

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COUNTERFACTUAL RESIDUAL DATA AUGMENTATION FOR REGRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Data-driven modeling in real-world regression tasks often suffers from limited training samples, high collection costs, and noisy observations. Inspired by the impact of data augmentation in vision and language, we propose a novel *Counterfactual Residual Data Augmentation (CRDA)* technique for tabular regression. Our key insight is that once a regressor has modeled the systematic component of the data, the remaining noise can be viewed as an invariant residual that remains stable under small perturbations of carefully selected features. We exploit this residual invariance to generate new, yet realistic, training samples, effectively expanding the dataset without requiring additional real data. Our method is model-agnostic and readily applicable to various types of regressors. In experiments across datasets from a variety of benchmark repositories, on average, *CRDA* reduces an *MLP Regressor*'s MSE by **22.9%** and an *XGBoost Regressor*'s MSE by **6.4%**. When compared to existing state-of-the-art data generators and augmentation techniques, *CRDA* consistently outperforms in MSE reduction. By adding principled counterfactual variations to the training data, our method offers a simple and efficient remedy for noise-prone, small-sample regression settings.

1 INTRODUCTION

Data scarcity and noise are frequently encountered obstacles in regression tasks across domains such as medicine, finance, and manufacturing. Collecting large-scale, high-quality data can be expensive or impractical, and existing data augmentation techniques, while well developed in computer vision and NLP, often do not translate naturally to tabular regression. As a result, many supervised learning models fail to fully capture the underlying behavior of real-world processes when only limited training examples are available.

In this paper, we propose **Counterfactual Residual Data Augmentation (CRDA)**, a simple and flexible method to bolster regression performance under small data constraints. The core idea is straightforward: *(i)* we train a base predictor (e.g., MLP or XGBoost) on a dataset, *(ii)* identify one or more features whose perturbations do not alter the residual distribution significantly, and *(iii)* generate new samples by modifying those features while preserving the original “noise” or residual component. To illustrate, consider a house price prediction task. A model captures systematic value drivers like location and square footage, while the residual captures unobserved factors like a *bidding war* driven by a specific buyer’s urgency. Our key insight is that varying a secondary feature, such as garage finish, changes the systematic price but is unlikely to alter the specific buyer’s urgency. *CRDA* exploits this independence to synthesize a valid counterfactual: a house with a different garage finish, an updated systematic price, but the exact same “bidding war” residual.

Motivation and Benefits. Our motivation stems from the difficulty of acquiring sufficient labeled data in many practical applications, coupled with the risk of overfitting when sample sizes are small. A major attraction of *CRDA* is its ability to insert new data points *without* assuming domain-specific transformations or heuristics. Instead, it relies on a learned predictor to separate systematic behavior from noise, then conserves the latter across minor interventions of designated features. As a result, the augmented samples remain consistent with the underlying distributional assumptions, improving model fit and reducing variance. Empirically, we observe double-digit percent reductions in test error for small-sample regression tasks, demonstrating the utility of our approach across a variety of dataset types.

054 Our work makes the following key contributions:
 055

056 **(1) New Data Augmentation Framework.** We introduce a model-agnostic strategy for augmenting
 057 tabular regression data, centered on counterfactual reasoning and residual invariance.

058 **(2) Residual Invariance Principle.** We formalize how certain features can be perturbed without
 059 corrupting the noise structure, providing insights to guide feature selection.

060 **(3) Empirical Validation.** We evaluate CRDA on synthetic benchmarks and real-world datasets
 061 from standard repositories (e.g., UCI, PMLB), illustrating consistent improvements across neural
 062 and ensemble models.

064

065 2 RELATED WORK

066

068 **General Data Augmentation.** Data augmentation refers to the strategy of enlarging or diversifying
 069 a training set via synthetic transformations. While central to success in computer vision and
 070 NLP (Zhang et al., 2017; Yun et al., 2019; Cubuk et al., 2019), these techniques often rely on *label-*
 071 *preserving* symmetries (e.g. image rotations) or domain-specific invariances (e.g. back-translation
 072 in text). However, applying these methods to tabular regression remains non-trivial.

073 **Tabular and Regression-Specific Augmentation.** Classical oversampling approaches include
 074 SMOTE (Chawla et al., 2002) and its regression extensions (Branco et al., 2017), which interpolate
 075 between samples but do not necessarily preserve higher-order feature interactions or heteroskedastic
 076 noise. Recent advances seek to formalize regression augmentation through geometric properties. For
 077 example, RegMix (Hwang & Whang, 2021) optimizes Mixup policies to generate samples within
 078 high-density regions of the data manifold, aiming to preserve the underlying structure. Conversely,
 079 C-Mixup (Yao et al., 2022) addresses the risk of manifold intrusion by restricting mixing to sample
 080 pairs with high label similarity. Closely related is Anchor Data Augmentation (ADA) (Schneider
 081 et al., 2023), which extends Anchor Regression to augmentation. ADA identifies “anchors” (by clus-
 082 tering) and generates samples using a first-order Taylor approximation, effectively assuming local
 083 linearity within clusters. While these methods enforce geometric regularity (linearity or manifold
 084 density), they can struggle in highly non-linear or sparse regimes where local linearity assumptions
 085 fail. CRDA aims to avoid this by enforcing *statistical* regularity (residual invariance) instead.

086 **Deep Generative Models.** Deep generative models offer an alternative by learning the joint distri-
 087 bution to sample entirely new rows. Approaches like CTGAN (Xu et al., 2019), TVAE (Xu et al.,
 088 2019), and TabDDPM (Kotelnikov et al., 2023) have shown promise in privacy-preserving data syn-
 089 thesis. However, these models typically treat the target variable as just another column, failing to
 090 preserve an instance’s specific residual noise. This frequently leads to “realistic” looking samples
 091 that degrade predictive performance.

092 **Residual Bootstrapping.** In statistical literature, residuals have been leveraged extensively for
 093 *uncertainty quantification* rather than data augmentation. For example, the residual bootstrap (Efron,
 094 1979) and conformal prediction methods (Barber & Candès, 2021) resample or reuse residuals to
 095 construct confidence intervals. Our work repurposes this mechanism for augmentation.

096 **Causal and Counterfactual Data Augmentation** Data augmentation typically ignores the gen-
 097 erative process behind the data, risking unrealistic synthetic examples. Causal-based approaches
 098 (Kocaoglu et al., 2018; Arjovsky et al., 2020) propose integrating structural assumptions so that aug-
 099 mentations preserve invariant relationships across environments. This has been explored in computer
 100 vision through interventions on object attributes (Mahajan et al., 2023), and in language by editing
 101 tokens in a do -intervention style. Our method’s core principle, preserving an instance-specific noise
 102 term while perturbing features, draws a direct parallel to work in reinforcement learning. Lu et al.
 103 (2020) showed that next-state samples remain identifiable under mild assumptions (monotonicity
 104 and independence in the noise term). Their Theorem 1 establishes that, once the observed outcome
 105 fixes a particular noise quantile, reusing that noise in a “what-if” scenario yields a valid counter-
 106 factual next-state. Similarly, CRDA treats the calculated residual as an exogenous noise variable
 107 that is assumed to be independent of the features being perturbed. This allows us to systemati-
 108 cally generate counterfactuals in a way that is more theoretically grounded than purely generative or
 109 interpolation-based techniques.

108 **3 BACKGROUND**
 109

110 In this section, we provide an overview of the key concepts that motivate our proposed approach.
 111

112 **3.1 COUNTERFACTUAL REASONING AND STRUCTURAL CAUSAL MODELS**
 113

114 A *structural causal model* (SCM) (Pearl, 2009; Peters et al., 2017) formalizes how observed vari-
 115 ables are generated by underlying data-generating processes (DGP). Formally, an SCM is specified
 116 by a tuple $(\mathcal{X}, \mathcal{Z}, F, P_{\mathcal{Z}})$, where:
 117

- 118 • $\mathcal{X} = \{X_1, \dots, X_m\}$ is the set of endogenous (observed) variables,
- 119 • $\mathcal{Z} = \{Z_1, \dots, Z_m\}$ is the set of exogenous (noise) variables with distribution $P_{\mathcal{Z}}$,
- 120 • $F = \{f_i\}_{i=1}^m$ is a collection of structural equations, each of the form

$$122 \quad x_i \leftarrow f_i(\text{Pa}_i, z_i) \\ 123$$

124 where $\text{Pa}_i \subseteq \mathcal{X} \setminus \{X_i\}$ denotes the parents of X_i .
 125

126 An SCM induces a graph, which encodes causal relationships (i.e. who influences whom), and the
 127 exogenous noise terms capture stochasticity.

128 **Interventions and causal effects.** A central notion in causal inference is that of an *intervention*,
 129 written $\text{do}(\cdot)$ (Pearl, 2009). By applying $\text{do}(X = x')$, one replaces the original structural equation
 130 $X \leftarrow f_X(\text{Pa}, Z)$ with a constant assignment $X \leftarrow x'$. This operation severs incoming edges to
 131 X , thus altering the downstream (child) variables but leaving other aspects of the system intact.
 132 Interventions enable us to simulate hypothetical scenarios, often crucial for answering “what if”
 133 questions in hindsight.

134 **Counterfactuals.** Counterfactual reasoning goes a step further by inquiring about hypothetical
 135 outcomes of the target variable Y given a specific realization of the noise variable Z . Concretely,
 136 one first infers the actual setting of $Z = z$, then imagines how the outcome Y would change under
 137 a hypothetical intervention $\text{do}(X = x')$. This process involves: (i) **abduction**, where we infer
 138 z from the observed data; (ii) **action**, where we override the structural assignment for X ; and (iii)
 139 **prediction**, where we propagate z through the modified system to obtain the counterfactual outcome
 140 distribution $P(Y'|X = x', Z = z)$ (Rubin, 1974; Holland, 1986; Peters et al., 2017).

141 **3.2 MAIN ASSUMPTIONS AND THEORY**
 142

143 The core theoretical principle underpinning CRDA is the assumption of *residual invariance*. This
 144 principle posits that for a well-specified regression model, the residual noise term remains distribu-
 145 tionally constant under interventions on a specific subset of features. We formalize this as follows.
 146

147 **Assumption 1.** Let the feature vector X be partitioned into two disjoint subsets, $X = (X_P, X_R)$,
 148 where X_P are the features we intend to perturb (the perturbable coordinates) and X_R are the fea-
 149 tures we hold fixed (the remaining coordinates). Let $g(X) = \mathbb{E}[Y|X]$ be the true conditional expec-
 150 tation function, and let $Z = Y - g(X)$ be the corresponding structural noise term. We introduce
 151 the following condition:
 152

$$\mathbb{P}(Z | X_P, X_R) = \mathbb{P}(Z | X_R) \quad (1)$$

153 Equation 1 says that the noise Z is conditionally independent of the perturbable features X_P given
 154 the fixed features X_R .
 155

156 **Proposition 1.** Suppose Assumption 1 holds. Then for any x_R in the support of X_R and any x_P, x'_P
 157 in the conditional support of $X_P | X_R = x_R$, we have

$$158 \quad \mathbb{P}(Z | X_P = x_P, X_R = x_R) = \mathbb{P}(Z | X_P = x'_P, X_R = x_R) \\ 159$$

160 Equivalently, $\mathbb{P}(Z | X_P = x_P, X_R) = \mathbb{P}(Z | X_R)$ is constant in x_P .¹
 161

¹The proof for this proposition can be found in Appendix M.

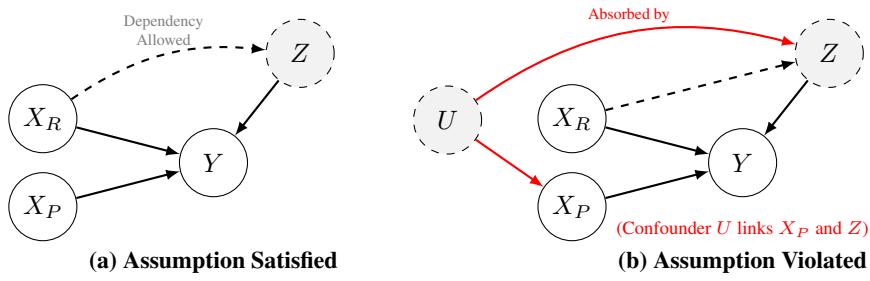
162 Assumption 1 is effectively equivalent to modeling the data-generating process with an **additive-**
 163 **noise structural causal model (SCM)**. By defining the regressor g as the conditional expectation,
 164 we decompose the outcome Y into a systematic component and a residual component:

$$Y = g(X_P, X_R) + Z|_{X_R}$$

167 Our assumption simply states that in this structural equation, the noise term Z does not depend on
 168 the specific values of the features in X_P once we have conditioned on the features in X_R .

169 **Causal Interpretation and Hidden Confounding.** To better understand what underlying DGPs
 170 satisfy Assumption 1, we can examine a passable causal structure. This is visualized in Figure 1a.
 171 It requires that the features selected for perturbation, X_P , are *exogenous* with respect to the residual
 172 mechanism Z . Note that Z is allowed to depend on the fixed features X_R (e.g., heteroscedasticity
 173 or confounding on X_R), as long as it remains independent of X_P .

174 However, recent work highlights that unobserved confounding is a primary driver of distribution
 175 shift failures in real-world tabular data (Prashant et al., 2024; Reddy et al., 2025). When a latent
 176 confounder U exists, its influence on Y that is not explained by X is absorbed into the residual term
 177 Z . Consequently, Z acts as a noisy proxy for U . Figure 1b illustrates the case where U causes both
 178 X_P and Y , thereby creating a “backdoor path” $X_P \leftarrow U \rightarrow Y$. Here, a statistical dependence arises
 179 between X_P and Z , violating Assumption 1. Therefore, the validity of counterfactual augmentation
 180 depends on identifying and excluding such confounded features from the perturbation set.



191 **Figure 1: Causal Visualization of Residual Invariance.** **(a)** The structure satisfies Assumption 1.
 192 **(b)** A violation due to unobserved confounding. Here, a latent variable U causes both X_P and
 193 Y . Since the residual Z absorbs the variation of U , a dependency is created between X_P and Z ,
 194 invalidating the augmentation.

4 METHOD

199 In this section, we detail our proposed *Counterfactual Residual Data Augmentation (CRDA)* pro-
 200 cedure for tabular regression. The main goal is to augment a limited dataset by synthesizing new
 201 samples that remain true to the original noise distribution. Algorithm 1 outlines the full workflow.

4.1 ALGORITHMIC OVERVIEW

204 **Step 1: Data Splitting and Baseline Training.** We begin by splitting the original dataset \mathcal{D} into
 205 training and test sets. Let $\mathcal{D}_{\text{train}} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ and $\mathcal{D}_{\text{test}} = \{(\mathbf{x}_j, y_j)\}_{j=N+1}^n$. We then fit a
 206 *baseline* regressor $g(\cdot)$ on $\mathcal{D}_{\text{train}}$. In practice, this model can be chosen from a variety of families
 207 (e.g. MLP, XGBoost) depending on the user’s preference.

209 **Step 2: Residual Computation.** For each training sample (\mathbf{x}_i, y_i) , we compute the *residual*

$$z_i = y_i - g(\mathbf{x}_i).$$

211 Intuitively, z_i captures the latent factors not explained by g .

213 **Step 3: Feature Selection.** To ensure that perturbing a given feature does not spuriously alter
 214 the residual structure, we identify and partition the features into (X_P, X_R) so that X_P are eligible
 215 for perturbation and X_R are held fixed. Concretely, we select X_P by screening for (approximate)
 conditional independence of the residual given the remainder:

Algorithm 1 Counterfactual Residual Data Augmentation (CRDA)

Require: Dataset \mathcal{D} of size n , baseline regressor $g(\cdot)$.
 Hyperparameters: PERTURBATIONRANGE, AUGDATASIZEFACTOR.

- 1: **Split** \mathcal{D} into $\mathcal{D}_{\text{train}}$ and $\mathcal{D}_{\text{test}}$.
- 2: **Train** baseline model $g(\cdot)$ on $\mathcal{D}_{\text{train}}$.
- 3: **for** each (\mathbf{x}_i, y_i) in $\mathcal{D}_{\text{train}}$ **do**
- 4: $z_i \leftarrow y_i - g(\mathbf{x}_i)$ ▷ Compute residual
- 5: **Select partition** (X_P, X_R) :
 - PC algorithm to remove features directly connected to Z .
 - Correlation check to remove features strongly associated with Z .
- 6: **if** $X_P = \emptyset$ **then**
- 7: **return** Baseline g ▷ No augmentation possible
- 8: $\mathcal{D}_{\text{aug}} \leftarrow \emptyset$
- 9: **for** each $(\mathbf{x}_{i,P}, \mathbf{x}_{i,R}, y_i) \in \mathcal{D}_{\text{train}}$ **do**
- 10: **for** $m = 1$ to AUGDATASIZEFACTOR **do** ▷ Repeat to generate multiple augmentations
- 11: $\mathbf{x}'_{i,P(m)} \leftarrow \text{Perturb}(\mathbf{x}_{i,P}; \mathbf{x}_{i,R}, \text{PERTURBATIONRANGE})$
- 12: $\mathbf{x}'_{i(m)} \leftarrow (\mathbf{x}'_{i,P(m)}, \mathbf{x}_{i,R})$ ▷ Hold X_R fixed
- 13: $y'_{i(m)} \leftarrow g(\mathbf{x}'_{i(m)}) + z_i$ ▷ Preserve residual z_i
- 14: Add $(\mathbf{x}'_{i(m)}, y'_{i(m)})$ to **augmented set** \mathcal{D}_{aug}
- 15: **Perform** K -fold cross-validation on $\mathcal{D}_{\text{train}}$, comparing *unaugmented* vs. *augmented* models.
- 16: Collect validation errors $\{e_{\text{unaug}}^{(k)}, e_{\text{aug}}^{(k)}\}_{k=1}^K$.
- 17: $p\text{-value} \leftarrow \text{WilcoxonSignedRank}(\{e_{\text{unaug}}^{(k)}, e_{\text{aug}}^{(k)}\})$
- 18: **if** $p\text{-value} \geq \alpha$ **then**
- 19: **return** Baseline g ▷ No statistically significant improvement
- 20: $\mathcal{D}_{\text{train}}^{\text{aug}} \leftarrow \mathcal{D}_{\text{train}} \cup \mathcal{D}_{\text{aug}}$
- 21: **Retrain** a new regressor g' on $\mathcal{D}_{\text{train}}^{\text{aug}}$
- 22: **return** Augmented regressor g'

1. A **causal graph check** applies the Peter-Clark (PC) algorithm (Spirtes et al., 2000) to remove features that are directly connected to the residual Z in the learned graph structure.
2. A **correlation check** (using Pearson correlation tests) discards any features strongly correlated with Z .

The surviving coordinates form X_P ; the complement forms X_R , satisfying Assumption 1. (If none survive, we skip augmentation and return the baseline g .)

Step 4: Input Perturbation. We expand our dataset by generating AUGDATASIZEFACTOR counterfactual samples per original training point. For each $(\mathbf{x}_{i,P}, \mathbf{x}_{i,R})$ and each $m = 1, \dots, M$, sample a perturbed $\mathbf{x}'_{i,P(m)}$ and keep $\mathbf{x}_{i,R}$ unchanged:

$$\mathbf{x}'_{i(m)} = (\mathbf{x}'_{i,P(m)}, \mathbf{x}_{i,R}), \quad \mathbf{x}'_{i,P(m)} \leftarrow \text{Perturb}(\mathbf{x}_{i,P}; \mathbf{x}_{i,R}, \text{PERTURBATIONRANGE}).$$

Here, $\text{AUGDATASIZEFACTOR} = M$ controls how many new points we generate per sample and can be tuned to balance computational costs against potential gains in generalization. For each m , the *Perturb* operation uses PERTURBATIONRANGE , which we can denote as $p \in (0, 1)$, to sample a single scalar $\delta \sim \text{Unif}[-p, p]$. The scalar is then used to compute $x'_{i,P(m)} = x_{i,P}(1 + \delta)$. This translates to essentially scaling each chosen feature by a random factor (e.g. $\pm 10\%$), but more sophisticated or domain-specific transformations can be substituted.

Step 5: Counterfactual Label Assignment. For each perturbed input $\mathbf{x}'_{i(m)}$, we assign a *counterfactual* label:

$$y'_{i(m)} = g(\mathbf{x}'_{i(m)}) + z_i$$

Crucially, this preserves the original residual z_i , thereby keeping the overall noise structure intact under the perturbation (Proposition 1). The newly generated samples (\mathbf{x}'_i, y'_i) form an augmented set \mathcal{D}_{aug} .

270 **Step 6: Validation via Cross-Validation and Wilcoxon Signed-Rank Test.** Before committing to
 271 a final retraining, we evaluate whether the augmented samples *significantly* improve generalization.
 272 Concretely, we run K -fold cross-validation on the *original* training data, comparing two models:
 273

- 274 1. **Unaugmented model:** trained on the fold’s training portion as is.
- 275 2. **Augmented model:** trained on the fold’s training portion *plus* its augmented points (gen-
 276 erated using the same procedure above).

277 We collect the validation errors (e.g. MSE) across the K folds for both models and perform a non-
 278 parametric *Wilcoxon signed-rank test* (Wilcoxon, 1945) on the paired errors. If the resulting p -value
 279 is below a chosen significance level (e.g. $\alpha = 0.05$), we conclude that augmentation yields a statis-
 280 tically significant improvement; otherwise, we revert to the baseline g .

282 **Step 7: Dataset Augmentation and Retraining.** If the Wilcoxon test finds a significant improve-
 283 ment, we combine $\mathcal{D}_{\text{train}}$ and \mathcal{D}_{aug} into a single augmented dataset

$$284 \mathcal{D}_{\text{train}}^{\text{aug}} = \mathcal{D}_{\text{train}} \cup \mathcal{D}_{\text{aug}},$$

286 We then retrain a *final* model $g'(\cdot)$ with this expanded dataset to use on the test set.

288 4.2 DISCUSSION OF KEY DESIGN CHOICES

290 **Residual Invariance and Causal Assumptions.** The pivotal assumption in our framework is that
 291 for certain features, perturbing them does *not* induce a change in the residual distribution. Crucially,
 292 CRDA does not require making any causal assumptions about whether $X \rightarrow Y$, $Y \rightarrow X$ or the
 293 absence of confounders. In any regression setting, the joint distribution $P(X, Y)$ can be factorized
 294 as $P(Y|X)P(X)$, and the conditional component can be represented by a structural equation $Y =$
 295 $g(X) + Z$, where g is a deterministic function and Z is a noise term that may depend on X . The
 296 only (non-causal) assumption that we make is Assumption 1 where Z must be independent of X_P
 297 given X_R . Our method aims to approximate this decomposition by learning the base predictor g and
 298 estimating the residual $z = y - g(x)$.

299 The practical steps in Algorithm 1, such as the PC algorithm and correlation checks, are *empirical*
 300 *heuristics* designed to identify a feature subset X_P for which Assumption 1 is likely to hold. When
 301 we reuse a specific residual z_i to construct a counterfactual label $y' = g(x') + z_i$, we are not
 302 assuming the noise value itself is invariant, but rather that we are reusing a valid sample from an
 303 *invariant noise distribution* $P(Z)$. This is a practical choice that avoids the need to explicitly model
 304 the entire noise distribution.

305 **Model-Agnostic Nature.** Although our algorithm is illustrated with a neural or tree-based base-
 306 line, the same counterfactual logic applies to *any* parametric or nonparametric regressor. The key
 307 is to view each training outcome as a sum of a learned systematic component and a noise term.
 308 Perturbations occur in the input space, but the residual remains anchored to its original data point.

309 It’s worth clarifying that “model-agnostic” means **CRDA can be attached to any regression model**,
 310 not that it is *guaranteed* to improve every such model. The method includes built-in safeguards to
 311 prevent negative impacts. If the residual-feature independence checks (the PC algorithm and Pearson
 312 correlation test) fail to identify any suitable features to perturb, or if the final Wilcoxon signed-rank
 313 test concludes that the augmentation does not provide a statistically significant improvement, **CRDA**
 314 **gracefully defaults to the untouched baseline model**. This ensures augmentation is only applied
 315 when there is empirical evidence of its benefit.

316 5 EXPERIMENTS

318 5.1 EXPERIMENTAL SETUP AND PROTOCOL

320 **High-Level Goal.** Our primary goal is to investigate whether CRDA can reduce test MSE on tabular
 321 regression tasks, particularly under conditions of data scarcity. To this end, we evaluate performance
 322 across nine benchmark datasets and a synthetic task with a known ground-truth DGP.

323 **Comparisons and Baselines.**

324 1. **No Augmentation (Baseline):** Train the model on the raw data only.
 325 2. **CRDA Augmentation:** Train the same model class on the union of the raw data and the
 326 counterfactual samples generated by CRDA.
 327 3. **Generative Model Augmentation:** The baseline model architecture trained on the union of
 328 the original data and synthetic samples produced by state-of-the-art tabular data generators
 329

330 **Hyperparameter Search** We tune *MLPRegressor* and *XGBoostRegressor* with scikit-learn’s
 331 *RandomizedSearchCV* (Pedregosa et al., 2011) (3-fold) for 20 trials each, totaling 60 *fits* per
 332 baseline. *CRDA* also introduces three additional knobs: *AUGDATASIZEFACTOR*, *PERTURBATION-
 333 RANGE* and *MAXNUMFEATURESTOPERTURB*. We tune these via *Optuna* (TPE sampler) (Akiba
 334 et al., 2019) for up to 30 trials, similarly minimizing validation error.

335 **Datasets and Preprocessing** We consider nine regression datasets (listed in Table 1) from the
 336 University of California, Irvine (UCI) Machine Learning Repository, the Penn Machine Learning
 337 Benchmarks (PMLB) collection, and Kaggle. These were chosen to represent a variety of numeric,
 338 tabular domains and sample sizes. We drop duplicate rows and NaN values, then apply standardiza-
 339 tion per feature. For each dataset, we produce five training subsets, ranging from $n/5$ up to n . All
 340 subsets are split 80–20 into training and test sets.

341 **Evaluation Metrics and Significance Tests** We report the **MSE** (mean-squared error on the held-
 342 out test set) for our settings and their relative change (negative values indicate improvement).
 343

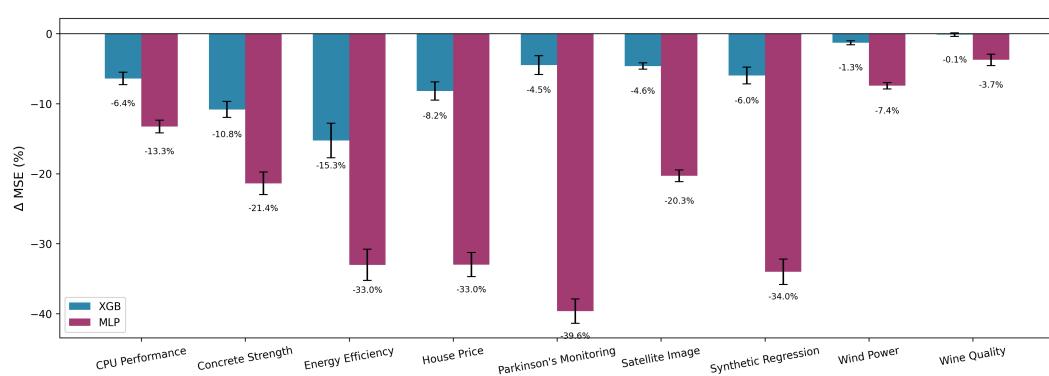
$$\Delta\% = 100 (\text{MSE}_{\text{CRDA}} - \text{MSE}_{\text{baseline}}) / \text{MSE}_{\text{baseline}}$$

344 Significance is assessed with a Wilcoxon signed-rank test across 10 CV folds (Wilcoxon, 1945).
 345

347 5.2 RESULTS AND ANALYSIS

349 Our main findings are presented in Table 1 and summarized in Figure 2. We see that CRDA provides
 350 consistent and substantial reductions in test MSE across nearly all datasets and training set sizes. As
 351 shown in Figure 2, the **MLP Regressor benefits most significantly**, achieving an average MSE
 352 reduction of **22.9%** across all nine datasets. This highlights CRDA’s ability to provide valuable
 353 signal for data-hungry neural models. For instance, on the *Parkinson’s Monitoring* and *House Price*
 354 datasets, MLP models augmented with CRDA see their error reduced by over 30%. The **XGB
 355 Regressor** also shows consistent improvement, with an average MSE reduction of **6.4%**.

356 Table 1 details the performance at different data scales, averaged across 15 unique seeds. Green
 357 cells indicate instances where CRDA’s cross-validation performance was found to be statistically
 358 significant via the Wilcoxon signed-rank test, prompting the final model to be retrained with aug-
 359 mented data. In a few cases (red cells), the test did not find a significant improvement. This built-in
 360 safeguard prevents CRDA from being applied where it might not be beneficial. While less frequent,
 361 we do note that this filter can be prone to error, particularly depending on sample size, as discussed
 362 in Section 6.



376 Figure 2: MSE percentage change for each dataset averaged over the five different training-subset
 377 sizes reported in Table 1 with error bars corresponding to standard error. Lower is better.

378 Table 1: Augmentation results for XGB and MLP evaluated and averaged across 15 seeds. Cells are
 379 green when data augmentation was more frequently selected to proceed according to the Wilcoxon
 380 signed rank test and red otherwise. Lower is better \downarrow .

Dataset	Size	XGB \downarrow			MLP \downarrow		
		MSE _{baseline}	MSE _{CRDA}	Δ %	MSE _{baseline}	MSE _{CRDA}	Δ %
CPU Performance (Olson et al., 2017a)	1638	0.000968	0.000895	-6.99	0.001124	0.000869	-20.24
	3276	0.000885	0.000794	-9.47	0.000996	0.000853	-14.03
	4914	0.000772	0.000721	-6.20	0.000931	0.000822	-11.31
	6552	0.000726	0.000693	-4.13	0.000897	0.000795	-10.48
	8190	0.000738	0.000695	-5.19	0.000869	0.000780	-10.23
Satellite Image (Olson et al., 2017b)	1287	0.017775	0.016974	-4.54	0.020308	0.016285	-18.36
	2574	0.016361	0.015762	-3.73	0.017467	0.014547	-16.69
	3861	0.014599	0.013898	-4.79	0.015848	0.012115	-23.14
	5148	0.013661	0.013004	-4.73	0.014153	0.010760	-23.72
	6435	0.012540	0.011863	-5.31	0.012318	0.009888	-19.66
Wind Power (Haslett & Raftery, 1989)	1314	0.007424	0.007208	-2.82	0.007524	0.006970	-7.22
	2628	0.006022	0.006034	0.20	0.006214	0.005619	-9.17
	3942	0.005863	0.005785	-1.33	0.005930	0.005395	-9.03
	5256	0.005702	0.005624	-1.40	0.005675	0.005326	-6.15
	6570	0.005276	0.005218	-1.08	0.005298	0.005002	-5.56
Synthetic Regression (Olson et al., 2017c)	200	0.006520	0.005643	-12.00	0.019929	0.013874	-28.80
	400	0.003267	0.003124	-3.16	0.006101	0.003839	-36.93
	600	0.002640	0.002416	-7.94	0.003213	0.002275	-27.91
	800	0.001646	0.001612	-2.23	0.002225	0.001402	-34.12
	1000	0.001524	0.001454	-4.59	0.002200	0.001231	-42.33
Concrete Strength (Yeh, 1998)	201	0.007766	0.007011	-8.01	0.010334	0.007925	-17.80
	402	0.004929	0.004532	-8.43	0.006355	0.004956	-19.83
	603	0.004733	0.004269	-9.75	0.006024	0.004939	-17.64
	804	0.003651	0.003068	-15.72	0.004966	0.003612	-24.77
	1005	0.002898	0.002559	-12.19	0.004224	0.003064	-26.90
Energy Efficiency (Tsanas & Xifara, 2012)	153	0.003991	0.003445	-13.33	0.005831	0.004258	-25.10
	306	0.002332	0.002061	-12.20	0.003213	0.002332	-28.13
	459	0.001653	0.001432	-10.55	0.001884	0.001063	-42.98
	612	0.001281	0.000998	-19.35	0.000906	0.000522	-40.71
	765	0.000968	0.000761	-20.96	0.000527	0.000348	-28.31
House Price (Community, 2024)	200	0.000785	0.000635	-14.23	0.001021	0.000572	-40.57
	400	0.000327	0.000310	-5.39	0.000410	0.000249	-37.02
	600	0.000270	0.000255	-4.87	0.000290	0.000197	-30.14
	800	0.000243	0.000220	-9.86	0.000232	0.000158	-30.32
	1000	0.000196	0.000183	-6.50	0.000192	0.000138	-26.97
Parkinson's Monitoring (Tsanas & Little, 2009)	1175	0.000786	0.000720	-8.40	0.001650	0.001013	-36.17
	2350	0.000344	0.000317	-6.60	0.000799	0.000537	-31.82
	3525	0.000207	0.000200	-2.79	0.000484	0.000296	-36.60
	4700	0.000148	0.000138	-6.26	0.000422	0.000213	-46.40
	5875	0.000110	0.000113	1.65	0.000259	0.000129	-47.23
Wine Quality (Cortez et al., 2009)	1063	0.020573	0.020621	0.31	0.022912	0.022835	-0.34
	2126	0.014157	0.014294	1.01	0.015394	0.014581	-5.24
	3189	0.013910	0.013857	-0.33	0.014784	0.014225	-3.63
	4252	0.013320	0.013243	-0.61	0.013862	0.013235	-4.44
	5315	0.013319	0.013177	-1.08	0.013972	0.013279	-4.99

To better understand how CRDA's effectiveness scales with sample size in a controlled setting, we conducted an experiment on a synthetic DGP with a known ground-truth independence structure:

$$Y = X_1^2 + X_2 X_3 + Z, \quad \text{where } Z \perp (X_1, X_2, X_3)$$

We generated 50,000 samples and applied CRDA at various sample sizes. The results, shown in Figure 3, reveal that at very low sample sizes ($< 2.5k$), CRDA offers minimal benefit because the base predictor is too inaccurate to produce meaningful residuals. Conversely, at very high sample sizes ($> 30k$), the baseline model is already so accurate that there is little room for improvement. The *greatest MSE reduction occurs in a “sweet spot”* (between 2.5k and 20k samples), where the baseline model has learned the main signal but still benefits from the localized exploration of the feature space that CRDA provides. This confirms that CRDA is most impactful in low to moderate data-scarce regimes, which are common in real-world applications.

Finally, we benchmarked CRDA against a comprehensive suite of baselines, including regression augmentation methods (C-Mixup (Yao et al., 2022), ADA (Schneider et al., 2023)) and deep generative models (TabDDPM (Kotelnikov et al., 2023), TVAE (Xu et al., 2019), CTGAN (Xu et al., 2019)). As shown in Table 2, CRDA demonstrates superior stability and performance. While geometric methods like ADA and C-Mixup provide gains in specific settings, they exhibit catastrophic

failure modes in others (e.g., increasing MSE by over 100% on *Synthetic Regression* and *Parkinson’s*). Similarly, deep generative models significantly degrade performance more often, likely due to difficulties in capturing the precise conditional distribution $P(Y|X)$ required for regression. In contrast, CRDA’s residual-preserving mechanism ensures that synthetic samples remain faithful to the underlying noise structure. Across all datasets, CRDA is the only method that reliably improves performance for both XGBoost and MLP models without the risk of significant degradation.

Table 2: The percent MSE change for XGB and MLP base regressors. We compare CRDA against specialized regression augmentations (C-Mixup (Yao et al., 2022), ADA (Schneider et al., 2023)) and generative models (TabDDPM (Kotelnikov et al., 2023), TVAE (Xu et al., 2019), CTGAN (Xu et al., 2019)). Averaged across 10 seeds, reporting standard error. Lower is better \downarrow .

Dataset	Model	% MSE Change \downarrow					
		$\Delta_{\text{C-Mixup}}$	Δ_{ADA}	Δ_{TabDDPM}	Δ_{TVAE}	Δ_{CTGAN}	Δ_{CRDA}
CPU Performance (Olson et al., 2017a)	XGB	1.7 \pm 1.5	1.9 \pm 0.6	36.5 \pm 4.0	23.6 \pm 3.2	47.5 \pm 3.5	-1.4 \pm 0.7
	MLP	-0.9 \pm 1.0	-0.6 \pm 1.0	27.3 \pm 4.8	30.6 \pm 4.8	141.4 \pm 18.6	-12.0 \pm 1.0
Satellite Image (Olson et al., 2017b)	XGB	6.4 \pm 1.7	1.4 \pm 1.1	10.7 \pm 1.4	13.1 \pm 2.3	8.6 \pm 1.3	-0.7 \pm 0.7
	MLP	-1.0 \pm 2.1	3.3 \pm 2.4	9.9 \pm 3.0	21.8 \pm 4.3	50.5 \pm 5.6	-23.3 \pm 1.5
Wind Power (Haslett & Raftery, 1989)	XGB	-1.9 \pm 0.6	-0.2 \pm 0.3	-0.4 \pm 0.5	4.9 \pm 0.8	8.7 \pm 1.3	-2.6 \pm 0.3
	MLP	4.9 \pm 3.4	14.7 \pm 2.0	-7.1 \pm 1.4	4.9 \pm 1.4	18.7 \pm 2.4	-8.0 \pm 1.1
Synthetic Regression (Olson et al., 2017c)	XGB	141.5 \pm 31.8	18.3 \pm 3.6	25.0 \pm 8.2	117.0 \pm 20.0	158.4 \pm 23.5	2.3 \pm 1.8
	MLP	78.1 \pm 19.2	16.7 \pm 6.4	-19.2 \pm 2.7	68.0 \pm 11.3	191.5 \pm 29.8	-33.3 \pm 3.8
Concrete Strength (Yeh, 1998)	XGB	-2.8 \pm 1.7	-0.1 \pm 1.4	-1.1 \pm 3.0	8.1 \pm 2.7	26.1 \pm 4.4	-1.7 \pm 1.9
	MLP	-4.8 \pm 2.9	-3.8 \pm 1.5	-5.9 \pm 2.9	34.8 \pm 6.3	135.1 \pm 17.7	-15.4 \pm 2.3
Energy Efficiency (Tsanas & Xifara, 2012)	XGB	-18.0 \pm 9.1	-20.7 \pm 3.5	3.4 \pm 7.7	-18.3 \pm 8.0	-25.0 \pm 6.5	-10.7 \pm 3.8
	MLP	11.9 \pm 14.2	-22.9 \pm 4.1	11.1 \pm 11.1	131.8 \pm 32.0	353.7 \pm 52.2	-32.5 \pm 5.4
House Price (Community, 2024)	XGB	-12.8 \pm 12.6	-42.9 \pm 7.4	-13.4 \pm 12.9	297.5 \pm 93.6	817.7 \pm 142.1	-12.8 \pm 3.6
	MLP	-51.0 \pm 5.1	-52.6 \pm 5.8	-4.3 \pm 16.1	996.5 \pm 286.4	3036.1 \pm 373.9	-42.3 \pm 3.4
Parkinson’s Monitoring (Tsanas & Little, 2009)	XGB	105.1 \pm 13.2	89.5 \pm 11.1	286.7 \pm 25.9	434.7 \pm 56.5	596.9 \pm 55.2	-0.3 \pm 1.9
	MLP	102.6 \pm 34.9	19.5 \pm 10.1	164.6 \pm 27.1	660.6 \pm 128.0	1280.3 \pm 139.3	-51.1 \pm 5.1
Wine Quality (Cortez et al., 2009)	XGB	-2.0 \pm 0.5	-0.0 \pm 0.6	-2.6 \pm 0.7	-0.5 \pm 0.6	0.6 \pm 0.9	-2.8 \pm 0.4
	MLP	13.1 \pm 5.2	23.6 \pm 2.5	-5.5 \pm 0.6	-1.2 \pm 0.9	2.2 \pm 0.5	-2.9 \pm 0.8

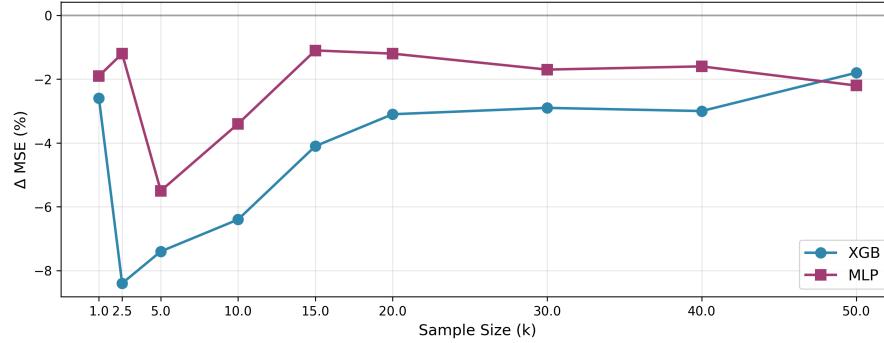


Figure 3: Synthetic sample-size-scaling experiment with a DGP of known independence for the residuals Z and features \bar{X} . For both XGB and MLP base models, we observe a “sweet spot” where CRDA yields the largest MSE reduction (typically at a lower sample size).

6 LIMITATIONS

CRDA is currently designed for regression tasks; extending its principles to classification, where residuals are not straightforwardly defined, is a direction for future work.

The core of our method’s validity hinges on a key assumption: the model’s residual noise, Z , is conditionally independent of the features we choose to perturb, X_P , given the features we hold fixed, X_R (Assumption 1). In practice, verifying this assumption from finite data is a primary challenge. A poorly fitted base predictor may yield residuals that retain dependencies on all input features, causing interventions on X to break the required noise invariance. To address this, CRDA

486 employs a two-stage filtering process. First, we use the PC algorithm and a Pearson correlation test
 487 as a *risk-control heuristic* to screen for candidate features that are likely to satisfy Assumption 1.
 488 We acknowledge this screen is imperfect; the PC algorithm can fail in the presence of unobserved
 489 confounders, and correlation tests may not detect non-linear dependencies.

490 However, these filters are not intended to be infallible but rather a practical first line of defense. The
 491 theoretical guarantees of the PC algorithm, for instance, are well-studied; under standard assump-
 492 tions, its error probability of incorrectly identifying an edge decays exponentially with sample size
 493 (Kalisch & Bühlman, 2007). This sample consistency suggests that the risk of our filter admitting
 494 a feature that violates Assumption 1 diminishes as more data becomes available. More importantly,
 495 CRDA incorporates a second, decisive *safety gate*: the Wilcoxon signed-rank test. This test eval-
 496 uates the realized impact of augmentation on a validation set. If the generated samples do not yield
 497 a statistically significant improvement, the augmentation is discarded. This fail-safe mechanism en-
 498 sures that we either improve the baseline or abstain from augmentation, thereby mitigating the risk
 499 of performance degradation from an imperfect initial screen.

500 To address concerns that a strong base learner is required, we include *linear regression* experiments
 501 in Appendix G. In every dataset/fold, the Wilcoxon gate produced $p > 0.05$, so CRDA *abstained*. If
 502 one *ignores* the gate and forces augmentation, performance generally degrades or does not improve,
 503 illustrating that the safety checks are beneficial and block harmful augmentation for weak baselines.

504 Finally, the performance of CRDA is sensitive to both dataset size and the choice of the base predic-
 505 tor. For very large datasets, the need for augmentation diminishes, and CRDA offers little benefit.
 506 Conversely, if a dataset is too small, the base model may be too weak to produce meaningful residu-
 507 als that are even approximately independent of the features, and our statistical tests will lack power.
 508 This can be seen in our sample-size-scaling experiment in Figure 3.

510 7 CONCLUSION

511 We described a new data augmentation technique for regression called CRDA. CRDA is model-
 512 agnostic and it does not assume any domain knowledge such as specific transformations that pre-
 513 serve labels. Instead, it leverages counterfactual reasoning and the invariance of the residual noise
 514 distribution. We demonstrated the effectiveness of CRDA in data scarce regression tasks where it
 515 helped improve predictions made by representative base predictors including XGBoost and multi-
 516 layer perceptrons. We also displayed substantially stronger and more reliable results when compared
 517 to state-of-the-art tabular data generators.

518 Several directions for future work remain. The first is to extend CRDA to classification tasks. The
 519 key challenge is due to the non-numeric nature of residuals, though embedding-based transfor-
 520 mations offer a potential path. The second would be to explore alternative methods in our feature
 521 partitioning step, such as formal proximal causal inference techniques. This may enable CRDA to
 522 better adjust for hidden factors rather than simply discarding confounded features.

523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Takuya Akiba, Shinji Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
543 generation hyperparameter optimization framework. In *Proceedings of the 25th ACM SIGKDD*
544 *International Conference on Knowledge Discovery & Data Mining (KDD '19)*, pp. 2623–2631.
545 ACM, 2019. doi: 10.1145/3292500.3330701.

546 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
547 *arXiv preprint arXiv:1907.02893*, 2020.

548 Rina Foygel Barber and Emmanuel Candès. Predictive inference with the jackknife+. *Annals of*
549 *Statistics*, 49(1):486–507, 2021.

550 Paula Branco, Luís Torgo, and Rita P. Ribeiro. SMOGN: a pre-processing approach for imbalanced
551 regression. In *Proceedings of the First International Workshop on Learning with Imbalanced*
552 *Domains: Theory and Applications (LIDTA)*, 2017.

553 Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: Syn-
554 thetic minority over-sampling technique. *Journal of Artificial Intelligence Research*, 16:321–357,
555 2002. doi: 10.1613/jair.953.

556 Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In *Proceedings of the*
557 *22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp.
558 785–794. ACM, 2016. doi: 10.1145/2939672.2939785.

559 Kaggle Community. House Prices: Advanced Regression Techniques (Dataset).
560 <https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques>, 2024. Accessed 16 May
561 2025.

562 Paulo Cortez, Antonio Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Wine Quality,
563 2009. URL <https://archive.ics.uci.edu/dataset/186/wine%2Bquality>.
564 UCI Machine Learning Repository.

565 Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. AutoAugment:
566 Learning augmentation policies from data. In *Proceedings of the IEEE Conference on Computer*
567 *Vision and Pattern Recognition (CVPR)*, pp. 113–123, 2019.

568 Bradley Efron. Bootstrap methods: Another look at the jackknife. *The Annals of Statistics*, 7(1):
569 1–26, 1979.

570 Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hun-
571 dreds of classifiers to solve real world classification problems? *Journal of Machine Learning*
572 *Research*, 15(1):3133–3181, January 2014. ISSN 1532-4435.

573 Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. *Annals of*
574 *Statistics*, 29(5):1189–1232, 2001.

575 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. Adaptive Computation and
576 Machine Learning. MIT Press, Cambridge, MA, November 2016. ISBN 978-0262035613. URL
577 <https://www.deeplearningbook.org/>.

578 John Haslett and Adrian E. Raftery. Irish Wind Speed (Malin Head, 1961–1978), 1989. URL
579 <https://www.rdocumentation.org/packages/gstat/topics/wind>. Daily av-
580 erage wind speeds at 12 Irish stations.

581 Paul W. Holland. Statistics and causal inference. *Journal of the American Statistical Association*,
582 81(396):945–960, 1986. doi: 10.1080/01621459.1986.10478354.

583 Seong-Hyeon Hwang and Steven Euijong Whang. Regmix: Data mixing augmentation for regres-
584 sion. *arXiv preprint arXiv:2106.03374*, 2021.

585 Markus Kalisch and Peter Bühlman. Estimating high-dimensional directed acyclic graphs with the
586 pc-algorithm. *Journal of Machine Learning Research*, 8(3), 2007.

594 Murat Kocaoglu, Charles Snyder, Sriram Chen, and Alexandros G. Dimakis. Causalgan: Learning
 595 causal implicit generative models with adversarial training. In *International Conference on*
 596 *Learning Representations (ICLR)*, 2018.

597 Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. TabDDPM: Model-
 598 ing tabular data with diffusion models. In *Proceedings of the 40th International Conference on*
 599 *Machine Learning (ICML)*, pp. 14801–14820, 2023.

600 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 69(6):066138, 2004.

601 Chaochao Lu, Biwei Huang, Ke Wang, José Miguel Hernández-Lobato, Kun Zhang, and Bernhard
 602 Schölkopf. Sample-efficient reinforcement learning via counterfactual-based data augmentation.
 603 *CoRR*, abs/2012.09092, 2020. URL <https://arxiv.org/abs/2012.09092>.

604 Dhruv Mahajan, Saurabh Tripathi, Christopher Homan, Serge Belongie, and Pietro Perona. Counter-
 605 factual data augmentation for vision transformers. *arXiv preprint arXiv:2303.17491*, 2023.

606 Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore.
 607 PMLB Dataset 227.cpu_small, 2017a. URL <https://github.com/EpistasisLab/pmlb>. Penn Machine Learning Benchmarks, version 2025-05-16.

608 Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore.
 609 PMLB Dataset 294_satellite_image, 2017b. URL <https://github.com/EpistasisLab/pmlb>. Penn Machine Learning Benchmarks, version 2025-05-16.

610 Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore.
 611 PMLB Dataset 623.fri_c4_1000_10, 2017c. URL <https://github.com/EpistasisLab/pmlb>. Synthetic Friedman #4 variant; Penn Machine Learning Benchmarks.

612 Judea Pearl. *Causality: Models, Reasoning, and Inference*. Cambridge University Press, 2 edition,
 613 2009.

614 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
 615 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake VanderPlas,
 616 Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
 617 esnay. Scikit-learn: Machine learning in python. *Journal of Machine Learning Research*, 12:
 618 2825–2830, 2011.

619 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of Causal Inference: Foundations
 620 and Learning Algorithms*. The MIT Press, 2017.

621 Parjanya Prashant, Seyedeh Baharan Khatami, Bruno Ribeiro, and Babak Salimi. Scalable
 622 out-of-distribution robustness in the presence of unobserved confounders. *arXiv preprint
 623 arXiv:2411.19923*, 2024.

624 Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
 625 Gulin. Catboost: unbiased boosting with categorical features. *Advances in neural information
 626 processing systems*, 31, 2018.

627 Abbaaram Gowtham Reddy, Celia Rubio-Madrigal, Rebekka Burkholz, and Krikamol Muandet.
 628 When shift happens—confounding is to blame. *arXiv preprint arXiv:2505.21422*, 2025.

629 Donald B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 630 *Annals of Statistics*, 2(1):34–58, 1974. doi: 10.1214/aos/1176342660.

631 Nora Schneider, Shirin Goshtasbpour, and Fernando Perez-Cruz. Anchor data augmentation. *Ad-
 632 vances in Neural Information Processing Systems*, 36:74890–74902, 2023.

633 Peter Spirtes, Clark Glymour, and Richard Scheines. *Causation, Prediction, and Search*. Adaptive
 634 Computation and Machine Learning. MIT Press, Cambridge, MA, 2nd edition, 2000.

635 Athanasios Tsanas and Max A. Little. Parkinsons Telemonitoring, 2009. URL <https://archive.ics.uci.edu/ml/datasets/parkinsons%2Btelemonitoring>. UCI
 636 Machine Learning Repository.

648 Athanasios Tsanas and Angeliki Xifara. Energy Efficiency, 2012. URL <https://archive.ics.uci.edu/ml/datasets/energy%2Befficiency>. UCI Machine Learning Repository.

649

650

651

652 Frank Wilcoxon. Individual comparisons by ranking methods. *Biometrics Bulletin*, 1(6):80–83,

653 1945. ISSN 0099-4987. doi: 10.2307/3001968. URL <https://doi.org/10.2307/3001968>.

654

655 Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular

656 data using conditional gan. *Advances in neural information processing systems*, 32, 2019.

657

658 Huaxiu Yao, Yiping Wang, Linjun Zhang, James Zou, and Chelsea Finn. C-Mixup: Improving

659 generalization in regression. *Advances in Neural Information Processing Systems (NeurIPS)*, 35:

660 32422–32437, 2022.

661 I-Cheng Yeh. Concrete Compressive Strength, 1998. URL <https://archive.ics.uci.edu/ml/datasets/concrete%2Bcompressive%2Bstrength>. UCI Machine Learning Repository.

662

663

664 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngsook Yoo.

665 CutMix: Regularization strategy to train strong classifiers with localizable features. *Proceedings*

666 *of the IEEE International Conference on Computer Vision (ICCV)*, pp. 6023–6032, 2019.

667

668 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical

669 risk minimization. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2017.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDICES

A IMPLEMENTATION DETAILS

All experiments were conducted in Python, leveraging standard libraries for machine learning and hyperparameter optimization. We used `scikit-learn` for the `MLPRegressor` baseline (Pedregosa et al., 2011), `XGBoost` for the `XGBoostRegressor` baseline (Chen & Guestrin, 2016), and `Optuna` for tuning CRDA’s specific hyperparameters (Akiba et al., 2019).

Our experimental protocol uses 10-fold cross-validation (CV), and we seed all random number generators to ensure reproducibility. Computations were performed on a single **AWS c7i.24xlarge** instance equipped with 96 vCPUs and 192 GB of RAM. To facilitate the complete reproduction of our findings, we have made the full study logs, JSON configuration files, and source code available in the project repository, **code included in supplementary material**.

B DATASET SUMMARY

Table 3 lists the nine tabular-regression benchmarks used in the paper, with their total sample count, dimensionality (# numeric columns), and provenance repository.

Table 3: Basic statistics of the evaluation datasets, including number of samples (n_{samp}) and number of features (n_{features}).

Dataset	n_{samp}	n_{features}	Source
CPU Performance	8192	12	PMLB (Olson et al., 2017a)
Satellite Image	6435	36	PMLB (Olson et al., 2017b)
Wind Power	6574	14	UCI (Haslett & Raftery, 1989)
Synthetic Regression	1000	10	PMLB (Olson et al., 2017c)
Concrete Strength	1005	8	UCI (Yeh, 1998)
Energy Efficiency	768	9	UCI (Tsanas & Xifara, 2012)
House Price	1000	7	Kaggle (Community, 2024)
Parkinson’s Monitoring	5875	20	UCI (Tsanas & Little, 2009)
Wine Quality	5318	11	UCI (Cortez et al., 2009)

C COMPLETE EXPERIMENTAL PROTOCOL

Configuration Objects. We centralize all experiment settings (e.g. dataset path, model type, global seed, CRDA knobs) in a Python class `Config`. Each run instantiates a `Config` with specific arguments and passes it to our `Experiment` harness, which saves the resulting configuration to a JSON file for reproducibility.

Listing 1: Example truncated config file for an XGB run.

```
{
  "baseline": "xgboost",
  "dataset_path": ".../data/WineQuality.csv",
  "sample_sizes": [1063, 2126, 3189, 4252, 5315],
  "ignore_filter": true,
  "hyperparam_tune": true,
  "results_dir": ".../experiments/WineQuality",
  "...": "More fields omitted (test_size, num_seeds, p_wilcoxon_threshold
          , etc.)"
}
```

756 **Key Fields and Usage**
757

758 • **Model parameters:** `baseline` can be set to “mlp” or “xgboost”; we do not alter other
759 hyper-parameters (those are tuned via `RandomizedSearchCV`).
760 • **CRDA knobs:** `aug_data_size_factor`, `max_n_features_to_perturb` and
761 `max_perturb_percent`. These are also tunable parameters (via `Optuna`). They spec-
762 ify how many counterfactual samples to generate, how many perturbable features we per-
763 turb and by how much; see Section E.
764 • **Data splits:** `sample_sizes` enumerates partial subsets of a dataset (e.g. $\frac{n}{5}, \dots, n$), and
765 `test_size` sets the final train–test ratio.
766 • **Miscellaneous toggles:** `hyperparam_tune` (whether to run a cross-validated search),
767 `ignore_filter` (bypass CRDA’s feature independence checks), `save_plots`, etc.
768

769 For each experiment, the `Experiment` class reads the `config` object, runs the pipeline (train-
770 ing, augmentation, evaluation), and dumps logs plus final results in a timestamped directory. By
771 reloading `config.json` via `Config.from_dict`, one can exactly reproduce the same run.
772

773 **D HYPER-PARAMETERS AND SEARCH SPACES**
774

775 The two baseline families—**MLPRegressor** and **XGBoostRegressor**—share a hybrid strategy: we fix
776 well-established architectural or optimisation knobs to textbook defaults, while *searching* over the
777 handful of hyper-parameters that most strongly drive bias–variance trade-offs. This mirrors common
778 practice in tabular ML benchmarks (Fernández-Delgado et al., 2014; Friedman, 2001) and keeps the
779 search budget (20 trials per 3-fold, per dataset, per baseline) focused on the levers that matter.
780

781 **Why these choices?** For MLPs we retain the ReLU–Adam recipe that has been shown to be robust
782 for small/medium tabular tasks (Goodfellow et al., 2016). We enable *adaptive* learning-rate and early
783 stopping to guard against over-training, and explore only depth/width (‘`hidden_layer_sizes`’) and
784 three learning-dynamics scalars (α , `learning_rate_init`, `tol`). For XGBoost we follow the histogram
785 grow policy (“`tree_method=hist`”) that is memory-friendly on CPUs, fix 1 000 boosting rounds
786 (with early stopping inside the CRDA loop), and search the usual five knobs that govern tree shape,
787 sampling and shrinkage.

788 Median wall-clock per trial on a `c7i.24xlarge` is \sim 9s (MLP) and \sim 4s (XGB).² Tables 4 and 5
789 enumerate the *search priors* together with the *modal* best value across datasets.
790

791 Table 4: `MLPRegressor` hyper-parameters searched with `RANDOMIZEDSEARCHCV`. Ranges use
792 log-uniform (LogU) or categorical priors.
793

794 Parameter	795 Prior / Range	796 Modal best
797 <code>hidden_layer_sizes</code>	798 $\{(128, 64, 32), (128, 64), (64, 32), (64,)\}$	799 (128, 64, 32)
799 α (L2)	800 LogU($10^{-5}, 10^{-3}$)	801 0.00040
800 <code>learning_rate_init</code>	801 LogU($10^{-3}, 10^{-2}$)	802 0.00942
801 <code>tol</code>	802 LogU($10^{-5}, 10^{-4}$)	803 0.00009
<i>Fixed for all runs</i>		
803 <code>activation</code>	804 <code>relu</code>	
804 <code>solver</code>	805 <code>adam</code>	
805 <code>batch_size</code>	806 32	
806 <code>max_iter</code>	807 1 000	
807 <code>learning_rate</code>	808 <code>adaptive</code>	
808 <code>early_stopping</code>	809 <code>true</code>	
809 <code>validation_fraction</code>	810 0.10	
810 <code>n_iter_no_change</code>	811 20	

²Full timing logs available in `experiments/full_reproduction.ipynb`.

810 Table 5: XGBoostRegressor hyper-parameters searched with RANDOMIZEDSEARCHCV. Log-
 811 spaces are base-10.

813 Parameter	814 Prior / Range	815 Modal best
816 learning_rate	817 $\log_{10}[10^{-3}, 10^{-1}]$ (10 pts)	818 0.02154
819 max_depth	820 $\{3, 4, 6\}$	821 6
822 min_child_weight	823 $\{1, 5\}$	824 5
825 subsample	826 $\{0.7, 1.0\}$	827 0.7
828 colsample_bytree	829 $\{0.7, 1.0\}$	830 0.7
831 reg_lambda	832 $\log_{10}[10^{-3}, 10^1]$ (6 pts)	833 0.03981
<i>Fixed for all runs</i>		
834 objective	835 reg:squarederror	
836 tree_method	837 hist	
838 n_estimators	839 1 000	
840 reg_alpha	841 0.0	
842 early_stopping_rounds	843 20	

828 E CRDA KNOB SELECTION & SENSITIVITY

829 CRDA exposes three *augmentation knobs*. During a 30-trial OPTUNA–TPE search (per dataset, per
 830 baseline) we sample from the priors in Table 6; all other implementation details are inherited from
 831 Algorithm 1 (main paper).

- 833 • **max_n_features_to_perturb** controls *how many* invariant features are jointly
 834 edited, trading off sample realism against diversity.
- 835 • **aug_data_size_factor** decides the # of counterfactuals per real point; values < 1
 836 mitigate class-imbalance-style bias, whereas > 1 favors variance reduction.
- 837 • **max_perturb_percent** sets the half-width of the $[-p, +p]$ uniform scaling band;
 838 larger p injects broader *counterfactual sweep* but risks violating local linearity assumptions
 839 of the residual.

841 These three parameters explain the vast majority of between-trial variance in validation MSE, so
 842 limiting OPTUNA to a small budget remains effective. Median trial time is ~ 7.5 s (MLP) and ~ 3.7 s
 843 (XGB).

844 Table 6 reports the *modal* best value across the nine benchmarks.

845 Table 6: CRDA augmentation knobs: search priors and modal best values.

846 Knob	847 Search prior / range	848 Modal best
849 max_n_features_to_perturb	850 $\{1, 2, 3, 4, 5\}$	851 2
852 aug_data_size_factor	853 $\{0.50, 0.75, 1.00, 1.25, 1.50\}$	854 1.25
855 max_perturb_percent	856 $\{0.10, 0.20, \dots, 1.00\}$	857 0.7

854 ONE-DATASET SWEEP (HOUSE PRICE)

856 For illustration, we fix two of the three knobs at their modal best values (from Table 6) and
 857 systematically vary the remaining knob. Figures 4 and 5 show the resulting percentage change in MSE
 858 (*lower* is better) on the *House Price* dataset, averaged over five random seeds. We make several
 859 observations:

- 860 • **Augmenting data size** (`aug_data_size_factor`) appears more beneficial for MLP,
 861 presumably because additional training samples reduce overfitting; by contrast, XGB sees
 862 weaker or even mixed effects here, consistent with the notion that tree ensembles can al-
 863 ready leverage smaller sets effectively.

864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

- **Number of perturbed features** (`max_n_features_to_perturb`) shows an opposite preference: XGB yields stronger gains when more features are jointly modified, whereas MLP performance degrades if we perturb too many simultaneously (likely hurting the local consistency of the residual).
- **Perturbation magnitude** (`max_perturb_percent`) also diverges across baselines: larger scales help XGB discover more diverse synthetic points, but MLP tends to prefer smaller shifts in order to maintain stable gradients in training.

In short, although *both* models benefit from CRDA overall, their ideal hyper-parameter configurations differ. This shows the importance of model-aware tuning for effective data augmentation.

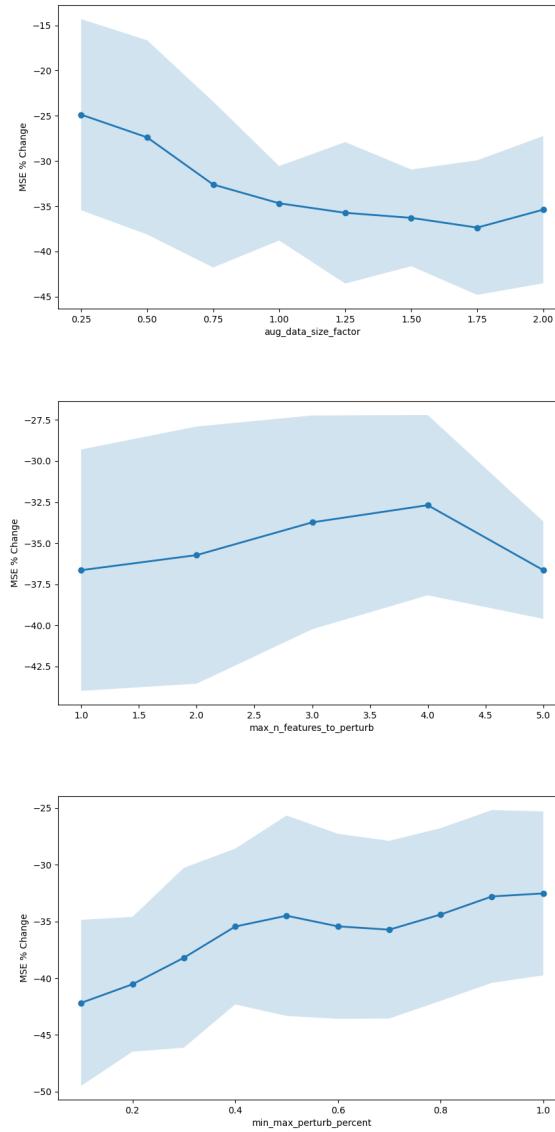
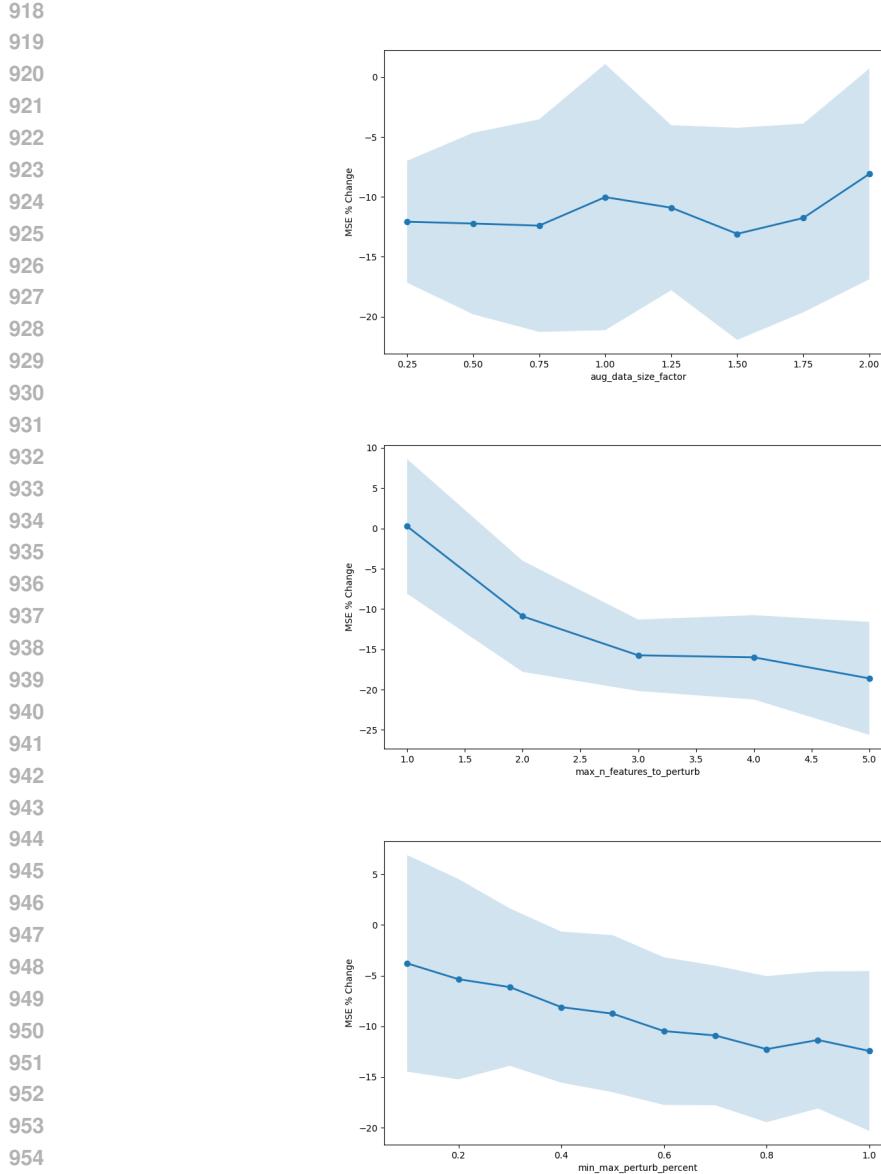


Figure 4: CRDA knob–sensitivity on the **MLP** baseline (HousePrice dataset).

Figure 5: CRDA knob-sensitivity on the **XGB** baseline (HousePrice dataset).

F VALIDATION OF ASSUMPTIONS AND COMPONENT ANALYSIS

In this section, we provide a deeper analysis of the CRDA framework. First, we empirically validate the core residual independence assumption using Mutual Information. Second, we perform ablation studies to demonstrate the benefits of applying CRDA compared to simplified baselines.

F.1 EMPIRICAL VALIDATION OF RESIDUAL INDEPENDENCE

A core theoretical assumption of CRDA (Assumption 1) is that the residual noise Z is conditionally independent of the features selected for perturbation (X_P), i.e., $P(Z|X_P, X_R) = P(Z|X_R)$. To validate this assumption and assess the effectiveness of our PC-algorithm/Correlation filter, we conducted an analysis measuring the Mutual Information (MI) between the residuals and the features. Mutual Information is an empirical estimator of the KL-Divergence $D_{KL}(P(Z, X)||P(Z)P(X))$; a value of zero indicates perfect independence.

We performed this evaluation across all 9 benchmark datasets using the XGBoost regressor over 15 random seeds. For each run, we calculated the MI (using the Kraskov KSG estimator (Kraskov et al., 2004)) for the set of features *Selected* (X_P) by CRDA versus the set of features *Rejected* (X_R).

The results are presented in Table 7. We observe that for datasets showing stronger feature-residual dependence (e.g., Energy Efficiency, House Price), the features rejected by our filter display significantly higher Mutual Information with the residuals (up to $\approx 3 \times$ higher) than the selected features. This confirms that the filter effectively identifies and removes features that would violate the independence assumption. For other datasets (e.g., Wine Quality, Wind Power), the MI scores for both selected and rejected features are uniformly low, indicating that the residuals are naturally independent of the features in these domains, and the filter correctly permits a wider range of perturbations.

Table 7: Evaluation of Feature-Residual Independence via Mutual Information (MI). We report the MI (in nats) between the model residuals Z and the features X , comparing features **Selected** by CRDA vs. those **Rejected**. Results are averaged over 15 seeds with standard errors. The **Ratio** column highlights the effectiveness of the filter in reducing divergence (higher is better).

Dataset	Selected Features (X_P) (Lower is better)	Rejected Features (X_R) (Higher implies dependence)	Divergence Ratio (MI_{Rej}/MI_{Sel})
House Price	0.0056 ± 0.0020	0.0155 ± 0.0023	$2.75 \times$
Energy Efficiency	0.0054 ± 0.0012	0.0160 ± 0.0023	$2.94 \times$
Parkinson’s Monitoring	0.0054 ± 0.0006	0.0103 ± 0.0007	$1.92 \times$
Synthetic Regression	0.0073 ± 0.0013	0.0136 ± 0.0025	$1.85 \times$
Concrete Strength	0.0203 ± 0.0024	0.0320 ± 0.0035	$1.58 \times$
CPU Performance	0.0136 ± 0.0010	0.0144 ± 0.0014	$1.06 \times$
Wine Quality	0.0110 ± 0.0009	0.0136 ± 0.0011	$1.23 \times$
Wind Power	0.0065 ± 0.0007	0.0084 ± 0.0007	$1.29 \times$
Satellite Image	0.1031 ± 0.0013	0.1149 ± 0.0009	$1.11 \times$

F.2 ABLATION STUDIES

To verify that the independence assumption verified above translates to performance gains, we compare CRDA against two simplified ablation baselines:

- **Global Perturbation:** All features are perturbed randomly ($X_P = X$), ignoring the PC-algorithm and correlation checks.
- **Label Invariance:** Features are perturbed, but the label is kept fixed ($y' = y$), rather than recalculating $y' = g(x') + z$.

Table 8 presents the percentage change in MSE ($\Delta\%$) relative to the unaugmented base regressor across 3 representative datasets. CRDA consistently yields the largest error reduction. Notably, simple baselines often yield negligible improvements or even degrade performance (positive $\Delta\%$).

Table 8: Ablation results on Synthetic Regression, Energy Efficiency, and Parkinson’s Monitoring datasets. Values represent the percentage change in MSE ($\Delta\%$) relative to the unaugmented baseline (lower is better). Results are averaged over 5 seeds with standard errors.

Dataset	Model	MSE $\Delta\%$ Change (↓)		
		Global Perturbation	Label Invariance	CRDA
Synthetic Regression	MLP	-16.12 ± 4.30	-12.44 ± 32.43	-38.94 ± 4.02
	XGB	$+1.21 \pm 2.10$	-1.02 ± 1.33	-3.62 ± 1.93
Energy Efficiency	MLP	-14.50 ± 3.86	-2.65 ± 2.47	-38.84 ± 5.99
	XGB	-7.15 ± 9.75	-5.28 ± 8.78	-17.45 ± 5.16
Parkinson’s Monitoring	MLP	-13.50 ± 8.90	$+0.55 \pm 19.04$	-58.40 ± 5.16
	XGB	$+0.36 \pm 1.57$	-3.09 ± 4.35	-7.82 ± 2.47

1026 **G LINEAR REGRESSION BASE PREDICTOR STUDY**
1027

1028

In order to test our method against weaker base predictors; where separate systematic signal cannot
1029 be cleanly separated from noise, possibly violating our assumptions; we selected linear regression.
1030 Using the same 15 seeds and data settings as the main experiment, we conducted this study to
1031 observe how CRDA behaves.

1032

Table 9 reports the averages and standard errors for baseline MSE, CRDA MSE, their percentage
1033 change ($\Delta \%$) as well as the p – values from the Wilcoxon signed-rank test for every dataset and
1034 sample size subset.

1035

We see that CRDA’s filters *rejected* every single fold. Recall that for the Wilcoxon signed-rank test,
1036 if the p-value is above the 0.05 threshold, CRDA stops. We still report the $\Delta \%$ if we had ignored
1037 the filter and observe how CRDA hurts here. CRDA therefore protects against weaker baselines,
1038 further illustrating how model-agnostic does not imply *always helpful*.

1040

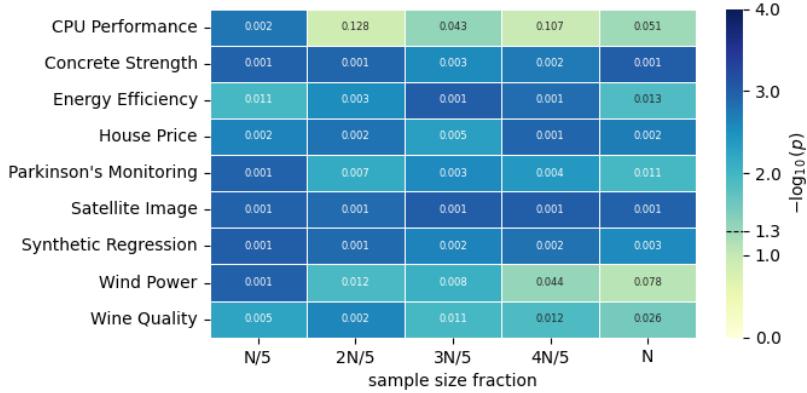
Table 9: Augmentation results for Linear Regression. Cells are green when data augmentation was
1041 selected to proceed according to the Wilcoxon signed rank test and red otherwise. Lower is better
1042 for the Δ MSE % change \downarrow .

1043

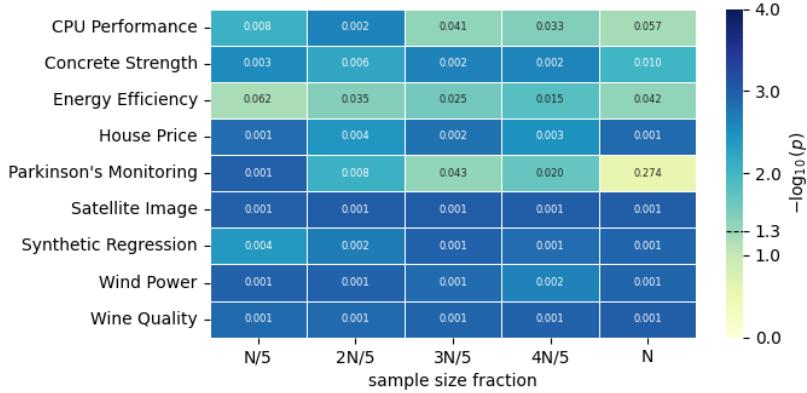
Dataset	Size	Linear Regression			
		MSE _{baseline}	MSE _{CRDA}	$\Delta \% \downarrow$	p-value
CPU Performance	1638	0.011094 \pm 0.000870	0.011066 \pm 0.000842	0.04 \pm 0.58	0.461 \pm 0.035
	3276	0.010935 \pm 0.000576	0.011012 \pm 0.000604	0.58 \pm 0.41	0.506 \pm 0.038
	4914	0.009789 \pm 0.000295	0.009784 \pm 0.000296	-0.05 \pm 0.23	0.452 \pm 0.038
	6552	0.009834 \pm 0.000360	0.009887 \pm 0.000361	0.55 \pm 0.18	0.515 \pm 0.029
	8190	0.009705 \pm 0.000347	0.009709 \pm 0.000346	0.05 \pm 0.10	0.456 \pm 0.040
Satellite Image	1287	0.042119 \pm 0.000653	0.042185 \pm 0.000658	0.16 \pm 0.14	0.240 \pm 0.037
	2574	0.041148 \pm 0.000505	0.041131 \pm 0.000504	-0.04 \pm 0.07	0.264 \pm 0.032
	3861	0.040646 \pm 0.000388	0.040666 \pm 0.000393	0.05 \pm 0.05	0.275 \pm 0.025
	5148	0.040154 \pm 0.000304	0.040183 \pm 0.000296	0.08 \pm 0.05	0.393 \pm 0.037
	6435	0.040492 \pm 0.000291	0.040509 \pm 0.000288	0.04 \pm 0.05	0.347 \pm 0.031
	1314	0.007335 \pm 0.000262	0.007339 \pm 0.000261	0.06 \pm 0.10	0.501 \pm 0.042
Wind Power	2628	0.006363 \pm 0.000130	0.006368 \pm 0.000130	0.08 \pm 0.05	0.468 \pm 0.028
	3942	0.006580 \pm 0.000098	0.006583 \pm 0.000098	0.04 \pm 0.04	0.493 \pm 0.029
	5256	0.006583 \pm 0.000084	0.006584 \pm 0.000084	0.00 \pm 0.03	0.498 \pm 0.025
	6570	0.006175 \pm 0.000050	0.006175 \pm 0.000049	-0.00 \pm 0.02	0.528 \pm 0.033
	1314	0.023265 \pm 0.000989	0.023317 \pm 0.000979	0.29 \pm 0.60	0.306 \pm 0.029
Synthetic Regression	400	0.022073 \pm 0.000552	0.022101 \pm 0.000552	0.13 \pm 0.26	0.365 \pm 0.032
	600	0.021332 \pm 0.000483	0.021358 \pm 0.000490	0.12 \pm 0.16	0.385 \pm 0.039
	800	0.015924 \pm 0.000382	0.015945 \pm 0.000386	0.12 \pm 0.09	0.381 \pm 0.038
	1000	0.015908 \pm 0.000365	0.015911 \pm 0.000361	0.03 \pm 0.12	0.419 \pm 0.031
	201	0.016621 \pm 0.001047	0.016592 \pm 0.001043	-0.15 \pm 0.28	0.362 \pm 0.035
Concrete Strength	402	0.017469 \pm 0.000866	0.017431 \pm 0.000886	-0.33 \pm 0.31	0.352 \pm 0.031
	603	0.017323 \pm 0.000472	0.017336 \pm 0.000490	0.03 \pm 0.25	0.406 \pm 0.028
	804	0.016711 \pm 0.000551	0.016726 \pm 0.000563	0.06 \pm 0.16	0.452 \pm 0.028
	1005	0.015719 \pm 0.000346	0.015722 \pm 0.000348	0.01 \pm 0.08	0.477 \pm 0.024
	153	0.003620 \pm 0.000316	0.003650 \pm 0.000315	1.02 \pm 0.92	0.413 \pm 0.043
Energy Efficiency	306	0.002928 \pm 0.000118	0.002926 \pm 0.000118	-0.03 \pm 0.35	0.398 \pm 0.038
	459	0.002872 \pm 0.000120	0.002873 \pm 0.000119	0.04 \pm 0.22	0.453 \pm 0.040
	612	0.002615 \pm 0.000083	0.002621 \pm 0.000081	0.29 \pm 0.30	0.452 \pm 0.035
	765	0.002667 \pm 0.000054	0.002673 \pm 0.000057	0.21 \pm 0.19	0.436 \pm 0.025
House Price	200	0.000103 \pm 0.000006	0.000103 \pm 0.000006	0.77 \pm 0.52	0.344 \pm 0.029
	400	0.000100 \pm 0.000004	0.000101 \pm 0.000004	0.10 \pm 0.18	0.463 \pm 0.037
	600	0.000100 \pm 0.000004	0.000100 \pm 0.000004	0.07 \pm 0.12	0.515 \pm 0.023
	800	0.000104 \pm 0.000003	0.000104 \pm 0.000003	0.03 \pm 0.09	0.476 \pm 0.046
	1000	0.000103 \pm 0.000003	0.000104 \pm 0.000003	0.22 \pm 0.16	0.445 \pm 0.040
Parkinson’s Monitoring	1175	0.004750 \pm 0.000108	0.004754 \pm 0.000108	0.08 \pm 0.10	0.425 \pm 0.041
	2350	0.004672 \pm 0.000093	0.004681 \pm 0.000096	0.18 \pm 0.14	0.333 \pm 0.025
	3525	0.004651 \pm 0.000093	0.004650 \pm 0.000092	-0.02 \pm 0.06	0.355 \pm 0.027
	4700	0.004618 \pm 0.000074	0.004620 \pm 0.000074	0.05 \pm 0.05	0.449 \pm 0.029
	5875	0.004665 \pm 0.000053	0.004655 \pm 0.000052	0.01 \pm 0.03	0.429 \pm 0.023
Wine Quality	1063	0.021526 \pm 0.000636	0.021544 \pm 0.000647	0.07 \pm 0.23	0.393 \pm 0.025
	2126	0.015126 \pm 0.000310	0.015131 \pm 0.000307	0.04 \pm 0.05	0.452 \pm 0.032
	3189	0.015448 \pm 0.000199	0.015461 \pm 0.000197	0.09 \pm 0.05	0.443 \pm 0.026
	4252	0.014830 \pm 0.000261	0.014839 \pm 0.000260	0.06 \pm 0.04	0.487 \pm 0.034
	5315	0.014894 \pm 0.000162	0.014896 \pm 0.000164	0.01 \pm 0.03	0.505 \pm 0.024

1080 H STATISTICAL SIGNIFICANCE TESTS

1082 For every dataset \times training-set-fraction of our main experiment we did a 10-fold cross validation
 1083 comparison of CRDA’s augmented MSE against the corresponding raw unaugmented MSE with a
 1084 two-sided Wilcoxon signed-rank test ($n_{\text{folds}} = 10$, $n_{\text{seeds}} = 15$ per cell). The heat-maps in Figures 6
 1085 and 7 visualize the outcome.



1100 Figure 6: **MLP baseline.** Colour encodes $-\log_{10}(p)$; numbers are the mean p across 15 seeds. The
 1101 dashed line on the colour-bar marks the $\alpha = 0.05$ threshold ($-\log_{10} p \approx 1.3$).



1118 Figure 7: **XGB baseline.** Same layout and colour scale as Figure 6.

1119

1120 **Brief analysis.** Across *both* baselines the majority of cells are darker than the $\alpha = 0.05$ cut-off,
 1121 indicating that CRDA delivers a statistically significant reduction in test-MSE for most dataset/
 1122 size combinations. Significance is strongest for smaller training sets and occasionally weakens as
 1123 the full dataset is used (e.g. CPU Performance and Wind Power for MLP, Parkinson’s
 1124 Monitoring for XGB), but even at n the method remains significant in 7/9 datasets with at least
 1125 one baseline. These results support the robustness of the performance gains reported in the main
 1126 paper.

1128 I COMPLETE PER-DATASET SCORES

1130 Table 10 reports the baseline MSE, CRDA MSE and their percentage change ($\Delta \%$) for every dataset
 1131 and sample size subset. It is a more comprehensive version of Table 1 in the main paper. These
 1132 results are the averages across 15 different seed runs and so we include their standard errors.³

1133 ³Per-seed results are available in the code repository at [experiments/{dataset}/{model}/interim_results](https://github.com/CRDA-Group/CRDA-experiments)

1134 Table 10: Complete results with standard errors for XGB and MLP across 15 seeds for each of the
1135 9 datasets. Lower is better ↓.
1136

Dataset	Sample Size	XGB ↓			MLP ↓		
		MSE _{baseline}	MSE _{CRDA}	Δ %	MSE _{baseline}	MSE _{CRDA}	Δ %
CPU Performance	1638	0.00097 ± 0.00004	0.00089 ± 0.00004	-7.0 ± 2.7	0.00112 ± 0.00007	0.00087 ± 0.00003	-20.2 ± 3.2
	3276	0.00088 ± 0.00003	0.00079 ± 0.00002	-9.5 ± 2.2	0.00100 ± 0.00002	0.00085 ± 0.00002	-14.0 ± 1.5
	4914	0.00077 ± 0.00002	0.00072 ± 0.00001	-6.2 ± 1.2	0.00093 ± 0.00002	0.00082 ± 0.00001	-11.3 ± 1.5
	6552	0.00073 ± 0.00002	0.00069 ± 0.00001	-4.1 ± 1.6	0.00090 ± 0.00003	0.00079 ± 0.00001	-10.5 ± 2.2
	8190	0.00074 ± 0.00002	0.00070 ± 0.00001	-5.2 ± 1.9	0.00087 ± 0.00001	0.00078 ± 0.00001	-10.2 ± 0.8
Satellite Image	1287	0.01778 ± 0.00046	0.01697 ± 0.00051	-4.5 ± 1.4	0.02031 ± 0.00100	0.01629 ± 0.00057	-18.4 ± 3.1
	2574	0.01636 ± 0.00035	0.01576 ± 0.00040	-3.7 ± 0.8	0.01747 ± 0.00037	0.01455 ± 0.00039	-16.7 ± 1.5
	3861	0.01460 ± 0.00034	0.01390 ± 0.00034	-4.8 ± 0.8	0.01585 ± 0.00053	0.01211 ± 0.00035	-23.1 ± 1.7
	5148	0.01364 ± 0.00032	0.01300 ± 0.00030	-4.7 ± 1.1	0.01415 ± 0.00044	0.01076 ± 0.00029	-23.7 ± 1.2
	6435	0.01254 ± 0.00029	0.01186 ± 0.00026	-5.3 ± 0.8	0.01232 ± 0.00034	0.00989 ± 0.00028	-19.7 ± 1.0
Wind Power	1314	0.00742 ± 0.00028	0.00721 ± 0.00028	-2.8 ± 1.2	0.00752 ± 0.00024	0.00697 ± 0.00024	-7.2 ± 1.5
	2628	0.00602 ± 0.00012	0.00603 ± 0.00012	0.2 ± 0.6	0.00621 ± 0.00016	0.00562 ± 0.00011	-9.2 ± 1.4
	3942	0.00586 ± 0.00008	0.00578 ± 0.00008	-1.3 ± 0.4	0.00593 ± 0.00007	0.00539 ± 0.00008	-9.0 ± 0.7
	5256	0.00570 ± 0.00006	0.00562 ± 0.00007	-1.4 ± 0.4	0.00567 ± 0.00008	0.00533 ± 0.00008	-6.2 ± 0.4
	6570	0.00528 ± 0.00005	0.00522 ± 0.00005	-1.1 ± 0.3	0.00530 ± 0.00004	0.00500 ± 0.00004	-5.6 ± 0.5
Synthetic Regression	200	0.00652 ± 0.00043	0.00564 ± 0.00031	-12.0 ± 3.7	0.01993 ± 0.00172	0.01387 ± 0.00157	-28.8 ± 6.3
	400	0.00327 ± 0.00026	0.00312 ± 0.00022	-3.2 ± 2.5	0.00610 ± 0.00036	0.00384 ± 0.00031	-36.9 ± 3.0
	600	0.00264 ± 0.00008	0.00242 ± 0.00007	-7.9 ± 2.2	0.00321 ± 0.00026	0.00228 ± 0.00019	-27.9 ± 3.0
	800	0.00165 ± 0.00008	0.00161 ± 0.00009	-2.2 ± 2.0	0.00223 ± 0.00016	0.00140 ± 0.00008	-34.1 ± 4.0
	1000	0.00152 ± 0.00005	0.00145 ± 0.00006	-4.6 ± 2.8	0.00220 ± 0.00013	0.00123 ± 0.00007	-42.3 ± 3.1
Concrete Strength	201	0.00777 ± 0.00068	0.00701 ± 0.00063	-8.0 ± 3.6	0.01033 ± 0.00103	0.00793 ± 0.00050	-17.8 ± 5.7
	402	0.00493 ± 0.00035	0.00453 ± 0.00037	-8.4 ± 2.7	0.00635 ± 0.00053	0.00496 ± 0.00037	-19.8 ± 2.8
	603	0.00473 ± 0.00024	0.00427 ± 0.00024	-9.7 ± 2.2	0.00602 ± 0.00014	0.00494 ± 0.00014	-17.6 ± 2.5
	804	0.00365 ± 0.00017	0.00307 ± 0.00014	-15.7 ± 1.9	0.00497 ± 0.00026	0.00361 ± 0.00013	-24.8 ± 4.1
	1005	0.00290 ± 0.00010	0.00256 ± 0.00013	-12.2 ± 2.0	0.00422 ± 0.00024	0.00306 ± 0.00016	-26.9 ± 1.7
Energy Efficiency	153	0.00399 ± 0.00048	0.00344 ± 0.00050	-13.3 ± 7.7	0.00583 ± 0.00048	0.00426 ± 0.00046	-25.1 ± 6.8
	306	0.00233 ± 0.00014	0.00206 ± 0.00015	-12.2 ± 3.1	0.00321 ± 0.00014	0.00233 ± 0.00021	-28.1 ± 4.8
	459	0.00165 ± 0.00012	0.00143 ± 0.00011	-10.5 ± 5.9	0.00188 ± 0.00015	0.00106 ± 0.00013	-43.0 ± 4.6
	612	0.00128 ± 0.00007	0.00100 ± 0.00006	-19.3 ± 5.3	0.00091 ± 0.00008	0.00052 ± 0.00005	-40.7 ± 3.9
	765	0.00097 ± 0.00006	0.00076 ± 0.00007	-21.0 ± 4.4	0.00053 ± 0.00008	0.00035 ± 0.00003	-28.3 ± 4.3
House Price	200	0.00079 ± 0.00008	0.00064 ± 0.00005	-14.2 ± 4.8	0.00102 ± 0.00011	0.00057 ± 0.00007	-40.6 ± 4.8
	400	0.00033 ± 0.00002	0.00031 ± 0.00002	-5.4 ± 2.3	0.00041 ± 0.00003	0.00025 ± 0.00001	-37.0 ± 3.7
	600	0.00027 ± 0.00002	0.00026 ± 0.00002	-4.9 ± 2.7	0.00029 ± 0.00002	0.00020 ± 0.00002	-30.1 ± 3.8
	800	0.00024 ± 0.00001	0.00022 ± 0.00001	-9.9 ± 2.0	0.00023 ± 0.00001	0.00016 ± 0.00001	-30.3 ± 4.1
	1000	0.00020 ± 0.00001	0.00018 ± 0.00001	-6.5 ± 1.9	0.00019 ± 0.00001	0.00014 ± 0.00001	-27.0 ± 2.5
Parkinson's Monitoring	1175	0.00079 ± 0.00003	0.00072 ± 0.00003	-8.4 ± 2.4	0.00165 ± 0.00012	0.00101 ± 0.00006	-36.2 ± 3.9
	2350	0.00034 ± 0.00002	0.00032 ± 0.00001	-6.6 ± 2.8	0.00080 ± 0.00005	0.00054 ± 0.00003	-31.8 ± 2.5
	3525	0.00021 ± 0.00001	0.00020 ± 0.00001	-2.8 ± 3.4	0.00048 ± 0.00003	0.00030 ± 0.00002	-36.6 ± 4.0
	4700	0.00015 ± 0.00001	0.00014 ± 0.00001	-6.3 ± 2.4	0.00042 ± 0.00003	0.00021 ± 0.00001	-46.4 ± 4.1
	5875	0.00011 ± 0.00001	0.00011 ± 0.00001	1.7 ± 3.8	0.00026 ± 0.00002	0.00013 ± 0.00001	-47.2 ± 4.6
Wine Quality	1063	0.02057 ± 0.00056	0.02062 ± 0.00054	0.3 ± 0.8	0.02291 ± 0.00088	0.02284 ± 0.00129	-0.3 ± 3.3
	2126	0.01416 ± 0.00029	0.01429 ± 0.00029	1.0 ± 0.7	0.01539 ± 0.00026	0.01458 ± 0.00032	-5.2 ± 1.6
	3189	0.01391 ± 0.00019	0.01386 ± 0.00016	-0.3 ± 0.5	0.01478 ± 0.00023	0.01423 ± 0.00024	-3.6 ± 1.5
	4252	0.01332 ± 0.00024	0.01324 ± 0.00026	-0.6 ± 0.4	0.01386 ± 0.00027	0.01323 ± 0.00025	-4.4 ± 0.8
	5315	0.01332 ± 0.00012	0.01318 ± 0.00014	-1.1 ± 0.3	0.01397 ± 0.00016	0.01328 ± 0.00019	-5.0 ± 0.6

J ADDITIONAL BASELINE: CATBOOST ANALYSIS

To assess CRDA's robustness against stronger tree-based ensembles, we performed an additional evaluation using CatBoost (Prokhorenkova et al., 2018). CatBoost is often considered better than XGBoost due to its oblivious trees and robustness to overfitting, making it a challenging predictor to improve upon.

We evaluated performance at three fixed sample sizes ($N = \{300, 500, 700\}$) to observe behavior across different data availabilities.

Table 11 presents the percentage change in MSE ($\Delta\%$). We observe three distinct behaviors:

- **Consistent Gains:** On *House Price* and *Wind Power*, CRDA significantly reduces MSE across all sample sizes (peaking at -22.8% for *House Price*), demonstrating that CRDA behaves robustly for these tasks regardless of sample size.
- **Late-Stage Gains:** *CPU Performance* requires a sufficient number of samples to model the residual. It shows no benefit at $N = 300$ but improves substantially as data increases, reaching -13.0% at $N = 700$.
- **Sweet-Spot Behavior:** Datasets such as *Parkinson's Monitoring*, *Energy Efficiency*, and *Synthetic Regression* exhibit a “sweet spot” around $N = 500$, where the augmentation provides the most benefit ($\approx 4\text{-}5\%$ reduction) before CatBoost potentially saturates the signal at larger sample sizes.

1188 Table 11: Percentage change in MSE ($\Delta\%$) for *CatBoost* at fixed sample sizes. Values represent the
 1189 mean $\Delta\%$ across 15 seeds \pm standard error.

1190

1191 Dataset	1192 $N = 300$	1193 $N = 500$	1194 $N = 700$
1195 House Price	1196 -22.80 ± 0.60	1197 -18.87 ± 0.52	1198 -14.11 ± 0.50
1199 CPU Performance	1200 1.92 ± 0.91	1201 -7.34 ± 0.58	1202 -13.04 ± 0.90
1203 Parkinson’s Monitoring	1204 -1.44 ± 0.61	1205 -5.13 ± 0.60	1206 -1.33 ± 0.46
1207 Energy Efficiency	1208 -1.65 ± 0.86	1209 -4.95 ± 1.01	1210 -1.89 ± 0.90
1211 Synthetic Regression	1212 -2.31 ± 0.57	1213 -4.01 ± 0.60	1214 -1.15 ± 0.66
1215 Wind Power	1216 -3.78 ± 0.38	1217 -2.54 ± 0.24	1218 -2.47 ± 0.29
1219 Satellite Image	1220 -0.95 ± 0.53	1221 -2.08 ± 0.41	1222 -1.95 ± 0.30
1223 Wine Quality	1224 -0.09 ± 0.39	1225 -1.62 ± 0.29	1226 -1.94 ± 0.21
1227 Concrete Strength	1228 -0.95 ± 0.56	1229 -0.69 ± 0.39	1230 0.46 ± 0.39

K COMPUTE BUDGET AND CARBON FOOTPRINT

1201

1202

- 1203 • **Hardware.** AWS `c7i.24xlarge` (96 vCPU, 192 GB RAM, Xeon Platinum 8480C,
 1204 ≈ 0.59 kW active draw).⁴
- 1205 • **Runtime.** 13.562 h total (9.103 h MLP baseline, 4.459 h XGB baseline).
- 1206 • **Energy.** $13.562 \times 0.59 \approx 8.0$ kWh.
- 1207 • **CO₂-eq.** Local grid intensity 34.5 g CO₂/kWh $\Rightarrow 8.0 \times 0.0345 \approx 0.28$ kg CO₂.

L BROADER SOCIETAL IMPACT CONSIDERATIONS

1211

1212 This is foundational work that aims to improve regression in scarce data scenarios. As discussed
 1213 in Section 7 (Limitations) of the main paper, CRDA could worsen predictive accuracy instead of
 1214 improving it, leading to negative consequences in high impact applications. To mitigate such nega-
 1215 tive outcomes, CRDA filters applications with the PC algorithm, the Pearson correlation test and the
 1216 Wilcoxon signed rank test.

M PROOF OF PROPOSITION 1

1221

Recall Assumption 1:

1222

1223

1224

Let the feature vector X be partitioned into two disjoint subsets, $X = (X_P, X_R)$, where X_P are the
 1225 features we intend to perturb (the *perturbable* coordinates) and X_R are the features we hold fixed
 1226 (the *remaining* coordinates). Let $g(X) = \mathbb{E}[Y|X]$ be the true conditional expectation function, and
 1227 let $Z = Y - g(X)$ be the corresponding structural noise term. We introduce the following condition:

$$\mathbb{P}(Z | X_P, X_R) = \mathbb{P}(Z | X_R) \quad (2)$$

1230

1231

1232

1233

Equation 2 says that the noise Z is conditionally independent of the perturbable features X_P given
 1234 the fixed features X_R .

Proposition 1 stated:

1235

1236

1237

Suppose Assumption 1 holds. Then for any x_R in the support of X_R and any x_P, x'_P in the condi-
 1238 tional support of $X_P | X_R = x_R$, we have

$$\mathbb{P}(Z | X_P = x_P, X_R = x_R) = \mathbb{P}(Z | X_P = x'_P, X_R = x_R).$$

1239

1240

Equivalently, $\mathbb{P}(Z | X_P = x_P, X_R) = \mathbb{P}(Z | X_R)$ is constant in x_P .

1241

⁴Power estimate from Intel C7i workload proof sheet.

1242 *Proof.* By Assumption 1, there exists a version of the regular conditional law such that, for (almost)
 1243 ⁵ every (x_P, x_R) and every measurable set A ,

$$1245 \quad \mathbb{P}(Z \in A \mid X_P = x_P, X_R = x_R) = \mathbb{P}(Z \in A \mid X_R = x_R)$$

1246 Fix x_R and two values x_P, x'_P in the conditional support of $X_P \mid X_R = x_R$. Applying the displayed
 1247 equality once with x_P and once with x'_P yields
 1248

$$1249 \quad \mathbb{P}(Z \in A \mid X_P = x_P, X_R = x_R) = \mathbb{P}(Z \in A \mid X_R = x_R) = \mathbb{P}(Z \in A \mid X_P = x'_P, X_R = x_R),$$

1250 for all measurable A . Hence the conditional laws coincide, proving the claim. \square

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294 ⁵Conditional distributions are defined only up to sets of probability zero, so equalities hold almost surely.
 1295 We also restrict x_P, x'_P to the conditional support of $X_P \mid X_R = x_R$ (positivity) to ensure the displayed
 1296 conditionals are well-defined.