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Causality can systematically address
the monsters under the bench(marks)
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Abstract

Effective and reliable evaluation is essential for advancing empirical machine learn-
ing. However, the increasing accessibility of generalist models and the progress
towards ever more complex, high-level tasks make systematic evaluation more
challenging. Benchmarks are plagued by various biases, artifacts, or leakage, while
models may behave unreliably due to poorly explored failure modes. Haphazard
treatments and inconsistent formulations of such “monsters” can contribute to a
duplication of efforts, a lack of trust in results, and unsupported inferences. In
this position paper, we argue causality offers an ideal framework to systematically
address these challenges. By making causal assumptions in an approach explicit,
we can faithfully model phenomena, formulate testable hypotheses with explana-
tory power, and leverage principled tools for analysis. To make causal model
design more accessible, we identify several useful Common Abstract Topologies
(CATs) in causal graphs which help gain insight into the reasoning abilities in
large language models. Through a series of case studies, we demonstrate how the
precise yet pragmatic language of causality clarifies the strengths and limitations
of a method and inspires new approaches for systematic progress.

1 Introduction

Machine learning achievements continue to break records and grab headlines, drawing attention from
both the public and the research community. However, the rapid proliferation of powerful models
and the increasing complexity of tasks continue to amplify existing challenges in reliable evaluation
of these models [[1]. Between inflated expectations [2H4], opaque or misleading assessments [3]], and
even the occasional mistake [6]], the poor communication [7]] and unreliable benchmarks [8H10] can
significantly undermine our understanding of the capabilities and limitations of these models [[L1}12].
This risks a decline of public trust [[13H15]] and perhaps even an Al winter [L6]. A key issue is that
many evaluations focus on performance alone [17], failing to account for the reasoning process
behind a model’s behavior. For instance, a model may arrive at the right answer for the wrong reasons,
making the performance alone an incomplete indicator of its capabilities.

To systematically address the challenges in evaluating, in particular, large models, this position paper
argues for a shift toward causality-driven experimental design. By making causal assumptions
explicit, we formulate precise hypotheses and underlying assumptions, diagnose model limitations,
and leverage principled tools for analysis.

One subfield that is particularly well-fitted for more causal analyses is the evaluation of reasoning
abilities in large language models (LLMs) [18}[19]. A cursory analysis of the recent NLP papers in
the ACL anthology reveals a dramatic rise in the attention to the reasoning capabilities of models, as
seen in[Figure Tal However, curiously, the subset of these papers that mention “causality” or “causal”
in the title or abstract is not growing in tandem (yet). In fact, the dendrogram in [Figure Tb|shows
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Figure 1: (a) Growth of reasoning papers in the ACL Anthology, among which the concept of
“causality” is not growing at the same rate, suggesting that NLP is underutilizing causality. (b) This
dendrogram shows the co-occurrences of causal and causality-adjacent terms of papers that contain
“reasoning” in the abstracts (total 3181 papers) from the ACL anthology from the past 10 years. The
numbers in parentheses indicate the number of papers that mention the term. Note, that the very first
split separates all the causality-related terms from the rest of the terms, suggesting relatively poor
co-occurrence with other related concepts.

that among the reasoning papers, causality-related terms tend not to co-occur very much with many

non-causal mimics (discussed in[Section 2J).

Although these issues often appear disparate, we argue that causality can serve as the framework
to systematically study a wide array of issues thus bridging gaps between different subfields and
approaches. The expertise required to understand and satisfactorily mitigate these issues is very
diverse, and we do not mean to suggest that causality is all you need. Rather, we argue that causality
already (often implicitly) underlies much of the design, analysis, and interpretation of machine

learning experiments, despite the apparent gap in terminology as suggested by

To make an explicit causal framing more accessible and attractive, we develop a guide to common
causal structures and then use these abstract topologies to gain insights across case studies about
reasoning abilities in LLMs. While we focus on research questions and issues concerning the
evaluation of reasoning abilities in LLMs, all four of our main claims (particularly 2}{4) largely apply
to the whole of empirical machine learning research. Our contributions include:

* We survey a wide variety of common challenges, or monsters, that hinder reliable evaluation
and discuss how these can faithfully be modeled using causality

* We propose intuitive templates for causal modeling, called Common Abstract Topologies
(CATs), and show how these aid in effective model design

* We motivate practical causal models to approaches in several case studies

* We promote causality as a tool to encourage hypothesis-driven research with precise,
transparent assumptions and more systematic evaluation

2 A Bestiary of Monsters

As LLMs become an increasingly integral component of decision-making systems, reasoning failures
(including seemingly toy problems like in[Example T)) may have dire real-world consequences [11}[13].
This necessitates more powerful tools to identify, catalog, and address the bestiary of issues that arise
in the design as well as evaluation of large models.

is indicative of several common reasoning failures in LLMs, and, by implication, our
evaluation procedures for addressing such issues. The input prompt is structurally similar to the
questions found in GSMS8k [20], a benchmark used for evaluating a model’s multi-step arithmetic and
commonsense understanding skills. However, we select the subject matter and word choice to evoke
a mobster discussing plans to extort money from local businesses. Although the LLM’s final answer
is factually correct, there are several problems with the rationale: (1) it makes several arithmetic



68
69
70
71

72
73
74
75
76

77

78
79
80
81
82

83
84
85
86
87
88
89

90
91

93

Prompt: Listen here, I'm starvin’ and it’s already half past four. Gotta rake in 10 grand in
protection dough before I eat. I’'m hittin’ up every joint in the hood with my bat, collecting an
average of 800 bucks a pop. Takes me 10 minutes to move from one mark to the next. Am I gonna
get to chow down before 7?

LLM Chatbot: If you’re aiming to collect 10 grand by shaking down joints for an average of
$800 each and it takes you 10 minutes to move from one target to the next, it would take you
approximately 3 hours and 20 minutes (200 minutes) to reach your goal. Starting at half-past
four, you should be able to hit your target before 7 PM. So, yes, you can have a meal before 7 if
everything goes as planned. Enjoy your dinner!

\. J

Example 1: The final answer is correct, and yet the reasoning is very wrong. Although this LLM’s
response is technically correct in a narrow sense, its answer for this GSM8k-like multi-step reasoning
question [20] is unsatisfactory for the purposes of evaluating the model’s arithmetic reasoning, as
well as commonsense or moral reasoning as the LLM appears not to pick up on the obvious unethical
context implied by the scenario.

mistakes which happen to cancel out, (2) it fails to pick up on the unethical situation implied by the
scenario, and (3) by implicitly condoning the criminal behavior, it does not consider the broader
consequences of the response. Crucially, if we only check for correctness, as is standard practice [18]],
we would find no fault in the response.

The problem is that to demonstrate good reasoning abilities, a correct answer is insufficient. We
need to show that the model answers the question correctly for the right reasons. In other words,
our evaluation must verify that the model’s processing of the input information leads to the correct
answer consistently and reliably. This criterion makes a causal claim about the model’s reasoning
process, and thus must be supported by a causal analysis.

Claim 1: Evaluating reasoning involves causal inference

A correct answer can be reached through very poor reasoning, but poor reasoning will not
generalize beyond the lab bench. To generalize well, the model’s reasoning must rely on robustly
predictive (i.e. causal) features and relationships rather than spurious ones. Consequently, to
meaningfully evaluate reasoning abilities, one must assess what influences how the model arrives
at its predictions, which is inherently a causal inference problem.

2.1 “Here be dragons”ﬂ

To get a qualitative sense of the myriad of issues, or monsters, that plague our benchmarks and
experiments, we will briefly survey recent approaches, including broad overviews into the nature of
reasoning tasks [[18] and the evaluation of LLMs [[11 21} 22]]. For investigations of more specific
issues, we separate efforts into three clusters depending on whether the problem originates with the
(1) models, (2) datasets, or (3) evaluation procedures.

Models This line of work focuses on characterizing the reasoning failures and biases of language
models, which is nontrivial given their opaque behavior [23]]. These failures range from well-defined
formal errors such as logical fallacies [24], red herrings [23]], or invalid inferences [26] to broader
issues including sensitivity to superficial features [3}22]], overconfidence [11]], hallucinations 28],
and lack of robustness [29431]]. Some studies explore how models exhibit “content effects” [32],
absorbing and amplifying human biases [33] including social and cultural biases [35H40],
such as stereotyping [41].

Datasets Meanwhile, subtle variations of popular benchmarks, such as premise order in reasoning
tasks[42] or minor changes in problem parameters 144]), can cause large performance drops [T},
, Taising concerns not just about whether models genuinely reason [43]], but also about exploitable
issues in the training data and benchmarks [9] [46]. These can be described as enabling cheating [47],

!The vague and uneasy language researchers often use when alluding to biases or unresolved limitations in
their evaluations is reminiscent of how medieval cartographers would fill the unknown edges of their maps with
dragons.
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heuristics [48},49], or shortcuts [S0-52], possibly due to sampling biases [53]] or in certain cases even
leakage between the training and testsets [47/]] which can result in memorization [54]]. Poor dataset
construction can lead to annotation artifacts [55, 156] such as priming effects [57], which degrade
the quality and reliability of results [S8]] while also unintentionally reinforcing social biases [S9] or
cultural inequities [13} 160, |61]].

Evaluation Even with well-constructed datasets, evaluation methodologies can introduce systematic
errors [62]] or lead to misleading conclusions [7]]. For example, automated scoring systems can obscure
obvious failures [6], while static benchmarks can emphasize surface-level accuracy at the cost of
other important factors, such as generalization [[17] or interpretability [63] or social costs 8} [13].
While standardized leaderboards [[64]] and evaluation procedures [[65] can enable more direct model
comparisons, these benchmarks can gradually become less representative of real-world tasks [[10} 166~
68]], introduce biases that favor certain model families [[69]], or inadvertently leak information from the
test set [47] which can be difficult to detect due to closed-source models and proprietary datasets [[1]].

Despite the diverse, at times redundant, terminology, we observe certain structural similarities in the
approaches of these contributions. Terms like “ablation”, “perturbations”, “edits”, “flips”, “masking”
can often be interpreted as interventional or counterfactual analyses, while “sensitivity”/“robustness”,

“consistency”, “shortcut”, “leakage”, “bias”, etc. refer to how the model’s behavior is impacted by,
for example, (seen or unseen) confounders.

Claim 2: The monsters are causal

Many of the recurring issues in benchmark evaluation, including biases, spurious correlations, or
systematic failure modes, are often described in vague or ad hoc terms. However, these issues arise

from specific causal features of the underlying data-generating process or evaluation procedure.
Whether the factors are known or latent, their influences can be captured by an appropriate causal
model to formulate precise, testable hypotheses and guide more principled experimental design.

3 Common Abstract Topologies

Name Graph Example Phenomena

 prompt wording, instruction tuning, or prompting strategies
* dataset sourcing, annotation artifacts, missing context

Confoundin eX
g * overlap or leakage between the benchmark and training data
e circuit analysis such as mechanistic interpretability
Mediation * tool use or integrating an LLM in a larger application

* editing individual tokens or ablating model parameters

,- * social and cultural biases in the data collection process
 imbalances in the surface form such as symbol or label bias

Spurious Link ; h >
e variable selection and construction

Table 1: Some simple Common Abstract Topologies (CATSs) used to formalize a wide variety of
monsters that may lurk in benchmark or experiment analysis. The graphs use N for the independent
variable, N\ for the dependent variable, and & for a third-variable factor.

Creating a causal graph that faithfully represents the underlying structure of an experiment or data
generating process can be very challenging. Especially since, when we design an experiment, we
usually think in terms of more vague concepts like independent, dependent, and controlled variables,
and consequently only implicitly make causal assumptions. However, explicit causal graphs:

* precisely communicate the assumptions that go into a benchmark, experiment, or analysis
¢ leverage the machinery of causal inference for more principled analyses

* understand the implications of our design choices including the strengths and limitations on both
technical and conceptual levels
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To help make the process of constructing a causal graph more accessible and systematic, we identify
a set of Common Abstract Topologies (CATs) that frequently appear in causal graphs. For motivation,
we list some associated phenomena (see in the context of evaluating reasoning abilities in
large models, where these patterns may offer useful abstractions.

However, researchers may be hesitant to commit to a specific causal graph that fully captures all
factors influencing their analysis [70]. In practice, causal graphs are often underdetermined by the
available data and may hinge on subtle choices in how variables are defined or interpreted [60)].
As Loftus [63] point out, some researchers even avoid causal framing altogether, since it makes
explicit assumptions that reviewers may challenge.

Claim 3: Instrumentalism is all you need for model design

A causal model does not need to be perfect to be useful. Plausible simplifying assumptions and
abstractions can yield valuable insights and motivate practical experiments. As research advances,
the model can be incrementally refined, while providing precise falsifiable hypotheses at every
step of the way.

We join Loftus [63]], Janzing and Garrido [71] in advocating for a more pragmatic, instrumentalist
attitude to causal modeling. In many cases, the same phenomenon can be represented by multiple
causal graphs that differ in variable selection, construction, or level of abstraction [72H74]]. Neverthe-
less, as long as a proposed causal model does not directly conflict with the available data, it may be
sufficient to produce actionable insights (such as more interpretable or explainable models).

Aside from the additional explanatory power, if a more formal treatment is necessary or desired,
there is a vast world of tools and techniques to explore. The field of causal inference
has developed a language for formalizing the effects of subtle design choices and their, potentially
counterintuitive, consequences for the analysis. For example, Simpson’s paradox can be elegantly
explained, to “resolve” the apparent paradox based on the appropriate causal assumptions of the
problem (for a deep dive into this topic see Pearl [79] and Chapter 6 of Pearl [76])).

Claim 4: Towards explicit causal assumptions

An experimental design involves a variety of assumptions about what factors matter, how they
interact, and how this relates to the proposed approach. Here the language of causality provides
a powerful framework for motivating an approach, precisely formulating the hypothesis, and
answering questions in a principled way.

Causal inference is valuable not only for formal analysis but also as a conceptual framework for
understanding the structural assumption behind an approach or argument. By making the concepts
and tools of causal inference more accessible, we aim to develop a practical guide to recognize
familiar causal structures in the real world, as well as build an intuition for the implications of
model design choices on analysis and interpretation. To this end, we present three simple CATs
that correspond to the three causal interpretations of a statistical dependence between two variables
according to Reichenbach’s common cause principle [80]].

Here is a brief sketch of how CAT's can be used to guide model or benchmark design:

1. Identify a relationship of interest: Select a measurable outcome variable (e.g., model accuracy)
and a primary explanatory “stimulus” (e.g., input prompt, fine-tuning data, or model parameter).

2. Enumerate additional influences: Consider other factors likely to affect the outcome either
directly or indirectly. Assess whether they are conceptually upstream (potential confounders),
downstream (potential mediators), or parallel sources of variation (potential sources of spurious
correlations) with respect to the stimulus. Based on these relationships, consider the respective
CAT(confounding, mediation, or spurious links) to serve as a structural template.

3. Refine the graph: Adapt the structure based on available data and the specific research question.
Variables and edges may be omitted or aggregated, provided the resulting model supports plausible
hypotheses and does not contradict observed dependencies.

4. Use the model to guide analysis: Apply the graph to derive testable implications (e.g. identify
estimable causal queries by causal inference), suggest experimental interventions, or motivate
mitigation strategies (e.g., balancing, ablation, or regularization).
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3.1 Confounding @’ A\

Confounding occurs when there is a common cause between the stimulus and response variables. For
our purposes, we further restrict the “confounding” CAT to the case where the confounder is known
and can, in principle, be controlled for. Confounding makes evaluation difficult or unreliable because
the observed statistical relationship between the stimulus and response is not representative of the
underlying causal relationship, thus unbiased causal effect estimation necessitates controlling for the
confounder.

3.2 Mediation @ﬁ

Another important type of causal topology is mediation, where there are multiple causal paths between
the stimulus and response. For simplicity, we illustrate this general structure with one direct causal
link and one that goes through a mediator variable. Mediation analysis is often used to quantify the
impact of subcomponents or side-effects on the model’s behavior. For example, a common setting
may be to study the impact of a specific prompting strategy or representation on the model’s response,

which can be modeled as mediation as in [Figure 2|

The impacts of the individual causal paths can be studied by

estimating the natural direct effect (NDE), natural indirect
effect (NIE), or controlled direct effect (CDE) [75]. However,
notably controlling for the mediator is not always appropriate,
for example, for estimating the total causal effect (TCE). This
underscores one of the key benefits of causal inference: given
the specific causal query, the appropriate analysis method is
dictated by the graph structure, thereby prescribing specific
and principled experiments.

Figure 2: Sketch of a conceptual
causal model treating the prompt (i.e.
surface form) as a mediator between
the underlying problem or task of in-
terest and the model’s response.

3.3 Spurious Links ’"§

The third Common Abstract Topology (CAT) we discuss here describes a variety of graphical
structures that give rise to spurious (i.e. non-causal) associations. More specifically, spurious links
are statistical dependencies between variables that are not causally related (neither is an ancestor
of the other), but are correlated due to an unblocked non-causal path in the underlying graph. This
is often due to (1) a common cause (a confounder), which is usually unknown or too complex to
be modeled explicitly, or due to (2) a common effect (a collider) which is conditioned on, thereby
activating a backdoor path [75]]. We denote non-causal links in a causal graph with a dashed curved
edge, indicating that the observed association lacks a direct causal explanation.

Crucially, although spurious links are non-causal, models can still learn to exploit them for prediction,
thereby effectively introducing an undesirable dependency (denoted by a dashed grey arrow) between
the spurious feature and the outcome. This CAT is particularly relevant in machine learning, where
models are typically trained on observational data only. In the absence of interventional or counter-
factual signals, there is no principled way to distinguish causal from non-causal associations, making
it easy for models to rely on spurious correlations in the data without appropriate inductive biases.

Another common source of spurious links, particularly in datasets, is due to selection bias, where the
dataset includes only a subset of instances based on some unmodeled criteria. This selection process
acts as a collider and can introduce spurious associations between otherwise independent variables.

Generally, it is not feasible to entirely eliminate spurious links, as seemingly innocent choices in
variable construction and selection are invariably informed by the experimenter’s biases [60, [81]].
Nevertheless, there is extensive causal inference machinery to address spurious correlations depending
on the specific setting [82]].

4 Case Studies

In this section, we discuss a variety of specific research projects which either make use of one of the
Common Abstract Topologies (CATs) or could benefit from a more explicitly causal framing.
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4.1 Confounding @’ A\

Several recent projects have used causal framing to identify or address confounding in LLM behavior.
For example, Xia et al. [[83] propose using a reward model as an instrumental variable to control for
confounding in prompt biases. In a similar setting, Hiiyiik et al. [84] generate counterfactual samples
to improve causal consistency. In human-LM collaboration, Zhang et al. [85] treat prior human and
model actions as confounders influencing future decisions and introduce the Incremental Stylistic
Effect to measure interventions in multi-turn interactions.

Meanwhile, an active area of research which could effectively be understood using the confounding
CAT, investigates how dataset artifacts affect the performance of LLMs on mathematical reasoning
tasks, such as GSMS8K [20]. These studies vary premise order, subject matter, or input distribu-
tions [42] 14345, 169], often uncovering unexpected sensitivities.

Razeghi et al. [53]] focus on the impact of token frequency in pretraining data on LLM performance
in arithmetic tasks. A causal framing using the confounding CAT, shown in[Figure 3a] captures their
hypothesis that token frequency influences accuracy via a backdoor path.

4 ===:“rms in
Qtfioulty \Lrompt /
2 c
Prompt
= (b)

Figure 3: Causal framings of Razeghi et al. [53]]: (a) confounding interpretation; (b) imagined alter-
native setting using a spurious link; (c) a graph combining CATs to avoid unsupported assumptions.

Alternative Approach Here it is instructive to consider a hypothetical project where we design
a benchmark to evaluate the math skills of a language model. Much like in Razeghi et al. [S3], our
questions take the form “What is ny times ny?” where n; and ns are numbers selected by some
sampling strategy. However, we do not consider the training dataset of the model at all, and instead
we sample numbers uniformly, which effectively removes the causal link between the term frequency
and the numbers used in the question. Based on the findings of Razeghi et al. [33]], we can expect to
find a substantial correlation between the presence of certain numbers in the question and the model’s
accuracy. To explain the results of our approach, we might phenomenologically posit a new property
of numbers called “difficulty” which, the experiments demonstrate significantly affects the model’s
accuracy, leading to the causal graph in[Figure 3b|using the spurious link CAT.

Verifying Causal Assumptions Notably, the graph in|[Figure 3a)implies a falsifiable causal rela-
tionship between the term frequency and the accuracy which is, strictly speaking, not verified by
the experiments of Razeghi et al. [S3]] which only show a correlation. Therefore, the hybrid causal
graph in[Figure 3c|could be proposed where the correlation is instead due to a hypothesized unknown
confounder. This process illustrates how structurally distinct causal interpretations can be proposed
to motivate certain experiments or approaches, and then how the results can be used to incrementally
refine the causal graph.

4.2 Mediation §_'

Mediation analysis guides the approaches of mechanistic interpretability [86H90]], but it is also useful
in the LLMs comprehension of the underlying problem [91]], augmentation of language models [92],
embedding LLMs within larger programs [93|], and the quantification of biases like, gender bias [37].

A common setup for mechanistic interpretability is to study the impact of a specific component,
such as an attention head or even a single parameter on the model behavior. Olsson et al. [94]]
propose that transformers can learn simple, interpretable algorithms called “induction heads,” which
they hypothesize significantly contribute to in-context learning abilities. While mediation analysis
is not explicitly used in their work, we can frame their approach as studying a mediation graph,
where the tendency for a given model architecture (stimulus) to exhibit in-context learning (response)
is mediated by induction heads. Their six supporting arguments can be interpreted through this
causal lens: arguments 1 and 2 establish links between stimulus, mediator, and response through
co-occurrence and co-perturbation; argument 3, an ablation study, resembles controlled direct effect
estimation; and arguments 4-6 examine the causal influence of the mediator on the response.
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This framing also highlights potential limitations, particularly regarding unmeasured confounders
that could affect causal interpretations, as the authors’ “pattern-preserving” ablation does not fully
isolate the induction heads’ effect. By considering mediation explicitly, we can better understand
the underlying assumptions in their analysis and identify areas for further investigation, such as
quantifying the natural indirect effect to understand the full impact of the induction heads on in-context
learning abilities. In contrast, Stolfo et al. [[87] propose a method for mechanistic interpretability of
arithmetic reasoning in LLMs by editing the model’s parameters to characterize the information flow
in the network.

4.3 Spurious Links ’"§

There are several recent projects that use causal models to characterize spurious links in, for example,
factual knowledge [95]], multi-modal models for fake news detection [96]. To avoid spurious features
other projects design strategies to mitigate social biases [39], for finding useful demonstrations in
few-shot learning [97] or to control NLP classifiers [98]].

Chen et al. [96] develop a causal model to systematically quantify and remove two specific kinds of
bias: psycholinguistic (use of emotional language) and image-only (ignoring text features). Note that
the assumptions of the causal model address very specific types of bias using both interventional and
counterfactual techniques.

Bansal and Sharma [98] presents a particularly interesting case as it addresses the same issue
as Gardner et al. [S7], but from a causal perspective. They both study the issue of label bias,
specifically in “competency problems” [57], where an individual token in the prompt is not indicative
of the label, but the model learns to rely on it, usually due to selection bias in the data collection.

The authors of Gardner et al. [57] propose a mitigation strategy based on “local edits” to individual
tokens in the prompt to debias the benchmark. Using their statistical framing, the authors prove that
the most promising strategy must apply local edits such that the label is flipped precisely half of the
time, however, this result not only relies on some unrealistic assumptions, but also provides little
insight into why this strategy is effective.

Translating this into a causal framing, we can gain a more general, and more intuitive result. Adopting
a similar notation as Gardner et al. [57], the hypothesis can be formalized using the spurious links
CAT where a single (text) feature, X;, impacts the model’s prediction Y in the presence of the
remaining input features X . ; (stimulus) due to a label bias. Consequently, to remove the effect of X;
on the prediction, we need to design a strategy where the average causal effect (ACE) of X; on Y
conditioned on X ; is zero, which is, by definition:

where do(X; = x}) denotes an intervention (i.e. edit) on feature X; replacing x; with some .

Note that[Equation 1] is agnostic to the relationship between X; and X ;. If we make a “strong
independence assumption” as in Gardner et al. [S7], then we can directly recover their result that
an edit on X; should flip the label as often as not (i.e. making both terms equal). However, as
the authors discuss, this assumption is not realistic as changing a single token may well affect the
semantic meaning of the prompt beyond just the label (e.g. replacing “very” with “not” in a movie
review). Here the causal framing provides us with a systematic way forward where, we can propose
more realistic assumptions, and then use the rules of do-calculus to derive a corresponding mitigation
strategy, such as the regularization term developed in Bansal and Sharma [98]].

In summary, both approaches started with the same objective, but due to the purely statistical
treatment, a cumbersome derivation still required an unrealistic assumption severely limiting the
applicability of the method. The causal model not only provided a more intuitive motivation for the
approach, but also offered a more powerful, principled method opening the door to further analysis,
such as quantifying the impact of the label bias (e.g. by estimating the ACE), or controlling the effect,
as described in Bansal and Sharma [98]].

5 Alternative Views

We are hardly the first to point out systematic shortcomings of evaluation methodology, particularly
in NLP. One existing perspective focuses on improving the external validity of benchmarks to ensure
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that high performance on a benchmark actually translates to improved capabilities in the real world,
such as with common sense reasoning [99]], or more precisely defining LLMs [100] and how tasks
relate to specific cognitive capabilities [66]]. Raji et al. [8] argue that the common practice for certain
“standard” benchmarks to become proxies for testing complex, high-level abilities, such as natural
language understanding (NLU) leads to vague or unreliable results, while Rogers and Rumshisky
[46] connect this to a proliferation of low-quality datasets.

Precisely this issue, that “benchmarking for NLU is broken” [9], can be addressed using causality.
A causal framing can both provide a versatile way to define the underlying assumptions and design
choices of a benchmark, while also offering principled methods for evaluating the benchmark’s
external validity [1011 [102].

In the context of evaluating the reasoning abilities of language models, a natural field to turn to is
psychometrics, which has been studying the evaluation of human reasoning abilities for over a cen-
tury [[103]. This direction also coincides with an increasing practice in Natural Language Processing
(NLP) to treat language models as agents [[104, [105] or subjects in the social sciences [106H108].
Specifically, item response theory [[109,[110]] holds promise to develop tools to systematically quantify
what information about the model’s reasoning abilities can be extracted from a benchmark with
respect to some population candidate models, and there are some projects applying this framework
in the context of NLP [[111]]. Within the field of NLP there are also notable calls for more holistic
evaluation schemes [9, (17, 69] and practical tools for improving the evaluation of language mod-
els [10, (112} [113]] or even reintroducing principles from linguistic theory [[114]. Lastly, there is
growing interest in how LLMs acquire and apply causal knowledge [115[116], including for causal
reasoning [117]], discovery [[118]], and even hypothesis generation [119] - this trend aligns with our
core message: just as LLMs benefit from explicit causal modeling, so too can the research community.

6 Conclusion

The burgeoning research on large models, and, in particular, high-level reasoning tasks, faces a variety
of challenges, or monsters, to reliably evaluate and improve models. Despite the wide variety of
approaches and frameworks that have been developed to tackle these challenges, this variety obscures
their shared structural features and recurring issues. By recognizing that monsters can often be
effectively formulated in terms of causal assumptions underlying an experimental design or data
generation process, we can unify our understanding using the language of causality.

A causal framing aids along several steps of the research process by guiding experimental design,
formulating testable hypotheses, and interpreting results. Causal methods enable researchers to gain
a clearer lens to understand how variables of interest interact, rather than merely optimizing for
predictive performance on an artificial benchmark. We argue that causality offers a path toward
deeper scientific insights, more transparent communication of assumptions, and stronger justifications
for the conclusions drawn.

One stumbling block to adopting causal methods is that the restrictive assumptions and formalism
may seem unapproachable at first. Additionally, researchers may hesitate to commit modeling
assumptions to paper where they can be scrutinized. However, data-driven approaches which rely on
implicit or vague assumptions along with results that may (inadvertently) be interpreted as causal
contribute to confusion and unsupported claims, which hinder scientific progress. Causal methods,
by contrast, encourage explicit modeling and critical thinking about the mechanisms that underlie
empirical observations.

To make causality more accessible and practically applicable, we introduce Common Abstract
Topologies (CATs) to faithfully describe the underlying structure of many issues that arise in designing
and evaluating ML models. In the case studies, we illustrate how a causal framing can help understand
the approach both conceptually in terms of how subtle design choices impact the causal interpretation,
as well as technically where the grounded causal machinery can be used to derive a more general,
actionable conclusions. Together, these examples demonstrate that even simple causal structures
can offer insight into complex evaluation problems, guide experimental design, and refine our
understanding of model behavior. We envision CATs as a practical tool, helping researchers quickly
identify relevant causal models and choose appropriate inference strategies. Ultimately, causal models
encourage more hypothesis-driven research which directly tackle key questions in a principled,
transparent way, thereby leading to more robust progress across empirical machine learning.
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