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ABSTRACT

Large multimodal models (LMMs) have shown impressive capabilities in a wide
range of visual tasks. However, they often struggle with identifying domain-
specific objectives and fail to explain their predictions reasonably. To address
the above challenge, we propose a novel iterative visual fine-tuning framework
to improve the effectiveness and explainability of LMMs using self-synthesized
data. Specifically, visual fine-tuning requires images, queries, and target answers.
Our approach begins by synthesizing interpretable answers that include human-
verifiable visual features. These features are based on expert-defined concepts,
carefully selected based on their alignment with the image content. After each
round of fine-tuning, we apply a reward model-free filtering mechanism to select
the highest-quality interpretable answers for the next round of tuning. This itera-
tive process of data synthesis and fine-tuning progressively improves the model’s
ability to generate accurate and reasonable explanations. Experimental results
demonstrate the effectiveness of our method in improving both the accuracy and
explainability of specialized visual classification tasks.

1 INTRODUCTION

Large Multimodal Models (LMMs) have recently demonstrated remarkable performance in visual
descriptive tasks, excelling in applications such as image captioning and visual question answer-
ing (Liu et al., 2024a; Alayrac et al., 2022; Li et al., 2022; Liu et al., 2024b). However, recent
research (Kim & Ji, 2024; Geigle et al., 2024) reveals a significant drop in their effectiveness when
applied to knowledge-intensive, domain-specific visual classification tasks. We observe that even
advanced models like LLaVA-1.5 (Liu et al., 2024a) can only achieve a mere 12.2% classification
accuracy in the Stanford Dogs dataset (Khosla et al., 2011). Further investigation reveals that cur-
rent LMMs struggle to utilize key visual features for reasoning in classification and fail to provide
justifiable explanations for their predictions, as illustrated by the examples in Figure 1.

LMM: The bird species
shown in this image is a
seagull. The reason for
this identification is that
the bird is flying over the
ocean, which is a typical
habitat for seagulls.

LMM: The bird species is
a black crow. The reason
for this identification is
that the bird is perched on
a tree branch, which is a
common behavior for
crows.

User: Identify the bird species and explain your reasoning.

Label: Black footed Albatross Label: Groove billed Ani

Figure 1: LLaVA-1.5 struggles to utilize key
visual features in images for reasoning and ex-
plaining predictions in classification tasks.

The core issue stems from insufficient domain-specific
alignment, as the model struggles to recognize key vi-
sual features and link them to the correct labels. To ad-
dress this problem, we propose enhancing the LMM’s
domain-specific cognition and explainability through
fine-tuning (Touvron et al., 2023; Gu et al., 2021).
However, this approach is hindered by a lack of data, as
creating high-quality, feature-level image annotations is
both complex and resource-intensive (Liu et al., 2024c).
While labeling images by category and identifying key
features for each class independent of the image is man-
ageable, annotating the specific visual characteristics
per image requires an extensive workload. Moreover,
this level of detailed annotation goes beyond the ca-
pacity of standard annotators and current LMMs (Chen
et al., 2024a), making it impractical to scale.
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The biggest challenge now is synthesizing high-quality training data, specifically interpretable target
answers. Given a dataset with images and labels, a naive approach would be to use only labels as
target answers. However, training on such data may result in shortcut learning, where models pick
up spurious correlations instead of truly understanding key visual features (Geirhos et al., 2020).
While including general label-associated features as target answers might seem beneficial, it often
results in overly generic explanations that lack the image-specific details necessary for accurate
interpretation. We illustrate these shortcomings with examples in Figure 2.

#only label
A: This is a Black Footed Albatross.

#label and general label-level features
A: … Black Footed Albatross, 
because …black feet; long, narrow 
wings;…, hooked bill…, dark eyes 

Q: What is this 
bird's species? 
Explain your 

reasoning.

A: … a Black Footed Albatross 
based on its large, hooked bill, dark 
feathers, small, dark eyes on either 
side of its head ....

Synthesized 
Answer

#label and specific image-level features

Figure 2: Examples of synthesized
answers for query Q. Training with
the first two types leads to shortcut
learning or overgeneralization.

To tackle this challenge, we propose a framework that allows
LMMs to self-synthesize interpretable answers without rely-
ing on explicit image-specific annotations. For a given image,
we first leverage the LMM’s captioning ability to generate de-
scriptions, which are then used to identify visual features rel-
evant to that specific image. Each description may only cover
part of the key features, but by collecting a large set of descrip-
tions from the LMM, we can approximate the true distribution
of the image’s features, reducing the incompleteness in indi-
vidual descriptions. We provide a formal justification for this
approach in Section 3.2. Moreover, to ensure precise identifi-
cation, we apply an information bottleneck technique to select
the most relevant features. Once the image-specific concepts
are identified, they are rewritten into interpretable answers.

For the training procedure, we also design an iterative fine-
tuning approach to further improve performance over a one-
shot training scheme. We begin by extracting image-level fea-
tures and transforming them into interpretable answers, which,
together with the corresponding images and queries, form the
initial training dataset. Fine-tuning on this data results in an
updated model that can generate more accurate answers. The
updated model is then used to repeatedly generate answers, with the best one selected for the next
round of fine-tuning. This self-boosting process progressively improves the LMM’s ability to deliver
reliable explanations.

In summary, our contributions are threefold: (1) We propose a novel framework that improves
LMMs’ interpretable visual classification abilities without requiring extensive manual labeling, (2)
We introduce an information-theoretic approach to select interpretable visual concepts for each im-
age and a reward model-free filtering method to ensure high-quality data selection from synthesized
outputs, and (3) We develop an iterative process of data synthesis and model fine-tuning to progres-
sively enhance LMMs’ cognitive abilities and explainability.

2 PRELIMINARY

Problem Statement. We aim at developing a Large Multimodal Model (LMM) for explainable
visual classification. Let fθ denote the LMM model, X be the input image, and q be the query
prompt. The model’s answer is denoted as ŷ = fθ(X, q), where ŷ is expected to correctly predict
the label and explain its prediction by using the visual features observed in the image. To build such
a model, a straightforward strategy is to fine-tune the LMM with a training dataset that contains the
ground-truth answer for each input image. However, most available datasets D = {(Xi, ci)}Ni=1
only consist of images Xi and class labels ci (Khosla et al., 2011). To solve this, we propose a data
synthesis approach that transforms the raw dataset into an augmented datasetD∗ = {(Xi, qi, yi)}Ni=1
with queries and explainable answers. While generating queries qi is straightforward, the challenge
lies in synthesizing explainable answers yi, which must include detailed visual features Z∗

i that
humans can identify and use for explanations. Therefore, the key problem is developing a method
to automatically annotate visual features Z∗

i for each image Xi, given their labels ci.

Visual Fine-Tuning. Visual fine-tuning adapts a pre-trained LMM to understand specific visual
information by training on image-text pairs. Typically, an LMM fθ consists of a vision encoder
that extracts visual embeddings from an input image X , a projector that maps these embeddings
into the language embedding space, and a language model that processes the combined visual and
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Base 
LMM

(LLaVA)

Tuned 
LMM

(round T)

Initial Data
Synthesis

𝑋

"Predominantly dark plumage",
"Long, narrow wings adapted for soaring",
"White-tipped wings and tail feathers",
"Large, hooked bill, typically dark gray",
"Small, dark eyes on the sides of the head",
…

Black footed Albatross

Label-level Concepts 𝑍

Black footed 
Albatross

… Rejection
Sampling

Tuned 
LMM

(round T+1)

Final 
LMM

…

𝑋 𝑍∗ 𝑍

Concepts Selection

"Large, hooked bill, typically dark gray",
"Small, dark eyes on the sides of …”,
"Predominantly dark plumage",

Image-level Concepts 𝑍∗
𝑍∗

𝑌

𝑦∗
𝑍𝐷

Query 
Prompt 𝑌 = {𝑦", 𝑦#, … , 𝑦$}

The bird species shown in this image 
is a Black footed Albatross. The 
image features, such as the unique 
large, hooked bill, dark eyes, and 
dark grayish-brown body, support 
this identification.

𝑦∗

Tuned 
LMM

(round T)

Figure 3: Our framework: An iterative approach of data synthesis and model fine-tuning.

textual information (Liu et al., 2024b;a; Lin et al., 2024). Formally, given a round of conversation
containing an image X , a question q and an answer y, the model is trained to maximize the likeli-
hood of generating the target answer: L(θ) =

∑|y|
i=1 log pθ(y

i|X, q, y<i). Here, yi is the i-th token
of the answer y, and |y| is the length of the answer. The fine-tuning process typically optimizes
performance by freezing the pre-trained visual encoder to preserve learned visual representations
while updating the projector and language model parameters to improve language understanding for
visual inputs (Liu et al., 2024b; Lin et al., 2024). Recognizing the critical role of fine-tuning data
quality in model performance, our research proposes synthesizing high-quality conversation data to
improve performance.

3 METHODOLOGY

3.1 OVERVIEW

Our approach leverages synthesized data for visual fine-tuning to enhance both the cognitive ability
and explainability of LMMs, as illustrated in Figure 3. There are two major steps:

1. Image-level Visual Concept Selection: Given an image and its label, our first task is to extract a
set of image-specific concepts that explain the connection between the image and label. We propose
a selection method that identifies a subset of concepts most relevant to the image content while
ensuring the subset is concise. Using these concepts, we prompt the LMM to rewrite them into
textual answers that explains the label. These answers are used for the first round of fine-tuning.

2. Reward Model-Free Rejection Sampling: After the initial fine-tuning, the model can generate
synthetic answers, which can be used for next-round fine-tuning, but their quality still varies. To
filter out low-quality explanations and only select the best quality one as training data, we use
previously selected concepts as filtering criteria, quantifying alignment between explanations and
the concepts. The synthetic answer with the best-aligned explanation is then selected and combined
with the corresponding image and query, forms a new data pair for subsequent rounds of fine-tuning.

3.2 STEP 1: IMAGE-LEVEL VISUAL CONCEPT SELECTION

In this step, our goal is to identify the visual concepts present in a given image. Let X represent
the true content of the image and c its class label. Each label class c is associated with a set of
expert-defined visual concepts Z, which can be obtained by consulting domain experts or using a
large language model. However, not all concepts in Z will necessarily be present in the image X .
Therefore, we aim to select a subset of concepts, Z∗ ⊆ Z, that are observable in the image X .

To achieve this, we propose concept selection by leveraging the Information Bottleneck (IB) prin-
ciple, which seeks a compressed representation that preserves maximal information about another
variable (Tishby et al., 2000). In our context, we need to find Z∗ that maximizes its mutual infor-
mation with the image content X , i.e., I(X;Z∗), while minimizing the redundancy by penalizing
the mutual information between the selected concepts Z∗ and the full concept set Z, i.e., I(Z∗;Z).
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Formally, we define the optimization problem:
Z∗ = arg max

Z′⊆Z
[I(X;Z ′)− βI(Z ′;Z)] , (1)

where β is a Lagrange multiplier that balances relevance and redundancy. However, directly comput-
ing I(X;Z ′) is intractable due to the high dimensionality and complexity of the image space. To ad-
dress this, we introduce an intermediate variable: a set of image descriptions D = {d1, d2, . . . , dn},
generated by prompting an LMM (i.e., the base LLaVA-1.5 (Liu et al., 2024a)), with instructions
like “Please describe the image.” Each description di attempts to capture some aspects of the image
content X . By increasing the number of collected descriptions n with different prompts, we aim to
approximate the true distribution of X .

This approach is analogous to assembling pieces of a puzzle: Each description provides partial in-
formation about the image, and collectively, they form a more complete representation. Similarly,
multiple potentially partial descriptions generated from different prompts can collectively approx-
imate the true image content. Under this intuition, we formalize the approximation in Theorem 1,
with proof provided in the appendix.
Theorem 1. Let X be the true image content with label c and D = {d1, d2, . . . , dn} be independent
and identically distributed (i.i.d.) samples from P (D|X). Let Z be an expert-defined concept list
about label c. Under the assumptions of conditional independence and convergence (Assumptions 1
and 2), as n→∞, the mutual information I(D;Z) converges to I(X;Z):

lim
n→∞

I(D;Z) = I(X;Z).

In practice, we cannot sample an infinite number of descriptions, and LMMs may generate inconsis-
tent or contradictory descriptions due to hallucinations or uncertainties. To mitigate this, we design
high-quality prompts and encourage diverse responses to improve the reliability of the generated
descriptions. By doing so, we assume that most of the descriptions will accurately reflect the image
content. This assumption is further validated through experiments in Section 4.4. From another per-
spective, if a feature is not consistently covered by image descriptions, it means that the model is not
certain about its presence, which will naturally result in lower MI scores for the associated concepts,
reducing their likelihood of being selected. Using the set of descriptions D, we reformulate the IB
objective in Equation. 1 as:

Z∗ = arg max
Z′⊆Z

[I(D;Z ′)− βI(Z ′;Z)] . (2)

However, computing mutual information in high-dimensional space directly remains challenging.
Therefore, we employ the InfoNCE loss (Oord et al., 2018) as a lower-bound estimator of mutual
information. For each concept zj ∈ Z, we calculate an InfoNCE score sj :

sj =
∑
di∈D

log
exp

(
sim

(
edi

, ezj
)
/τ

)
exp

(
sim

(
edi

, ezj
)
/τ

)
+
∑

dk∈D̄ exp
(
sim

(
edk

, ezj
)
/τ

) , (3)

where sim(·, ·) denotes the cosine similarity between embeddings, edi and ezj are the embeddings of
description di and concept zj , respectively, and τ is a temperature parameter. D̄ are the descriptions
for other images as negative samples. We can easily obtain the above embeddings through an off-
the-shelf language embedding model (e.g., BERT (Devlin, 2018)). Next, we approximate I(D;Z∗)
as the sum of InfoNCE scores for the selected concepts: I(D;Z∗) ≈

∑
zj∈Z∗ sj . To minimize

I(Z∗;Z), we selectively include concepts to reduce redundancy. Given that Z∗ is a subset of Z,
we have: H(Z∗) = I(Z∗;Z) = −

∑
zi∈Z∗ p(zi) log p(zi), where H(Z∗) is the entropy of Z∗. A

selected subset Z∗ with a smaller size and higher probabilities for its zi elements will result in lower
entropy. Combining these approximations, our selection criterion for Z∗ becomes:

Z∗ =
{
zj ∈ Z

∣∣∣ sj > µ+ β̂σ
}
, (4)

where µ and σ are the mean and standard deviation of the InfoNCE scores {sj}|Z|
j=1, respectively. The

parameter β̂ controls the trade-off between including relevant concepts and avoiding redundancy.
The selected concepts Z∗ are not only relevant to the image but also capture the most informative
features unique to the class label, providing strong evidence for the classification result and serving
as reasonable explanations. Once we obtain Z∗, we can generate an explainable answer for a
classification query on the image X . Specifically, we prompt the base LMM with these concepts to
produce a coherent explanation. The prompts used are detailed in the appendix. After gathering the
image and query-answer pairs, we can use them to fine-tune our LMMs.

4
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3.3 STEP 2: REWARD MODEL-FREE REJECTION SAMPLING

After the initial round of fine-tuning with explainable visual query-answer pairs, the LMMs has
significantly improved their ability to generate reasonable explanations. This improvement allows
us to leverage the current fine-tuned model to generate new data for subsequent training rounds.
However, the quality of newly generated data can vary considerably in terms of label accuracy and
explanation quality. Training on low-quality data could lead to performance degradation. To address
this issue, we propose a rejection sampling technique that filters out low-quality outputs.

Rejection sampling, also known as Best-of-N, is an inference-time strategy that generates multiple
candidates and selects the best one for further tuning (Touvron et al., 2023; Stiennon et al., 2020).
In our work, we adapt this idea for visual fine-tuning to iteratively improve LMM performance. Our
proposed rejection sampling process begins by generating a series of answer candidates, using the
fine-tuned model fT

θ from the last round T , and then identify the best answer from these candidates.
For language-only conversations, this selection is typically performed by a reward model, which
assigns higher rewards to answers aligning with desired criteria (Touvron et al., 2023). The answer
with the highest reward is then selected and used for the next round (T + 1) of training. However,
in the visual domain, finding a reliable reward model remains challenging, as noted by (Chen et al.,
2024a). To address this, we propose a reward model-free data filtering method to select the highest
quality interpretable answers.

Specifically, we leverage the selected concept set Z∗ from Section 3.2 as a reference to evaluate
explanation quality. Our aim is to select the answer that best aligns with these relevant concepts.
Formally, let Y = {y1, y2, . . . , ym} represent the set of answers generated by the fine-tuned model
for a given image. These answers are obtained by prompting the model with questions like “What
is the {item} in this image? Please provide your reasoning.” The “item” here is set to be an coarse-
level label, like bird, airplane. Our goal is to select the answer y∗ ∈ Y that maximizes the mutual
information with Z∗:

y∗ = argmax
yi∈Y

I(yi;Z
∗). (5)

We approximate I(yi;Z
∗) using the InfoNCE score:

s′i =
∑

zj∈Z∗

log
exp

(
sim

(
eyi

, ezj
)
/τ

)
exp

(
sim

(
eyi

, ezj
)
/τ

)
+
∑

zk∈Z,zk /∈Z∗ exp (sim (eyi
, ezk) /τ)

, (6)

where eyi
is the embedding of answer yi. We select the answer with the highest score: y∗ =

argmaxyi∈Y s′i. The InfoNCE score provides a quantitative measure of how well the generated an-
swer aligns with the relevant concepts. Therefore, our method eliminates the need for a separate
reward model, which is particularly beneficial given the lack of reliable reward models for multi-
modal data (Chen et al., 2024a). Additionally, we add another empirical constraint: the selected
answer should contain the correct label c; otherwise, it will be discarded.

In summary, our framework, outlined in Algorithm 1, enhances the model’s fine-grained classifica-
tion capabilities by iteratively fine-tuning on diverse, high-quality, synthesized visual classification
query-answer pairs. Step 1 identifies the most informative concepts in the image, while Step 2 se-
lects the explanations that best align with these concepts. This two-step approach improves both the
accuracy and interpretability of the model’s predictions, enabling it to perform more effectively in
complex visual classification tasks.

3.4 THEORETICAL JUSTIFICATION

Our approach is grounded in information theory, specifically the maximization of mutual informa-
tion among the image X , the expert-defined concepts Z for the whole class, and the generated
answer Y with explanations. Theoretically, the problem of finding the best Y ∗ is equivalent to
maximizing the three-way mutual information:

max
Y ∗

I(X;Y ;Z), (7)

where Y ∗ captures the maximum amount of information from both the image and the expert-defined
concepts. However, directly optimizing this objective is intractable due to the high dimensionality
of X and Y (Poole et al., 2019). To make the problem manageable, we decompose it into two
subproblems corresponding to our two-step method.
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Algorithm 1 Iterative synthesis and fine-tuning.

Require: Dataset D = {(Xi, ci)}Ni=1, Con-
cept Sets Z = {Zi}|C|

i=1 of every label,
Pre-trained LMM f0

θ , Synthesized query set
Q = {qi}Ni=1, Descriptive query qd

Ensure: Fine-tuned LMM fθ for accurate, in-
terpretable explanations

1: Initialize training set D∗ ← ∅
2: for each (Xi, ci) ∈ D do
3: Z ← Z[ci]
4: Di ← f0

θ (Xi, qd)
5: for zj ∈ Z do
6: sij ← InfoNCE(Di, zj)
7: end for
8: µi ← mean({sij}), σi ← std({sij})
9: Z∗

i ← {zj ∈ Z | sij > µi + βσi}
10: yi ← assemble(Z∗

i )
11: D∗ ← D∗ ∪ {(Xi, qi, yi)}
12: end for
13: FT: Fine-tune f0

θ on D∗ to obtain f1
θ

14: repeat
15: for each (Xi, ) ∈ D do
16: Yi ← fT

θ (Xi, qi)
17: for yij ∈ Yi do
18: s′ij ← InfoNCE(Z∗

i , yij)
19: end for
20: y∗i ← argmaxyij s

′
ij

21: D∗ ← D∗ ∪ {(Xi, qi, y
∗
i )}

22: end for
23: Iterative FT: Fine-tune fT

θ on D∗

24: until Max iterations Tm

25: return fm
θ

In Step 1, we select a subset of concepts
Z∗ ⊆ Z that maximizes I(X;Z∗), capturing
the most relevant concepts for the image. This
aligns with the Information Bottleneck princi-
ple, where Z∗ serves as a distilled subset of Z
that retains maximal information about X . In
Step 2, we select the generated explanation Y ∗

that maximizes I(Y ∗;Z∗), ensuring that the
generated explanation closely aligns with the
selected concepts. With this decomposition, we
establish a lower bound on the three-way mu-
tual information (proof provided in appendix).
Theorem 2. Let X , Y , and Z be discrete ran-
dom variables. Define:

Z∗ = argmax
Z′⊆Z

I(X;Z ′)− βI(Z ′;Z)

Y ∗ = argmax
Y ′⊆Y

I(Y ′;Z∗)

Then, the following inequality holds:

I(X;Y ;Z) ≥
I(Y ∗;Z∗) + I(X;Z∗)− I(Z∗;Z).

This theoretical foundation justifies our two-
step optimization process, ensuring that our
method effectively captures the essential infor-
mation shared among the image, concepts, and
explanations.

4 EXPERIMENTS

We conduct experiments to address the following questions. Q1: How effectively does our method
improve performance on fine-grained visual classification tasks? Q2: How does our method enhance
the explainability of the fine-tuned model? Q3: How does our concept selection strategy compare
to baseline methods? Q4: Does our training scheme mitigate shortcut learning? Q5: How usable is
our trained model?

4.1 EXPERIMENTS SETTINGS

Implementation Details: We evaluated our approach on a variety of datasets, including fine-grained
classification datasets (CUB-200 (Wah et al., 2011), Stanford Dogs (Khosla et al., 2011), FGVC-
Aircraft (Maji et al., 2013)), medical datasets (HAM10000 (Tschandl et al., 2018), Chest X-Ray
for Pneumonia (Kermany et al., 2018)), and the Plant Disease Dataset (PLD) (Vipooool, 2020). By
testing on datasets from diverse domains, we demonstrate the versatility of our proposed frame-
work with self-synthesized data. Our experiments used LLava-1.5-7B (Liu et al., 2024a) as the base
LMM, and for the Chest X-Ray datasets, we employed its medical version (Li et al., 2024b). Ad-
ditionally, E5 (Wang et al., 2022) served as the embedding model. We fine-tuned the LMMs using
LoRA, focusing on all linear layers. Training was conducted on 8 H100 GPUs, utilizing Hugging-
Face (Wolf, 2019) and DeepSpeed frameworks for efficient distributed training and optimization.
Further details are provided in the appendix.

Baselines: Given the novel problem of generating interpretable answers without image-specific
annotations, we design the following baselines for comparisons: (1) Base LMM: Assesses the
base multimodal model’s performance in the zero-shot setting. (2) Naive Label Fine-tuning (NL):
Fine-tunes the base model using only class labels and a simple template (e.g., “This is a picture of
{label}”). (3) Label with General Explanations (L+GE): We adopt the data synthesis approach

6
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Table 1: Our method achieves superior accuracy and explanation quality across diverse datasets.

Dataset Method Accuracy ↑
Per Iteration

Explanation
Quality

General
Ability

1 2 3 4 EE ↑ CS ↑ FS ↓ MMMU ↑

CUB-200

Base 2.69 – – – 0.92 0.67 4.28 35.56
NL 73.42 78.25 79.94 82.21 0.00 – – 35.67
L+GE 61.48 72.23 73.23 73.06 1.00 0.70 6.84 34.89
Ours 80.24 83.76 84.69 85.02 1.00 0.82 6.53 35.00

Stanford
dogs

Base 12.2 – – – 0.94 0.69 5.47 35.56
NL 82.73 82.34 84.03 84.27 0.00 – – 34.67
L+GE 73.45 77.89 78.15 76.55 1.00 0.77 7.50 34.56
Ours 85.29 86.75 86.86 86.91 1.00 0.86 7.41 34.56

FGVC-A

Base 3.00 – – – 0.97 0.42 5.39 35.56
NL 83.47 87.28 87.82 87.73 0.00 – – 35.56
L+GE 72.13 79.87 82.45 82.69 1.0 0.76 8.59 35.56
Ours 88.78 90.91 91.42 91.99 1.0 0.79 7.00 37.33

PLD

Base 0.00 – – – 0.95 – – 35.56
NL 89.38 94.52 94.29 93.95 0.00 – – 34.78
L+GE 24.03 25.27 24.56 24.90 1.00 0.76 10.45 35.44
Ours 75.96 92.80 96.59 97.16 1.00 0.86 9.01 35.22

HAM10000

Base 1.62 – – – 0.98 0.63 3.93 35.56
NL 77.28 80.75 82.49 81.71 0.00 – – 35.33
L+GE 7.47 8.83 9.35 8.45 1.00 0.94 9.68 35.22
Ours 79.37 82.29 83.69 85.06 1.00 0.87 7.43 35.89

Chest X-ray
Pneumonia

(LLaVA-Med)

Base 62.50 – – – 1.00 0.24 3.49 –
NL 85.58 89.10 85.90 89.58 0.00 – – –
L+GE 62.50 62.50 62.98 62.66 1.00 0.79 7.19 –
Ours 97.60 96.31 99.04 98.72 1.00 0.87 8.25 –

Base: original model; NL: only train with labels; L+GE: train with labels and general explanations

introduced in the LLaVA paper (Liu et al., 2024b) and (Kim & Ji, 2024), where training data is
generated using a language-only model (e.g., GPT-4), based on class labels and their corresponding
label-level knowledge. More details, including the prompts, are in the appendix.

4.2 RQ1: TRAINING ON OUR SYNTHESIZED DATA IMPROVES CLASSIFICATION

We evaluated our model’s classification capabilities using a multi-round, progressive rejection sam-
pling training process comprising four iterations, each with two epochs. Classification accuracy was
measured after each iteration, with success defined as the presence of the ground truth label in the
model’s response (Kim & Ji, 2024). All trainable baselines were trained and evaluated under identi-
cal settings to ours for a fair comparison. More details on training are provided in the appendix.

Our proposed method achieves higher accuracy than both NL and L+GE baselines, as shown in Ta-
ble 1. While the baselines, particularly NL, exhibit overfitting, our method improves accuracy with
each iteration, demonstrating its effectiveness in fine-grained classification tasks. Our approach’s re-
silience to overfitting stems from the use of rejection sampling, which generates more diverse train-
ing dataset. This expanded data pool enhances the model’s generalization capabilities. Moreover,
training with our dataset, which includes specific visual features, helps the model learn more detailed
visual knowledge, contributing to further gains in classification performance. In contrast, the L+GE
baseline struggles with certain datasets, notably HAM10000, likely due to irrelevant information in
general explanations impeding effective learning. Moreover, we assessed the general ability of the
models using the MMMU metric (Yue et al., 2024) evaluated by the LMMs-eval tool (Bo Li* & Liu,
2024). The results indicate that all trained models maintain comparable general abilities to the base
model, with negligible degradation. Note that the LMMs-eval tool does not support the LLaVA-Med
model; therefore, the general ability metric is not reported. More experiment results can be found in
the appendix.
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Stanford dogs FGVC-A

Ours: The airplane shown in this image is a Cessna
Citation. This conclusion is based on the visual features
of the aircraft, such as the short, rounded wing roots
connecting to the fuselage, the low-wing design, the
distinctive nose with a slight downward curve, and the
retractable tricycle landing gear. These features are
characteristic of Cessna Citation aircraft, which are
known for their performance, comfort, and reliability.

Ours: The airplane shown in this image is a Canadair
CRJ-900. This conclusion is based on the following
visual features:\n\n1. The presence of two engines
mounted on the rear fuselage, which is a characteristic
feature of the CRJ-900.\n2. The slanted cockpit
windshield with a modern, streamlined appearance,
which is consistent with the design of the CRJ-900.\n3.
The long, narrow fuselage with a sleek, aerodynamic
design, which is also a common feature of the CRJ-900.

Ours: "The specific name of this dog is a
Tibetan Terrier. This breed is known for
its distinctive appearance, which includes
a wide range of colors, a pronounced
beard and moustache, and a square
proportioned body. The dog in the image
has a black and white coat, which is a
common color pattern for this breed."

Ours: "The specific name of this dog is a
Tzu. The Tzu is a small, compact dog with
a square-like frame, short legs, and a short
muzzle. The dog's hair is often tied up
with a bow on top of the head, and it has a
distinctive undershot bite."

Ours: The specific name of this bird is the
Rusty Blackbird. The Rusty Blackbird is a
medium-sized blackbird with a slightly curved,
slender black bill. It is known for its rusty or
brownish tones on its body, particularly in the
non-breeding season. The bird is often seen in
large flocks and is commonly found in wetland
habitats.

Ours: The specific name of this bird is the
Western Meadowlark. The Western
Meadowlark is a small bird with a bright yellow
underbelly, a black \"V\" shape on the chest,
and a long, pointed bill. It is commonly found
in the grasslands and meadows of the western
United States.

Figure 4: Our generated answers contain detailed visual explanations.

4.3 RQ2: OUR METHOD PROVIDES HIGH-QUALITY EXPLANATION

Assessing the quality of generated explanations is challenging, especially without case-by-case
ground truth annotations (Ding et al., 2022; Schuff et al., 2022). Following Mohseni et al. (2021),
we evaluate our explanation from three aspects: explanation existence, cognition level, and fluency.

Explanation Existence (EE). This metric assesses a model’s capability to generate explanations (Xu
et al., 2023). Following Bills et al. (2023); Bricken et al. (2023), we employ an advanced proprietary
LLM (GPT-4o) to determine whether each model-generated answer includes an explanation. For-
mally, for a set of generated answers Y = {y1, y2, . . . , yn} queried by prompt like “What is the bird
name? Provide your reason.”, EE is defined as: EE = 1

n

∑n
i=1 ei, where ei = 1 if the ith answer yi

includes an explanation, and ei = 0 otherwise. We provide the evaluation prompt in the appendix.

Results: As shown in Table 1, our method achieves an EE of 1.00 across all datasets, indicating that
it consistently produces explanations for its predictions. The base model can generate explanations
at most times but fails to do so in some cases. In contrast, the NL baseline records an EE of 0.00,
reflecting its inability to generate explanations due to training solely on class labels. The L+GE
method also attains an EE of 1.00 but falls short in other quality metrics compared to our approach.

Cognition Score (CS). This metric evaluates the coherence and logical flow of generated expla-
nations (Nourani et al., 2019; Fan et al., 2020). Following Liu et al. (2023); Bills et al. (2023);
Lieberum et al. (2024), we employ an advanced proprietary LLM (GPT-4o) to assess the ratio-
nal integrity of explanations by analyzing their alignment with expert knowledge. For an an-
swer yi containing a label and explanation, we first extract label-level concepts Z correspond-
ing to the label. We then use an evaluation prompt to obtain a cognition score from LLM:
csi = LLM(yi, Z,Eval Prompt). The Eval Prompt is detailed in the appendix. Scores range from
0 to 1, with higher scores indicating better alignment with expert-predefined knowledge. We only
assess correct answers. The total CS is calculated as: CS = 1

|Yc|
∑|Yc|

i=1 csi, where Yc is the set of
correct answers.

Results: Our method generally achieves higher CS values than the baselines, demonstrating superior
coherence and logical reasoning in the explanations. This improvement reflects the effectiveness
of our approach in generating explanations that are more useful and trustworthy to human users.
The reason behind our better cognition is that we select image-level concepts to build the training
dataset, rather than using all label-level features. This ensures that our model focuses on relevant
features present in the image and effectively connects the image content with expert-defined con-
cepts, avoiding distractions from irrelevant features not shown in the image.

Fluency Score (FS). This metric evaluates the grammatical correctness and naturalness of the ex-
planations (Liu et al., 2021). We use perplexity, a standard metric that measures how well a language
model predicts the text, with lower values indicating better fluency.

Results: Our method demonstrates good fluency in the generated explanations. The base model
receives the best fluency. This is because training on expert-level knowledge inevitably increases
the complexity of explanations, which can lead to higher perplexity scores. However, our method
generally achieves lower perplexity than the L+GE baseline, indicating that our explanations are
more natural, highlighting the robustness of our approach.

In summary, our proposed method not only enhances classification accuracy but also consistently
generates high-quality explanations that are coherent, logical, and fluent. We also show some quan-
titative results in our explanation in Figure 4. More results can be found in the appendix.
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4.4 RQ3: EVALUATION ON INTERPRETABLE CONCEPTS SELECTION

0 5 10 15 20 25 30
Number of Descriptions per Image

55

60

65

70

Pr
ec

isi
on

 (%
)

Concept Selection Precision

Ours
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GPT-4o_select
CLIP_select

Figure 5: Our method demonstrates
superior precision in concept selection
compared to applying GPT-4o.

To evaluate the efficacy of our proposed model in select-
ing expert-defined features from images, we conducted a
comprehensive study with human experts. Experts were
invited to identify and annotate the top-4 relevant con-
cepts for each image from a dataset of six bird species,
providing ground truth annotations for our evaluation.
Our investigation examined two primary aspects: the ef-
fect of varying the number of descriptions on concept se-
lection performance, and a comparative analysis against
several baseline methods. These baselines include GPT-
4o for concept extraction, which relied on a carefully
crafted prompt to guide the model in identifying and re-
turning the four most probable concepts for each image.
We applied the same approach to the LLaVA model for
concept extraction. In contrast, for the CLIP model, con-
cept selection was performed by identifying top-4 con-
cepts with the highest CLIPScore (Hessel et al., 2021)
relative to the target image.

We evaluated performance using precision, comparing model-selected concepts with human-
annotated ground truth. Results demonstrated that our model outperforms strong baselines in the
concept selection task. Its precision improves proportionally with the increased number of descrip-
tions, peaking at 72.89% with 25 descriptions. In contrast, GPT-4o maintained a relatively high
precision of 63.95%, while both LLaVA and CLIP showed weaker performances at approximately
55%. These findings highlight our model’s superior ability to leverage repeated sampled descrip-
tions for more accurate concept selection. We show some qualitative results in Figure 6, with more
in the appendix.

Pug

FGVC-A

Ø Short, glossy coat
Ø Small, floppy ears, either rose-shaped 

or button-shaped
Ø Short, straight limbs
Ø Underbite, often noticeable when the 

mouth is closed
Ø Wrinkled short-muzzled face
Ø Square, sturdy build

Ø Deep-set facial folds
Ø Underbite, often noticeable when the 

mouth is closed
Ø Wrinkled short-muzzled face
Ø Distinctive facial expression, often 

characterized as  "worried" or "thoughtful"
Ø Round, prominent eyes

ØLong, slender wings
ØStreamlined body
ØOften seen gliding with stiff 

wing posture
ØSubtle light streaks on 

upper wings

ØWhite crescent-shaped 
markings around the eyes

ØDark sooty-brown plumage
ØDusky, almost black head

Ø Yellowing of leaf margins and 
interveinal areas

Ø Overall reduced leaf size compared 
to healthy leaves

Ø Curling and distortion of leaf edges

Ø Thickening of leaf texture
Ø Curling and distortion of leaf edges
Ø Increased prominence of veins, 

sometimes appearing as a mosaic
Ø Upward or downward cupping of 

leaves
Ø Leaves may appear more rigid and 

less flexibleTomato Yellow Leaf 
Curl Virus DiseaseSooty Albatross

Figure 6: Different image-level visual concepts for objects with the same label.

4.5 RQ4: VISUALIZATION OF VISUAL FOCUS OF LMMS

To interpret our model’s predictions, we visualize the outputs of LMMs using a gradient-based ex-
planation method (Wu et al., 2023). This approach identifies the image regions most influential in
generating the model’s answer by computing gradients of answer token probabilities with respect to
image pixels. Figure 7 presents case examples demonstrating that training on our synthesized an-
swers with cognitive explanations can effectively prevent the model from learning spurious features,
whereas directly linking images to naive labels may result in shortcut learning.

4.6 RQ5: EVALUATION ON USABILITY

Previous LMMs often struggle with specialized questions due to difficulty recognizing domain-
specific objects. Our method enhances LMMs’ ability to identify specialized objects and provide
verifiable visual details, as demonstrated in Table 10. In Case 1, the LMM accurately identifies a bell
pepper leaf disease, describing specific visual cues such as brown necrotic spots and chlorosis. It
then recommends an appropriate treatment. In Case 2, the LMM correctly identifies a male Northern
Cardinal, noting distinctive features like its bright red plumage and black mask. These improvements
enable LMMs to serve as effective visual assistants in specialized domains, offering users accurate
and interpretable responses that can be verified against the provided images.
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Stanford dogs FGVC-A Chest-Xray

Figure 7: Visualization of heatmaps for different datasets. From left to right in each triplet: Original
Image, Heatmap of NL model, Heatmap of Ours.

Table 2: LMMs fine-tuned with our method provide verifiable details, enhancing user trust.

User: What is the name of this leaf disease? Can you give me your reason?
LMM: The name of this leaf disease is Bell Pepper Leaf with Bacterial Spot Dis-

ease. The reason for this name is that the leaf has brown or black necrotic
spots, which are characteristic of bacterial infections. These spots can coalesce,
forming larger necrotic areas, and the leaf may exhibit chlorosis or yellowing
of surrounding leaf tissue. The spots are often located on the underside of the
leaf, and the leaf may become crinkled or deformed near affected areas.

User: OK then, what chemical should I use to treat this disease?
LMM: It is recommended to use a copper-based fungicide to treat this disease.

User: Identify this bird. What features led to your conclusion?
LMM: The bird is a male Northern Cardinal with a bright red plumage on its head,

throat, and chest. The presence of a crest on its head and a black ”mask” around
its eyes further supports the identification of this bird.

User: Where can I find this bird?
LMM: You can find this bird in the United States, specifically in the eastern and

central parts of the country. The Northern Cardinal is a common resident bird
in areas with dense woodlands, shrubs, and gardens.

5 RELATED WORK: SELF-IMPROVEMENT AND DATA SYNTHESIS

In the field of LLMs, self-generated data has become a powerful tool for enhancing model per-
formance (Liu et al., 2024d). Researchers have explored various techniques, such as rejection
sampling (Touvron et al., 2023; Dubey et al., 2024), self-rewarding (Yuan et al., 2024), and self-
play (Chen et al., 2024c), enabling models to improve using synthesized data. Recent studies (Snell
et al., 2024; Brown et al., 2024) have proposed the “inference-time scaling law”, suggesting that in-
creasing inference samples size boosts the likelihood of generating high-quality data. Data synthesis
techniques have also been applied to LMMs, improving general vision tasks like visual question an-
swering (Zhou et al., 2024a; Deng et al., 2024; Gao et al., 2023; Zhou et al., 2024b) and enhancing
instruction-following capabilities (Luo et al., 2024). Our work extends this line of research by fo-
cusing on domain-specific visual classification to enable effective visual assistance in professional
tasks. In contrast to existing methods, we address the unique challenges of data synthesis in special-
ized domains, thereby extending these techniques to support expert-driven applications.

6 CONCLUSION

In this work, we addressed LMMs’ limitations in domain-specific visual classification tasks by in-
troducing a novel framework that enhances their cognition and explainability through iterative fine-
tuning with self-synthesized interpretable answers. By applying the IB principle to select relevant
visual concepts without extensive image-specific annotations, our approach significantly improved
classification accuracy and explanation quality across various datasets. By enabling LMMs to gener-
ate accurate, interpretable explanations grounded in domain-specific visual features, our framework
advances their applicability in specialized domains, paving the way for more reliable multimodal
models in knowledge-intensive applications. Future work may explore more complex tasks than
classification tasks, and refinements to enhance scalability and generalizability.
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A THEORETICAL PROOF ON THEOREM 1

Theorem 3. Let X be the true image content with label c and D = {d1, d2, . . . , dn} be independent
and identically distributed (i.i.d.) samples from P (D|X). Let Z be an expert-defined concept list
about label c. Under the assumptions of conditional independence and convergence (Assumptions 1
and 2), as n→∞, the mutual information I(D;Z) converges to I(X;Z):

lim
n→∞

I(D;Z) = I(X;Z).

Proof. We proceed with the following steps:

A.1 ASSUMPTIONS

Assumption 1. Conditional Independence: d1, d2, . . . , dn are conditionally independent of Z given
X .

Assumption 2. Convergence of Mutual Information: As n → ∞, the mutual information between
D and X converges to the entropy of X:

lim
n→∞

I(D;X) = H(X)

A.2 PROOF STEPS

1. Mutual Information Expression: We start with the definition of mutual information:
I(D;Z) = H(D)−H(D|Z)

2. Expanding H(D|Z) Using the Chain Rule: Apply the chain rule for entropy:
H(D|Z) = H(D|Z,X) +H(X|Z)−H(X|D,Z)

Substituting this back into the mutual information expression:
I(D;Z) = H(D)− [H(D|Z,X) +H(X|Z)−H(X|D,Z)]

3. Applying Conditional Independence: By Assumption 1, we have:
H(D|Z,X) = H(D|X)

Therefore,
I(D;Z) = H(D)−H(D|X)−H(X|Z) +H(X|D,Z)

Recognizing I(D;X) = H(D)−H(D|X), we have:
I(D;Z) = I(D;X)−H(X|Z) +H(X|D,Z)

4. Taking the Limit as n→∞: Apply the limit to both sides:
lim

n→∞
I(D;Z) = lim

n→∞
[I(D;X)−H(X|Z) +H(X|D,Z)]

By Assumption 2, we have:
lim

n→∞
I(D;X) = H(X)

For the term H(X|D,Z), we argue that:
lim
n→∞

H(X|D,Z) = 0

This follows from Assumption 2, as it implies that D becomes a sufficient statistic for X
as n → ∞. Therefore, conditioning on Z does not add any information about X once we
have D.

5. Conclusion: Substituting these limits into our equation:
lim
n→∞

I(D;Z) = H(X)−H(X|Z) + 0 = I(X;Z)

This demonstrates that as the number of sampled descriptions n increases indefinitely, the mutual
information between the aggregated descriptions D and the human concepts Z converges to the
mutual information between the true image content X and Z.
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A.3 ADDITIONAL NOTES

A.3.1 CONVERGENCE OF I(D;X) TO H(X)

The statement:
lim

n→∞
I(D;X) = H(X)

This is directly from Assumption 2. To understand its implications:

• Recall that mutual information is defined as: I(D;X) = H(X)−H(X|D)

• For this equality to hold as n→∞, it must be true that:

lim
n→∞

H(X|D) = 0

• This means that as we gather more samples (D), we eliminate all uncertainty about X .
• In other words, with infinite samples, D contains all information about X .

A.3.2 CONVERGENCE OF H(X|D,Z) TO 0

The statement:
lim

n→∞
H(X|D,Z) = 0

This follows from the previous point. Here’s the reasoning:

• We’ve established that as n→∞, D contains all information about X .
• This means D becomes a sufficient statistic for X .
• A sufficient statistic contains all the information that the sample provides about the param-

eter (in this case, X).
• Therefore, once we know D, knowing Z doesn’t provide any additional information about
X .

• Mathematically, this means: H(X|D,Z) = H(X|D)

• But we know from the first part that limn→∞ H(X|D) = 0

• Thus, limn→∞ H(X|D,Z) = 0

B THEORETICAL PROOF ON THEOREM 2

Theorem 4. Let X , Y , and Z be discrete random variables. Define:

Z∗ = argmax
Z′⊆Z

I(X;Z ′)− βI(Z ′;Z)

Y ∗ = argmax
Y ′⊆Y

I(Y ′;Z∗)

Then, the following inequality holds:

I(X;Y ;Z) ≥ I(Y ∗;Z∗) + I(X;Z∗)− I(Z∗;Z). (8)

where I(·; ·) denotes mutual information and H(·) denotes entropy.

Proof. We prove this theorem using fundamental principles of information theory:

1. Recall the definition of multivariate mutual information:

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z) (9)

2. By the chain rule of mutual information (Shi et al., 2023), we can rewrite this as:

I(X;Y ;Z) = I(X;Z) + I(Y ;Z)− I(X,Y ;Z) (10)
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3. Consider our subsets Z∗ and Y ∗. By definition of mutual information and the data process-
ing inequality:

I(Y ∗;Z∗) ≤ I(Y ;Z∗) (11)
I(X;Z∗) ≤ I(X;Z) (12)

4. Substituting these into our equation:

I(X;Y ;Z) ≥ I(X;Z∗) + I(Y ∗;Z∗)− I(X,Y ;Z) (13)

5. For any random variables A and B:

I(A;B) ≤ min(H(A), H(B)) (14)

Therefore:
I(X,Y ;Z) ≤ min(H(X,Y ), H(Z)) ≤ I(Z∗;Z) (15)

6. Applying this to our inequality:

I(X;Y ;Z) ≥ I(X;Z∗) + I(Y ∗;Z∗)− I(Z∗;Z) (16)

7. Therefore, we can conclude:

I(X;Y ;Z) ≥ I(Y ∗;Z∗) + I(X;Z∗)− I(Z∗;Z) (17)
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C PROMPTS FOR DIFFERENT TASKS

EXAMPLE PROMPT FOR BIRD IMAGE DESCRIPTION IN CUB-200

Prompt 1 Focus solely on the bird shown in the image. Describe the bird’s appearance in detail,
emphasizing its most prominent physical features. Avoid mentioning the background
or other elements not related to the bird.

Prompt 2 Provide a focused analysis of the bird in this image, detailing its distinctive physical
features. Concentrate exclusively on the bird and describe its appearance without
referencing the surroundings or any extraneous details.

Prompt 3 Directly observe the bird depicted and offer a precise description of its visual
attributes. Ensure your description is limited to the bird itself, detailing its primary
features and omitting any unrelated background elements.

Table 3: Prompts for bird image analysis in CUB-200 dataset

EXAMPLE REWRITE PROMPTS FOR DIFFERENT DATASETS

Dataset Prompt

cub-200 /
stanford dogs

This is a picture of a {label} with the following visual features:
{concepts str}. Based on the information provided, please answer the
following question.
Question: ’{query}’

HAM10000

This is a dermatoscopic image of {label} disease with the following visual
features: {concepts str}. Based on the information provided, please
answer the following question.
Question: ’{query}’

PLD / fgvc

This is a picture of {label} with the following visual features:
{concepts str}. Based on the information provided, please answer the
following question.
Question: ’{query}’

chest-xray

This is a chest-xray of {label} with the following visual features:
{concepts str}. Based on the information provided, please answer the
following question.
Question: ’{query}’

Table 4: Answer rewrite prompts for different datasets.

L+GE SYNTHESIZE PROMPT EXAMPLE

Dataset Prompt

L+GE synthesize
prompt

There is a picture of a {label}, which is known for the following
characteristics: {concepts str}.
Act as if you can see the picture. Please answer the following question
based on the above information. Make your answer concise.
Question: ’{query}’
Answer:

Table 5: Prompt for answering questions based on image characteristics for general image datasets.
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EVALUATION PROMPTS FOR EXPLANATION EXISTENCE (EE) AND COGNITION SCORE (CS)

Prompt Type Prompt

EE Prompt

Determine whether the following answer contains a valid explanation
supporting its conclusion. Respond with only ’true’ or ’false’.

Answer: {answer}

Contains an explanation?

CS Prompt

Evaluate the coherence and logical alignment of the following explanation
with the provided concepts. Please note: the explanation does not need to
fully encompass all concepts.

Assign a consistency score between 0 and 1, where 1 indicates the
explanation contains no irrelevant information to the listed concepts, and 0
indicates complete misalignment with entirely irrelevant information.
Only give the score.

Concepts: {concepts formatted}
Explanation: {explanation}

Consistency Score:

Table 6: Prompts for Explanation Existence (EE) and Cognition Score (CS).

CONCEPT EXTRACTION PROMPTS

To obtain label-level concepts, we used GPT-4o with prompts designed to elicit detailed visual
features associated with each class label. An example prompt is:

Prompt Type Prompt
Concept
Extraction
Prompt

Please provide a list of visual characteristics that are commonly associated
with the bird species {Class Name}. Include features such as color
patterns, shapes, and distinctive markings.

Table 7: Prompts for Concept Extraction.
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D EXPERIMENTS DETAILS

D.1 TRAINING FRAMEWORK IMPLEMENTATION

Our experimental setup leverages state-of-the-art techniques in large model fine-tuning, utilizing
the LLaVA-1.5-7B model as our foundation. We employ Low-Rank Adaptation (LoRA) for effi-
cient parameter-efficient fine-tuning, along with advanced distributed training strategies to maximize
computational efficiency.

D.1.1 MODEL INITIALIZATION AND LORA CONFIGURATION

We initialize our model using the LLaVA-1.5-7B weights, sourced from the Hugging Face model
hub (llava-hf/llava-1.5-7b-hf). To facilitate efficient fine-tuning, we implement LoRA using the
following configuration:

• LoRA rank (r) = 128
• LoRA alpha (α) = 256
• LoRA dropout rate = 0.1

This configuration targets all linear modules within the model, allowing for a balanced approach
between adaptation capacity and computational efficiency.

D.1.2 TRAINING PROCESS AND OPTIMIZATION

Our training process is orchestrated using the SFTTrainer, which we configure for supervised fine-
tuning. Key aspects of our setup include:

Gradient Checkpointing: We enable gradient checkpointing with use reentrant=True,
trading increased computation for reduced memory usage. This technique allows us to process
larger batch sizes by not storing all activations in memory.

DeepSpeed ZeRO Stage 3: To fully utilize our multi-GPU setup, we implement DeepSpeed ZeRO
Stage 3. This advanced parallelism strategy shards model parameters, gradients, and optimizer
states across available GPUs, enabling the training of models larger than what a single GPU can
accommodate.

D.1.3 MIXED PRECISION TRAINING

We utilize mixed precision training with BF16 (Brain Float 16) format.

D.1.4 GRADIENT ACCUMULATION

To optimize our effective batch size without increasing memory demands, we implement gradient
accumulation. Our configuration uses:

• Gradient accumulation steps = 2
• Per-device train batch size = 16
• Number of GPUs = 1

This results in an effective batch size of 32 (2 * 16 * 1), allowing us to simulate larger batch training
while maintaining memory efficiency. Through these combined strategies, we aim to fully leverage
the computational power of our GPUs.

D.2 DATASET OVERVIEW AND EXPERIMENTAL RUNNING TIMES

We use the original labels and train/test split from the original datasets. Detailed train/test data
statics are reported in Table 8. Regarding the experiments running time, each iteration of rejection
sampling and fine-tuning took approximately 2.5 hours on a single NVIDIA H100 GPU for datasets
like CUB-200 and FGVC-Aircraft. A more detailed report can be found in Table 8.
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Table 8: Summary of Selected Datasets

Dataset Name Test / Training Cases Label Categories Running Time Per Iter
CUB-200-2011 5,794 / 5,994 200 143 minutes
FGVC-Aircraft 3,333 / 6,667 100 171 minutes
Stanford Dogs 8,580 / 12,000 120 310 minutes
Chest X-ray images 624 / 5,216 2 113 minutes
HAM1000 5,008 / 5,007 7 107 minutes
PLD 47,523 / 5,279 37 109 minutes

E VISUALIZATION RESULTS

Table 9: Generated Answer Examples.

User: Based on the visual content, what is the specific name of this bird? Provide an
explanation.

LMM: The specific name of this bird is the Yellow breasted Chat. This bird is known
for its bright yellow throat and chest, olive-green back, wings, and tail, and
short, rounded wings. It is a small bird that is commonly found in the Americas,
particularly in the United States and Canada.

User: Based on the visual content, what is the specific name of this bird? Provide an
explanation.

LMM: The specific name of this bird is the Blue Grosbeak. The Blue Grosbeak is a
small, colorful bird with a deep blue overall plumage in males and a brown over-
all coloration with subtle blue tinges and faint streaking in females. The bird
has a slightly glossy sheen to its blue feathers and is known for its melodious
songs.

User: Based on the visual content, what is the specific name of this bird? Provide an
explanation.

LMM: The specific name of this bird is the Orchard Oriole. The bird has a black head,
back, throat, and upper chest, with a rich chestnut-brown underparts. It has a
black tail and a black throat patch developing. The bird’s wings are black with
white wing bars, and it has a black bill. The Orchard Oriole is a small bird with
a distinctive appearance, and it is known for its melodious songs.

User: Based on the visual content, what is the specific name of this bird? Provide an
explanation.

LMM: The specific name of this bird is the Black throated Sparrow. This bird is
known for its distinctive black throat patch and white stripe below its eyes. It is
a small bird with a brown and white coloration, and it is often seen perched on
branches or low vegetation.

User: Based on the visual content, what is the specific name of this bird? Provide an
explanation.

LMM: The specific name of this bird is the Henslow Sparrow. This bird is known for
its olive-colored head, short, pointed bill, and pale eye-ring. It is a small bird
with a brown and white coloration, and it is often seen flitting low in dense
grassy habitats.
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Table 10: Selected Concepts Examples.

Concepts: ”Powerful, thick neck”
”Broad and strong back”
”Large and muscular build”
”Well-sprung ribs”

Concepts: ”Pure white or cream-colored fur”
”Well-feathered tail that blends with the body fur”
”Strong, straight legs”
”Broad head with a slightly rounded skull”

Concepts: ”Straight, arched tail that rests on the back”
”Broad, flat skull”
”Thick double coat, either rough or smooth”

Concepts: ”Deep-set, almond-shaped eyes”
”Erect, triangular ears”
”Thick ruff of fur around the neck”
”Thick double coat, either rough or smooth”

Concepts: ”Ears: Large, bat-like ears that stand erect and move attentively.”
”Distinctive facial features: Elongated muzzle with a moderate stop and expres-
sive eyes.”
”Whiskers: Short or absent due to the lack of hair follicles around the muzzle
area.”

F ADDITIONAL EXPERIMENTS

F.1 IMPACT ON GENERAL ABILITIES

To assess the effect of our proposed training method on the general abilities of the models, we
conducted evaluations on four widely used multimodal benchmarks: MMStar, SEED-Bench-2 Plus,
MMBench, and MME (Cognition). Table 11 summarizes the results.

• MMStar (Chen et al., 2024b): MMStar is a benchmark designed to evaluate vision-
indispensable multimodal capabilities of MLLMs. It comprises 1,500 high-quality samples
selected through a meticulous process from an initial pool of 22,401 samples. The bench-
mark assesses six core capabilities, each containing 250 samples, distributed across 18
detailed axes. This structure ensures a comprehensive evaluation of models’ performance
in tasks that require visual understanding.

• SEED-Bench-2 Plus (Li et al., 2024a): SEED-Bench-2 Plus is specifically designed to
evaluate text-rich visual comprehension in MLLMs. It features 2,300 multiple-choice ques-
tions with precise human annotations, spanning three broad categories: Charts, Maps, and
Webs. These categories encompass a wide spectrum of real-world text-rich scenarios, ef-
fectively simulating environments where visual and textual information are intertwined.
The benchmark aims to assess models’ proficiency in interpreting complex visual data em-
bedded with textual content.
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• MMBench (Yuan Liu, 2023): MMBench is a comprehensive benchmark that evaluates
MLLMs across 20 ability dimensions. It includes approximately 3,000 multiple-choice
questions, each with a single correct answer. MMBench addresses limitations of traditional
benchmarks by focusing on fine-grained abilities and introducing robust evaluation strate-
gies. The benchmark employs ChatGPT to match a model’s prediction with the choices of
a question, providing a more reliable assessment of model performance.

• MME (Cognition) (Fu et al., 2023): MME (Cognition) benchmark evaluates the cogni-
tive abilities of MLLMs through tasks requiring reasoning and understanding of visual and
textual inputs. The cognition part includes four subtasks: Commonsense Reasoning, Nu-
merical Calculation, Text Translation, and Code Reasoning. These tasks test the model’s
ability to integrate multimodal information, such as interpreting visual scenes, performing
arithmetic based on images, translating text in images, and reasoning about code snippets.
The dataset consists of carefully curated images and instruction-answer pairs to ensure ro-
bust and fair assessment.

Table 11: General ability evaluation across additional benchmarks. The results demonstrate that
our fine-tuned models not only retain their general abilities but also achieve overall improvements
compared to the base LLaVA-1.5 model.

Model MMStar SEED-Bench-2 Plus MMBench MME (Cognition) Overall Improvement

LLaVA-1.5 (Base) 34.46 41.81 63.05 334.28 –

Trained on CUB-200 33.40 41.78 63.14 355.00 3.2% ↑
Trained on Stanford Dogs 34.93 40.97 63.06 365.71 8.3% ↑
Trained on FGVC-Aircraft 35.14 40.14 63.23 348.57 2.1% ↑
Trained on PLD 35.30 40.89 63.14 337.14 1.1% ↑
Trained on HAM10000 34.46 41.11 64.08 378.21 12.9% ↑

As shown in Table 11, the fine-tuned models exhibit improved performance across multiple bench-
marks. Notably, the model fine-tuned on HAM10000 achieves a significant overall improvement of
12.9%, indicating that our training method enhances domain-specific cognition without compromis-
ing and, in some cases, improves the models’ general abilities.

F.2 EFFECTIVENESS OF FILTERING STRATEGIES

To evaluate the importance of our reward model-free rejection sampling method described in Sec-
tion 3.3, we conducted an ablation study comparing our approach with a baseline that does not
employ the filtering mechanism. In this baseline, the model generates the most probable responses
during each iteration, which are used directly for training without any filtering. Table 12 presents the
classification accuracy and cognition score (CS) across four iterations for both the baseline without
filtering and our proposed method.

Table 12: Comparison of accuracy and cognition scores (CS) for the baseline without filtering and
our proposed method across iterations.

Dataset Method Accuracy (Iter 1) Accuracy (Iter 2) Accuracy (Iter 3) Accuracy (Iter 4) CS Score

CUB-200 w/o Filtering 68.90 70.11 70.85 70.45 0.71
Ours 80.24 83.76 84.69 85.02 0.82

FGVC-Aircraft w/o Filtering 76.36 76.60 77.11 76.78 0.72
Ours 88.78 90.91 91.42 91.99 0.79

Stanford Dogs w/o Filtering 76.60 78.53 78.61 78.26 0.74
Ours 85.29 86.75 86.86 86.91 0.86

From Table 12, it is evident that our filtering strategy significantly enhances both classification
accuracy and explanation quality, as measured by the CS score. The baseline without filtering shows
marginal improvements initially but fails to achieve comparable performance to our method. This
demonstrates the critical role of our filtering mechanism in refining synthetic data and improving
the model’s performance iteratively.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F.3 IMPACT OF TEXT ENCODER

Our framework relies on a text embedding model for estimating mutual information during con-
cept selection (Section 3.2). To assess the impact of different text encoders on concept selection
accuracy, we compared three models: E5 (Wang et al., 2022), BERT-Large (Devlin, 2018), and
BERT-Base (Devlin, 2018). The results are presented in Table 13.

Table 13: Concept selection accuracy using different text encoders.

Text Encoder Concept Selection Accuracy (%)

E5 72.9
BERT-Large 71.4
BERT-Base 69.7

As shown in Table 13, the E5 model achieves the highest concept selection accuracy. This indicates
that using a more powerful text embedding model improves the quality of concept selection, which
in turn enhances the effectiveness of our overall framework.

F.4 CROSS-DATASET TRANSFER PERFORMANCE

We conducted experiments to evaluate the cross-dataset transferability of our method. Specifically,
we trained the model on the CUB-200 dataset and evaluated its performance on the Stanford Dogs
dataset. The results are shown in Table 14.

Table 14: Cross-dataset transfer performance when training on CUB-200 and evaluating on Stanford
Dogs.

Training Dataset Evaluation Dataset Accuracy (%)

None Stanford Dogs 12.20
CUB-200 Stanford Dogs 16.60
Stanford Dogs Stanford Dogs 86.91

The results in Table 14 indicate that training on CUB-200 provides a marginal improvement when
evaluated on Stanford Dogs. However, the performance remains significantly lower than when the
model is trained directly on Stanford Dogs. This suggests that while our method may improve
general cognition to some extent, domain-specific fine-tuning is crucial for achieving high accuracy
in specialized tasks.

F.5 EXPLANATION QUALITY IMPROVEMENT ACROSS ITERATIONS

To assess the benefits of our iterative fine-tuning approach, we evaluated the Cognition Score (CS)
of the models across four iterations for various datasets. The results are summarized in Table 15.

Table 15: Cognition Scores (CS) across iterations for various datasets. The CS Improvement repre-
sents the percentage increase from Iteration 1 to Iteration 4.

Dataset CS Value (Iter 1) CS Value (Iter 2) CS Value (Iter 3) CS Value (Iter 4) CS Improvement

CUB-200 0.77 0.76 0.78 0.82 6.5% ↑
Stanford Dogs 0.82 0.84 0.83 0.86 4.9% ↑
FGVC-Aircraft 0.78 0.78 0.78 0.79 1.3% ↑
PLD 0.84 0.85 0.85 0.86 2.4% ↑
HAM10000 0.77 0.84 0.83 0.87 13.0% ↑
Chest X-ray 0.67 0.80 0.81 0.87 29.9% ↑

As observed in Table 15, the CS scores generally improve over iterations, indicating that our iterative
fine-tuning process enhances the explanation quality of the models. The most significant improve-
ments are seen in the HAM10000 and Chest X-ray datasets, with 13.0% and 29.9 % reported.
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