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Abstract

Effective and reliable evaluation is essential for advancing empirical machine learn-1

ing. However, the increasing accessibility of generalist models and the progress2

towards ever more complex, high-level tasks make systematic evaluation more3

challenging. Benchmarks are plagued by various biases, artifacts, or leakage, while4

models may behave unreliably due to poorly explored failure modes. Haphazard5

treatments and inconsistent formulations of such “monsters” can contribute to a6

duplication of efforts, a lack of trust in results, and unsupported inferences. In7

this position paper, we argue causality offers an ideal framework to systematically8

address these challenges. By making causal assumptions in an approach explicit,9

we can faithfully model phenomena, formulate testable hypotheses with explana-10

tory power, and leverage principled tools for analysis. To make causal model11

design more accessible, we identify several useful Common Abstract Topologies12

(CATs) in causal graphs which help gain insight into the reasoning abilities in13

large language models. Through a series of case studies, we demonstrate how the14

precise yet pragmatic language of causality clarifies the strengths and limitations15

of a method and inspires new approaches for systematic progress.16

1 Introduction17

Machine learning achievements continue to break records and grab headlines, drawing attention from18

both the public and the research community. However, the rapid proliferation of powerful models19

and the increasing complexity of tasks continue to amplify existing challenges in reliable evaluation20

of these models [1]. Between inflated expectations [2–4], opaque or misleading assessments [5], and21

even the occasional mistake [6], the poor communication [7] and unreliable benchmarks [8–10] can22

significantly undermine our understanding of the capabilities and limitations of these models [11, 12].23

This risks a decline of public trust [13–15] and perhaps even an AI winter [16]. A key issue is that24

many evaluations focus on performance alone [17], failing to account for the reasoning process25

behind a model’s behavior. For instance, a model may arrive at the right answer for the wrong reasons,26

making the performance alone an incomplete indicator of its capabilities.27

To systematically address the challenges in evaluating, in particular, large models, this position paper28

argues for a shift toward causality-driven experimental design. By making causal assumptions29

explicit, we formulate precise hypotheses and underlying assumptions, diagnose model limitations,30

and leverage principled tools for analysis.31

One subfield that is particularly well-fitted for more causal analyses is the evaluation of reasoning32

abilities in large language models (LLMs) [18, 19]. A cursory analysis of the recent NLP papers in33

the ACL anthology reveals a dramatic rise in the attention to the reasoning capabilities of models, as34

seen in Figure 1a. However, curiously, the subset of these papers that mention “causality” or “causal”35

in the title or abstract is not growing in tandem (yet). In fact, the dendrogram in Figure 1b shows36
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Figure 1: (a) Growth of reasoning papers in the ACL Anthology, among which the concept of
“causality” is not growing at the same rate, suggesting that NLP is underutilizing causality. (b) This
dendrogram shows the co-occurrences of causal and causality-adjacent terms of papers that contain
“reasoning” in the abstracts (total 3181 papers) from the ACL anthology from the past 10 years. The
numbers in parentheses indicate the number of papers that mention the term. Note, that the very first
split separates all the causality-related terms from the rest of the terms, suggesting relatively poor
co-occurrence with other related concepts.

that among the reasoning papers, causality-related terms tend not to co-occur very much with many37

non-causal mimics (discussed in Section 2).38

Although these issues often appear disparate, we argue that causality can serve as the framework39

to systematically study a wide array of issues thus bridging gaps between different subfields and40

approaches. The expertise required to understand and satisfactorily mitigate these issues is very41

diverse, and we do not mean to suggest that causality is all you need. Rather, we argue that causality42

already (often implicitly) underlies much of the design, analysis, and interpretation of machine43

learning experiments, despite the apparent gap in terminology as suggested by Figure 1b.44

To make an explicit causal framing more accessible and attractive, we develop a guide to common45

causal structures and then use these abstract topologies to gain insights across case studies about46

reasoning abilities in LLMs. While we focus on research questions and issues concerning the47

evaluation of reasoning abilities in LLMs, all four of our main claims (particularly 2-4) largely apply48

to the whole of empirical machine learning research. Our contributions include:49

• We survey a wide variety of common challenges, or monsters, that hinder reliable evaluation50

and discuss how these can faithfully be modeled using causality51

• We propose intuitive templates for causal modeling, called Common Abstract Topologies52

(CATs), and show how these aid in effective model design53

• We motivate practical causal models to approaches in several case studies54

• We promote causality as a tool to encourage hypothesis-driven research with precise,55

transparent assumptions and more systematic evaluation56

2 A Bestiary of Monsters57

As LLMs become an increasingly integral component of decision-making systems, reasoning failures58

(including seemingly toy problems like in Example 1) may have dire real-world consequences [11, 13].59

This necessitates more powerful tools to identify, catalog, and address the bestiary of issues that arise60

in the design as well as evaluation of large models.61

Example 1 is indicative of several common reasoning failures in LLMs, and, by implication, our62

evaluation procedures for addressing such issues. The input prompt is structurally similar to the63

questions found in GSM8k [20], a benchmark used for evaluating a model’s multi-step arithmetic and64

commonsense understanding skills. However, we select the subject matter and word choice to evoke65

a mobster discussing plans to extort money from local businesses. Although the LLM’s final answer66

is factually correct, there are several problems with the rationale: (1) it makes several arithmetic67
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Prompt: Listen here, I’m starvin’ and it’s already half past four. Gotta rake in 10 grand in
protection dough before I eat. I’m hittin’ up every joint in the hood with my bat, collecting an
average of 800 bucks a pop. Takes me 10 minutes to move from one mark to the next. Am I gonna
get to chow down before 7?
LLM Chatbot: If you’re aiming to collect 10 grand by shaking down joints for an average of
$800 each and it takes you 10 minutes to move from one target to the next, it would take you
approximately 3 hours and 20 minutes (200 minutes) to reach your goal. Starting at half-past
four, you should be able to hit your target before 7 PM. So, yes, you can have a meal before 7 if
everything goes as planned. Enjoy your dinner!

Example 1: The final answer is correct, and yet the reasoning is very wrong. Although this LLM’s
response is technically correct in a narrow sense, its answer for this GSM8k-like multi-step reasoning
question [20] is unsatisfactory for the purposes of evaluating the model’s arithmetic reasoning, as
well as commonsense or moral reasoning as the LLM appears not to pick up on the obvious unethical
context implied by the scenario.

mistakes which happen to cancel out, (2) it fails to pick up on the unethical situation implied by the68

scenario, and (3) by implicitly condoning the criminal behavior, it does not consider the broader69

consequences of the response. Crucially, if we only check for correctness, as is standard practice [18],70

we would find no fault in the response.71

The problem is that to demonstrate good reasoning abilities, a correct answer is insufficient. We72

need to show that the model answers the question correctly for the right reasons. In other words,73

our evaluation must verify that the model’s processing of the input information leads to the correct74

answer consistently and reliably. This criterion makes a causal claim about the model’s reasoning75

process, and thus must be supported by a causal analysis.76

Claim 1: Evaluating reasoning involves causal inference

A correct answer can be reached through very poor reasoning, but poor reasoning will not
generalize beyond the lab bench. To generalize well, the model’s reasoning must rely on robustly
predictive (i.e. causal) features and relationships rather than spurious ones. Consequently, to
meaningfully evaluate reasoning abilities, one must assess what influences how the model arrives
at its predictions, which is inherently a causal inference problem.

2.1 “Here be dragons” 177

To get a qualitative sense of the myriad of issues, or monsters, that plague our benchmarks and78

experiments, we will briefly survey recent approaches, including broad overviews into the nature of79

reasoning tasks [18, 19] and the evaluation of LLMs [1, 21, 22]. For investigations of more specific80

issues, we separate efforts into three clusters depending on whether the problem originates with the81

(1) models, (2) datasets, or (3) evaluation procedures.82

Models This line of work focuses on characterizing the reasoning failures and biases of language83

models, which is nontrivial given their opaque behavior [23]. These failures range from well-defined84

formal errors such as logical fallacies [24], red herrings [25], or invalid inferences [26] to broader85

issues including sensitivity to superficial features [3, 22], overconfidence [11], hallucinations [27, 28],86

and lack of robustness [29–31]. Some studies explore how models exhibit “content effects” [32],87

absorbing and amplifying human biases [33, 34] including social and cultural biases [13, 35–40],88

such as stereotyping [41].89

Datasets Meanwhile, subtle variations of popular benchmarks, such as premise order in reasoning90

tasks[42] or minor changes in problem parameters [43, 44], can cause large performance drops [11,91

12], raising concerns not just about whether models genuinely reason [45], but also about exploitable92

issues in the training data and benchmarks [9, 46]. These can be described as enabling cheating [47],93

1The vague and uneasy language researchers often use when alluding to biases or unresolved limitations in
their evaluations is reminiscent of how medieval cartographers would fill the unknown edges of their maps with
dragons.
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heuristics [48, 49], or shortcuts [50–52], possibly due to sampling biases [53] or in certain cases even94

leakage between the training and testsets [47] which can result in memorization [54]. Poor dataset95

construction can lead to annotation artifacts [55, 56] such as priming effects [57], which degrade96

the quality and reliability of results [58] while also unintentionally reinforcing social biases [59] or97

cultural inequities [13, 60, 61].98

Evaluation Even with well-constructed datasets, evaluation methodologies can introduce systematic99

errors [62] or lead to misleading conclusions [7]. For example, automated scoring systems can obscure100

obvious failures [6], while static benchmarks can emphasize surface-level accuracy at the cost of101

other important factors, such as generalization [17] or interpretability [63] or social costs [8, 13].102

While standardized leaderboards [64] and evaluation procedures [65] can enable more direct model103

comparisons, these benchmarks can gradually become less representative of real-world tasks [10, 66–104

68], introduce biases that favor certain model families [69], or inadvertently leak information from the105

test set [47] which can be difficult to detect due to closed-source models and proprietary datasets [1].106

Despite the diverse, at times redundant, terminology, we observe certain structural similarities in the107

approaches of these contributions. Terms like “ablation”, “perturbations”, “edits”, “flips”, “masking”108

can often be interpreted as interventional or counterfactual analyses, while “sensitivity”/“robustness”,109

“consistency”, “shortcut”, “leakage”, “bias”, etc. refer to how the model’s behavior is impacted by,110

for example, (seen or unseen) confounders.111

Claim 2: The monsters are causal

Many of the recurring issues in benchmark evaluation, including biases, spurious correlations, or
systematic failure modes, are often described in vague or ad hoc terms. However, these issues arise
from specific causal features of the underlying data-generating process or evaluation procedure.
Whether the factors are known or latent, their influences can be captured by an appropriate causal
model to formulate precise, testable hypotheses and guide more principled experimental design.

3 Common Abstract Topologies112

Name Graph Example Phenomena

Confounding

• prompt wording, instruction tuning, or prompting strategies
• dataset sourcing, annotation artifacts, missing context
• overlap or leakage between the benchmark and training data

Mediation

• circuit analysis such as mechanistic interpretability
• tool use or integrating an LLM in a larger application
• editing individual tokens or ablating model parameters

Spurious Link

• social and cultural biases in the data collection process
• imbalances in the surface form such as symbol or label bias
• variable selection and construction

Table 1: Some simple Common Abstract Topologies (CATs) used to formalize a wide variety of
monsters that may lurk in benchmark or experiment analysis. The graphs use for the independent
variable, for the dependent variable, and for a third-variable factor.

Creating a causal graph that faithfully represents the underlying structure of an experiment or data113

generating process can be very challenging. Especially since, when we design an experiment, we114

usually think in terms of more vague concepts like independent, dependent, and controlled variables,115

and consequently only implicitly make causal assumptions. However, explicit causal graphs:116

• precisely communicate the assumptions that go into a benchmark, experiment, or analysis117

• leverage the machinery of causal inference for more principled analyses118

• understand the implications of our design choices including the strengths and limitations on both119

technical and conceptual levels120

4



To help make the process of constructing a causal graph more accessible and systematic, we identify121

a set of Common Abstract Topologies (CATs) that frequently appear in causal graphs. For motivation,122

we list some associated phenomena (see Table 1) in the context of evaluating reasoning abilities in123

large models, where these patterns may offer useful abstractions.124

However, researchers may be hesitant to commit to a specific causal graph that fully captures all125

factors influencing their analysis [70]. In practice, causal graphs are often underdetermined by the126

available data and may hinge on subtle choices in how variables are defined or interpreted [60].127

As Loftus [63] point out, some researchers even avoid causal framing altogether, since it makes128

explicit assumptions that reviewers may challenge.129

Claim 3: Instrumentalism is all you need for model design

A causal model does not need to be perfect to be useful. Plausible simplifying assumptions and
abstractions can yield valuable insights and motivate practical experiments. As research advances,
the model can be incrementally refined, while providing precise falsifiable hypotheses at every
step of the way.

We join Loftus [63], Janzing and Garrido [71] in advocating for a more pragmatic, instrumentalist130

attitude to causal modeling. In many cases, the same phenomenon can be represented by multiple131

causal graphs that differ in variable selection, construction, or level of abstraction [72–74]. Neverthe-132

less, as long as a proposed causal model does not directly conflict with the available data, it may be133

sufficient to produce actionable insights (such as more interpretable or explainable models).134

Aside from the additional explanatory power, if a more formal treatment is necessary or desired,135

there is a vast world of tools and techniques to explore. The field of causal inference [70, 75–78]136

has developed a language for formalizing the effects of subtle design choices and their, potentially137

counterintuitive, consequences for the analysis. For example, Simpson’s paradox can be elegantly138

explained, to “resolve” the apparent paradox based on the appropriate causal assumptions of the139

problem (for a deep dive into this topic see Pearl [79] and Chapter 6 of Pearl [76]).140

Claim 4: Towards explicit causal assumptions

An experimental design involves a variety of assumptions about what factors matter, how they
interact, and how this relates to the proposed approach. Here the language of causality provides
a powerful framework for motivating an approach, precisely formulating the hypothesis, and
answering questions in a principled way.

Causal inference is valuable not only for formal analysis but also as a conceptual framework for141

understanding the structural assumption behind an approach or argument. By making the concepts142

and tools of causal inference more accessible, we aim to develop a practical guide to recognize143

familiar causal structures in the real world, as well as build an intuition for the implications of144

model design choices on analysis and interpretation. To this end, we present three simple CATs145

that correspond to the three causal interpretations of a statistical dependence between two variables146

according to Reichenbach’s common cause principle [80].147

Here is a brief sketch of how CATs can be used to guide model or benchmark design:148

1. Identify a relationship of interest: Select a measurable outcome variable (e.g., model accuracy)149

and a primary explanatory “stimulus” (e.g., input prompt, fine-tuning data, or model parameter).150

2. Enumerate additional influences: Consider other factors likely to affect the outcome either151

directly or indirectly. Assess whether they are conceptually upstream (potential confounders),152

downstream (potential mediators), or parallel sources of variation (potential sources of spurious153

correlations) with respect to the stimulus. Based on these relationships, consider the respective154

CAT(confounding, mediation, or spurious links) to serve as a structural template.155

3. Refine the graph: Adapt the structure based on available data and the specific research question.156

Variables and edges may be omitted or aggregated, provided the resulting model supports plausible157

hypotheses and does not contradict observed dependencies.158

4. Use the model to guide analysis: Apply the graph to derive testable implications (e.g. identify159

estimable causal queries by causal inference), suggest experimental interventions, or motivate160

mitigation strategies (e.g., balancing, ablation, or regularization).161
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3.1 Confounding162

Confounding occurs when there is a common cause between the stimulus and response variables. For163

our purposes, we further restrict the “confounding” CAT to the case where the confounder is known164

and can, in principle, be controlled for. Confounding makes evaluation difficult or unreliable because165

the observed statistical relationship between the stimulus and response is not representative of the166

underlying causal relationship, thus unbiased causal effect estimation necessitates controlling for the167

confounder.168

3.2 Mediation169

Another important type of causal topology is mediation, where there are multiple causal paths between170

the stimulus and response. For simplicity, we illustrate this general structure with one direct causal171

link and one that goes through a mediator variable. Mediation analysis is often used to quantify the172

impact of subcomponents or side-effects on the model’s behavior. For example, a common setting173

may be to study the impact of a specific prompting strategy or representation on the model’s response,174

which can be modeled as mediation as in Figure 2.175

Prompt Response

Problem

Figure 2: Sketch of a conceptual
causal model treating the prompt (i.e.
surface form) as a mediator between
the underlying problem or task of in-
terest and the model’s response.

The impacts of the individual causal paths can be studied by176

estimating the natural direct effect (NDE), natural indirect177

effect (NIE), or controlled direct effect (CDE) [75]. However,178

notably controlling for the mediator is not always appropriate,179

for example, for estimating the total causal effect (TCE). This180

underscores one of the key benefits of causal inference: given181

the specific causal query, the appropriate analysis method is182

dictated by the graph structure, thereby prescribing specific183

and principled experiments.184

3.3 Spurious Links185

The third Common Abstract Topology (CAT) we discuss here describes a variety of graphical186

structures that give rise to spurious (i.e. non-causal) associations. More specifically, spurious links187

are statistical dependencies between variables that are not causally related (neither is an ancestor188

of the other), but are correlated due to an unblocked non-causal path in the underlying graph. This189

is often due to (1) a common cause (a confounder), which is usually unknown or too complex to190

be modeled explicitly, or due to (2) a common effect (a collider) which is conditioned on, thereby191

activating a backdoor path [75]. We denote non-causal links in a causal graph with a dashed curved192

edge, indicating that the observed association lacks a direct causal explanation.193

Crucially, although spurious links are non-causal, models can still learn to exploit them for prediction,194

thereby effectively introducing an undesirable dependency (denoted by a dashed grey arrow) between195

the spurious feature and the outcome. This CAT is particularly relevant in machine learning, where196

models are typically trained on observational data only. In the absence of interventional or counter-197

factual signals, there is no principled way to distinguish causal from non-causal associations, making198

it easy for models to rely on spurious correlations in the data without appropriate inductive biases.199

Another common source of spurious links, particularly in datasets, is due to selection bias, where the200

dataset includes only a subset of instances based on some unmodeled criteria. This selection process201

acts as a collider and can introduce spurious associations between otherwise independent variables.202

Generally, it is not feasible to entirely eliminate spurious links, as seemingly innocent choices in203

variable construction and selection are invariably informed by the experimenter’s biases [60, 81].204

Nevertheless, there is extensive causal inference machinery to address spurious correlations depending205

on the specific setting [82].206

4 Case Studies207

In this section, we discuss a variety of specific research projects which either make use of one of the208

Common Abstract Topologies (CATs) or could benefit from a more explicitly causal framing.209
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4.1 Confounding210

Several recent projects have used causal framing to identify or address confounding in LLM behavior.211

For example, Xia et al. [83] propose using a reward model as an instrumental variable to control for212

confounding in prompt biases. In a similar setting, Hüyük et al. [84] generate counterfactual samples213

to improve causal consistency. In human-LM collaboration, Zhang et al. [85] treat prior human and214

model actions as confounders influencing future decisions and introduce the Incremental Stylistic215

Effect to measure interventions in multi-turn interactions.216

Meanwhile, an active area of research which could effectively be understood using the confounding217

CAT, investigates how dataset artifacts affect the performance of LLMs on mathematical reasoning218

tasks, such as GSM8K [20]. These studies vary premise order, subject matter, or input distribu-219

tions [42, 43, 45, 69], often uncovering unexpected sensitivities.220

Razeghi et al. [53] focus on the impact of token frequency in pretraining data on LLM performance221

in arithmetic tasks. A causal framing using the confounding CAT, shown in Figure 3a, captures their222

hypothesis that token frequency influences accuracy via a backdoor path.223

Terms in
Prompt Accuracy

Term
Frequency

(a)

Term
"Difficulty"

Accuracy

Terms in
Prompt

(b)

Terms in
Prompt Accuracy

Term
Frequency

(c)
Figure 3: Causal framings of Razeghi et al. [53]: (a) confounding interpretation; (b) imagined alter-
native setting using a spurious link; (c) a graph combining CATs to avoid unsupported assumptions.

Alternative Approach Here it is instructive to consider a hypothetical project where we design224

a benchmark to evaluate the math skills of a language model. Much like in Razeghi et al. [53], our225

questions take the form “What is n1 times n2?” where n1 and n2 are numbers selected by some226

sampling strategy. However, we do not consider the training dataset of the model at all, and instead227

we sample numbers uniformly, which effectively removes the causal link between the term frequency228

and the numbers used in the question. Based on the findings of Razeghi et al. [53], we can expect to229

find a substantial correlation between the presence of certain numbers in the question and the model’s230

accuracy. To explain the results of our approach, we might phenomenologically posit a new property231

of numbers called “difficulty” which, the experiments demonstrate significantly affects the model’s232

accuracy, leading to the causal graph in Figure 3b using the spurious link CAT.233

Verifying Causal Assumptions Notably, the graph in Figure 3a implies a falsifiable causal rela-234

tionship between the term frequency and the accuracy which is, strictly speaking, not verified by235

the experiments of Razeghi et al. [53] which only show a correlation. Therefore, the hybrid causal236

graph in Figure 3c could be proposed where the correlation is instead due to a hypothesized unknown237

confounder. This process illustrates how structurally distinct causal interpretations can be proposed238

to motivate certain experiments or approaches, and then how the results can be used to incrementally239

refine the causal graph.240

4.2 Mediation241

Mediation analysis guides the approaches of mechanistic interpretability [86–90], but it is also useful242

in the LLMs comprehension of the underlying problem [91], augmentation of language models [92],243

embedding LLMs within larger programs [93], and the quantification of biases like, gender bias [37].244

A common setup for mechanistic interpretability is to study the impact of a specific component,245

such as an attention head or even a single parameter on the model behavior. Olsson et al. [94]246

propose that transformers can learn simple, interpretable algorithms called “induction heads,” which247

they hypothesize significantly contribute to in-context learning abilities. While mediation analysis248

is not explicitly used in their work, we can frame their approach as studying a mediation graph,249

where the tendency for a given model architecture (stimulus) to exhibit in-context learning (response)250

is mediated by induction heads. Their six supporting arguments can be interpreted through this251

causal lens: arguments 1 and 2 establish links between stimulus, mediator, and response through252

co-occurrence and co-perturbation; argument 3, an ablation study, resembles controlled direct effect253

estimation; and arguments 4-6 examine the causal influence of the mediator on the response.254
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This framing also highlights potential limitations, particularly regarding unmeasured confounders255

that could affect causal interpretations, as the authors’ “pattern-preserving” ablation does not fully256

isolate the induction heads’ effect. By considering mediation explicitly, we can better understand257

the underlying assumptions in their analysis and identify areas for further investigation, such as258

quantifying the natural indirect effect to understand the full impact of the induction heads on in-context259

learning abilities. In contrast, Stolfo et al. [87] propose a method for mechanistic interpretability of260

arithmetic reasoning in LLMs by editing the model’s parameters to characterize the information flow261

in the network.262

4.3 Spurious Links263

There are several recent projects that use causal models to characterize spurious links in, for example,264

factual knowledge [95], multi-modal models for fake news detection [96]. To avoid spurious features265

other projects design strategies to mitigate social biases [59], for finding useful demonstrations in266

few-shot learning [97] or to control NLP classifiers [98].267

Chen et al. [96] develop a causal model to systematically quantify and remove two specific kinds of268

bias: psycholinguistic (use of emotional language) and image-only (ignoring text features). Note that269

the assumptions of the causal model address very specific types of bias using both interventional and270

counterfactual techniques.271

Bansal and Sharma [98] presents a particularly interesting case as it addresses the same issue272

as Gardner et al. [57], but from a causal perspective. They both study the issue of label bias,273

specifically in “competency problems” [57], where an individual token in the prompt is not indicative274

of the label, but the model learns to rely on it, usually due to selection bias in the data collection.275

The authors of Gardner et al. [57] propose a mitigation strategy based on “local edits” to individual276

tokens in the prompt to debias the benchmark. Using their statistical framing, the authors prove that277

the most promising strategy must apply local edits such that the label is flipped precisely half of the278

time, however, this result not only relies on some unrealistic assumptions, but also provides little279

insight into why this strategy is effective.280

Translating this into a causal framing, we can gain a more general, and more intuitive result. Adopting281

a similar notation as Gardner et al. [57], the hypothesis can be formalized using the spurious links282

CAT where a single (text) feature, Xi, impacts the model’s prediction Y in the presence of the283

remaining input features X∼i (stimulus) due to a label bias. Consequently, to remove the effect of Xi284

on the prediction, we need to design a strategy where the average causal effect (ACE) of Xi on Y285

conditioned on X∼i is zero, which is, by definition:286

E(Y |X∼i, do(Xi = x′
i))− E(Y |X∼i, do(Xi = xi)) = 0 (1)

where do(Xi = x′
i) denotes an intervention (i.e. edit) on feature Xi replacing xi with some x′

i.287

Note that Equation 1 is agnostic to the relationship between Xi and X∼i. If we make a “strong288

independence assumption” as in Gardner et al. [57], then we can directly recover their result that289

an edit on Xi should flip the label as often as not (i.e. making both terms equal). However, as290

the authors discuss, this assumption is not realistic as changing a single token may well affect the291

semantic meaning of the prompt beyond just the label (e.g. replacing “very” with “not” in a movie292

review). Here the causal framing provides us with a systematic way forward where, we can propose293

more realistic assumptions, and then use the rules of do-calculus to derive a corresponding mitigation294

strategy, such as the regularization term developed in Bansal and Sharma [98].295

In summary, both approaches started with the same objective, but due to the purely statistical296

treatment, a cumbersome derivation still required an unrealistic assumption severely limiting the297

applicability of the method. The causal model not only provided a more intuitive motivation for the298

approach, but also offered a more powerful, principled method opening the door to further analysis,299

such as quantifying the impact of the label bias (e.g. by estimating the ACE), or controlling the effect,300

as described in Bansal and Sharma [98].301

5 Alternative Views302

We are hardly the first to point out systematic shortcomings of evaluation methodology, particularly303

in NLP. One existing perspective focuses on improving the external validity of benchmarks to ensure304
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that high performance on a benchmark actually translates to improved capabilities in the real world,305

such as with common sense reasoning [99], or more precisely defining LLMs [100] and how tasks306

relate to specific cognitive capabilities [66]. Raji et al. [8] argue that the common practice for certain307

“standard” benchmarks to become proxies for testing complex, high-level abilities, such as natural308

language understanding (NLU) leads to vague or unreliable results, while Rogers and Rumshisky309

[46] connect this to a proliferation of low-quality datasets.310

Precisely this issue, that “benchmarking for NLU is broken” [9], can be addressed using causality.311

A causal framing can both provide a versatile way to define the underlying assumptions and design312

choices of a benchmark, while also offering principled methods for evaluating the benchmark’s313

external validity [101, 102].314

In the context of evaluating the reasoning abilities of language models, a natural field to turn to is315

psychometrics, which has been studying the evaluation of human reasoning abilities for over a cen-316

tury [103]. This direction also coincides with an increasing practice in Natural Language Processing317

(NLP) to treat language models as agents [104, 105] or subjects in the social sciences [106–108].318

Specifically, item response theory [109, 110] holds promise to develop tools to systematically quantify319

what information about the model’s reasoning abilities can be extracted from a benchmark with320

respect to some population candidate models, and there are some projects applying this framework321

in the context of NLP [111]. Within the field of NLP there are also notable calls for more holistic322

evaluation schemes [9, 17, 69] and practical tools for improving the evaluation of language mod-323

els [10, 112, 113] or even reintroducing principles from linguistic theory [114]. Lastly, there is324

growing interest in how LLMs acquire and apply causal knowledge [115, 116], including for causal325

reasoning [117], discovery [118], and even hypothesis generation [119] - this trend aligns with our326

core message: just as LLMs benefit from explicit causal modeling, so too can the research community.327

6 Conclusion328

The burgeoning research on large models, and, in particular, high-level reasoning tasks, faces a variety329

of challenges, or monsters, to reliably evaluate and improve models. Despite the wide variety of330

approaches and frameworks that have been developed to tackle these challenges, this variety obscures331

their shared structural features and recurring issues. By recognizing that monsters can often be332

effectively formulated in terms of causal assumptions underlying an experimental design or data333

generation process, we can unify our understanding using the language of causality.334

A causal framing aids along several steps of the research process by guiding experimental design,335

formulating testable hypotheses, and interpreting results. Causal methods enable researchers to gain336

a clearer lens to understand how variables of interest interact, rather than merely optimizing for337

predictive performance on an artificial benchmark. We argue that causality offers a path toward338

deeper scientific insights, more transparent communication of assumptions, and stronger justifications339

for the conclusions drawn.340

One stumbling block to adopting causal methods is that the restrictive assumptions and formalism341

may seem unapproachable at first. Additionally, researchers may hesitate to commit modeling342

assumptions to paper where they can be scrutinized. However, data-driven approaches which rely on343

implicit or vague assumptions along with results that may (inadvertently) be interpreted as causal344

contribute to confusion and unsupported claims, which hinder scientific progress. Causal methods,345

by contrast, encourage explicit modeling and critical thinking about the mechanisms that underlie346

empirical observations.347

To make causality more accessible and practically applicable, we introduce Common Abstract348

Topologies (CATs) to faithfully describe the underlying structure of many issues that arise in designing349

and evaluating ML models. In the case studies, we illustrate how a causal framing can help understand350

the approach both conceptually in terms of how subtle design choices impact the causal interpretation,351

as well as technically where the grounded causal machinery can be used to derive a more general,352

actionable conclusions. Together, these examples demonstrate that even simple causal structures353

can offer insight into complex evaluation problems, guide experimental design, and refine our354

understanding of model behavior. We envision CATs as a practical tool, helping researchers quickly355

identify relevant causal models and choose appropriate inference strategies. Ultimately, causal models356

encourage more hypothesis-driven research which directly tackle key questions in a principled,357

transparent way, thereby leading to more robust progress across empirical machine learning.358
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