicates that the M3G loss performs
slightly better than baselines alternatives for multiview learn-
ing, improving the linear classification accuracy by .25%
and .49% respectively for k = 3 and k = 4, validating the
soundness of M3G with a fairly small batch size.

On Increasing Batch size. As mentioned earlier in this
section, results reported here use k − 1 student branches vs.
1 teacher. This allows dropping the forward activations of
the teacher branch. Informally, for a batch size of n, given
s student branches, k − s teacher branches, and writing M
for the memory cost needed to store all activations for a

parameter θ (of a single student branch, for a single point)
this yields a total memory cost of ≈ O(snM + nk), taking
into account the cost of the MM-S cost tensor. This results
in a trade-off, since smaller s can allow for larger n of k,
depending on the magnitude of M . We leave this direction
for future research.

4.2. Multimodal Domain Adaptation

We consider a domain adaptation (DA) task, where the goal
is to learn a common encoder, followed by one or multi-
ple classifiers, using labeled data from multiple domains.
We quantify the generalization power of this pre-trained
encoder with a classification task, tested on data coming
from a new, completely unseen domain (Peng et al., 2019;
Gulrajani & Lopez-Paz, 2020). We assume that the new
data, despite coming from an unseen domain, still falls in
the same classes. For that purpose, we use the DomainNet
dataset (Peng et al., 2019). The dataset consists of 569,010
images divided into 345 different categories, and subdi-
vided in 6 different domains–real photos (rel), cliparts (clp),
sketches (skt), infographic images (inf ), artistic paintings
(pnt), and quickdraw (qdr).

Training Procedure. We consider the same losses: M3G
and the baselines, InfoNCE and BYOL (each evaluated
using both aggregation choices, pwe and ave). We pick
one domain that acts as the unseen modality, and train rep-
resentations on the k = 5 remaining domains. Following
the conventions set in §3, the n× k points are sampled by
picking randomly n classes, and for each class, k images
in the dataset, coming from each of the k = 5 domains.
For each of the settings we pre-train four independent rep-
resentation encoders. The encoders’ backbone is identical
to that used on the ImageNet-1 dataset (ViT-B-16). We
repeat this for each of the six modalities–implying a total
of 5 × 4 × 6 = 120 models. All models are trained using
the same architecture and parameters choice (for details see
§A), and evaluated on two tasks:

5 Domains vs. 1. For the first assessment, we train a
linear classifier jointly on all 5 seen domains, and report test
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Table 2: Predictions accuracy over unseen unlabeled domains over the DomainNet dataset. Evaluation of classification
performance of M3G (ε = 0.05) compared to two pairwise losses, considering Lpair ∈ {InfoNCE,BYOL}. For each we
evaluate the pairwise sum across views (Lpwe), and a one vs. average-of-rest (Lave). All models are trained with a fixed
batch size of n = 16 for 300 epochs. Mean and standard deviation of performance reported for four independent repetitions.
In bold is the top performing method per setting.

Domains Method

seen → unseen BYOLave BYOLpwe InfoNCEave InfoNCEpwe M3G

¬clp → clp 24.1± 0.2 9.6± 4.8 23.2± 0.4 6.9± 10.3 32.4± 0.3
¬inf → inf 10.2± 0.1 5.8± 0.8 11.0± 0.2 10.1± 0.4 12.2± 0.1
¬pnt → pnt 28.3± 0.1 21.3± 0.9 30.6± 0.6 24.7± 1.8 31.3± 0.1
¬qdr → qdr 7.8± 0.2 3.4± 2.2 8.8± 0.2 8.5± 0.5 10.4± 0.3
¬rel → rel 43.1± 0.3 30.9± 9.3 44.6± 0.1 42.0± 0.6 46.3± 0.2
¬skt → skt 21.6± 0.6 10.1± 2.1 24.9± 0.1 20.5± 1.6 26.5± 0.4

Figure 2: Pairwise domain prediction accuracy on the DomainNet dataset. The prediction accuracy over the unseen
domain using a linear classifier trained on a single domain in the pre-training train set. Each table presents the performance of
a different model choice. From left to right, baseline approaches, using the pairwise losses to evaluate one vs. average-of-rest,
BYOLave (left) and InfoNCEave (center), compared to M3G (right). Columns correspond to the unseen domains and rows
to the domains used for the linear classifier training. Mean performance reported for four independent repetitions.

results on the unseen domain, see Table 2. While prediction
accuracy in this task varies according to domain, ranging
from 11% to 30% for M3G, M3G is consistently ranked
1st, with a mean improvement of 3.1% over the 2nd best
model (InfoNCEave). In contrast to the ImageNet-1k task
(§4.1), the ave baseline outperforms the one vs. rest.

1 Domain vs. 1. Next, we consider a harder task, training
five independent classifiers, one per domain. Figure 2 re-
ports the prediction accuracy of these classifiers when tested
using images from the unseen domain. The performance of
the pwe approach is overall much worse in this task as well,
and presented in § C, Figure A1.

We find that globally M3G outperforms baseline ap-
proaches, with an average rank of 1.4 across all tasks (30
linear evaluations × 4 independent repetitions = 120).

4.3. EEG Data

Health records often contain multi-channel time series data,
available in vast amounts, but that require manual annota-

tions by domain experts. Because channels provide aligned
data points, they provide a testbed for multimodal embed-
ding approaches. We apply directly the M3G loss on an
EEG dataset using k = 6 channels, taken from the Phys-
ioNet Challenge 2018 (Goldberger et al., 2000; Ghassemi
et al., 2018). EEG is a neurophysiological technique that
records and measures the brain’s electrical activity. The train
data contains segmented samples of 994 individuals, and
the evaluation dataset, SleepEDFx (Goldberger et al., 2000;
Kemp et al., 2000), contains 153 nights of sleep recordings
from 78 individuals, each annotated as belonging to one
among five classes of sleep stage.

Classification. The task is to accurately predict the sleep
stage using a sample of 30s. Freezing the pre-trained repre-
sentation model, we train a linear encoder over samples of
10, 50, 100, and 1000 data points for each of the five classes,
and evaluate the prediction accuracy over the same number
of samples respectively. We reuse the codebase provided
by (Brüsch et al., 2023).

Results. In Table 3 we compare M3G to the pairwise In-
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foNCE loss. In accordance with previous results we find the
M3G performs better than InfoNCEpwe.

Table 3: Prediction accuracy over multichannel EEG
dataset. Linear prediction accuracy of M3G and baseline
method on a k = 6 EEG channels dataset using different
numbers of samples per class s ∈ {10, 50, 100, 1000}. We
report mean results, averaged over 5 seeds. InfoNCEpwe

models are trained using a batch size of n = 64 and M3G
uses a batch size of n = 16. All models are pre-trained
for 10 epochs and fine-tuned on the classification task for a
maximum of 40 epochs.

Method samples per class

s = 10 s = 50 s = 100 s = 1000

InfoNCEpwe 35.5 49.3 52.2 56.3
M3G, ε = 0.2 36.6 49.2 56.1 64.6

5. Ablation studies
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Figure 3: Linear performance on ImageNet-1k as a func-
tion of the entropic regularizer ε. We report the linear
top-1 accuracy for different values of the MM-OT entropic
regularizer ε, as we vary the view multiplicity, k. All results
are given for the same batch size (n = 64) and training dura-
tion (300 epochs). Solid line and band depict the mean and
95% confidence interval over five independent repetitions.

The M3G loss is parameterized by a multiway cost function
c, and by entropic regularization ε. We study how these
two choices affect performance. We limit our study to the
ImageNet-1K multiview task.

Entropic Regularization. Because embeddings are always
normalized, and costs depend directly on dot-products, the
range of cost values is constrained. Thanks to this, setting ε
was fairly easy. As shown in Fig. 3, and observed in most of
our other experiments, overall performance is fairly robust
to ε. Setting ε = 0.2 returned consistently good results.

Cost Function. The multiway cost function c is the other im-
portant degree of freedom available to the user to shape the

M3G loss. Apart from the circular variance used through-
out our experiments (M3Gcv) we evaluate the performance
using a circular standard deviation cost (M3Gcsd). We ob-
serve that M3G is robust to this choice, attaining similar
performance under both cost choices, see Table 4.

Views Method

M3Gcv M3Gcsd

k = 2 74.75 73.81
k = 3 75.61 75.63
k = 4 75.75 75.73

Table 4: Robustness to cost
function. Classification per-
formance of M3G models
pre-trained on ImageNet-1k,
using either ccv, Eq. (12) or
ccsd, Eq. (13), with ε = 0.2.

Compute Overhead. Despite the daunting cost of run-
ning the MM-Sinkhorn (1964) algorithm in nk, we show
that in the most computationally demanding of our tasks
(ImageNet-1k), using M3G only incurs a relatively minor
compute overhead. This is summarized in Figure 4.
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Figure 4: Compute overhead incurred by M3G on
ImageNet-1k as a function of k. All results are given
for the same per GPU batch size (n = 64), 300 epochs,
ε = 0.2 for M3G, run on 4 nodes of 8 A100 GPUs.

6. Discussion
6.1. Related Works

MM-OT. When the number of views k ≥ 3, we are not
aware of any other work that uses MM-OT to study mul-
tiple representations of objects. Compared to regular OT,
MM-OT has been used in far fewer applications, notably to
handle density functional theory in chemistry with Coulomb
costs (Pass, 2015; Benamou et al., 2017). MM-OT has very
recently started playing a role in core ML tasks, e.g. with
recent links to adversarial multiclass classification (Trillos
et al., 2023). Much like regular OT, MM-OT has also been
extended to accommodate unbalanced constraints (Beier
et al., 2023) or quadratic (Gromov-Wasserstein-like) objec-
tives (Beier et al., 2022). Solving the MM-OT problem
raises many challenges that are increasingly better under-
stood in theory (Le et al., 2022; Lin et al., 2022; Altschuler
& Boix-Adsera, 2021). Finding alternative schemes to com-
pute or approximate MM-OT is a very recent and active
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research subject, using e.g. ODEs (Nenna & Pass, 2023)
or by exploiting a more specific structure in costs (Haasler
et al., 2021b;a). These ideas might be employed to speed up
our scheme, as using Danskin’s theorem leaves ample room
for solving MM-OT with any forward pass, without having
to go through a differentiable solver.

The case k = 2. When restricting our contribution to the
simplest case k = 2, our method reduces to a “classic” OT
formulation, solved with the usual Sinkhorn algorithm. Clos-
est to our method lies the proposal of Shi et al. (2023) to use
Inverse OT as a loss in SSL. There is, however, a significant
discrepancy between their work and our loss for k = 2: Shi
et al. (2023) define their loss as the KL divergence between
the ground truth identity matching matrix Jn, and the opti-
mal coupling returned by Sinkhorn Pε(C(X)). To compute
the gradient of their loss, they need, therefore, to differen-
tiate through Sinkhorn iterations. While this can be done
by either unrolling iterations, or using the implicit function
theorem (Luise et al., 2018; Cuturi et al., 2022), this adds
memory and compute requirements. Because M3G is an
optimality gap, namely a Fenchel-Young loss (Blondel et al.,
2020), we can avoid that backward pass thanks to Danskin’s
theorem. The recent proposal of Jiang et al. (2023) is also
closely related to M3G loss when k = 2, since they propose
to apply OT weights within the negative sample reweighting
approach of Robinson et al. (2020).

6.2. Limitations

An important limitation of the M3G loss lies in solving
an MM-OT problem, using the MM-Sinkhorn, see Alg. 1.
Computing the M3G loss incurs a cost that scales as O(nk),
preventing, in practice, using large batch sizes. We believe
this exponential scaling is likely the price to pay to account
simultaneously for all k-tuples of views. Our experiments
show that for small batch sizes (e.g. n = 16, 32, 64) and
small k (we considered k ≤ 6), this compute overhead was
reasonable, notably when compared to the cost of running
large encoders, such as ViT-B/16 models (See 4). However,
this increase will remain intractable for larger k values if
one uses, as we did, a generic multiway cost. While we
studied an alternative cost (csd) with similar compute, this
did not yield significantly different results. As future work,
we believe one might explore better cost functions, either
for computational or modeling reasons, e.g. using domain-
specific knowledge that focuses on specific subsets of the k
views. Aside from this limitation, our loss remains, however,
fairly simple, since it only has two hyperparameters: the
cost function c itself and the ε regularization. We have
observed good performance for most ε choices but suspect
that ε should depend on the batch-size for best performance.

6.3. Conclusion

To our knowledge, the M3G loss is the first contrastive loss
proposed to learn multi-representations that takes a holistic
view of all k views (when k ≥ 3) of a given object. Specifi-
cally, M3G avoids contrasting views in a pairwise approach,
and relies instead on a cost function that scores instead the
coherence of a family of k point embeddings. That score
is computed for each of the n objects, seen through their
k-views, and subsequently averaged. It is then compared
with the cost of the best polymatching tensor that can be
obtained using n × k views pooled together. The latter is
approximated using the multi-marginal Sinkhorn algorithm.
The M3G loss and its gradient can be computed with a
single forward execution of the multi-marginal Sinkhorn
algorithm. While the application of the M3G loss to prac-
tical tasks may seem daunting, because of the exponential
complexity in k incurred when running the MM-Sinkhorn
algorithm, we show that the overhead paid to compute this
loss, in terms of running time, is manageable as long as
batch size n and k are not too large. We have presented
promising performance on a variety of self-supervised and
multimodal tasks, paving the way for future extensions that
can leverage more informed cost structures.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Implementation Details
Multi-Marginal Sinkhorn Optimization. To perform ex-
periments, we implemented the multi-marginal Sinkhorn
algorithm (Alg. 1) in PyTorch Paszke et al. (2019).

Hyperparameters for Models Training. In Table A1 we
provide the hyperparameters used to train ImageNet-1k and
DomainNet models. In all cases the encoder is based on
ViT-B/16 architecture and the following projection and pre-
dictor heads consist of a linear layer with output size 4096
followed by Gaussian error linear units (GeLU) (Hendrycks
& Gimpel, 2016)), and an additional linear layer with output
dimension 256.

For the EEG dataset, we follow the setting reported
in (Brüsch et al., 2023), using the implementation provided
in the GitHub repository1. The network is composed of
six convolutional blocks consisting of a 1D convolution, a
dropout layer, a group normalization layer, and a GELU
activation function. The kernel width and stride is three
in the first layer and two in the remaining five layers. 256
kernels are used for all intermediate layers and the final
output dimension is 64. A readout layer with kernel width
and stride set to 1 is added at the end. We train models for
5 different seeds and report avergage results. All models
are trained for 10 epochs and a batch size of n = 16, 64 for
M3G, InfoNCEpwe respectively.

Augmentations. For image datasets (ImageNet-1k and
DomainNet), we use augmentation settings introduced
in BYOL (Grill et al., 2020) and SimCLR (Chen et al.,
2020). We provide the pseudocode for the augmenta-
tions used in Pseudocode 1. For ImageNet-1k the maxi-
mal stack (k = 4) is defined as A = [byol-global1,
byol-global2, simclr, byol-global1], for
lower k we take A[:k]. For DomainNet training we use
the simclr augmentation for all views. In all cases, for
test augmentations we follow the standard practice–resize,
center crop and normalization.

Pseudocode 1: Definition of the train augmentations.
byol-global1 = [

RandomResizedCrop(
size=224,
scale=(0.08, 1.0),
interpolation=Image.BICUBIC

),
RandomHorizontalFlip(p=0.5),
RandomApply([

ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1

)
], p=0.8,

),
RandomGrayscale(p=0.2),

1https://github.com/theabrusch/Multiview TS SSL

GaussianBlur(),
Normalize(

mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)

)
]

byol-global2 = [
RandomResizedCrop(

size=224,
scale=(0.08, 1.0),
interpolation=Image.BICUBIC

),
RandomHorizontalFlip(p=0.5),
RandomApply([

ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.2,
hue=0.1

)
], p=0.8,

),
RandomGrayscale(p=0.2),
RandomApply([GaussianBlur()], p=0.1),
RandomApply([Solarization()], p=0.2),
Normalize(

mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)

)
]

simclr = [
RandomResizedCrop(

size=224,
scale=(0.08, 1.0),
interpolation=Image.BICUBIC

),
RandomHorizontalFlip(p=0.5),
RandomApply([

ColorJitter(
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2

)
], p=0.8,

),
RandomGrayscale(p=0.2),
RandomApply([GaussianBlur(kernel_size

=23, sigma=[0.1, 2.0])], p=0.5),
Normalize(

mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)

)
]

B. Training and Evaluation
Linear Evaluation of Image Models. For the image
datasets tasks (ImageNet-1k and DomainNet) we follow
the standard linear evaluation pipeline (Chen et al., 2021;
He et al., 2016). We freeze the backbone encoder of the
pre-trained model and train a linear classifier for 100 epochs
on the data used for pre-training (ImageNet-1k or Domain-
Net respectively). We use the SGD optimizer with zero
weight decay. For the learning rate we sweep
over two possible values (0.01, 0.001). Random horizontal
flipping, random resized cropping and normalization are
applied during training.
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Table A1: Vision models hyperparameters.

Encoder architecture ViT-B/16
Weight initialization trunc normal(.02)
Backbone normalization LayerNorm

Batch size 2048 (ImageNet-1k)
512 (DomainNet)

Head normalization LayerNorm
Synchronized BatchNorm over replicas True
Learning rate schedule Single Cycle Cosine
Learning rate warmup (epochs) 10
Learning rate minimum value 5× 10−5

Training duration (epochs) 300
Optimizer AdamW
Optimizer scaling rule Adam
Base (β1, β2) (0.9, 0.95)
Base learning rate 6.5× 10−4

Per GPU Batch size 64 (ImageNet-1k)
16 (DomainNet)

Base teacher momentum 0.99
Weight decay 0.04
Weight decay end 0.4
Weight decay warmup 0.0

DomainNet Downstream Evaluation Using a pre-
trained model with an unseen domain we freeze the encoder
and test the model performance in two regimes: (i) train a
single linear classifier, as described above, using the five
seen domains. (ii) train five different classifiers, each over a
single seen domain. All linear classifiers are tested over the
unseen domain.

Linear Evaluation of the EEG dataset. We follow pre-
cisely the evaluation suggested by (Brüsch et al., 2023).
Given the pre-trained model, consisting of a single encoder,
a linear layer is used to combine all channel representations.
A linear classifier is trained over the frozen joint represen-
tation for the classification task. Both layers are retrained
from scratch.

C. Additional Results
Pairwise domain evaluation over DomainNet dataset.
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Figure A1: Pairwise domain prediction accuracy on the DomainNet dataset. The prediction accuracy over the unseen
domain using a linear classifier trained on a single domain in the pre-training train set. Each table presents the performance
of a different model choice. Two left columns present baseline approaches, using the pairwise losses to evaluate one vs.
average-of-rest (top row) and pairwise (bottom row). Columns from left to right consider BYOL (left), InfoNCE (center),
and M3G loss. In each subplot, columns correspond to the unseen domains and rows to the domains used for the linear
classifier training. Mean performance reported for four independent repetitions.
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