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ABSTRACT

Data-driven modeling in real-world regression tasks often suffers from limited
training samples, high collection costs, and noisy observations. Inspired by the
impact of data augmentation in vision and language, we propose a novel Coun-
terfactual Residual Data Augmentation (CRDA) technique for tabular regression.
Our key insight is that once a regressor has modeled the systematic component of
the data, the remaining noise can be viewed as an invariant residual that remains
stable under small perturbations of carefully selected features. We exploit this
residual invariance to generate new, yet realistic, training samples, effectively ex-
panding the dataset without requiring additional real data. Our method is model-
agnostic and readily applicable to various types of regressors. In experiments
across datasets from a variety of benchmark repositories, on average, CRDA re-
duces an MLP Regressor’s MSE by 22.9% and an XGBoost Regressor’s MSE by
6.4%. When compared to existing state-of-the-art data generators and augmen-
tation techniques, CRDA consistently outperforms in MSE reduction. By adding
principled counterfactual variations to the training data, our method offers a sim-
ple and efficient remedy for noise-prone, small-sample regression settings.

1 INTRODUCTION

Data scarcity and noise are frequently encountered obstacles in regression tasks across domains such
as medicine, finance, and manufacturing. Collecting large-scale, high-quality data can be expensive
or impractical, and existing data augmentation techniques, while well developed in computer vision
and NLP, often do not translate naturally to tabular regression. As a result, many supervised learn-
ing models fail to fully capture the underlying behavior of real-world processes when only limited
training examples are available.

In this paper, we propose Counterfactual Residual Data Augmentation (CRDA), a simple and
flexible method to bolster regression performance under small data constraints. The core idea is
straightforward: (i) we train a base predictor (e.g., MLP or XGBoost) on a dataset, (ii) identify one
or more features whose perturbations do not alter the residual distribution significantly, and (iii)
generate new samples by modifying those features while preserving the original “noise” or residual
component. To illustrate, consider a house price prediction task. A model captures systematic value
drivers like location and square footage, while the residual captures unobserved factors like a bidding
war driven by a specific buyer’s urgency. Our key insight is that varying a secondary feature, such
as garage finish, changes the systematic price but is unlikely to alter the specific buyer’s urgency.
CRDA exploits this independence to synthesize a valid counterfactual: a house with a different
garage finish, an updated systematic price, but the exact same “bidding war” residual.

Motivation and Benefits. Our motivation stems from the difficulty of acquiring sufficient labeled
data in many practical applications, coupled with the risk of overfitting when sample sizes are small.
A major attraction of CRDA is its ability to insert new data points without assuming domain-specific
transformations or heuristics. Instead, it relies on a learned predictor to separate systematic behavior
from noise, then conserves the latter across minor interventions of designated features. As a result,
the augmented samples remain consistent with the underlying distributional assumptions, improving
model fit and reducing variance. Empirically, we observe double-digit percent reductions in test
error for small-sample regression tasks, demonstrating the utility of our approach across a variety of
dataset types.
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Our work makes the following key contributions:

(1) New Data Augmentation Framework. We introduce a model-agnostic strategy for augmenting
tabular regression data, centered on counterfactual reasoning and residual invariance.

(2) Residual Invariance Principle. We formalize how certain features can be perturbed without
corrupting the noise structure, providing insights to guide feature selection.

(3) Empirical Validation. We evaluate CRDA on synthetic benchmarks and real-world datasets
from standard repositories (e.g., UCI, PMLB), illustrating consistent improvements across neural
and ensemble models.

2 RELATED WORK

General Data Augmentation. Data augmentation refers to the strategy of enlarging or diversify-
ing a training set via synthetic transformations. While central to success in computer vision and
NLP (Zhang et al.l 2017;|Yun et al.| 2019; |Cubuk et al.||2019)), these techniques often rely on label-
preserving symmetries (e.g. image rotations) or domain-specific invariances (e.g. back-translation
in text). However, applying these methods to tabular regression remains non-trivial.

Tabular and Regression-Specific Augmentation. Classical oversampling approaches include
SMOTE (Chawla et al., |2002)) and its regression extensions (Branco et al.,|2017), which interpolate
between samples but do not necessarily preserve higher-order feature interactions or heteroskedastic
noise. Recent advances seek to formalize regression augmentation through geometric properties. For
example, RegMix (Hwang & Whang, 2021) optimizes Mixup policies to generate samples within
high-density regions of the data manifold, aiming to preserve the underlying structure. Conversely,
C-Mixup (Yao et al.| 2022)) addresses the risk of manifold intrusion by restricting mixing to sample
pairs with high label similarity. Closely related is Anchor Data Augmentation (ADA) (Schneider
et al.,[2023)), which extends Anchor Regression to augmentation. ADA identifies “anchors” (by clus-
tering) and generates samples using a first-order Taylor approximation, effectively assuming local
linearity within clusters. While these methods enforce geometric regularity (linearity or manifold
density), they can struggle in highly non-linear or sparse regimes where local linearity assumptions
fail. CRDA aims to avoid this by enforcing statistical regularity (residual invariance) instead.

Deep Generative Models. Deep generative models offer an alternative by learning the joint distri-
bution to sample entirely new rows. Approaches like CTGAN (Xu et al., |2019), TVAE (Xu et al.|
2019), and TabDDPM (Kotelnikov et al.|[2023) have shown promise in privacy-preserving data syn-
thesis. However, these models typically treat the target variable as just another column, failing to
preserve an instance’s specific residual noise. This frequently leads to “realistic” looking samples
that degrade predictive performance.

Residual Bootstrapping. In statistical literature, residuals have been leveraged extensively for
uncertainty quantification rather than data augmentation. For example, the residual bootstrap (Efron,
1979) and conformal prediction methods (Barber & Candes, 2021) resample or reuse residuals to
construct confidence intervals. Our work repurposes this mechanism for augmentation.

Causal and Counterfactual Data Augmentation Data augmentation typically ignores the gen-
erative process behind the data, risking unrealistic synthetic examples. Causal-based approaches
(Kocaoglu et al., 2018 |Arjovsky et al.|[2020) propose integrating structural assumptions so that aug-
mentations preserve invariant relationships across environments. This has been explored in computer
vision through interventions on object attributes (Mahajan et al.,|2023), and in language by editing
tokens in a do-intervention style. Our method’s core principle, preserving an instance-specific noise
term while perturbing features, draws a direct parallel to work in reinforcement learning. [Lu et al.
(2020) showed that next-state samples remain identifiable under mild assumptions (monotonicity
and independence in the noise term). Their Theorem 1 establishes that, once the observed outcome
fixes a particular noise quantile, reusing that noise in a “what-if” scenario yields a valid counter-
factual next-state. Similarly, CRDA treats the calculated residual as an exogenous noise variable
that is assumed to be independent of the features being perturbed. This allows us to systemati-
cally generate counterfactuals in a way that is more theoretically grounded than purely generative or
interpolation-based techniques.
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3 BACKGROUND

In this section, we provide an overview of the key concepts that motivate our proposed approach.

3.1 COUNTERFACTUAL REASONING AND STRUCTURAL CAUSAL MODELS

A structural causal model (SCM) (Pearl, [2009; |Peters et al., 2017) formalizes how observed vari-
ables are generated by underlying data-generating processes (DGP). Formally, an SCM is specified
by a tuple (X, Z, F, Pz ), where:

o X ={Xy,..., X} is the set of endogenous (observed) variables,
o Z={Z1,...,Zy} is the set of exogenous (noise) variables with distribution Pz,

* F'={f;}i", is a collection of structural equations, each of the form
zi  fi(pai,z)

where Pa; C X'\ {X;} denotes the parents of X.

An SCM induces a graph, which encodes causal relationships (i.e. who influences whom), and the
exogenous noise terms capture stochasticity.

Interventions and causal effects. A central notion in causal inference is that of an intervention,
written do(-) (Pearl, 2009). By applying do(X = z’), one replaces the original structural equation
X « fx(Pa,Z) with a constant assignment X < z’. This operation severs incoming edges to
X, thus altering the downstream (child) variables but leaving other aspects of the system intact.
Interventions enable us to simulate hypothetical scenarios, often crucial for answering “what if”
questions in hindsight.

Counterfactuals. Counterfactual reasoning goes a step further by inquiring about hypothetical
outcomes of the target variable Y given a specific realization of the noise variable Z. Concretely,
one first infers the actual setting of Z = z, then imagines how the outcome Y would change under
a hypothetical intervention do(X = a’). This process involves: (i) abduction, where we infer
z from the observed data; (ii) action, where we override the structural assignment for X'; and (iii)
prediction, where we propagate z through the modified system to obtain the counterfactual outcome
distribution P(Y'|X = ', Z = z) (Rubin, |1974; Holland, [1986; [Peters et al., 2017).

3.2 MAIN ASSUMPTIONS AND THEORY

The core theoretical principle underpinning CRDA is the assumption of residual invariance. This
principle posits that for a well-specified regression model, the residual noise term remains distribu-
tionally constant under interventions on a specific subset of features. We formalize this as follows.

Assumption 1. Let the feature vector X be partitioned into two disjoint subsets, X = (Xp, XR),
where X p are the features we intend to perturb (the perturbable coordinates) and X are the fea-
tures we hold fixed (the remaining coordinates). Let g(X) = E[Y'| X] be the true conditional expec-
tation function, and let Z =Y — g(X) be the corresponding structural noise term. We introduce
the following condition:

P(Z | Xp,Xr) =P(Z | Xg) (1)

Equation[I|says that the noise Z is conditionally independent of the perturbable features X p given
the fixed features X g.

Proposition 1. Suppose Assumptionholds. Then for any x g in the support of X g and any xp, x'p
in the conditional support of Xp | X = xR, we have

P(Z|Xp :ZCP,XR:IR) = P(Z|XPZ$IP,XR:IR)

Equivalently, P(Z | Xp = xp, Xg) = P(Z | Xg) is constant in zp. |

!"The proof for this proposition can be found in Appendix@
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Assumption [1]is effectively equivalent to modeling the data-generating process with an additive-
noise structural causal model (SCM). By defining the regressor g as the conditional expectation,
we decompose the outcome Y into a systematic component and a residual component:

Y =9(Xp, XRr) + Z|x,

Our assumption simply states that in this structural equation, the noise term Z does not depend on
the specific values of the features in X p once we have conditioned on the features in X i.

Causal Interpretation and Hidden Confounding. To better understand what underlying DGPs
satisfy Assumption [I] we can examine a passable causal structure. This is visualized in Figure [Tp.
It requires that the features selected for perturbation, X p, are exogenous with respect to the residual
mechanism Z. Note that Z is allowed to depend on the fixed features X (e.g., heteroscedasticity
or confounding on X ), as long as it remains independent of X p.

However, recent work highlights that unobserved confounding is a primary driver of distribution
shift failures in real-world tabular data (Prashant et al. 2024} Reddy et al., 2025). When a latent
confounder U exists, its influence on Y that is not explained by X is absorbed into the residual term
Z. Consequently, Z acts as a noisy proxy for U. Figure[Ip illustrates the case where U causes both
Xpand Y, thereby creating a “backdoor path” Xp <— U — Y. Here, a statistical dependence arises
between X p and Z, violating Assumption Therefore, the validity of counterfactual augmentation
depends on identifying and excluding such confounded features from the perturbation set.
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(a) Assumptlon Satisfied (b) Assumption Violated

Figure 1: Causal Visualization of Residual Invariance. (a) The structure satisfies Assumption
(b) A violation due to unobserved confounding. Here, a latent variable U causes both Xp and
Y. Since the residual Z absorbs the variation of U, a dependency is created between Xp and Z,
invalidating the augmentation.

4 METHOD

In this section, we detail our proposed Counterfactual Residual Data Augmentation (CRDA) pro-
cedure for tabular regression. The main goal is to augment a limited dataset by synthesizing new
samples that remain true to the original noise distribution. Algorithm|l|outlines the full workflow.

4.1 ALGORITHMIC OVERVIEW

Step 1: Data Splitting and Baseline Training. We begin by splitting the original dataset D into
training and test sets. Let Dypain = {(Xi, i)}V, and Diesy = {(x;, yj)}?:NH. We then fit a
baseline regressor g(-) on Dyain. In practice, this model can be chosen from a variety of families
(e.g. MLP, XGBoost) depending on the user’s preference.

Step 2: Residual Computation. For each training sample (x;, y;), we compute the residual
zi = yi — g9(xi).
Intuitively, z; captures the latent factors not explained by g.

Step 3: Feature Selection. To ensure that perturbing a given feature does not spuriously alter
the residual structure, we identify and partition the features into (X p, Xr) so that X p are eligible
for perturbation and X g are held fixed. Concretely, we select X p by screening for (approximate)
conditional independence of the residual given the remainder:
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Algorithm 1 Counterfactual Residual Data Augmentation (CRDA)

Require: Dataset D of size n, baseline regressor g(-).
Hyperparameters: PERTURBATIONRANGE, AUGDATASIZEFACTOR.
Split D into Di;ain and Dyegs.
Train baseline model g(-) on Dyyain.
for each (x;,y;) in Dyyain do
2 i — 9(x3) > Compute residual
Select partition (Xp, Xp):
* PC algorithm to remove features directly connected to Z.
¢ Correlation check to remove features strongly associated with Z.
if Xp = & then
return Baseline g > No augmentation possible
Dang < 9
9: for each (x; p,Xi Rr,¥i) € Dirain do
10: for m = 1 to AUGDATASIZEFACTOR do > Repeat to generate multiple augmentations

11: X} p(m) € Perturb(x; p; X;, r, PERTURBATIONRANGE)

12: Xy € (X;,P(m)’ Xi,R) > Hold Xy fixed

13: Yiimy < 9(Xjny) + 2 > Preserve residual z;
14: Add (X(,,,)5 Yi()) to augmented set Dy

AN A

@ 2

15: Perform K -fold cross-validation on Dy, comparing unaugmented vs. augmented models.

16: Collect validation errors {egﬁ)aug,egﬁ)g K.

17: p-value « WilcoxonSignedRank({el(llfl)aug7 eg]fl)g})
18: if p-value > « then

19: return Baseline g > No statistically significant improvement
20: Dt < Dirain U Dayg

aug

21: Retrain a new regressor g’ on D;,.%

22: return Augmented regressor g’

1. A causal graph check applies the Peter-Clark (PC) algorithm (Spirtes et al., 2000) to
remove features that are directly connected to the residual Z in the learned graph structure.

2. A correlation check (using Pearson correlation tests) discards any features strongly corre-
lated with Z.

The surviving coordinates form X p; the complement forms X r, satisfying Assumption[I] (If none
survive, we skip augmentation and return the baseline g.)

Step 4: Input Perturbation. We expand our dataset by generating AUGDATASIZEFACTOR coun-
terfactual samples per original training point. For each (x; p,x; g) andeachm = 1,..., M, sample
a perturbed X/, ,, (m) and keep x; g unchanged:

Ximy = (Xipomys XiR)s  Xj p(m) < Perturb(x; p; X; r, PERTURBATIONRANGE).

Here, AUGDATASIZEFACTOR = M controls how many new points we generate per sample and
can be tuned to balance computational costs against potential gains in generalization. For each m,
the Perturb operation uses PERTURBATIONRANGE, which we can denote as p € (0, 1), to sample
a single scalar § ~ Unif[—p7 p}. The scalar is then used to compute x;P(m) = z; p(1 + 9).
This translates to essentially scaling each chosen feature by a random factor (e.g. £10%), but more
sophisticated or domain-specific transformations can be substituted.

Step 5: Counterfactual Label Assignment. For each perturbed input x (m)» W€ assign a counter-
factual label:

yg(m) = g(X;(7n)) + 2
Crucially, this preserves the original residual z;, thereby keeping the overall noise structure intact
under the perturbation (Proposition . The newly generated samples (x;;, y{) form an augmented
set Dayg-
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Step 6: Validation via Cross-Validation and Wilcoxon Signed-Rank Test. Before committing to
a final retraining, we evaluate whether the augmented samples significantly improve generalization.
Concretely, we run K -fold cross-validation on the original training data, comparing two models:

1. Unaugmented model: trained on the fold’s training portion as is.

2. Augmented model: trained on the fold’s training portion plus its augmented points (gen-
erated using the same procedure above).

We collect the validation errors (e.g. MSE) across the K folds for both models and perform a non-
parametric Wilcoxon signed-rank test (Wilcoxon,|1945) on the paired errors. If the resulting p-value
is below a chosen significance level (e.g. & = 0.05), we conclude that augmentation yields a statis-
tically significant improvement; otherwise, we revert to the baseline g.

Step 7: Dataset Augmentation and Retraining. If the Wilcoxon test finds a significant improve-
ment, we combine Dj;,in and D, into a single augmented dataset
DivE = Dtrain ) Da11g7

train

We then retrain a final model ¢’(-) with this expanded dataset to use on the test set.

4.2 DISCUSSION OF KEY DESIGN CHOICES

Residual Invariance and Causal Assumptions. The pivotal assumption in our framework is that
for certain features, perturbing them does not induce a change in the residual distribution. Crucially,
CRDA does not require making any causal assumptions about whether X — Y, Y — X or the
absence of confounders. In any regression setting, the joint distribution P(X,Y") can be factorized
as P(Y|X)P(X), and the conditional component can be represented by a structural equation Y =
9(X) 4+ Z, where g is a deterministic function and Z is a noise term that may depend on X. The
only (non-causal) assumption that we make is Assumption [I] where Z must be independent of X p
given X . Our method aims to approximate this decomposition by learning the base predictor g and
estimating the residual z = y — g(z).

The practical steps in Algorithm |1} such as the PC algorithm and correlation checks, are empirical
heuristics designed to identify a feature subset X p for which Assumption|l|is likely to hold. When
we reuse a specific residual z; to construct a counterfactual label y' = g(z') + z;, we are not
assuming the noise value itself is invariant, but rather that we are reusing a valid sample from an
invariant noise distribution P(Z). This is a practical choice that avoids the need to explicitly model
the entire noise distribution.

Model-Agnostic Nature. Although our algorithm is illustrated with a neural or tree-based base-
line, the same counterfactual logic applies to any parametric or nonparametric regressor. The key
is to view each training outcome as a sum of a learned systematic component and a noise term.
Perturbations occur in the input space, but the residual remains anchored to its original data point.

It’s worth clarifying that “model-agnostic” means CRDA can be affached to any regression model,
not that it is guaranteed to improve every such model. The method includes built-in safeguards to
prevent negative impacts. If the residual-feature independence checks (the PC algorithm and Pearson
correlation test) fail to identify any suitable features to perturb, or if the final Wilcoxon signed-rank
test concludes that the augmentation does not provide a statistically significant improvement, CRDA
gracefully defaults to the untouched baseline model. This ensures augmentation is only applied
when there is empirical evidence of its benefit.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP AND PROTOCOL

High-Level Goal. Our primary goal is to investigate whether CRDA can reduce test MSE on tabular
regression tasks, particularly under conditions of data scarcity. To this end, we evaluate performance
across nine benchmark datasets and a synthetic task with a known ground-truth DGP.

Comparisons and Baselines.
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1. No Augmentation (Baseline): Train the model on the raw data only.

2. CRDA Augmentation: Train the same model class on the union of the raw data and the
counterfactual samples generated by CRDA.

3. Generative Model Augmentation: The baseline model architecture trained on the union of
the original data and synthetic samples produced by state-of-the-art tabular data generators

Hyperparameter Search We tune MLPRegressor and XGBoostRegressor with scikit-learn’s
RandomizedSearchCV (Pedregosa et al 2011) (3-fold) for 20 trials each, totaling 60 fits per
baseline. CRDA also introduces three additional knobs: AUGDATASIZEFACTOR, PERTURBATION-
RANGE and MAXNUMFEATURESTOPERTURB. We tune these via Opruna (TPE sampler)
for up to 30 trials, similarly minimizing validation error.

Datasets and Preprocessing We consider nine regression datasets (listed in Table [I)) from the
University of California, Irvine (UCI) Machine Learning Repository, the Penn Machine Learning
Benchmarks (PMLB) collection, and Kaggle. These were chosen to represent a variety of numeric,
tabular domains and sample sizes. We drop duplicate rows and NaN values, then apply standardiza-
tion per feature. For each dataset, we produce five training subsets, ranging from n/5 up to n. All
subsets are split 8020 into training and test sets.

Evaluation Metrics and Significance Tests We report the MSE (mean-squared error on the held-
out test set) for our settings and their relative change (negative values indicate improvement).

A% = 100 (MSECRDA - MSEbaseline)/MSEbaseline

Significance is assessed with a Wilcoxon signed-rank test across 10 CV folds (Wilcoxonl, [1945)).

5.2 RESULTS AND ANALYSIS

Our main findings are presented in Table[T|and summarized in Figure[2] We see that CRDA provides
consistent and substantial reductions in test MSE across nearly all datasets and training set sizes. As
shown in Figure 2] the MLP Regressor benefits most significantly, achieving an average MSE
reduction of 22.9% across all nine datasets. This highlights CRDA’s ability to provide valuable
signal for data-hungry neural models. For instance, on the Parkinson’s Monitoring and House Price
datasets, MLP models augmented with CRDA see their error reduced by over 30%. The XGB
Regressor also shows consistent improvement, with an average MSE reduction of 6.4%.

Table [T] details the performance at different data scales, averaged across 15 unique seeds. Green
cells indicate instances where CRDA’s cross-validation performance was found to be statistically
significant via the Wilcoxon signed-rank test, prompting the final model to be retrained with aug-
mented data. In a few cases (red cells), the test did not find a significant improvement. This built-in
safeguard prevents CRDA from being applied where it might not be beneficial. While less frequent,
we do note that this filter can be prone to error, particularly depending on sample size, as discussed
in Section[6l
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Figure 2: MSE percentage change for each dataset averaged over the five different training-subset
sizes reported in TableElwith error bars corresponding to standard error. Lower is better.
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Table 1: Augmentation results for XGB and MLP evaluated and averaged across 15 seeds. Cells are
green when data augmentation was more frequently selected to proceed according to the Wilcoxon
signed rank test and red otherwise. Lower is better |.

XGB | MLP |
MSEpaseline  MSEcrpDA A%  MSEpaseline  MSEcrpDA A%

1638 0.000968 0.000895 -6.99 0.001124 0.000869  -20.24
3276 0.000885 0.000794  -9.47 0.000996 0.000853  -14.03
CPU Performance (Olson et al.,|2017a) 4914 0.000772 0.000721 -6.20 0.000931 0.000822  -11.31
6552 0.000726 0.000693 -4.13 0.000897 0.000795  -10.48
8190 0.000738 0.000695 -5.19 0.000869 0.000780  -10.23

1287  0.017775 0.016974  -4.54 0.020308 0.016285  -18.36
2574 0.016361 0.015762  -3.73 0.017467 0.014547  -16.69
Satellite Image (Olson et al.}[2017b) 3861 0.014599 0.013898 -4.79 0.015848 0.012115  -23.14
5148  0.013661 0.013004  -4.73 0.014153 0.010760  -23.72
6435 0.012540 0.011863  -5.31 0.012318 0.009888  -19.66

1314 0.007424 0.007208 -2.82 0.007524 0.006970  -7.22
2628 0.006022 0.006034 0.20 0.006214 0.005619 -9.17
Wind Power (Haslett & Raftery,|1989) 3942 0.005863 0.005785 -1.33 0.005930 0.005395 -9.03
5256 0.005702 0.005624  -1.40 0.005675 0.005326 -6.15
6570 0.005276 0.005218 -1.08 0.005298 0.005002  -5.56

200 0.006520 0.005643  -12.00 0.019929 0.013874  -28.80
400 0.003267 0.003124  -3.16 0.006101 0.003839  -36.93
Synthetic Regression (Olson et al.,2017c) 600 0.002640 0.002416 -7.94 0.003213 0.002275  -27.91
800 0.001646 0.001612 -2.23 0.002225 0.001402  -34.12
1000 0.001524 0.001454  -4.59 0.002200 0.001231  -42.33

201 0.007766 0.007011 -8.01 0.010334 0.007925  -17.80
402 0.004929 0.004532  -8.43 0.006355 0.004956  -19.83
Concrete Strength (Yehl|[1998) 603 0.004733 0.004269  -9.75 0.006024 0.004939  -17.64
804 0.003651 0.003068  -15.72 0.004966 0.003612  -24.77
1005 0.002898 0.002559  -12.19 0.004224 0.003064  -26.90

153 0.003991 0.003445  -13.33 0.005831 0.004258  -25.10
306 0.002332 0.002061  -12.20 0.003213 0.002332  -28.13
Energy Efficiency (Tsanas & Xifara,[2012) 459 0.001653 0.001432  -10.55 0.001884 0.001063  -42.98
612 0.001281 0.000998  -19.35 0.000906 0.000522  -40.71
765 0.000968 0.000761  -20.96 0.000527 0.000348  -28.31

200 0.000785 0.000635  -14.23 0.001021 0.000572  -40.57
400 0.000327 0.000310  -5.39 0.000410 0.000249  -37.02
House Price (Community}, 2024) 600 0.000270 0.000255 -4.87 0.000290 0.000197  -30.14
800 0.000243 0.000220  -9.86 0.000232 0.000158  -30.32
1000 0.000196 0.000183 -6.50 0.000192 0.000138  -26.97

1175 0.000786 0.000720  -8.40 0.001650 0.001013  -36.17
2350 0.000344 0.000317 -6.60 0.000799 0.000537  -31.82
Parkinson’s Monitoring (Tsanas & Little [2009) 3525 0.000207 0.000200  -2.79 0.000484 0.000296  -36.60
4700 0.000148 0.000138 -6.26 0.000422 0.000213  -46.40
5875 0.000110 0.000113 1.65 0.000259 0.000129  -47.23

Dataset Size

1063 0.020573 0.020621 0.31 0.022912 0.022835 -0.34
2126 0.014157 0.014294 1.01 0.015394 0.014581 -5.24
Wine Quality (Cortez et al.,|2009) 3189 0.013910 0.013857 -0.33 0.014784 0.014225 -3.63

4252 0.013320 0.013243 -0.61 0.013862 0.013235 -4.44
5315 0.013319 0.013177 -1.08 0.013972 0.013279 -4.99

To better understand how CRDA’s effectiveness scales with sample size in a controlled setting, we
conducted an experiment on a synthetic DGP with a known ground-truth independence structure:

Y = X7+ XoXs5+Z,  where Z 1L (X, X, X3)

We generated 50,000 samples and applied CRDA at various sample sizes. The results, shown in
Figure [3] reveal that at very low sample sizes (<2.5k), CRDA offers minimal benefit because the
base predictor is too inaccurate to produce meaningful residuals. Conversely, at very high sample
sizes (>30k), the baseline model is already so accurate that there is little room for improvement.
The greatest MSE reduction occurs in a “sweet spot” (between 2.5k and 20k samples), where the
baseline model has learned the main signal but still benefits from the localized exploration of the
feature space that CRDA provides. This confirms that CRDA is most impactful in low to moderate
data-scarce regimes, which are common in real-world applications.

Finally, we benchmarked CRDA against a comprehensive suite of baselines, including regression
augmentation methods (C-Mixup (Yao et al., 2022), ADA (Schneider et al., |2023)) and deep gen-
erative models (TabDDPM (Kotelnikov et al.| [2023), TVAE (Xu et al.| 2019), CTGAN (Xu et al.
2019)). As shown in Table[2] CRDA demonstrates superior stability and performance. While geo-
metric methods like ADA and C-Mixup provide gains in specific settings, they exhibit catastrophic
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failure modes in others (e.g., increasing MSE by over 100% on Synthetic Regression and Parkin-
son’s). Similarly, deep generative models significantly degrade performance more often, likely due
to difficulties in capturing the precise conditional distribution P(Y'|X) required for regression. In
contrast, CRDA’s residual-preserving mechanism ensures that synthetic samples remain faithful to
the underlying noise structure. Across all datasets, CRDA is the only method that reliably improves
performance for both XGBoost and MLP models without the risk of significant degradation.

Table 2: The percent MSE change for XGB and MLP base regressors. We compare CRDA against
specialized regression augmentations (C-Mixup (Yao et al., 2022), ADA (Schneider et al., [2023)))
and generative models (TabDDPM (Kotelnikov et al. [2023), TVAE (Xu et al.,[2019), CTGAN (Xu
et al.,[2019)). Averaged across 10 seeds, reporting standard error. Lower is better J.

% MSE Change |

Dataset Model
Ac—Mixup JAYNSYN ATabDDPM ATvVAE AcTGAN AcRrDA
CPU Performance XGB 1.7+ 15 1.94+0.6 36.5+4.0 23.6+3.2 475435 -14 + 0.7
(Olson et al.J2017a) MLP 09 £ 1.0 -0.6 £ 1.0 273 +48 30.6 £ 4.8 141.4 £ 18.6 -12.0 + 1.0
Satellite Image XGB 64+ 1.7 144+ 1.1 107 £ 14 13.1 £23 86+13 -0.7 + 0.7
(Olson et al.)2017b) MLP -1.0 £ 2.1 33124 99 +£3.0 21.84+43 50.5+5.6 <233+ 15
‘Wind Power XGB -1.94+0.6 -0.24+0.3 -04+05 49408 87+13 -2.6 +0.3
(Haslett & Rafteryl[1989} MLP 49 +34 147 £2.0 71+ 14 49+t 14 187 £24 -8.0 £ 1.1
Synthetic Regression XGB 141.5 + 31.8 183+ 3.6 250+ 82 117.0 4+ 20.0 1584 +23.5 23+18
(Olson et al.J2017c] MLP 78.1 £ 19.2 16.7 £ 6.4 -192 427 68.0 = 11.3 191.5 +29.8 -33.3+ 38
Concrete Strength XGB 2.8 +1.7 0.1 +1.4 -1.1 +3.0 8.1+27 26.1 +4.4 -1.7+1.9
(Yeh,|1998) MLP -4.84+29 3.8+ 1.5 -59+29 348 £6.3 135.1 £ 17.7 -154 +2.3
Energy Efficiency XGB -18.0 +9.1 -20.7 £ 3.5 34477 -18.3 + 8.0 -25.0 + 6.5 -10.7 + 3.8
(Tsanas & Xifaral[2012} MLP 119+ 142 =229 + 4.1 1.1 £11.1 131.8 £32.0 3537 £52.2 -325+54
House Price XGB -12.8 + 126 -429 +17.4 -134 4+ 129 297.5 £ 93.6 817.7 £+ 142.1 -12.8 + 3.6
(Community, 2024 MLP -51.0 = 5.1 -52.6 + 5.8 -4.3 4+ 16.1 996.5 + 286.4 3036.1 £ 373.9 -423+34
Parkinson’s Monitoring XGB 105.1 +13.2 895+ 11.1 286.7 +25.9 434.7 + 56.5 596.9 + 55.2 -0.3+19
(Tsanas & Little]|2009) MLP 102.6 £+ 34.9 19.5 £ 10.1 164.6 + 27.1 660.6 + 128.0 1280.3 £+ 139.3 -51.1 + 5.1
Wine Quality XGB -2.04+0.5 -0.0 £ 0.6 -2.6 +0.7 -0.5 4+ 0.6 0.6 £0.9 28 +04
(Cortez et al./2009} MLP 13.1+£52 23.6£2.5 -5.54+ 0.6 -1.24+09 22405 294038
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Figure 3: Synthetic sample-size-scaling experiment with a DGP of known independence for the
residuals Z and features X. For both XGB and MLP base models, we observe a “sweet spot” where
CRDA yields the largest MSE reduction (typically at a lower sample size).

6 LIMITATIONS

CRDA is currently designed for regression tasks; extending its principles to classification, where
residuals are not straightforwardly defined, is a direction for future work.

The core of our method’s validity hinges on a key assumption: the model’s residual noise, Z, is
conditionally independent of the features we choose to perturb, Xp, given the features we hold
fixed, Xr (Assumption [T). In practice, verifying this assumption from finite data is a primary
challenge. A poorly fitted base predictor may yield residuals that retain dependencies on all input
features, causing interventions on X to break the required noise invariance. To address this, CRDA
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employs a two-stage filtering process. First, we use the PC algorithm and a Pearson correlation test
as a risk-control heuristic to screen for candidate features that are likely to satisfy Assumption
We acknowledge this screen is imperfect; the PC algorithm can fail in the presence of unobserved
confounders, and correlation tests may not detect non-linear dependencies.

However, these filters are not intended to be infallible but rather a practical first line of defense. The
theoretical guarantees of the PC algorithm, for instance, are well-studied; under standard assump-
tions, its error probability of incorrectly identifying an edge decays exponentially with sample size
(Kalisch & Biihlman, [2007). This sample consistency suggests that the risk of our filter admitting
a feature that violates Assumption [I|diminishes as more data becomes available. More importantly,
CRDA incorporates a second, decisive safety gate: the Wilcoxon signed-rank test. This test evalu-
ates the realized impact of augmentation on a validation set. If the generated samples do not yield
a statistically significant improvement, the augmentation is discarded. This fail-safe mechanism en-
sures that we either improve the baseline or abstain from augmentation, thereby mitigating the risk
of performance degradation from an imperfect initial screen.

To address concerns that a strong base learner is required, we include linear regression experiments
in Appendix |G| In every dataset/fold, the Wilcoxon gate produced p > 0.05, so CRDA abstained. If
one ignores the gate and forces augmentation, performance generally degrades or does not improve,
illustrating that the safety checks are beneficial and block harmful augmentation for weak baselines.

Finally, the performance of CRDA is sensitive to both dataset size and the choice of the base predic-
tor. For very large datasets, the need for augmentation diminishes, and CRDA offers little benefit.
Conversely, if a dataset is too small, the base model may be too weak to produce meaningful residu-
als that are even approximately independent of the features, and our statistical tests will lack power.
This can be seen in our sample-size-scaling experiment in Figure 3]

7 CONCLUSION

We described a new data augmentation technique for regression called CRDA. CRDA is model-
agnostic and it does not assume any domain knowledge such as specific transformations that pre-
serve labels. Instead, it leverages counterfactual reasoning and the invariance of the residual noise
distribution. We demonstrated the effectiveness of CRDA in data scarce regression tasks where it
helped improve predictions made by representative base predictors including XGBoost and multi-
layer perceptrons. We also displayed substantially stronger and more reliable results when compared
to state-of-the-art tabular data generators.

Several directions for future work remain. The first is to extend CRDA to classification tasks. The
key challenge is due to the non-numeric nature of residuals, though embedding-based transforma-
tions offer a potential path. The second would be to explore alternative methods in our feature
partitioning step, such as formal proximal causal inference techniques. This may enable CRDA to
better adjust for hidden factors rather than simply discarding confounded features.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Takuya Akiba, Shinji Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD ’19), pp. 2623-2631.
ACM, 2019. doi: 10.1145/3292500.3330701.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2020.

Rina Foygel Barber and Emmanuel Candes. Predictive inference with the jackknife+. Annals of
Statistics, 49(1):486-507, 2021.

Paula Branco, Luis Torgo, and Rita P. Ribeiro. SMOGN: a pre-processing approach for imbalanced
regression. In Proceedings of the First International Workshop on Learning with Imbalanced
Domains: Theory and Applications (LIDTA), 2017.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: Syn-
thetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357,
2002. doi: 10.1613/jair.953.

Tiangi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785-794. ACM, 2016. doi: 10.1145/2939672.2939785.

Kaggle Community. House Prices: Advanced Regression Tech-
niques (Dataset). https://www.kaggle.com/competitions/
house-prices-advanced-regression-techniques, 2024.  Accessed 16 May
2025.

Paulo Cortez, Antonio Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Wine Quality,
2009. URL https://archive.ics.uci.edu/dataset/186/wine%$2Bquality.
UCI Machine Learning Repository.

Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. AutoAugment:
Learning augmentation policies from data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 113-123,2019.

Bradley Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):
1-26, 1979.

Manuel Fernandez-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hun-
dreds of classifiers to solve real world classification problems? Journal of Machine Learning
Research, 15(1):3133-3181, January 2014. ISSN 1532-4435.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29(5):1189-1232, 2001.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Adaptive Computation and
Machine Learning. MIT Press, Cambridge, MA, November 2016. ISBN 978-0262035613. URL
https://www.deeplearningbook.org/.

John Haslett and Adrian E. Raftery. Irish Wind Speed (Malin Head, 1961-1978), 1989. URL
https://www.rdocumentation.org/packages/gstat/topics/wind. Daily av-
erage wind speeds at 12 Irish stations.

Paul W. Holland. Statistics and causal inference. Journal of the American Statistical Association,
81(396):945-960, 1986. doi: 10.1080/01621459.1986.10478354.

Seong-Hyeon Hwang and Steven Euijong Whang. Regmix: Data mixing augmentation for regres-
sion. arXiv preprint arXiv:2106.03374, 2021.

Markus Kalisch and Peter Bithman. Estimating high-dimensional directed acyclic graphs with the
pc-algorithm. Journal of Machine Learning Research, 8(3), 2007.

11


https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques
https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques
https://archive.ics.uci.edu/dataset/186/wine%2Bquality
https://www.deeplearningbook.org/
https://www.rdocumentation.org/packages/gstat/topics/wind

Under review as a conference paper at ICLR 2026

Murat Kocaoglu, Charles Snyder, Sriram Chen, and Alexandros G. Dimakis. Causalgan: Learn-
ing causal implicit generative models with adversarial training. In International Conference on
Learning Representations (ICLR), 2018.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. TabDDPM: Model-
ing tabular data with diffusion models. In Proceedings of the 40th International Conference on
Machine Learning (ICML), pp. 14801-14820, 2023.

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. Estimating mutual information. Phys-
ical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(6):066138, 2004.

Chaochao Lu, Biwei Huang, Ke Wang, José Miguel Herndndez-Lobato, Kun Zhang, and Bernhard
Scholkopf. Sample-efficient reinforcement learning via counterfactual-based data augmentation.
CoRR, abs/2012.09092, 2020. URL https://arxiv.org/abs/2012.09092.

Dhruv Mahajan, Saurabh Tripathi, Christopher Homan, Serge Belongie, and Pietro Perona. Coun-
terfactual data augmentation for vision transformers. arXiv preprint arXiv:2303.17491, 2023.

Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore.
PMLB Dataset 227 cpu_small, 2017a. URL https://github.com/EpistasisLab/
pmlbl Penn Machine Learning Benchmarks, version 2025-05-16.

Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore.
PMLB Dataset 294 _satellite_image, 2017b. URL https://github.com/EpistasisLab/
pmlbl Penn Machine Learning Benchmarks, version 2025-05-16.

Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore.
PMLB Dataset 623 _fri_c4_1000_10, 2017c. URL https://github.com/EpistasisLab/
pmlbl Synthetic Friedman #4 variant; Penn Machine Learning Benchmarks.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2 edition,
2009.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake VanderPlas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duch-

esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:
2825-2830, 2011.

Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. Elements of Causal Inference: Founda-
tions and Learning Algorithms. The MIT Press, 2017.

Parjanya Prashant, Seyedeh Baharan Khatami, Bruno Ribeiro, and Babak Salimi. Scalable
out-of-distribution robustness in the presence of unobserved confounders. arXiv preprint
arXiv:2411.19923, 2024.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Abbavaram Gowtham Reddy, Celia Rubio-Madrigal, Rebekka Burkholz, and Krikamol Muandet.
When shift happens—confounding is to blame. arXiv preprint arXiv:2505.21422, 2025.

Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Annals of Statistics, 2(1):34-58, 1974. doi: 10.1214/a0s/1176342660.

Nora Schneider, Shirin Goshtasbpour, and Fernando Perez-Cruz. Anchor data augmentation. Ad-
vances in Neural Information Processing Systems, 36:74890-74902, 2023.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, 2nd edition, 2000.

Athanasios Tsanas and Max A. Little. Parkinsons Telemonitoring, 2009. URL https://
archive.ics.uci.edu/ml/datasets/parkinsons%2Btelemonitoring, UCI
Machine Learning Repository.

12


https://arxiv.org/abs/2012.09092
https://github.com/EpistasisLab/pmlb
https://github.com/EpistasisLab/pmlb
https://github.com/EpistasisLab/pmlb
https://github.com/EpistasisLab/pmlb
https://github.com/EpistasisLab/pmlb
https://github.com/EpistasisLab/pmlb
https://archive.ics.uci.edu/ml/datasets/parkinsons%2Btelemonitoring
https://archive.ics.uci.edu/ml/datasets/parkinsons%2Btelemonitoring

Under review as a conference paper at ICLR 2026

Athanasios Tsanas and Angeliki Xifara. Energy Efficiency, 2012. URL https://archive.
ics.uci.edu/ml/datasets/energy%2Befficiency. UCI Machine Learning Repos-
itory.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80-83,
1945. ISSN 0099-4987. doi: 10.2307/3001968. URL https://doi.org/10.2307/
3001968.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. Advances in neural information processing systems, 32, 2019.

Huaxiu Yao, Yiping Wang, Linjun Zhang, James Zou, and Chelsea Finn. C-Mixup: Improving
generalization in regression. Advances in Neural Information Processing Systems (NeurIPS), 35:
32422-32437, 2022.

I-Cheng Yeh. Concrete Compressive Strength, 1998. URL https://archive.ics.uci.
edu/ml/datasets/concrete%2Bcompressive%2Bstrength. UCI Machine Learn-
ing Repository.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngsook Yoo.
CutMix: Regularization strategy to train strong classifiers with localizable features. Proceedings
of the IEEE International Conference on Computer Vision (ICCV), pp. 6023-6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empir-
ical risk minimization. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2017.

13


https://archive.ics.uci.edu/ml/datasets/energy%2Befficiency
https://archive.ics.uci.edu/ml/datasets/energy%2Befficiency
https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968
https://archive.ics.uci.edu/ml/datasets/concrete%2Bcompressive%2Bstrength
https://archive.ics.uci.edu/ml/datasets/concrete%2Bcompressive%2Bstrength

Under review as a conference paper at ICLR 2026

APPENDICES

A IMPLEMENTATION DETAILS

All experiments were conducted in Python, leveraging standard libraries for machine learning
and hyperparameter optimization. We used scikit-learn for the MLPRegressor baseline
(Pedregosa et al., 2011), XGBoost for the XGBoostRegressor baseline (Chen & Guestrin,
2016), and Optuna for tuning CRDA’s specific hyperparameters (Akiba et al.,[2019)).

Our experimental protocol uses 10-fold cross-validation (CV), and we seed all random number gen-
erators to ensure reproducibility. Computations were performed on a single AWS c7i.24xlarge
instance equipped with 96 vCPUs and 192 GB of RAM. To facilitate the complete reproduction of
our findings, we have made the full study logs, JSON configuration files, and source code available
in the project repository, code included in supplementary material.

B DATASET SUMMARY

Table [3]lists the nine tabular-regression benchmarks used in the paper, with their total sample count,
dimensionality (# numeric columns), and provenance repository.

Table 3: Basic statistics of the evaluation datasets, including number of samples (75amp) and number
of features (Nfeatures)-

Dataset Ngamp  Mfeatures  SOUTCE

CPU Performance 8192 12 PMLB (Olson et al.,[2017a)
Satellite Image 6435 36 PMLB (Olson et al., 2017Db)
Wind Power 6574 14 UCI (Haslett & Raftery, |1989)
Synthetic Regression 1000 10 PMLB (Olson et al.,[2017c)
Concrete Strength 1005 8 UCI (Yeh,|1998)

Energy Efficiency 768 9 UCI (Tsanas & Xifara, [2012)
House Price 1000 7 Kaggle (Community, |2024)
Parkinson’s Monitoring 5875 20 UCI (Tsanas & Littlel |2009)
Wine Quality 5318 11 UCI (Cortez et al.,[2009)

C COMPLETE EXPERIMENTAL PROTOCOL

Configuration Objects. We centralize all experiment settings (e.g. dataset path, model type,
global seed, CRDA knobs) in a Python class Conf ig. Each run instantiates a Conf i g with specific
arguments and passes it to our Experiment harness, which saves the resulting configuration to a
JSON file for reproducibility.

Listing 1: Example truncated config file for an XGB run.

{
"baseline": "xgboost",
"dataset_path": "../data/WineQuality.csv",
"sample_sizes": [1063, 2126, 3189, 4252, 53157,

"ignore_filter": true,

"hyperparam_tune": true,

"results_dir": "../experiments/WineQuality",

"...": "More fields omitted (test_size, num_seeds, p_wilcoxon_threshold
, etc.)"

14
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Key Fields and Usage

* Model parameters: baseline can be set to “mlp” or “xgboost”; we do not alter other
hyper-parameters (those are tuned via RandomizedSearchCV).

e CRDA knobs: aug_data_size_factor, max_.n_features_to_perturb and
max_perturb_percent. These are also tunable parameters (via Optuna). They spec-
ify how many counterfactual samples to generate, how many perturbable features we per-
turb and by how much; see Section[E]

* Data splits: sample_sizes enumerates partial subsets of a dataset (e.g. %, ..., n), and
test_size sets the final train—test ratio.

* Miscellaneous toggles: hyperparam_tune (whether to run a cross-validated search),
ignore_filter (bypass CRDA’s feature independence checks), save_plots, etc.

For each experiment, the Experiment class reads the config object, runs the pipeline (train-
ing, augmentation, evaluation), and dumps logs plus final results in a timestamped directory. By
reloading config. json viaConfig.from_dict, one can exactly reproduce the same run.

D HYPER-PARAMETERS AND SEARCH SPACES

The two baseline families—-MLPRegressor and XGBoostRegressor—share a hybrid strategy: we fix
well-established architectural or optimisation knobs to textbook defaults, while searching over the
handful of hyper-parameters that most strongly drive bias—variance trade-offs. This mirrors common
practice in tabular ML benchmarks (Fernandez-Delgado et al.,[2014; [Friedman, 2001)) and keeps the
search budget (20 trials per 3-fold, per dataset, per baseline) focused on the levers that matter.

Why these choices? For MLPs we retain the ReLU—Adam recipe that has been shown to be robust
for small/medium tabular tasks (Goodfellow et al.,2016). We enable adaptive learning-rate and early
stopping to guard against over-training, and explore only depth/width (‘hidden_layer_sizes) and
three learning-dynamics scalars («, learning_rate_init, tol). For XGBoost we follow the histogram
grow policy (“t ree_method=h1ist”) that is memory-friendly on CPUs, fix 1 000 boosting rounds
(with early stopping inside the CRDA loop), and search the usual five knobs that govern tree shape,
sampling and shrinkage.

Median wall-clock per trial on a ¢ 71 .24x1large is ~9s (MLP) and ~4s (XGB)E] Tables E] and
enumerate the search priors together with the modal best value across datasets.

Table 4: MLPRegressor hyper-parameters searched with RANDOMIZEDSEARCHCYV. Ranges use
log-uniform (LogU) or categorical priors.

Parameter Prior / Range Modal best
hidden_layer_sizes  {(128,64, 32), (128, 64), (64,32), (64,)} (128,64,32)
a (L2) LogU(1075,1073) 0.00040
learning_rate_init ~ LogU(1073,1072) 0.00942

tol LogU(1075,107%) 0.00009
Fixed for all runs

activation relu

solver adam

batch_size 32

max_iter 1000

learning_rate adaptive

early_stopping true

validation_fraction 0.10

n_iter_no_change 20

2Full timing logs available in experiments/full_reproduction.ipynb.
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Table 5: XGBoostRegressor hyper-parameters searched with RANDOMIZEDSEARCHCV. Log-
spaces are base-10.

Parameter Prior / Range Modal best
learning _rate log;,[1073,1071] (10 pts)  0.02154
max_depth {3,4,6} 6
min_child_weight {1,5} 5
subsample {0.7,1.0} 0.7
colsample_bytree {0.7,1.0} 0.7
reg_lambda log;,[1073,10] (6 pts) 0.03981
Fixed for all runs

objective reg:squarederror

tree_method hist

n_estimators 1000

reg_alpha 0.0

early_stopping_rounds 20

E CRDA KNOB SELECTION & SENSITIVITY

CRDA exposes three augmentation knobs. During a 30-trial OPTUNA-TPE search (per dataset, per
baseline) we sample from the priors in Table [6} all other implementation details are inherited from
Algorithm 1 (main paper).

* max n features to_perturb controls hiow many invariant features are jointly
edited, trading off sample realism against diversity.

* aug data_size factor decides the # of counterfactuals per real point; values < 1
mitigate class-imbalance—style bias, whereas > 1 favors variance reduction.

* max perturb percent sets the half-width of the [—p, +p| uniform scaling band;
larger p injects broader counterfactual sweep but risks violating local linearity assumptions
of the residual.

These three parameters explain the vast majority of between-trial variance in validation MSE, so
limiting OPTUNA to a small budget remains effective. Median trial time is ~7.5s (MLP) and ~3.7s
(XGB).

Table [6]reports the modal best value across the nine benchmarks.

Table 6: CRDA augmentation knobs: search priors and modal best values.

Knob Search prior / range Modal best
max_n_features_to_perturb  {1,2,3,4,5} 2
aug_data_size_factor {0.50,0.75,1.00,1.25,1.50} 1.25

max _perturb_percent {0.10,0.20,...,1.00} 0.7

ONE-DATASET SWEEP (HOUSE PRICE)

For illustration, we fix two of the three knobs at their modal best values (from Table @ and sys-
tematically vary the remaining knob. Figures [d]and[5]show the resulting percentage change in MSE
(lower is better) on the House Price dataset, averaged over five random seeds. We make several
observations:

* Augmenting data size (aug_data_size_factor) appears more beneficial for MLP,
presumably because additional training samples reduce overfitting; by contrast, XGB sees
weaker or even mixed effects here, consistent with the notion that tree ensembles can al-
ready leverage smaller sets effectively.
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* Number of perturbed features (max_n_features_to_perturb) shows an opposite
preference: XGB yields stronger gains when more features are jointly modified, whereas
MLP performance degrades if we perturb too many simultaneously (likely hurting the local
consistency of the residual).

e Perturbation magnitude (max perturb_percent) also diverges across baselines:
larger scales help XGB discover more diverse synthetic points, but MLP tends to prefer
smaller shifts in order to maintain stable gradients in training.

In short, although both models benefit from CRDA overall, their ideal hyper-parameter configura-
tions differ. This shows the importance of model-aware tuning for effective data augmentation.
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Figure 4: CRDA knob-sensitivity on the MLP baseline (HousePrice dataset).
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Figure 5: CRDA knob-sensitivity on the XGB baseline (HousePrice dataset).

F VALIDATION OF ASSUMPTIONS AND COMPONENT ANALYSIS

In this section, we provide a deeper analysis of the CRDA framework. First, we empirically validate
the core residual independence assumption using Mutual Information. Second, we perform ablation
studies to demonstrate the benefits of applying CRDA compared to simplified baselines.

F.1 EMPIRICAL VALIDATION OF RESIDUAL INDEPENDENCE

A core theoretical assumption of CRDA (Assumption []) is that the residual noise Z is conditionally
independent of the features selected for perturbation (Xp), i.e., P(Z|Xp, Xr) = P(Z|Xg). To
validate this assumption and assess the effectiveness of our PC-algorithm/Correlation filter, we con-
ducted an analysis measuring the Mutual Information (MI) between the residuals and the features.
Mutual Information is an empirical estimator of the KL-Divergence Dy 1, (P(Z, X)||P(Z)P(X));
a value of zero indicates perfect independence.
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We performed this evaluation across all 9 benchmark datasets using the XGBoost regressor over 15
random seeds. For each run, we calculated the MI (using the Kraskov KSG estimator (Kraskov et al.,
2004))) for the set of features Selected (X p) by CRDA versus the set of features Rejected (XR).

The results are presented in Table [/} We observe that for datasets showing stronger feature-residual
dependence (e.g., Energy Efficiency, House Price), the features rejected by our filter display signifi-
cantly higher Mutual Information with the residuals (up to ~ 3 higher) than the selected features.
This confirms that the filter effectively identifies and removes features that would violate the inde-
pendence assumption. For other datasets (e.g., Wine Quality, Wind Power), the MI scores for both
selected and rejected features are uniformly low, indicating that the residuals are naturally indepen-
dent of the features in these domains, and the filter correctly permits a wider range of perturbations.

Table 7: Evaluation of Feature-Residual Independence via Mutual Information (MI). We report the
MI (in nats) between the model residuals Z and the features X, comparing features Selected by
CRDA vs. those Rejected. Results are averaged over 15 seeds with standard errors. The Ratio
column highlights the effectiveness of the filter in reducing divergence (higher is better).

Dataset Selected Features (X p) Rejected Features (X ) Divergence Ratio
(Lower is better) (Higher implies dependence) (M Ige;/MIger)
House Price 0.0056 + 0.0020 0.0155 + 0.0023 2.75x%
Energy Efficiency 0.0054 + 0.0012 0.0160 + 0.0023 2.94x
Parkinson’s Monitoring 0.0054 + 0.0006 0.0103 £ 0.0007 1.92x
Synthetic Regression 0.0073 +0.0013 0.0136 + 0.0025 1.85x%

Concrete Strength 0.0203 + 0.0024 0.0320 £ 0.0035 1.58x
CPU Performance 0.0136 £ 0.0010 0.0144 £ 0.0014 1.06x
Wine Quality 0.0110 £ 0.0009 0.0136 £ 0.0011 1.23x
Wind Power 0.0065 +£ 0.0007 0.0084 £ 0.0007 1.29x
Satellite Image 0.1031 £ 0.0013 0.1149 £ 0.0009 1.11x

F.2 ABLATION STUDIES

To verify that the independence assumption verified above translates to performance gains, we com-
pare CRDA against two simplified ablation baselines:

* Global Perturbation: All features are perturbed randomly (Xp = X), ignoring the PC-
algorithm and correlation checks.

* Label Invariance: Features are perturbed, but the label is kept fixed (3’ = y), rather than
recalculating ¢y = g(z') + 2.

Table |8 presents the percentage change in MSE (A%) relative to the unaugmented base regressor
across 3 representative datasets. CRDA consistently yields the largest error reduction. Notably,
simple baselines often yield negligible improvements or even degrade performance (positive A%).

Table 8: Ablation results on Synthetic Regression, Energy Efficiency, and Parkinson’s Monitoring
datasets. Values represent the percentage change in MSE (A %) relative to the unaugmented baseline
(lower is better). Results are averaged over 5 seeds with standard errors.

MSE A% Change (|)

Dataset Model
Global Perturbation Label Invariance CRDA
Svnthetic Reeression  MLP ~16.1244.30  —12.44+3243 —38.94+4.02
y g XGB +1.214+2.10 ~1.02+1.33 —3.62+1.93
Enerey Efficienc MLP —14.50 4 3.86 —265+247 —38.84+5.99
gy y XGB 7154975 528+8.78 —17.45+5.16
MLP —13.50 4 8.90 1+0.55+19.04 —58.40+5.16

Parkinson’s Monitoring XGB

+0.36 £ 1.57 —3.09 £4.35 —7.82+247
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G LINEAR REGRESSION BASE PREDICTOR STUDY

In order to test our method against weaker base predictors; where separate systematic signal cannot
be cleanly separated from noise, possibly violating our assumptions; we selected linear regression.
Using the same 15 seeds and data settings as the main experiment, we conducted this study to
observe how CRDA behaves.

Table O] reports the averages and standard errors for baseline MSE, CRDA MSE, their percentage
change (A %) as well as the p — values from the Wilcoxon signed-rank test for every dataset and
sample size subset.

We see that CRDA's filters rejected every single fold. Recall that for the Wilcoxon signed-rank test,
if the p-value is above the 0.05 threshold, CRDA stops. We still report the A % if we had ignored
the filter and observe how CRDA hurts here. CRDA therefore protects against weaker baselines,
further illustrating how model-agnostic does not imply always helpful.

Table 9: Augmentation results for Linear Regression. Cells are green when data augmentation was
selected to proceed according to the Wilcoxon signed rank test and red otherwise. Lower is better
for the A MSE % change |.

Linear Regression

Dataset Size

MSEbaseline

MSEcrDA

A% |

p-value

CPU Performance

1638
3276
4914
6552
8190

0.011094 + 0.000870
0.010935 + 0.000576
0.009789 =+ 0.000295
0.009834 + 0.000360
0.009705 + 0.000347

0.011066 £ 0.000842
0.011012 £ 0.000604
0.009784 + 0.000296
0.009887 £ 0.000361
0.009709 =+ 0.000346

0.04 +0.58
0.58 +0.41
-0.05 +0.23
0.55+0.18
0.05 +£0.10

0.461 4 0.035
0.506 4 0.038
0.452 £+ 0.038
0.515 £ 0.029
0.456 + 0.040

Satellite Image

1287
2574
3861
5148
6435

0.042119 + 0.000653
0.041148 + 0.000505
0.040646 + 0.000388
0.040154 + 0.000304
0.040492 + 0.000291

0.042185 + 0.000658
0.041131 +£ 0.000504
0.040666 + 0.000393
0.040183 £ 0.000296
0.040509 =+ 0.000288

0.16 + 0.14
-0.04 £+ 0.07
0.05 &+ 0.05
0.08 + 0.05
0.04 £+ 0.05

0.240 4 0.037
0.264 4 0.032
0.275 4+ 0.025
0.393 4 0.037
0.347 £+ 0.031

‘Wind Power

1314
2628
3942
5256
6570

0.007335 £ 0.000262
0.006363 = 0.000130
0.006580 == 0.000098
0.006583 == 0.000084
0.006175 == 0.000050

0.007339 =+ 0.000261
0.006368 =+ 0.000130
0.006583 =+ 0.000098
0.006584 =+ 0.000084
0.006175 =+ 0.000049

0.06 + 0.10
0.08 £ 0.05
0.04 £ 0.04
0.00 £ 0.03
-0.00 £ 0.02

0.501 =+ 0.042
0.468 + 0.028
0.493 + 0.029
0.498 + 0.025
0.528 4 0.033

Synthetic Regression

200
400
600
800
1000

0.023265 + 0.000989
0.022073 £ 0.000552
0.021332 £ 0.000483
0.015924 =+ 0.000382
0.015908 =+ 0.000365

0.023317 £ 0.000979
0.022101 £ 0.000552
0.021358 =+ 0.000490
0.015945 =+ 0.000386
0.015911 =+ 0.000361

0.29 £+ 0.60
0.13 £ 0.26
0.12 +£0.16
0.12 £ 0.09
0.03 £0.12

0.306 £ 0.029
0.365 £ 0.032
0.385 & 0.039
0.381 & 0.038
0.419 & 0.031

Concrete Strength

201
402
603
804
1005

0.016621 + 0.001047
0.017469 + 0.000866
0.017323 + 0.000472
0.016711 £ 0.000551
0.015719 £ 0.000346

0.016592 £ 0.001043
0.017431 +£ 0.000886
0.017336 £ 0.000490
0.016726 £ 0.000563
0.015722 +£ 0.000348

-0.15 £ 0.28
-0.33 £ 0.31
0.03 +0.25
0.06 + 0.16
0.01 £+ 0.08

0.362 4 0.035
0.352 4+ 0.031
0.406 £ 0.028
0.452 4+ 0.028
0.477 £ 0.024

Energy Efficiency

153
306
459
612
765

0.003620 =+ 0.000316
0.002928 + 0.000118
0.002872 + 0.000120
0.002615 + 0.000083
0.002667 + 0.000054

0.003650 =+ 0.000315
0.002926 + 0.000118
0.002873 +£ 0.000119
0.002621 £ 0.000081
0.002673 £ 0.000057

1.02 £ 0.92
-0.03 +0.35
0.04 +0.22
0.29 +0.30
0.21 +£0.19

0.413 4 0.043
0.398 + 0.038
0.453 4 0.040
0.452 4 0.035
0.436 £ 0.025

House Price

200
400
600
800
1000

0.000103 £ 0.000006
0.000100 £ 0.000004
0.000100 == 0.000004
0.000104 == 0.000003
0.000103 == 0.000003

0.000103 £ 0.000006
0.000101 = 0.000004
0.000100 == 0.000004
0.000104 == 0.000003
0.000104 = 0.000003

0.77 £ 0.52
0.10 £ 0.18
0.07 £ 0.12
0.03 £ 0.09
022 £0.16

0.344 £+ 0.029
0.463 + 0.037
0.515 £ 0.023
0.476 + 0.046
0.445 £ 0.040

Parkinson’s Monitoring

1175
2350
3525
4700
5875

0.004750 + 0.000108
0.004672 + 0.000093
0.004651 £ 0.000093
0.004618 + 0.000074
0.004655 =+ 0.000053

0.004754 £ 0.000108
0.004681 £ 0.000096
0.004650 £ 0.000092
0.004620 =+ 0.000074
0.004655 =+ 0.000052

0.08 +0.10
0.18 £ 0.14
-0.02 £+ 0.06
0.05 + 0.05
0.01 £ 0.03

0.425 4 0.041
0.333 £+ 0.025
0.355 £ 0.027
0.449 + 0.029
0.429 + 0.023

Wine Quality

1063
2126
3189
4252
5315

0.021526 + 0.000636
0.015126 + 0.000310
0.015448 + 0.000199
0.014830 =+ 0.000261
0.014894 + 0.000162

0.021544 + 0.000647
0.015131 +£ 0.000307
0.015461 +£ 0.000197
0.014839 £ 0.000260
0.014896 £ 0.000164

0.07 +0.23
0.04 + 0.05
0.09 &+ 0.05
0.06 & 0.04
0.01 +0.03

0.393 4 0.025
0.452 4+ 0.032
0.443 4 0.026
0.487 4 0.034
0.505 £ 0.024
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H STATISTICAL SIGNIFICANCE TESTS

For every dataset x training—set—fraction of our main experiment we did a 10-fold cross validation
comparison of CRDA’S augmented MSE against the corresponding raw unaugmented MSE with a

two—sided Wilcoxon signed—rank test (nggs = 10, ngeeas = 15 per cell). The heat-maps in Figures
and [7] visualize the outcome.

4.0
CPU Performance “ 0128

Concrete Strength

House Price §-
. , - S
Parkinson's Monitoring 2.0 &
satellite Image T
. 13
Synthetic Regression -10
Wind Power 0044 0078
| -0.0

N/5 2N/5 3N/5 4N/5 N
sample size fraction

Figure 6: MLP baseline. Colour encodes —log;,(p); numbers are the mean p across 15 seeds. The
dashed line on the colour-bar marks the av = 0.05 threshold (—log;, p ~ 1.3).

4.0
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Energy Efficiency - 3.0
House Price =
Parkinson's Monitoring 2.0 03,
o
Satellite Image |
. ) 13
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Wind Power
- 0.0
N/5 2N/5 3N/5 4N/5

sample size fraction

Figure 7: XGB baseline. Same layout and colour scale as Figure @

Brief analysis. Across both baselines the majority of cells are darker than the o = 0.05 cut-off,
indicating that CRDA delivers a statistically significant reduction in test-MSE for most dataset/-
size combinations. Significance is strongest for smaller training sets and occasionally weakens as
the full dataset is used (e.g. CPU Performance and Wind Power for MLP, Parkinson’s
Monitoring for XGB), but even at n the method remains significant in 7/9 datasets with at least
one baseline. These results support the robustness of the performance gains reported in the main
paper.

I COMPLETE PER-DATASET SCORES

Table[I0[reports the baseline MSE, CRDA MSE and their percentage change (A %) for every dataset
and sample size subset. It is a more comprehensive version of Table 1 in the main paper. These
results are the averages across 15 different seed runs and so we include their standard errorsﬂ

3Per-seed results are available in the code repository at experiments/{dataset}/{model}/interim results
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Table 10: Complete results with standard errors for XGB and MLP across 15 seeds for each of the
9 datasets. Lower is better |.

Dataset Sample Size XGB | MLP |
MSEpaseline MSEcrRDA A% MSEpaseline MSEcRDA A%
1638 0.00097 = 0.00004  0.00089 =4 0.00004 -7.0 &=2.7 0.00112 & 0.00007 0.00087 % 0.00003 -20.2 3.2
3276 0.00088 £ 0.00003  0.00079 £ 0.00002 -9.5+2.2  0.00100 £ 0.00002 0.00085 4= 0.00002 -14.0 £+ 1.5
CPU Performance 4914 0.00077 £ 0.00002  0.00072 £ 0.00001  -6.2 + 1.2 0.00093 £ 0.00002 0.00082 % 0.00001 -11.3 £ 1.5
6552 0.00073 & 0.00002  0.00069 =+ 0.00001  -4.1 = 1.6  0.00090 = 0.00003  0.00079 % 0.00001 -10.5 + 2.2
8190 0.00074 &£ 0.00002  0.00070 £ 0.00001  -5.2 & 1.9  0.00087 £ 0.00001  0.00078 % 0.00001 -10.2 £ 0.8
1287 0.01778 £ 0.00046  0.01697 & 0.00051  -4.5 & 1.4  0.02031 £ 0.00100 0.01629 % 0.00057 -18.4 &£ 3.1
2574 0.01636 £ 0.00035 0.01576 4 0.00040  -3.7 0.8  0.01747 £ 0.00037 0.01455 + 0.00039 -16.7 = 1.5
Satellite Image 3861 0.01460 =+ 0.00034  0.01390 4 0.00034 4.8 0.8 0.01585 + 0.00053 0.01211 #+ 0.00035 -23.1 &+ 1.7
5148 0.01366 =+ 0.00032  0.01300 £ 0.00030 -4.7 &= 1.1  0.01415 & 0.00044 0.01076 + 0.00029 -23.7 &= 1.2
6435 0.01254 £ 0.00029  0.01186 £ 0.00026 -5.3 £ 0.8  0.01232 £ 0.00034  0.00989 4 0.00028 -19.7 + 1.0
1314 0.00742 £ 0.00028  0.00721 £ 0.00028 -2.8 &= 1.2 0.00752 & 0.00024 0.00697 + 0.00024 -7.2 £+ 1.5
2628 0.00602 £ 0.00012  0.00603 £ 0.00012 0.2+ 0.6  0.00621 £ 0.00016 0.00562 4 0.00011  -9.2 + 1.4
Wind Power 3942 0.00586 = 0.00008  0.00578 £ 0.00008 -1.3 0.4  0.00593 £ 0.00007 0.00539 % 0.00008  -9.0 &= 0.7
5256 0.00570 = 0.00006  0.00562 =% 0.00007 -1.4 0.4  0.00567 £ 0.00008 0.00533 & 0.00008 -6.2 & 0.4
6570 0.00528 £ 0.00005 0.00522 4 0.00005 -1.1 0.3  0.00530 + 0.00004 0.00500 + 0.00004 -5.6 £+ 0.5
200 0.00652 £ 0.00043  0.00564 £ 0.00031 -12.0 £3.7 0.01993 + 0.00172 0.01387 + 0.00157 -28.8 + 6.3
400 0.00327 £ 0.00026  0.00312 4 0.00022 -3.2+2.5 0.00610 & 0.00036 0.00384 + 0.00031 -36.9 3.0
Synthetic Regression 600 0.00264 £ 0.00008  0.00242 £ 0.00007 -7.9 =22  0.00321 £ 0.00026 0.00228 4 0.00019 -27.9 + 3.0
800 0.00165 = 0.00008  0.00161 =& 0.00009 -2.2 +2.0 0.00223 & 0.00016 0.00140 & 0.00008 -34.1 &= 4.0
1000 0.00152 &£ 0.00005  0.00145 £ 0.00006  -4.6 2.8  0.00220 £ 0.00013  0.00123 4 0.00007 -42.3 + 3.1
201 0.00777 £ 0.00068  0.00701 =% 0.00063  -8.0 3.6  0.01033 £ 0.00103  0.00793 % 0.00050 -17.8 + 5.7
402 0.00493 £ 0.00035  0.00453 £ 0.00037 -8.4 2.7  0.00635 £ 0.00053  0.00496 % 0.00037 -19.8 + 2.8
Concrete Strength 603 0.00473 £ 0.00024  0.00427 4 0.00024 -9.7 2.2 0.00602 + 0.00014 0.00494 + 0.00014 -17.6 + 2.5
804 0.00365 £ 0.00017  0.00307 £ 0.00014  -15.7 £ 1.9  0.00497 4 0.00026  0.00361 & 0.00013 -24.8 4 4.1
1005 0.00290 = 0.00010  0.00256 £ 0.00013  -12.2 £2.0 0.00422 & 0.00024 0.00306 + 0.00016 -26.9 + 1.7
153 0.00399 = 0.00048  0.00344 =4 0.00050 -13.3 £ 7.7 0.00583 & 0.00048 0.00426 + 0.00046 -25.1 + 6.8
306 0.00233 £ 0.00014  0.00206 £ 0.00015 -12.2 £ 3.1 0.00321 & 0.00014 0.00233 & 0.00021 -28.1 + 4.8
Energy Efficiency 459 0.00165 £ 0.00012  0.00143 £ 0.00011 -10.5 + 5.9 0.00188 £ 0.00015  0.00106 % 0.00013 -43.0 + 4.6
612 0.00128 + 0.00007  0.00100 = 0.00006 -19.3 +5.3 0.00091 = 0.00008 0.00052 4 0.00005 -40.7 + 3.9
765 0.00097 &£ 0.00006  0.00076 =% 0.00007 -21.0 & 4.4 0.00053 £ 0.00008 0.00035 4 0.00003 -28.3 £+ 4.3
200 0.00079 = 0.00008  0.00064 £ 0.00005 -14.2 +4.8 0.00102 £ 0.00011  0.00057 %= 0.00007 -40.6 + 4.8
400 0.00033 £ 0.00002  0.00031 £ 0.00002 -5.4 +2.3 0.00041 = 0.00003 0.00025 + 0.00001 -37.0 & 3.7
House Price 600 0.00027 = 0.00002  0.00026 £ 0.00002 -4.9 +2.7  0.00029 + 0.00002 0.00020 + 0.00002 -30.1 & 3.8
800 0.00024 = 0.00001  0.00022 £ 0.00001  -9.9 +=2.0  0.00023 % 0.00001  0.00016 % 0.00001 -30.3 4= 4.1
1000 0.00020 £ 0.00001  0.00018 £ 0.00001  -6.5 4+ 1.9  0.00019 £ 0.00001  0.00014 4 0.00001 -27.0 £ 2.5
1175 0.00079 #£ 0.00003  0.00072 £ 0.00003  -8.4 2.4  0.00165 £ 0.00012 0.00101 4= 0.00006 -36.2 + 3.9
2350 0.00034 £ 0.00002  0.00032 £ 0.00001  -6.6 2.8  0.00080 =% 0.00005 0.00054 4 0.00003 -31.8 £ 2.5
Parkinson’s Monitoring 3525 0.00021 = 0.00001  0.00020 =% 0.00001  -2.8 4= 3.4  0.00048 £ 0.00003  0.00030 4 0.00002 -36.6 + 4.0
4700 0.00015 = 0.00001  0.00014 £ 0.00001  -6.3 &2.4  0.00042 £ 0.00003 0.00021 & 0.00001 -46.4 + 4.1
5875 0.00011 = 0.00001  0.00011 = 0.00001 1.7+ 3.8  0.00026 4 0.00002 0.00013 4 0.00001 -47.2 £+ 4.6
1063 0.02057 £ 0.00056  0.02062 £ 0.00054 0.3 £ 0.8  0.02291 + 0.00088 0.02284 + 0.00129  -0.3 £ 3.3
2126 0.01416 £ 0.00029  0.01429 4 0.00029 1.0 £0.7  0.01539 &+ 0.00026 0.01458 + 0.00032 -52 + 1.6
Wine Quality 3189 0.01391 £ 0.00019  0.01386 £ 0.00016  -0.3 £0.5 0.01478 £ 0.00023  0.01423 4 0.00024 -3.6 = 1.5
4252 0.01332 £ 0.00024  0.01324 £ 0.00026  -0.6 == 0.4  0.01386 =+ 0.00027 0.01323 & 0.00025 -4.4 £+ 0.8
5315 0.01332 £ 0.00012  0.01318 £ 0.00014  -1.1 0.3  0.01397 £ 0.00016 0.01328 £ 0.00019  -5.0 0.6

J ADDITIONAL BASELINE: CATBOOST ANALYSIS

To assess CRDA’s robustness against stronger tree-based ensembles, we performed an additional
evaluation using CatBoost (Prokhorenkova et al 2018). CatBoost is often considered better than
XGBoost due to its oblivious trees and robustness to overfitting, making it a challenging predictor
to improve upon.

We evaluated performance at three fixed sample sizes (N = {300, 500, 700}) to observe behavior
across different data availabilities.

Table presents the percentage change in MSE (A%). We observe three distinct behaviors:

* Consistent Gains: On House Price and Wind Power, CRDA significantly reduces MSE
across all sample sizes (peaking at -22.8% for House Price), demonstrating that CRDA
behaves robustly for these tasks regardless of sample size.

* Late-Stage Gains: CPU Performance requires a sufficient number of samples to model
the residual. It shows no benefit at N = 300 but improves substantially as data increases,
reaching -13.0% at N = 700.

* Sweet-Spot Behavior: Datasets such as Parkinson’s Monitoring, Energy Efficiency, and
Synthetic Regression exhibit a “sweet spot” around N = 500, where the augmentation
provides the most benefit (= 4-5% reduction) before CatBoost potentially saturates the
signal at larger sample sizes.
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Table 11: Percentage change in MSE (A%) for CatBoost at fixed sample sizes. Values represent the
mean A% across 15 seeds + standard error.

Dataset N = 300 N =500 N =700
House Price -22.80 £ 0.60 -18.87 £0.52 -14.11 +0.50
CPU Performance 1.92+091 -734+0.58 -13.04 £0.90
Parkinson’s Monitoring -1.44 £0.61 -5.13+0.60 -1.33 £0.46
Energy Efficiency -1.65+086 -495+101 -1.89+£0.90
Synthetic Regression -231+£057  -4.01+060 -1.15+0.66
Wind Power -3.78 £ 038 -254+0.24 -2.47+£0.29
Satellite Image -0.95+0.53 -2.08+£041 -1.95+0.30
Wine Quality -0.09£039 -1.62+£029 -1.94+0.21
Concrete Strength -0.95+056 -0.69+£0.39  0.46 £0.39

K COMPUTE BUDGET AND CARBON FOOTPRINT

* Hardware. AWS c7i.24xlarge (96 vCPU, 192 GB RAM, Xeon Platinum 8480C,
~0.59 kW active draw)E]

¢ Runtime. 13.562 h total (9.103 h MLP baseline, 4.459 h XGB baseline).
* Energy. 13.562 x 0.59 =~ 8.0 kWh.
* CO3-eq. Local grid intensity 34.5 g CO,/kWh = 8.0 x 0.0345 ~ 0.28 kg CO.,,.

L BROADER SOCIETAL IMPACT CONSIDERATIONS

This is foundational work that aims to improve regression in scarce data scenarios. As discussed
in Section 7 (Limitations) of the main paper, CRDA could worsen predictive accuracy instead of
improving it, leading to negative consequences in high impact applications. To mitigate such nega-
tive outcomes, CRDA filters applications with the PC algorithm, the Pearson correlation test and the
Wilcoxon signed rank test.

M PROOF OF PROPOSITION

Recall Assumption [T}

Let the feature vector X be partitioned into two disjoint subsets, X = (Xp, Xr), where X p are the
features we intend to perturb (the perturbable coordinates) and X are the features we hold fixed
(the remaining coordinates). Let g(X) = E[Y|X] be the true conditional expectation function, and
let Z =Y — g(X) be the corresponding structural noise term. We introduce the following condition:

P(Z | Xp,Xr) =P(Z | Xg) 2

Equation [2] says that the noise 7 is conditionally independent of the perturbable features X p given
the fixed features X p.
Proposition [I]stated:

Suppose Assumption [1|holds. Then for any x g in the support of Xz and any x p, 25 in the condi-
tional support of Xp | Xp = xR, we have

P(Z ‘ XP :xp,XR:xR) = P(Z ‘ XP :x'P,XR:xR).

Equivalently, P(Z | Xp = zp, Xg) = P(Z | Xg) is constant in z p.

*Power estimate from Intel C7i workload proof sheet.
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Proof. By Assumption|[T] there exists a version of the regular conditional law such that, for (almost)
E]every (zp,zRr) and every measurable set A,

P(Z€A|XPZ$P,XR:Z‘R) = P(ZEA|XR:J$R)

Fix x g and two values = p, 2’5 in the conditional support of Xp | Xr = z . Applying the displayed
equality once with zp and once with 2/, yields

]P)(ZGA|XP:£CP,XR=(ER) = P(Z€A|XR:£L'R) = P(Z€A|Xp:1'/P,XR:£L'R),

for all measurable A. Hence the conditional laws coincide, proving the claim. O

>Conditional distributions are defined only up to sets of probability zero, so equalities hold almost surely.
We also restrict zp, z’p to the conditional support of Xp | Xr = xg (positivity) to ensure the displayed
conditionals are well-defined.
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