
Skills-in-Context: Unlocking Compositionality in Large Language Models

Anonymous ACL submission

Abstract

We investigate how to elicit compositional gen-001
eralization capabilities in large language mod-002
els (LLMs). Compositional generalization em-003
powers LLMs to solve complex problems by004
combining foundational skills, a critical reason-005
ing ability akin to human intelligence. How-006
ever, even the most advanced LLMs currently007
struggle with this form of reasoning. We ex-008
amine this problem within the framework of009
in-context learning and find that demonstrat-010
ing both foundational skills and compositional011
examples grounded in these skills within the012
same prompt context is crucial. We refer to this013
prompt structure as skills-in-context (SKiC).014
With as few as two exemplars, this in-context015
learning structure enables LLMs to tackle more016
challenging problems requiring innovative skill017
combinations, achieving near-perfect system-018
atic generalization across a broad range of tasks.019
Intriguingly, SKiC also unlocks the latent po-020
tential of LLMs, allowing them to more actively021
utilize pre-existing internal skills acquired dur-022
ing earlier pretraining stages to solve complex023
reasoning problems. The SKiC structure is ro-024
bust across different skill constructions and ex-025
emplar choices and demonstrates strong trans-026
ferability to new tasks. Finally, inspired by027
our in-context learning study, we show that028
fine-tuning LLMs with SKiC-style data can029
elicit zero-shot weak-to-strong generalization,030
enabling the models to solve much harder prob-031
lems directly with standard prompting.032

1 Introduction033

Large language models (LLMs) have achieved034

great success in solving natural language process-035

ing (NLP) tasks (Smith et al., 2022; Lewkowycz036

et al., 2022; Wei et al., 2021; Mishra et al., 2022;037

Chung et al., 2022; Ouyang et al., 2022; OpenAI,038

2023; Touvron et al., 2023b). When the size of039

model and data scales up, LLMs exhibit strong040

zero/few-shot performance on a wide range of NLP041

tasks — a salient behavior characterized by the scal- 042

ing law (Kaplan et al., 2020; Hoffmann et al., 2022) 043

and emergent abilities (Wei et al., 2022a). However, 044

LLMs still struggle with compositional generaliza- 045

tion, i.e., the ability to use existing skills to solve 046

more complex unseen problems (Zhou et al., 2022a; 047

Dziri et al., 2023; Burns et al., 2023). 048

Ideally, if an LLM has already learned a rich 049

set of knowledge and foundational skills, it should 050

be able to solve any problem whose solutions are 051

composable from these skills. To unlock such great 052

potential, the key is to teach the LLMs how to use 053

these skills to construct a solution to more difficult 054

problems. Towards this goal, there have been a 055

series of in-context learning strategies developed to 056

improve the reasoning and composition capabilities. 057

Notably, chain-of-thought (CoT) prompting (Wei 058

et al., 2022b) significantly improves the reasoning 059

performance of LLMs by demonstrating how to 060

approach a complex problem through a sequence 061

of basic steps. Follow-ups such as Least-to-Most 062

prompting (Zhou et al., 2022a) and decomposed 063

prompting (Khot et al., 2022) propose a two-stage 064

strategy, which first decomposes the problem into 065

sub-problems, and then solve and combine them 066

sequentially. Although these methods significantly 067

boost the performance in solving many challeng- 068

ing compositional generalization tasks, they usu- 069

ally fail over problems that are significantly harder 070

than the ones they have seen. Moreover, least-to- 071

most prompting and decomposed prompting are 072

restricted to solving problem classes that can be de- 073

composed as a sequence of sub-problems. And for 074

problems with general computation graphs (Dziri 075

et al., 2023), it is generally less intuitive, if not 076

possible, to construct the prompting exemplars. 077

In this paper, we examine how to elicit strong 078

compositional abilities in LLMs within the frame- 079

work of in-context learning. We find that the key 080

insight is to teach the LLM to explicitly ground 081

each of its reasoning steps on the (more founda- 082

1

Figure 1: Skills-in-Context Prompting. The prompt consists of three blocks: (i) the (basic) skills for solving a
complex task, (ii) examples of how to compose the skills, and (iii) the problem to be solved. The above prompt will
be fed into an LLM to generate the output — see Figure 26 for an example of the output. Note that the compositional
exemplars demonstrate how to explicitly ground the reasoning steps onto the basic skills (highlighted in colors).

tional) skills. To this end, it is crucial to demon-083

strate both the foundational skills and the composi-084

tional examples grounded in these skills within the085

same prompt context. We refer to this (one-stage)086

prompting structure as SKills-in-Context (SKiC).087

Specifically, the SKiC prompt is constructed from088

three main blocks (Figure 1). The first block con-089

tains a short (non-exhaustive) list of skills that090

LLMs may need to use in order to solve a more091

complex problem, which include the instructions of092

the skills. These skills can be distilled either manu-093

ally or automatically via LLMs. The second part094

consists of a few (generally two) exemplars that095

demonstrate how to compose skills into a complex096

solution. The last part is the testing problem.097

Interestingly, with both the skills and their ex-098

plicit compositions presented in the context, the099

LLMs successfully learn how to ground reason-100

ing steps onto the skills that they have already101

mastered, yielding much stronger generalization102

abilities. It allows LLMs to achieve near-perfect103

systematic generalization across a broad range of104

tasks. In addition, it also allows the LLMs to gen-105

eralize beyond the skills provided in the context106

and solve problems by more actively and explicitly107

using the vast reservoir of the internal skills they ac-108

quired during the prior pre-training stage. It clearly109

demonstrates that SKiC structure unleashes strong110

synergies between skills and their composition ca- 111

pabilities, which teaches LLMs to generalize to un- 112

seen (harder) problems that require innovative com- 113

positions of skills. Furthermore, the SKiC structure 114

is robust across different skill constructions (e.g., 115

handcrafted or discovered by LLMs) and exemplar 116

choices and demonstrates strong transferability to 117

new tasks. Finally, inspired by our in-context learn- 118

ing study, we show that fine-tuning LLMs with 119

SKiC-style data can elicit zero-shot weak-to-strong 120

generalization, enabling the models to solve much 121

harder problems directly with standard prompting. 122

2 SKiC: Elicit Compositionality with 123

In-Context Skills and Grounding 124

While humans naturally exhibit compositional gen- 125

eralization in problem-solving, LLMs often strug- 126

gle to compose basic skills to solve more difficult 127

problems (Dziri et al., 2023). Empowering LLMs 128

with the ability to compose skills that they have 129

seen to solve more complex tasks is important to 130

mirror human intelligence and to reach superintel- 131

ligence. In this work, we investigate how to elicit 132

compositionality of LLMs in in-context learning 133

(ICL) setting. In particular, we want to reveal how 134

a meticulously designed prompt structure could 135

greatly enhance the compositional ability. The in- 136

sights obtained in the ICL setting can also inspire 137

2

how to further improve the fine-tuning (Sec. 4).138

Demonstration of Composition We find that it139

is crucial to instruct the LLM to explicitly ground140

each of its reasoning steps onto the foundational141

skills1. To facilitate this, it is important to demon-142

strate both the foundational skills and the compo-143

sitional examples grounded in these skills within144

the same prompt context. Such a structure, which145

we refer to as SKiC, provides a full-context demon-146

stration of how to perform explicit composition147

over skills for solving a (complex) problem, where148

the detailed three-part construction is illustrated in149

Figure 1 as we discussed earlier. It is also partly150

inspired by the Elaborative Rehearsal from the hu-151

man cognition theory (Berry, 1983), where studies152

(Kheirzadeh and Pakzadian, 2016) have demon-153

strated that by first summarizing relevant knowl-154

edge and skills as the Scaffolding (Hammond and155

Gibbons, 2005) and establishing connections be-156

tween the problem-solving steps and the existing157

Scaffolding, human would process the new infor-158

mation with greater depth and thoroughness, thus159

reinforcing both the concepts and their practical160

applications (Bakker et al., 2015). Our ablation161

study in Table 5 will reveal that both the in-context162

skills and the explicit groundings are essential for163

eliciting strong compositional abilities.164

Comparison to existing approaches Different165

from Chain-of-Thoughts, our SKiC provides ex-166

plicit grounding on the foundational skills at each167

of the reasoning steps and also provides the rel-168

evant skills within the same context. Compared169

to recent prompting methods for handling com-170

positional problems such as Least-to-Most (LtM)171

(Zhou et al., 2022a) and Decomp (Khot et al.,172

2022), our SKiC is superior in several dimension:173

(i) Our SKiC is more general to solve extended174

sets of problems. Previous decomposing-based175

approaches like LtM and Decomp usually solve176

complex problems in a two-stage fashion by first177

decomposing the problem into a linear sequence178

of subproblems and then solving them sequentially.179

However, many of the tasks that have complex180

computation graphs such as multiplication and dy-181

namic programming problems (Dziri et al., 2023)182

cannot be decomposed in a simple manner, which183

makes these decomposition-based approaches less184

applicable. (ii) The decomposition operation can185

1“Foundational skills” are not necessarily atomic. Rather,
they could be any skills (e.g., a composite skill by itself) that
serve as the building blocks for tackling complex problems.

also be viewed as one basic skill in SKiC (see Fig- 186

ure 16 for an example in a question-answer task). 187

(iii) SKiC solves the complex problems in a single 188

stage, which could alleviate the error propagation 189

compared to decomposition-based approaches that 190

require multiple distinct stages. Due to the one- 191

stage nature, our SKiC can replace other one-stage 192

strategies such as the CoT in a plug-and-play man- 193

ner. And it can be easily combined with other en- 194

semble techniques such as self-consistency (Wang 195

et al., 2022) and Progressive-Hint (Zheng et al., 196

2023a) to further boost the performance. Please 197

refer to Appendix C for the relations to tool-using. 198

Construction of the skills One important com- 199

ponent in the above SKiC structure is the founda- 200

tional skills. Note that these skills are not meant 201

to be an exclusive coverage over all the necessary 202

skills. Instead, they are intended to be used together 203

with the compositional exemplars to demonstrate 204

how to perform explicit and grounded composition. 205

For this reason, we only need a limited number of 206

in-context skills since they only need to be used to- 207

gether with a few (typically 2 ∼ 10) compositional 208

exemplars. Therefore, the human effort involved in 209

constructing these skills are generally minimal or 210

at most comparable to other few-shot prompting ap- 211

proaches. Indeed, our experimental analysis shows 212

that SKiC requires less number of demonstration 213

examples. Morever, these skills can also be con- 214

structed automatically by prompting LLMs while 215

still achieving good performance (see the results in 216

Section 3.3 and more details in Appendix B). 217

Grounding the composition As shown in Fig- 218

ure 1, we explicitly ground the reasoning steps onto 219

the corresponding skills in the compositional ex- 220

emplars. Besides the in-context skills, we may also 221

ground the reasoning steps to the internal skills not 222

presented in the context, where the existence of 223

these internal skills can be verified by prompting 224

the LLMs with the skill information (see Appendix 225

B). Intriguingly, with SKiC, the LLMs can more ac- 226

tively tap into the vast reservoir of the internal skills 227

they acquired during the pre-training stage in com- 228

plex reasoning. In Figure 2, we demonstrate an ex- 229

ample of the generated solution on the MATH task 230

using SKiC. The two highlighted skills <Angle 231

Bisector Theorem> and <Heron’s Formula> are 232

neither provided in the SKiC context (see Figure 233

22) nor used in any given exemplars. LLMs au- 234

tomatically ground onto the (pre-trained) internal 235

skills and compose them in their output reasoning 236

3

Figure 2: An example of the generated solution on the MATH task using SKiC. Intriguingly, the two highlighted
skills <Angle Bisector Theorem> and <Heron’s Formula> are neither provided in the SKiC context (see Figure
22) nor used in any given exemplars. LLMs harness the internal skills in their pre-trained knowledge to solve the
problem, where these two highlighted skill names are also generated automatically by the LLM.

steps. Notably, these two highlighted skill names237

are also automatically generated by the LLM.238

3 Analysis of Compositional Abilities239

We perform experiments in two settings. Details of240

each task can be found in the Appendix D:241

Systematic Generalization: Composition over242

in-context skills, where all the needed skills are243

provided in the context. We evaluate (i) last let-244

ter concatenation (Wei et al., 2022b; Zhou et al.,245

2022a; Khot et al., 2022), where the LLM needs to246

generate the concatenation of the last letter from247

a given list of words, (ii) addition and multipli-248

cation (Dziri et al., 2023), where the LLM needs249

to generate the sum and product of two numbers,250

(iii) CommaQA-E (Khot et al., 2022), where mod-251

els need to answer multi-hop questions, and (iv)252

dynamic programming (Dziri et al., 2023), where253

LLMs need to find the highest sum for a subse-254

quence where no two numbers are adjacent. These255

tasks require only a limited skill set and we con-256

struct SKiC prompts manually in Figures 10-19,257

with similar human effort as in CoT prompting.258

Complex Reasoning: Generalization beyond in-259

context skills, where models need to harness skills260

beyond the context and tap into the internal skills261

for math reasoning like GSM8K (Cobbe et al.,262

2021) and MATH (Hendrycks et al., 2021). For263

GSM8K, which are simpler problems that could264

be solved by basic math operations, we construct265

SKiC via human in Figures 20-21. For MATH,266

which is a more challenging benchmark, we prompt267

the LLMs to generate the skills and then hand- 268

craft a few examples in Figures 22,23 (see the sec- 269

ond approach in Appendix B). The handcrafting 270

effort involved here is comparable to other few-shot 271

prompting approaches such as CoT. 272

We mainly compare SKiC with zero/few-shot 273

standard prompting (Brown et al., 2020), CoT (Wei 274

et al., 2022b), Least-to-Most (LtM) (Zhou et al., 275

2022a), and Decomp (Khot et al., 2022) on dif- 276

ferent LLMs including LLAMA (Touvron et al., 277

2023a), GPT3 (text-davinvi-003) (Brown et al., 278

2020), ChatGPT and GPT4 (OpenAI, 2023). For 279

tasks in the second setting, we further com- 280

pare our methods with Scratchpad (Nye et al., 281

2021), Learning-to-Program (LtP) (Guo et al., 282

2023), ComplexCoT (Fu et al., 2022) and ensem- 283

ble strategies such as majority voting (maj1@k) 284

(Lewkowycz et al., 2022), Self-Consistency (SC) 285

(Wang et al., 2022), Progressive-Hint Prompting 286

(PHP) (Zheng et al., 2023a), and Code-based- 287

Verification (CSV)(Zhou et al., 2023). Note that all 288

the exemplars in SKiC are either a subset of or the 289

same as what have been used in baselines. 290

3.1 Near-Perfect Systematic Generalization 291

We report the main results for last letter concatena- 292

tion, addition & multiplication, Commaqa-E and 293

DP in Figures 3-4. Additional results can be found 294

in Appendix E. Standard zero/few-shot prompt- 295

ing generalizes poorly on the problems that are 296

harder than the exemplars in the prompting con- 297

text. CoT, LtM and Decomp improve the overall 298

4

Figure 3: Accuracy on last letter concatenation, addition, multiplication, and dynamic programming. The gray area
is in-distribution evaluation where the testing examples are with the same level of complexity as examples in the
context, while the white area is out-of-distribution evaluation where the test set are increasingly harder problems.

Figure 4: Exact Match on Commaqa-E. The “Comp.
Gen” reports the results on the compositional questions.

Figure 5: The accuracy on GSM8K tasks.

performance but still degrade quickly over harder299

inputs. SKiC significantly boosts the performance300

in harder cases. Notably, SKiC achieves nearly301

perfect generalization on tasks like last letter con-302

catenation, addition, and dynamic programming303

with text-davinci-003, ChatGPT or GPT4. These304

significant improvements highlight the importance305

of in-context skills and explicit grounding in elic-306

iting compositionality. Examples of the generated307

answers with SKiC can be found in Figures 26-30.308

3.2 Enhanced Complex Reasoning309

Figure 5 shows the significantly boosted accuracy310

on GSM8K by SKiC compared to other baselines,311

even with incomplete skills in SKiC prompts. We 312

observe several important generalization behaviors: 313

(i) generated reasoning steps effectively utilize the 314

provided skills that are not demonstrated in the 315

compositional examples (Figure 32), (ii) generated 316

reasoning steps successfully employ skills that are 317

not included in the prompts but may exist within 318

the pre-trained knowledge of the LLM (Figures 33- 319

34). They suggest that, with SKiC, LLMs can be 320

taught to use the skills provided in the context as 321

well as from their pretrained knowledge to solve 322

math problems via compositionality. 323

Accuracy on MATH is reported in Table 1. With 324

SKiC constructed in a semi-automated manner, 325

models could explicitly ground the reasoning steps 326

to both in-context skills and their internal knowl- 327

edge to resolve math problems, leading to SKiC’s 328

superior performances. We also show the internal 329

skill activation rate that measures the percentage of 330

skills utilized in the generated reasoning steps that 331

originates from pre-trained knowledge (rather than 332

being introduced in the SKiC prompt). It further 333

verifies that SKiC allows the LLMs to generalize 334

beyond the in-context skills and more actively in- 335

voke the massive reservoir of internal capabilities 336

in LLMs (e.g., 24% of skills utilized in the out- 337

put reasoning steps are from the GPT4 internal 338

knowledge) — see Figures 35-38 for more exam- 339

ples, where the reasoning process carried out by the 340

LLM effectively utilize both in-context and internal 341

skills. The frequently used in-context and internal 342

5

Table 1: Accuracy and internal skill activation rate on the MATH.

Model Prompting Ensemble Pre-Algebra Geometry Inter-Algebra Algebra Probability Pre-Calculus NumTheory Overall

PaLM-2 CoT SC - - - - - - - 48.8
Minerva-540B CoT, Scratchpad maj1@k 71.1 42.0 27.1 72.7 43.5 34.5 36.3 50.3

ChatGPT Verification CSV 58.9 22.0 14.8 45.6 35.2 13.0 33.5 34.7
GPT-4 Verification CSV 76.2 38.6 25.3 70.4 57.0 28.6 53.5 51.8

ChatGPT ComplexCoT PHP 57.7 25.4 17.1 49.1 33.7 16.1 35.1 36.5
GPT-4 ComplexCoT PHP 73.8 41.9 26.3 73.4 56.3 29.8 55.7 53.9

PaLM-2 CoT % - - - - - - - 34.3
Minerva-540B CoT, Scratchpad % 54.9 26.7 13.6 51.2 27.9 18.0 21.2 33.6

ChatGPT

CoT, LtP % 52.3 22.5 16.9 49.6 30.2 16.3 29.8 31.1
ComplexCoT % 53.8 22.3 14.6 49.1 29.7 16.8 33.4 34.1
SKiC (Ours) % 62.0 ↑ 8.2 30.1 ↑ 7.8 17.8 ↑ 3.2 57.9 ↑ 8.8 38.2 ↑ 8.5 23.0 ↑ 6.2 35.5 ↑ 2.1 40.6 ↑ 6.5

Internal Skill Activation Rate 6.5 19.0 13.2 5.7 9.1 45.2 7.8 14.9

GPT4

CoT % - - - - - - - 42.2
ComplexCoT % 71.6 36.5 23.4 70.8 53.1 26.7 49.6 50.3
SKiC (Ours) % 79.7 ↑ 8.1 43.6 ↑ 7.1 29.5 ↑ 6.1 74.6 ↑ 3.8 58.2 ↑ 5.1 36.6 ↑ 9.9 55.9 ↑ 6.3 56.4 ↑ 6.1

Internal Skill Activation Rate 12.7 37.0 33.4 16.0 4.4 65.5 12.1 24.3

Table 2: Accuracy on RTE and Last Letter (12 words)
with ChatGPT models using skills crafted by human or
skills discovered by LLMs in SKiC.

Methods RTE Last Letter

COT 85.2 72.5

SKiC by Human - 100.0
SKiC by LLM 89.8 100.0

skills are illustrated in Table 25 in Appendix.343

3.3 Synergy between Skills and Composition344

Skills from Human vs. Skills Discovered by345

Models We conduct experiments to show that the346

skills can be discovered automatically by LLMs,347

which makes our SKiC more applicable to a wider348

range of tasks. We provide ChatGPT with exam-349

ples from RTE (Wang et al., 2018) and last letter350

tasks, and instruct it to discover the needed skills351

from the examples to solve the tasks, which re-352

sults in skills such as Context Understanding and353

Inference Evaluation for RTE, and Identify Words,354

Determine Last Letters, Concatenate Last Letters,355

Form New Sequence for last letter. Based on the356

summarized skills from LLMs, we then construct357

SKiC prompts. The results are shown in Table 2,358

which demonstrates the effectiveness of SKiC with359

automatically discovered skills.360

Skills from Stronger Model vs. Skills from the361

Same Generative Model Another important ques-362

tion we want to understand is whether it is benefi-363

cial to generate the in-context skills from the same364

foundation model used for prediction. We prompt365

the ChatGPT using the SKiC constructed from it-366

self or the stronger GPT-4 (i.e., the in-context skills367

Table 3: Accuracy and internal skill activation rate on
MATH with two variants of SKiC on ChatGPT: the
skills are generated from (i) ChatGPT and (ii) GPT-4.

Metric Source of Skills Overall

Accuracy GPT4 38.9
ChatGPT 40.6

Internal Skill
Activation Rate

GPT4 12.5
ChatGPT 14.9

Table 4: Accuracy of MATH and FOLIO when using
prompts designed for GSM8K with ChatGPT models.

TASK COT for GSM8K SKiC for GSM8K

MATH 28.2 31.34
FOLIO 68.8 72.5

are generated by GPT-4). The accuracy and the 368

internal skill activation rate on MATH are reported 369

in Table 3 (see Table 20 for the complete result). 370

With the skills prompted from itself, we observe 371

improved accuracy and skill activation rate. This 372

suggests that (i) aligning the model that is used 373

to prompt the in-context skills and the model that 374

is used to generate answers helps the models’ ca- 375

pability to link and utilize internal skills, and (ii) 376

activating more internal skills leads to higher per- 377

formance for complex problems. 378

Generalization to New Tasks We further show 379

that SKiC generalizes better than CoT when we 380

apply a prompt (originally designed for a different 381

task) directly to new unseen tasks. To see this, we 382

apply the prompts designed for GSM8K to MATH 383

(competition-level math reasoning) and to FOLIO 384

(logical inference) (Han et al., 2022), which are 385

unseen new tasks (see Table 4). Compared to CoT, 386

6

Table 5: Accuracy on DP (8 numbers) of SKiC with
ChatGPT after removing different components.

Methods Dynamic Programming

COT 72.0

SKiC 98.0
- skill 94.0

- skill grounding 82.0

Table 6: Accuracy of different sets of few-shot exem-
plars in CoT and SKiC on the last letter with ChatGPT.

Examples in Prompts COT SKiC

’apple, banana’; ’apple, pie’ 91.4 100.0
’math, code’; ’science, computer’ 92.5 100.0

’ashc, edhoh’; ’shbod, wojois’ 90.8 100.0

SKiC shows better cross-task transfer abilities.387

Ablation Analysis of SKiC Components In our388

work, we discover that besides step-by-step rea-389

soning, explicit grounding is another key factor to390

elicit compositional generaization, demonstrated391

by significantly better performances of SKiC. We392

perform ablation study to highlight the finding (the393

importance of skills and skill grounding). We com-394

pare SKiC with the setting where (i) we remove395

the skills but keep the skill grounding in reasoning396

steps and (ii) we remove the skill grounding in rea-397

soning steps but keep the basic skill introduction398

in the front. The performance on Dynamic Pro-399

gramming is shown in Table 5. Removing either400

parts would lead to performance drop, which fur-401

ther indicates the importance of both skills and skill402

grounding to for compositional generalization.403

Robustness to Few-shot Examples We evaluate404

the robustness of SKiC to the choices and the or-405

ders of examples in Tables 6-7, respectively, where406

SKiC is robust against the selection of few-shot407

exemplars and shows a similar level of robustness408

as CoT while achieving better overall performance.409

3.4 Error Analysis410

We perform error analysis on the tasks that are411

still far away from (nearly) perfect generalization412

when applying SKiC on ChatGPT — multiplica-413

tion, question answering, GSM8K and MATH. For414

each task, we randomly sample 50 error cases and415

perform an examination of them. We summarize416

five types of errors: (i) seen basic skills: errors arise417

due to a lack of mastery of the skills in context, (ii)418

unseen basic skills: errors caused by the absence of419

skills in context, particularly when these skills do420

Table 7: Accuracy of different orders of few-shot exem-
plars in CoT and SKiC on GSM8K with ChatGPT.

Order of Examples COT SKiC

Random order 1 74.4 87.2
Random order 2 73.8 86.9
Random order 3 73.0 87.8

not exist in the pre-trained knowledge, (iii) incor- 421

rect composition: errors of incorrect composition 422

or reasoning over the skills, (iv) incorrect copying: 423

copying or merging errors between different steps, 424

(v) others: such as incorrect labels in the test set. 425

The distributions are visualized in Figure 6. We 426

observe that (i) the most common errors arise from 427

unseen basic skills, (ii) a lack of mastery of the 428

basic skills leads to more errors when there are 429

more complex or more basic skills to be used (for 430

example, the question decomposition capability in 431

the CommaQA-E task is generally a complex skill, 432

and the GSM8K and MATH dataset requires more 433

basic skills), (iii) incorrect composition is a ma- 434

jor error type for tasks that require more complex 435

reasoning steps such as GSM8K, (iv) copying er- 436

rors become more prevalent when there are more 437

reasoning steps with longer context, and (v) math 438

reasoning generally requires a wider variety of skill 439

compositions, and the way of composition varies 440

significantly from one problem to another, making 441

it considerably harder to master the appropriate 442

skill composition for each problem. 443

4 Beyond In-Context Learning 444

Inspired by the above in-context learning study, 445

we show that instruction tuning data constructed 446

with SKiC structure can be utilized to fine-tune 447

LLMs, enhancing their easy-to-hard generalization 448

capabilities. Specifically, we generate training data 449

by using GPT4 to produce answers for GSM8K 450

problems with SKiC prompts. This ensures that 451

the reasoning steps for each GSM8K problem are 452

explicitly grounded in basic skills, as illustrated in 453

Figure 33-34. Using the GSM8K data annotated 454

with SKiC-structure reasoning steps, we fine-tune 455

Llama2 models and evaluate their performance 456

on MATH dataset, which consists of significantly 457

more challenging evaluation problems compared 458

to the training problems from GSM8K. The re- 459

sults, shown in Figure 7, indicate that fine-tuning 460

with SKiC data significantly improves accuracy on 461

MATH compared to training data annotated with 462

7

Figure 6: Error distributions in Multiplication, QA, GSM8K and MATH tasks.

Figure 7: Generalization from GSM8K to MATH.

CoT reasoning steps (also by GPT4). This demon-463

strates that models fine-tuned with SKiC reasoning464

steps achieve better generalization to complex and465

challenging test cases. These findings suggest that466

SKiC could potentially replace CoT in instruction467

tuning, eliciting stronger reasoning capabilities and468

enabling weak-to-strong generalization.469

5 Related Work470

There has been a long history of studies on com-471

positional generalization (Lake and Baroni, 2018;472

Jia and Liang, 2016; Andreas, 2019; Lake and Ba-473

roni, 2018; Ouyang et al., 2023; Keysers et al.,474

2020; Chen et al., 2020; Dziri et al., 2023; SHAO475

et al., 2023; Saparov and He, 2022; Nye et al.,476

2021; Welleck et al., 2022; Dong et al., 2019;477

Schwarzschild et al., 2021). Different types of478

approaches have been developed to solve compo-479

sitional generalization. One widely studied ap-480

proach is neuro-symbolic methods (Dong et al.,481

2019; Schwarzschild et al., 2021), which blend482

symbolic and distributed representations for mod-483

eling the reasoning process. A recent line of work484

that has gained significant traction is to prompt485

large language models to unlock its potential com-486

positional generalization abilities (Nye et al., 2021;487

Zhou et al., 2022a; Khot et al., 2022; Dua et al.,488

2022; Dziri et al., 2023). For example, least-to-489

most prompting (Zhou et al., 2022a) and decom-490

posed prompting (Khot et al., 2022) boosts com-491

positional generalization by first decomposing a492

difficult problem into a sequence of easy-to-hard493

problems and then solving them sequentially. How-494

ever, the performance still degrade quickly over495

increasingly harder problems. Moreover, their ap- 496

plications are limited to a class of problems that 497

can be decomposed into a set of subproblems. For 498

more general complex problems, where the sub- 499

problems are highly nested (e.g., the ones shown in 500

Dziri et al. (2023)), it becomes quite challenging 501

to construct the prompts and the exemplars. Re- 502

cent work (Zhang et al., 2023; Zhou et al., 2023) 503

have also explored multiple agents for solving com- 504

plex problems. Unlike these multi-stage/agents 505

prompting methods, which require multiple calls 506

of multiple LLM in inference process, our pro- 507

posed Skills-in-Context prompting is a simple one- 508

stage/single-agent strategy that can be used in a 509

plug-and-play manner to replace existing standard 510

or CoT prompting. While concurrent work (Zhou 511

et al., 2024; Zheng et al., 2023b) also highlights the 512

appearance of skills in prompts, our studies further 513

show the importance of explicit grounding to basic 514

skills in reasoning steps. 515

6 Conclusion 516

In this work, we examine how to elicit composi- 517

tional generalization abilities in LLMs. Specifi- 518

cally, within the in-context learning framework, we 519

find that it is crucial to explicitly ground each of the 520

reasoning steps on the foundational skills. To fa- 521

cilitate this, it is important to demonstrate both the 522

foundational skills and the compositional examples 523

grounded in these skills within the same prompt 524

context. We refer to this prompt structure as skills- 525

in-context (SKiC). SKiC demonstrates strong (near- 526

perfect) systematic generalization abilities across 527

many tasks and enhanced complex reasoning capa- 528

bilities. Notably, with SKiC, the LLMs could gen- 529

eralize beyond the skills provided in the prompting 530

context and learns to activate the skills and knowl- 531

edge that are acquired through earlier pre-training 532

stages for solving unseen complex problems. Fur- 533

thermore, SKiC structure could be utilized in fine- 534

tuning to improve the easy-to-hard generalization. 535

8

7 Limitations536

In this work, we follow the previous work (Dziri537

et al., 2023; Zhou et al., 2022a) and mainly fo-538

cus on the compositional (easy-to-hard) general-539

ization. Specifically, the in-distribution/seen tasks540

here means the testing samples are sampled from541

the same problem size (Dziri et al., 2023). For542

example, we demonstrate examples of 2-digit ad-543

dition, and then test it over unseen samples that544

are also from 2-digit addition. In contrast, the545

out-of-distribution/unseen tasks here are defined546

to be the harder unseen variants of the problem.547

For example, the testing samples of 5-digit addi-548

tions are the harder variant of the problem that are549

not seen in the context examples. And we utilize550

the SKiC to improve such easy-to-hard composi-551

tional generalization and complex reasoning tasks552

compared to previous methods. In the era of LLMs,553

although it is challenging to investigate whether the554

LLMs have been pre-trained on some of the tasks,555

we believe that even if some of the tasks could be556

crawled into the pretraining corpus, they are mostly557

general and simple examples (e.g., last letters of558

4 or 5 words) rather than the harder cases that we559

tested on (e.g., last letters of 12 words). This is560

also demonstrated in the zero-shot performances561

on the harder cases: for example, the zero-shot562

performances of ChatGPT on last-letter, addition,563

multiplication and dynamic programming are quite564

low (lower than 50% in most of the cases)). With565

our SKiC, the easy-to-hard generalization capabil-566

ity is significantly boosted to even near-perfect gen-567

eralization, while other strong prompting methods568

such CoT and Least-to-Most cannot do so.569

Furthermore, despite the promising results570

demonstrated by Skills-in-Context (SKiC), there571

are several limitations and challenges to explore in572

future work. First, from our error analysis, there573

are several key directions for further improvements:574

(i) providing high-quality basic skills and illustra-575

tions to improve the execution quality of these basic576

skills, (ii) expanding the range of task-related ba-577

sic skills to prevent errors caused by unseen skill,578

(iii) providing more examples of how to compose579

basic skills, especially for more complex tasks,580

and (iv) utilizing better foundation models that can581

handle longer context and have a more extensive582

set of well-mastered skills in their pre-pretrained583

knowledge. Second, while SKiC has shown strong584

performance in problems with relatively clear and585

limited skill sets, scaling it to more complex do-586

mains where the number and variety of required 587

skills are vast remains challenging. The manual or 588

semi-automatic approach to skill distillation may 589

not be feasible for problems requiring a broad and 590

intricate combination of skills, such as those in 591

dynamic, real-world scenarios. Future work could 592

explore how to improve the adaptation through fine- 593

tuning with SKiC structures. Third, our approach 594

focuses primarily on utilizing internal skills with- 595

out extensive reliance on external tools or resources. 596

While this reduces inference latency and leverages 597

the internal knowledge of LLMs, it may limit the 598

applicability of SKiC in scenarios where external 599

tools could provide significant advantages, such as 600

in real-time data retrieval or complex calculations 601

that exceed the capabilities of the model’s internal 602

knowledge base. Future work could also utilize 603

external tools to further improve the performance. 604

References 605

Jacob Andreas. 2019. Good-enough compositional data 606
augmentation. arXiv preprint arXiv:1904.09545. 607

Arthur Bakker, Jantien Smit, and Rupert Wegerif. 2015. 608
Scaffolding and dialogic teaching in mathematics 609
education: Introduction and review. Zdm, 47:1047– 610
1065. 611

Dianne C Berry. 1983. Metacognitive experience and 612
transfer of logical reasoning. The Quarterly Journal 613
of Experimental Psychology Section A, 35(1):39–49. 614

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff- 615
mann, Trevor Cai, Eliza Rutherford, Katie Milli- 616
can, George Bm Van Den Driessche, Jean-Baptiste 617
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022. 618
Improving language models by retrieving from tril- 619
lions of tokens. In International conference on ma- 620
chine learning, pages 2206–2240. PMLR. 621

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 622
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 623
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 624
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 625
Gretchen Krueger, Tom Henighan, Rewon Child, 626
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 627
Clemens Winter, Christopher Hesse, Mark Chen, Eric 628
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 629
Jack Clark, Christopher Berner, Sam McCandlish, 630
Alec Radford, Ilya Sutskever, and Dario Amodei. 631
2020. Language models are few-shot learners. In Ad- 632
vances in Neural Information Processing Systems 33: 633
Annual Conference on Neural Information Process- 634
ing Systems 2020, NeurIPS 2020, December 6-12, 635
2020, virtual. 636

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, 637
Bowen Baker, Leo Gao, Leopold Aschenbrenner, 638
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan 639

9

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

Leike, et al. 2023. Weak-to-strong generalization:640
Eliciting strong capabilities with weak supervision.641
arXiv preprint arXiv:2312.09390.642

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song,643
and Denny Zhou. 2020. Compositional generaliza-644
tion via neural-symbolic stack machines.645

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-646
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi647
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.648
2022. Scaling instruction-finetuned language models.649
arXiv preprint arXiv:2210.11416.650

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,651
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias652
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro653
Nakano, et al. 2021. Training verifiers to solve math654
word problems. arXiv preprint arXiv:2110.14168.655

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang,656
Lihong Li, and Denny Zhou. 2019. Neural logic657
machines. arXiv preprint arXiv:1904.11694.658

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and659
Matt Gardner. 2022. Successive prompting for660
decomposing complex questions. arXiv preprint661
arXiv:2212.04092.662

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine663
Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra664
Bhagavatula, Ronan Le Bras, Jena D Hwang, et al.665
2023. Faith and fate: Limits of transformers on com-666
positionality. arXiv preprint arXiv:2305.18654.667

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark,668
and Tushar Khot. 2022. Complexity-based prompt-669
ing for multi-step reasoning. arXiv preprint670
arXiv:2210.00720.671

Yiduo Guo, Yaobo Liang, Chenfei Wu, Wenshan Wu,672
Dongyan Zhao, and Nan Duan. 2023. Learning to673
program with natural language.674

Jenny Hammond and Pauline Gibbons. 2005. Putting675
scaffolding to work: The contribution of scaffolding676
in articulating esl education. Prospect, 20(1):6–30.677

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting678
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-679
terina Zubova, Yujie Qiao, Matthew Burtell, et al.680
2022. Folio: Natural language reasoning with first-681
order logic. arXiv preprint arXiv:2209.00840.682

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul683
Arora, Steven Basart, Eric Tang, Dawn Song, and684
Jacob Steinhardt. 2021. Measuring mathematical685
problem solving with the math dataset.686

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,687
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,688
Diego de Las Casas, Lisa Anne Hendricks, Johannes689
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,690
Katie Millican, George van den Driessche, Bogdan691
Damoc, Aurelia Guy, Simon Osindero, Karen Si-692
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,693

and Laurent Sifre. 2022. Training compute-optimal 694
large language models. 695

Robin Jia and Percy Liang. 2016. Data recombina- 696
tion for neural semantic parsing. arXiv preprint 697
arXiv:1606.03622. 698

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. 699
Brown, Benjamin Chess, Rewon Child, Scott Gray, 700
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 701
Scaling laws for neural language models. 702

Daniel Keysers, Nathanael Schärli, Nathan Scales, 703
Hylke Buisman, Daniel Furrer, Sergii Kashubin, 704
Nikola Momchev, Danila Sinopalnikov, Lukasz 705
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang, 706
Marc van Zee, and Olivier Bousquet. 2020. Measur- 707
ing compositional generalization: A comprehensive 708
method on realistic data. In International Conference 709
on Learning Representations. 710

Shiela Kheirzadeh and Sarah Sadat Pakzadian. 2016. 711
Depth of processing and age differences. Journal of 712
psycholinguistic research, 45:1137–1149. 713

Tushar Khot, Kyle Richardson, Daniel Khashabi, and 714
Ashish Sabharwal. 2021. Hey ai, can you solve 715
complex tasks by talking to agents? arXiv preprint 716
arXiv:2110.08542. 717

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao 718
Fu, Kyle Richardson, Peter Clark, and Ashish Sab- 719
harwal. 2022. Decomposed prompting: A modular 720
approach for solving complex tasks. arXiv preprint 721
arXiv:2210.02406. 722

Brenden Lake and Marco Baroni. 2018. Generalization 723
without systematicity: On the compositional skills 724
of sequence-to-sequence recurrent networks. In In- 725
ternational conference on machine learning, pages 726
2873–2882. PMLR. 727

Aitor Lewkowycz, Anders Andreassen, David Dohan, 728
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 729
Ambrose Slone, Cem Anil, Imanol Schlag, Theo 730
Gutman-Solo, et al. 2022. Solving quantitative 731
reasoning problems with language models. arXiv 732
preprint arXiv:2206.14858. 733

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 734
Hannaneh Hajishirzi. 2022. Cross-task generaliza- 735
tion via natural language crowdsourcing instructions. 736
In Proceedings of the 60th Annual Meeting of the 737
Association for Computational Linguistics (Volume 738
1: Long Papers), pages 3470–3487. 739

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, 740
Henryk Michalewski, Jacob Austin, David Bieber, 741
David Dohan, Aitor Lewkowycz, Maarten Bosma, 742
David Luan, et al. 2021. Show your work: Scratch- 743
pads for intermediate computation with language 744
models. arXiv preprint arXiv:2112.00114. 745

OpenAI. 2023. Gpt-4 technical report. 746

10

http://arxiv.org/abs/2008.06662
http://arxiv.org/abs/2008.06662
http://arxiv.org/abs/2008.06662
http://arxiv.org/abs/2304.10464
http://arxiv.org/abs/2304.10464
http://arxiv.org/abs/2304.10464
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
http://arxiv.org/abs/2303.08774

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,747
Carroll Wainwright, Pamela Mishkin, Chong Zhang,748
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.749
2022. Training language models to follow instruc-750
tions with human feedback. Advances in Neural751
Information Processing Systems, 35:27730–27744.752

Siru Ouyang, Jiaao Chen, Jiawei Han, and Diyi Yang.753
2023. Compositional data augmentation for abstrac-754
tive conversation summarization. In Proceedings755
of the 61st Annual Meeting of the Association for756
Computational Linguistics (Volume 1: Long Papers),757
pages 1471–1488.758

Xiaoman Pan, Wenlin Yao, Hongming Zhang, Dian Yu,759
Dong Yu, and Jianshu Chen. 2022. Knowledge-in-760
context: Towards knowledgeable semi-parametric761
language models. arXiv preprint arXiv:2210.16433.762

Abulhair Saparov and He He. 2022. Language models763
are greedy reasoners: A systematic formal analysis of764
chain-of-thought. arXiv preprint arXiv:2210.01240.765

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong766
Huang, Uzi Vishkin, Micah Goldblum, and Tom767
Goldstein. 2021. Can you learn an algorithm? gen-768
eralizing from easy to hard problems with recurrent769
networks. Advances in Neural Information Process-770
ing Systems, 34:6695–6706.771

NAN SHAO, Zefan Cai, Hanwei xu, Chonghua Liao,772
Yanan Zheng, and Zhilin Yang. 2023. Compositional773
task representations for large language models. In774
The Eleventh International Conference on Learning775
Representations.776

Shaden Smith, Mostofa Patwary, Brandon Norick,777
Patrick LeGresley, Samyam Rajbhandari, Jared778
Casper, Zhun Liu, Shrimai Prabhumoye, George779
Zerveas, Vijay Korthikanti, et al. 2022. Using deep-780
speed and megatron to train megatron-turing nlg781
530b, a large-scale generative language model. arXiv782
preprint arXiv:2201.11990.783

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier784
Martinet, Marie-Anne Lachaux, Timothée Lacroix,785
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal786
Azhar, et al. 2023a. Llama: Open and effi-787
cient foundation language models. arXiv preprint788
arXiv:2302.13971.789

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-790
bert, Amjad Almahairi, Yasmine Babaei, Nikolay791
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti792
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton793
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,794
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,795
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-796
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan797
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,798
Isabel Kloumann, Artem Korenev, Punit Singh Koura,799
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-800
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-801
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-802
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-803
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,804

Ruan Silva, Eric Michael Smith, Ranjan Subrama- 805
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 806
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 807
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 808
Melanie Kambadur, Sharan Narang, Aurelien Ro- 809
driguez, Robert Stojnic, Sergey Edunov, and Thomas 810
Scialom. 2023b. Llama 2: Open foundation and 811
fine-tuned chat models. 812

Alex Wang, Amanpreet Singh, Julian Michael, Felix 813
Hill, Omer Levy, and Samuel R Bowman. 2018. 814
Glue: A multi-task benchmark and analysis platform 815
for natural language understanding. arXiv preprint 816
arXiv:1804.07461. 817

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 818
Ed Chi, and Denny Zhou. 2022. Self-consistency im- 819
proves chain of thought reasoning in language mod- 820
els. arXiv preprint arXiv:2203.11171. 821

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 822
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 823
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 824
guage models are zero-shot learners. arXiv preprint 825
arXiv:2109.01652. 826

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 827
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 828
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. 829
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy 830
Liang, Jeff Dean, and William Fedus. 2022a. Emer- 831
gent abilities of large language models. 832

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 833
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 834
et al. 2022b. Chain-of-thought prompting elicits rea- 835
soning in large language models. Advances in Neural 836
Information Processing Systems, 35:24824–24837. 837

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh 838
Hajishirzi, and Yejin Choi. 2022. Naturalprover: 839
Grounded mathematical proof generation with lan- 840
guage models. Advances in Neural Information Pro- 841
cessing Systems, 35:4913–4927. 842

Yifan Zhang, Jingqin Yang, Yang Yuan, and An- 843
drew Chi-Chih Yao. 2023. Cumulative reason- 844
ing with large language models. arXiv preprint 845
arXiv:2308.04371. 846

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo 847
Li, and Yu Li. 2023a. Progressive-hint prompting 848
improves reasoning in large language models. arXiv 849
preprint arXiv:2304.09797. 850

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, 851
Heng-Tze Cheng, Ed H Chi, Quoc V Le, and Denny 852
Zhou. 2023b. Take a step back: Evoking reason- 853
ing via abstraction in large language models. arXiv 854
preprint arXiv:2310.06117. 855

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun 856
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi 857
Song, Mingjie Zhan, et al. 2023. Solving challenging 858
math word problems using gpt-4 code interpreter 859
with code-based self-verification. arXiv preprint 860
arXiv:2308.07921. 861

11

https://openreview.net/forum?id=6axIMJA7ME3
https://openreview.net/forum?id=6axIMJA7ME3
https://openreview.net/forum?id=6axIMJA7ME3
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,862
Nathan Scales, Xuezhi Wang, Dale Schuurmans,863
Olivier Bousquet, Quoc Le, and Ed Chi. 2022a.864
Least-to-most prompting enables complex reason-865
ing in large language models. arXiv preprint866
arXiv:2205.10625.867

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron868
Courville, Behnam Neyshabur, and Hanie Sedghi.869
2022b. Teaching algorithmic reasoning via in-870
context learning. arXiv preprint arXiv:2211.09066.871

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-872
Tze Cheng, Quoc V Le, Ed H Chi, Denny Zhou, Swa-873
roop Mishra, and Huaixiu Steven Zheng. 2024. Self-874
discover: Large language models self-compose rea-875
soning structures. arXiv preprint arXiv:2402.03620.876

12

A Appendix: Comparison to Previous877

Prompting Strategies878

Figure 8 visualizes the differences between our879

proposed SKiC prompting and the previous re-880

lated prompting methods. Different from Chain-881

of-Thoughts prompting, our SKiC prompting pro-882

vides explicit grounding on the basic skills for rea-883

soning steps towards final answers. Compared to884

recent prompting methods for handling composi-885

tional problems such as Least-to-Most prompting886

(LtM) (Zhou et al., 2022a) and Decomp (Khot et al.,887

2022), our SKiC is superior in several dimensions:888

(i) Our SKiC prompting is more general to solve889

extended sets of problems. Previous decomposing-890

based approaches like LtM and Decomp usually891

solve complex problems in a two-stage fashion892

by first decomposing the problem into a linear se-893

quence of subproblems and then solving them se-894

quentially. However, many of the tasks that have895

complex computation graphs such as multiplica-896

tion and dynamic programming problems (Dziri897

et al., 2023) cannot be easily and fully decom-898

posed in one stage, which makes it hard to apply899

these decomposition-based approaches. (ii) The900

decomposition operation can also be viewed as one901

basic skill in our SKiC prompt (for example, we902

view the decomposition operation as one of the903

skills in the question-answer task in Figure 16).904

(iii) SKiC solves the complex problems in a single905

stage, which could alleviate the error propagation906

compared to decomposition-based approaches that907

require multiple distinct stages.908

Due to the one-stage nature, our SKiC prompt-909

ing can replace other one-stage strategies such910

as the CoT promptings in a plug-and-play man-911

ner. And it can also be easily combined with912

other ensemble techniques such as self-consistency913

(Wang et al., 2022) and Progressive-Hint Prompt-914

ing (Zheng et al., 2023a) to further boost the per-915

formance.916

B Appendix: More Details about the917

Construction of Skills918

One important step in constructing SKiC is to distill919

the (basic) skills that might be needed for solving920

problems associated with a task. We introduce two921

approaches (shown in Figure 9):922

Distill Skills via Human Similar to previous923

prompting techniques, this is a fully manual ap-924

proach, where the basic skills are manually sum-925

marized from a few (less than 10) problems. For 926

example, given several samples from the last- 927

letter-concatenation task, we manually identify that 928

“words_to_list” and “last_letter” are common skills 929

to be used. Based on the discovered skills, we add 930

a few (1 ∼ 2) simple examples to illustrate these 931

basic skills alone. Once the in-context skills are 932

constructed, we add the compositional examples 933

to demonstrate the composition of these skills to 934

solve a problem (Figure 1). This approach puts all 935

the essential skills in the context and is generally 936

applicable to narrow domain problems that require 937

the composition of limited skills for solving harder 938

problems. It is also beneficial for semi-parametric 939

LLMs, which can dynamically access the most rel- 940

evant skills from external memories based on each 941

input instance and integrate them into the problem 942

context (Borgeaud et al., 2022; Pan et al., 2022). 943

Distill Skills via Prompting LLMs More effi- 944

ciently, we could automatically construct the basic 945

skills by prompting the LLMs to directly generate 946

the fundamental skills or summarize the necessary 947

skills from given examples. For instance, when 948

identifying the skills to address the MATH task 949

(Hendrycks et al., 2021), we prompt LLMs with 950

phrases like “basic skills in Algebra”. This leads 951

the model to generate basic skills such as “Factor- 952

ing” (see Figure 22). Next, we construct the com- 953

positional examples by grounding the reasoning 954

steps on the skills. It is worth noting that an ex- 955

emplar might require skills not explicitly presented 956

in the context. In these instances, we anchor the 957

reasoning to inherent skills within the LLMs. For 958

example, in the compositional exemplar showcased 959

in Figure 23, aside from leveraging in-context skills 960

like“Sub”, it also employs skills like “Pascal’s Tri- 961

angle” — a capability not present in the context 962

but inherently known to the LLM. Such a construc- 963

tion of the exemplars will encourage the model to 964

generalize beyond the in-context skills and com- 965

pose solutions from the internal capabilities as well 966

— see Figure 2 for an example of the generated 967

solution that activates the internal skills <Angle 968

Bisector Theorem> and <Heron’s Formula>. To 969

be more specific, for every problem in the MATH 970

task, around 24% of the skills, as shown in Table 1, 971

applied in the reasoning steps stem from the LLM’s 972

internal pre-trained knowledge (see Table 25 for the 973

most frequently used internal skills). The ability 974

to harness both in-context skills and inherent capa- 975

bilities is crucial for addressing complex reasoning 976

13

Figure 8: The building blocks of different prompting strategies. Blue cells stand for different intermediate steps,
green cells denote the answers to the asked question, and red cells refer to the provided skills in our Skills-in-Context
prompting. A block of several cells represents one distinct stage in a two-stage prompting strategy (e.g., problem
decomposition stage in the Least-to-Most prompting). Standard prompting provides only labeled exemplars in the
context. Chain-of-Thoughts prompting further provides a step-by-step rationale preceding the answer. Decomposed
prompting is a two-stage prompting method, which first breaks the questions into sub-problems, and then utilizes
standard or Chain-of-Thoughts prompting to solve each sub-problem sequentially to derive the final answer. Least-
to-Most prompting adopts a two-stage strategy: it first generates multiple questions in an easy-to-hard manner,
and then sequentially answers each of them until solving the original question. In contrast, our Skills-in-Context
prompting is a simple one-stage prompting, which places both the (basic) skills and the demonstrations of how to
compose them into solutions within the same prompt context. This teaches the LLM how to explicitly and adeptly
ground each reasoning step onto the skills (illustrated in dashed lines), which unleashes strong synergies between
skills and composition capabilities in LLMs, leading to strong compositionality over unseen harder problems.

problems, which typically require varied composi-977

tions across a broad spectrum of skills. Manually978

enumerating every required skill within a prompt979

context is often impractical. Meanwhile, LLMs980

have accumulated a vast reservoir of knowledge981

and skills during their pre-training. Leveraging982

these internal competencies can unlock significant983

potential, allowing LLMs to tackle even more com-984

plex challenges.985

C Appendix: Comparison to Tool-using986

Works987

The major contribution of our work is to under-988

stand and unlock the inherentcomposition abilities989

(easy-to-hard generalization) in LLMs themselves.990

The line of tool-using work is complementary with991

our work and can be easily integrated to substitute992

several basic skills to further improve the perfor-993

mances; that is, the external tools can also be in-994

terpreted as basic skills that the model can tap into.995

However, we focus only on how to tap into the in-996

ternal basic skills for compositional generalization.997

With the abundance of work on tool utilization with998

LLMs, there are still great merits in studying the999

composition of internal skills for several reasons. 1000

First, external tools like programs might bring 1001

in extra latency during inferences as LLMs need 1002

to call multiple external functions when dealing 1003

with complex problems. As a result, if some of 1004

the foundational skills are available and reliable 1005

from internal knowledge of LLM, we should con- 1006

sider how to exploit them directly with one-stage 1007

through our SKiC. In addition, the external tools 1008

are generally pre-defined and implemented ahead 1009

of time with a clear boundary about what it can do 1010

and it cannot do. However, in the real open world 1011

setting, the abundant ambiguity of problem may 1012

make it hard to identify a clear boundary about 1013

which tool to call upon, leading to errors that may 1014

cascade to later stages. LLMs are strong and flexi- 1015

ble in composing the internal knowledge and skills 1016

to solve complex problems. In such situations, it 1017

may have advantage to let LLMs flexibly use its 1018

own internal knowledge to solve such ambiguous 1019

problems. 1020

Second, it is hard/impossible to enumerate all the 1021

needed external skills (external calls) in the context 1022

for complex tasks, which would lower down the 1023

14

Figure 9: Two approaches to creating SKiC prompts, depending on how we distill the skills. (a) We manually
summarize the skills from the sample problems, and then construct the compositional exemplars on how to compose
these skills. (b) We prompt the LLMs to automatically generate the necessary skills, followed by human review.
Then we craft the compositionl exemplars by grounding their reasoning steps onto either the provided in-context
skills or the inherent skills within the LLMs.

Table 8: Accuracy on different evaluation subsets of the last-letter-concatenation task. The testing problems
with 1 and 2 words are in-distribution evaluation, while the ones with 4 ∼ 12, 50 and 100 words are (harder)
out-of-distribution evaluations.

Model Prompting #-shots 1 2 4 6 8 10 12 50 100

LLAMA-65B

zero-shot 0 0 0 0 0 0 0 0 - -
4-shots 4 72.0 66.0 50.0 26.0 10.0 6.0 0 - -

CoT 4 76.0 70.0 58.0 42.0 30.0 26.0 20.0 - -
LtM 4 76.0 72.0 66.0 50.0 46.0 36.0 25.0 - -
SKiC 2 81.0 97.0 77.0 59.0 56.0 48.0 36.0 - -

text-davinci-003

zero-shot 0 0 0 0 0 0 0 0 - -
4-shots 4 99.0 97.0 89.0 68.0 45.0 27.0 10.0 - -

CoT 4 100.0 99.0 90.0 75.0 52.0 39.0 31.0 - -
LtM 4 100.0 99.0 94.0 90.0 87.0 84.0 80.0 - -
SKiC 2 100.0 100.0 100.0 100.0 100.0 99.0 98.0 - -

ChatGPT

zero-shot 0 99.0 98.0 93.0 88.0 84.0 80.0 77.0 38.0 16.0
4-shots 4 100.0 100.0 95.0 92.0 90.0 86.0 85.0 46.0 28.0

CoT 4 100.0 100.0 97.0 95.0 92.0 88.0 85.0 62.0 56.0
LtM 4 100.0 100.0 99.0 95.0 92.0 92.0 88.0 80.0 76.0
SKiC 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

generalization abilities if the models are taught to1024

rely on provided external calls. So, our SKiC also1025

encourages models to utilize their internal skills1026

which are not provided in the context to solve com-1027

plex tasks.1028

What is more, tool-using cases are more focused1029

on math-related reasonings or problems that can be1030

converted into programming problems. However,1031

not all the tasks can be improved by external tools1032

(e.g., QA in our Table 10). Therefore, our SKiC1033

is more general to different types of tasks. Indeed,1034

the tool-use can actually be viewed as one basic1035

skill that could be integrated into SKiC, so that1036

LLMs can flexibly compose both internal skills1037

and external tools in a hybrid manner for solving1038

even more complex real problems, which we leave1039

as a future work.1040

D Appendix: Experimental Setup 1041

In this section, we explain our experimental set- 1042

tings in details. We show the superior composi- 1043

tional capabilities of our SKiC prompting by evalu- 1044

ating it in two settings: 1045

• Systematic Generalization: Composition 1046

over in-context skills, where all the essential 1047

skills needed to solve the problems are pro- 1048

vided in the context. The tasks we evaluate 1049

in this setting include symbolic manipulation 1050

(Wei et al., 2022b; Zhou et al., 2022a; Khot 1051

et al., 2022), arithmetic operation (Dziri et al., 1052

2023), question answering (Khot et al., 2022), 1053

and dynamic programming (Dziri et al., 2023). 1054

In this setting, we mainly examine the ability 1055

to generalize from easy demonstration exem- 1056

plars to more difficult testing problems (i.e., 1057

15

Table 9: Accuracy on the task of adding and multiplying two numbers with different digits. For the addition or
multiplication task, the exemplars include how to add or multiply two numbers with 2 or 3 digits. Therefore, the
results for adding numbers with 4 ∼ 7 digits and multiplying numbers with 4 and 5 digits measure the compositional
generalization capabilities over harder problems. We also compare GPT3 finetuned with scratchpad method (Dziri
et al., 2023) on the multiplication task.

Model Prompting #-shots Addition Multiplication

2 3 4 5 6 7 2 3 4 5

LLAMA-65B

zero-shot 0 58.0 40.5 22.5 8.0 0 0 28.0 17.0 0 0
4-shots 4 64.5 46.5 28.0 10.0 0 0 24.0 18.0 0 0

CoT 4 60.0 52.5 24.0 12.0 1.0 0 22.0 21.0 0 0
SKiC 2 82.5 74.5 66.5 52.0 38.0 22.0 50.0 42.0 12.0 8.0

text-davinci-003

zero-shot 0 100.0 100.0 98.0 87.5 74.5 54.0 76.0 14.5 0 0
4-shots 4 100.0 100.0 98.0 92.0 80.5 58.5 82.0 18.0 0 0

CoT 4 100.0 100.0 92.0 68.5 42.0 38.0 86.0 20.5 2.0 0
finetuned 0 - - - - - - 99.0 55.0 1.0 0.0

SKiC 2 100.0 100.0 99.0 98.0 99.0 98.5 100.0 58.0 42.5 36.0

ChatGPT

zero-shot 0 100.0 100.0 100.0 92.0 86.5 78.0 99.0 55.0 1.0 0
4-shots 4 100.0 100.0 100.0 94.0 90.5 83.5 99.0 58.0 1.0 0

CoT 4 100.0 100.0 98.5 90.0 87.5 80.0 99.0 54.5 13.0 2.0
Algorithm 2 100,0 100,0 98.0 94.5 91.5 90.0 100.0 68.0 20.0 0

SKiC 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 82.0 72.0 48.5

Table 10: Exact Match on Commaqa-E.
The “Comp. Gen” column reports the
results on the unseen questions from the
compositional split.

Model Prompting #-shots Test Comp. Gen

LLAMA-65B

zero-shot 0 12.0 16.3
4-shots 4 15.0 24.6

CoT 4 27.0 30.8
Decomp 12 32.0 40.4
SKiC† 2 44.0 52.0

text-davinci-003

zero-shot 0 34.0 26.8
4-shots 4 42.0 33.5

CoT 4 44.0 38.2
Decomp 12 58.0 66.6
SKiC† 2 66.0 74.8

ChatGPT

zero-shot 0 42.0 30.6
4-shots 4 47.0 40.3

CoT 4 55.0 46.4
Decomp 12 64.0 73.5
SKiC† 2 70.0 80.8

Table 11: Accuracy on the dynamic programming task. The in-context
exemplars are with sequence lengths of 4, 5. So the results for 6,7,8
measures the out-of-distribution generalization to harder problems. We
also compare the finetuned text-davinci-003 with scratchpad.

Model Prompting #-shots 4 5 6 7 8

text-davinci-003

zero-shot 0 10.5 4.0 4.0 0.0 0.0
4-shots 4 32.5 18.0 10.0 4.0 0.0

CoT 4 58.0 22.0 15.0 8.0 2.0
finetuned 0 100.0 100.0 22.0 14.0 8.0

SKiC 2 78.0 62.5 54.5 48.0 42.5

ChatGPT

zero-shot 0 18.0 10.0 6.0 4.0 0.0
4-shot 4 44.5 18.0 10.0 4.0 0.0
CoT 4 82.5 76.0 72.0 64.0 55.5
SKiC 2 98.0 96.0 95.0 94.0 92.0

GPT4

zero-shot 0 58.0 42.5 35.5 28.0 12.0
4-shots 4 76.5 70.5 58.0 55.0 42.0

CoT 4 94.0 91.0 88.0 83.5 72.0
SKiC 2 100.0 100.0 100.0 99.0 98.0

easy-to-hard generalization).1058

• Enhanced Complex Reasoning: Generaliza-1059

tion beyond in-context skills, where mod-1060

els also need to harness skills beyond what1061

have been provided in the context and tap1062

into the internal skills for math reasoning like1063

GSM8K (Wei et al., 2022b; Zhou et al., 2022a)1064

and MATH (Hendrycks et al., 2021) problems.1065

In this context, the primary challenge lies in1066

achieving diverse compositions across a wide1067

range of foundational skills to solve a complex1068

reasoning problem.1069

D.1 Systematic Generalization: Composition 1070

over In-Context Skills: Easy-to-Hard 1071

Generalization 1072

We begin by evaluating our SKiC prompting strat- 1073

egy on tasks that require only a limited skill set, 1074

yet pose challenges in terms of easy-to-hard gener- 1075

alization capabilities. Under these circumstances, 1076

we construct our SKiC prompts manually, adher- 1077

ing to the first methodology outlined in Section 2. 1078

We mainly consider foundation models includ- 1079

ing LLAMA-65B (Touvron et al., 2023a), text- 1080

davinvi-003 (Brown et al., 2020), ChatGPT and 1081

GPT4 (OpenAI, 2023). Additional experiments on 1082

LLAMA2 (Touvron et al., 2023b) can be found in 1083

Appendix F. 1084

16

Table 12: Accuracy of different models with our SKiC prompts on different evaluation subsets of the last-letter-
concatenation task. The testing problems with 1 and 2 words are in-distribution evaluation, while the ones with
4 ∼ 12 words are (harder) out-of-distribution evaluations.

Model Prompting #-shots 1 2 4 6 8 10 12

text-davinci-003 SKiC 2 100.0 100.0 100.0 100.0 100.0 99.0 98.0
ChatGPT SKiC 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LLAMA-65B SKiC 2 81.0 97.0 77.0 59.0 56.0 48.0 36.0
LLAMA2-70B SKiC 2 100.0 99.0 100.0 99.0 98.0 97.0 95.0

Table 13: Accuracy of different models with our SKiC prompts on the task of adding two numbers with different
digits (2,3,4,5,6,7). The prompting exemplars are constructed to demonstrate the addition between two numbers
with 2 or 3 digits. Therefore, the results for adding numbers with 4 ∼ 7 digits measure the desirable compositional
generalization capabilities over harder problems. † denotes our method.

Model Prompting #-shots 2 3 4 5 6 7

text-davinci-003 SKiC† 2 100.0 100.0 99.0 98.0 99.0 98.5
ChatGPT SKiC† 2 100.0 100.0 100.0 100.0 100.0 100.0

LLAMA-65B SKiC† 2 82.5 74.5 66.5 52.0 38.0 22.0
LLAMA2-70B SKiC† 2 83.0 78.0 68.0 55.0 40.0 25.0

D.1.1 Symbolic Manipulation: Last Letters1085

Following Zhou et al., we first assess the com-1086

positionality in LLMs through the last-letter-1087

concatenation task. For a given list of words, the1088

LLM needs to generate an output that is the con-1089

catenation of the last letter from each word in the1090

list. We compare our SKiC with zero/few-shot1091

standard prompting (4-shot) (Brown et al., 2020),1092

CoT (Wei et al., 2022b) and Least-to-Most prompt-1093

ing (LtM) (Zhou et al., 2022a) on different large1094

language models, including LLAMA-65B (Tou-1095

vron et al., 2023a), text-davinvi-003 (Brown et al.,1096

2020; Ouyang et al., 2022), and ChatGPT. And1097

we evaluate them on different subsets of testing1098

problems that include 1, 2, 4, 6, 8, 10, 12, 50,1099

100 words2, respectively. The exemplars in all the1100

prompts are constructed from the cases with 1 or1101

2 words. Therefore, the evaluations on the test1102

subsets with 1, 2 words are in-distribution, and the1103

ones on 4, 6, 8, 10, 12 words are out-of-distribution.1104

A SKiC prompt contains the skills and two exam-1105

ples of how to compose these skills as shown in1106

Figure 10 and Figure 11. The model is given the1107

needed skills such as putting the given words to a1108

list and getting the last letter of one word, and then1109

two examples of how to compose these skills to1110

take the last letters of two given words.1111

2From https://github.com/first20hours/
google-10000-english/tree/master.

D.1.2 Arithmetic Operation 1112

Following Dziri et al., we evaluate the compo- 1113

sitional capabilities on two arithmetic operation 1114

tasks: addition and multiplication. These two 1115

tasks involves complicated composition over skills 1116

such as one-digit addition or multiplication, carry 1117

over, concatenation and etc.(Dziri et al., 2023), 1118

making it difficult especially for long form ad- 1119

dition or multiplication. We compare our Skills- 1120

in-Context prompting (SKiC) with zero/few-shot 1121

standard prompting (Brown et al., 2020), Chain- 1122

of-Thoughts prompting (CoT) (Wei et al., 2022b) 1123

and Algorithmic prompting (Zhou et al., 2022b) 1124

on different foundation models including LLAMA- 1125

65B, text-davinvi-003, and ChatGPT. We exclude 1126

the Least-to-Most prompting (Zhou et al., 2022a) 1127

as it is difficult to design linear problem decompo- 1128

sition for addition or multiplication task. We also 1129

include text-davinci-003 finetuned with scratchpad 1130

method (Nye et al., 2021; Dziri et al., 2023) on the 1131

multiplication task for comparison. 1132

Addition We construct different subsets of test- 1133

ing problems, which ask to output the sum of two 1134

numbers with 2,3,4,5,6,7 digits, respectively. The 1135

given in-context exemplars are only constructed to 1136

demonstrate the addition of two numbers with 2- 1137

digits or 3-digits. Consequently, the results for 1138

4,5,6,7-digits summation are out-of-distribution 1139

evaluation. We show our Skills-in-Context prompt- 1140

17

https://github.com/first20hours/google-10000-english/tree/master
https://github.com/first20hours/google-10000-english/tree/master

Table 14: Accuracy of different models with our SKiC prompts on the task of multiplying two numbers with
different digits (2,3,4,5). The prompting exemplars are constructed to demonstrate how to multiply two numbers
with 2 or 3 digits. Therefore, the results for multiplying numbers with 4 and 5 digits measure the compositional
generalization capability over harder problems. † stands for our method.

Models Prompting #-shots 2 3 4 5

text-davinci-003 SKiC† 2 100.0 58.0 42.5 36.0
ChatGPT SKiC† 2 100.0 82.0 72.0 48.5

LLAMA-65B SKiC† 2 50.0 42.0 12.0 8.0
LLAMA2-70B SKiC† 2 99.0 51.0 15.0 6.0

Table 15: Performance of different models with our SKiC prompts on Commaqa-E datasets (measured in Exact
Match). The column of “Comp. Gen” reports the results on the new (unseen) compositional questions from the
compositional generalization split. † denotes our method.

Model Prompting #-shots Test Comp. Gen

text-davinci-003 SKiC† 2 66.0 74.8
ChatGPT SKiC† 2 70.0 80.8

LLAMA-65B SKiC† 2 44.0 52.0
LLAMA2-70B SKiC† 2 46.7 55.9

ing for the addition task in Figure 12 and Figure 13,1141

where show the skills and one compositional ex-1142

emplar, respectively. We first present the basic1143

skills like extracting digits from a number and then1144

show the model how to use these skills to add two1145

numbers with two examples.1146

Multiplication Next, we evaluate the composi-1147

tional generalization performance on the multipli-1148

cation task. Specifically, we construct different sub-1149

sets of evaluation problems that ask for the product1150

of two numbers with 2,3,4,5 digits, respectively.1151

The given in-context exemplars in all the prompts1152

are constructed to demonstrate 2-digit and 3-digit1153

multiplications. Therefore, the results for 4,5-digits1154

multiplications measure the compositional general-1155

ization to unseen harder problems. The construc-1156

tion of our Skills-in-Context prompting is shown in1157

Figure 14 and Figure 15, which illustrate the skills1158

and the compositional exemplar, respectively.1159

D.1.3 Long-Context Question Answering:1160

CommaQA-E1161

To evaluate the compositional generalization in1162

the reading comprehension setting, following Khot1163

et al., we evaluate different prompting strategies on1164

CommaQA-E (Khot et al., 2021). For given facts1165

of a set of synthetically generated entities, the mod-1166

els need to answer the multi-hop questions which1167

are composed of multiple reasoning steps, e.g., 1168

What movies have people from the country Strid- 1169

ery acted in?. Besides the standard zero/few-shot 1170

prompting (Brown et al., 2020) and the Chain-of- 1171

Thoughts prompting (CoT) (Wei et al., 2022b), we 1172

also compare our Skills-in-Context (SKiC) prompt- 1173

ing to Decomp prompting3 (Khot et al., 2022). 1174

We evaluate the results on different foundation 1175

models: LLAMA-65B, text-davinvi-003, and Chat- 1176

GPT. The construction of the SKiC prompting for 1177

CommaQA-E is described in Figure 16 and 17, 1178

which show the skills and the exemplars of how to 1179

compose the skills, respectively. Notably, both the 1180

ability to break down complex questions into sim- 1181

ple ones and the operation to answer each simple 1182

questions are also treated as (basic) skills — see 1183

Figure 16. 1184

D.1.4 Dynamic Programming 1185

We then further evaluate the compositional gener- 1186

alization capabilities of Skills-in-Context (SKiC) 1187

prompting in solving a classic dynamic program- 1188

ming problem (Dziri et al., 2023): Given a se- 1189

quence of integers, find a subsequence with the 1190

highest sum, such that no two numbers in the subse- 1191

quence are adjacent in the original sequence. We 1192

compare our SKiC prompting (SKiC) with standard 1193

3Reproduced using the original code from: https://
github.com/allenai/DecomP/tree/main

18

https://github.com/allenai/DecomP/tree/main
https://github.com/allenai/DecomP/tree/main

Table 16: Accuracy of different models with our SKiC prompts on the dynamic programming task with input
sequence lengths being 4,5,6,7,8, respectively. The in-context exemplars for all the prompts are constructed with
sequence lengths of 4 and 5. Therefore, the results for sequence lengths of 6,7,8 measures the out-of-distribution
generalization to increasingly harder problems. † denotes our method.

DP Prompting #-shots 4 5 6 7 8

text-davinci-003 SKiC† 2 78.0 62.5 54.5 48.0 42.5
ChatGPT SKiC† 2 98.0 96.0 95.0 94.0 92.0

GPT4 SKiC† 2 100.0 100.0 100.0 99.0 98.0

LLAMA2-70B SKiC† 2 79.0 78.0 70.0 68.0 56.0

zero/few-shot prompting (Brown et al., 2020), and1194

Chain-of-Thoughts prompting (CoT)4 (Wei et al.,1195

2022b) on different LLMs (text-davinvi-003, Chat-1196

GPT and GPT4). In addition, we also compare1197

with the baseline of finetuned text-davinci-003 with1198

scratchpad from (Dziri et al., 2023). Likewise, we1199

evaluate them on different subsets of testing in-1200

stances with sequence length of 4, 5, 6, 7, 8, respec-1201

tively.5 The in-context exemplars are constructed1202

with sequence length of 4 and 5. Therefore, the1203

testing subsets with sequence length of 4 and 5 are1204

in-distribution evaluation and the ones with length1205

6, 7, and 8 are for out-of-distribution evaluation.1206

The construction of SKiC prompt is characterized1207

in Figure 18 and 19, which show the skills and1208

their compositions exemplars, respectively. Specifi-1209

cally, in the SKiC prompt, the models are presented1210

with the skills to get the length of a list, find the1211

max number for a given list and add two single1212

digit numbers, followed by two compositional ex-1213

emplars about how to compose these skills to solve1214

the dynamic programming problems with sequence1215

length 4 and 5.1216

D.2 Enhanced Complex Reasoning:1217

Generalization Beyond In-Context Skills:1218

Complex Reasoning1219

We further evaluate whether our SKiC prompting1220

could allow LLMs to generalize beyond the skills1221

provided in the prompt context and invoke the mas-1222

sive set of internal skills and knowledge that are1223

acquired during pre-training. Such capability is1224

vital in solving complex reasoning problems (e.g.,1225

math), which require varied compositions over a1226

vast amount of foundational skills. And it is im-1227

practical to enumerate all the skills in context.1228

4The reasoning steps are constructed based on the scratch-
pad prompts used in Dziri et al. (2023).

5The numbers are within the range [-5,5]

D.2.1 GSM8K 1229

We first apply our Skills-in-Context prompting to 1230

GSM8K (Cobbe et al., 2021), which requires multi- 1231

ple math-related skills to solve complex math world 1232

problems. We construct our SKiC prompt by using 1233

the first approach in Section 2, which includes a 1234

limited skill set together with eight compositional 1235

exemplars to teach the LLMs how to use them. Fig- 1236

ure 20 and Figure 21 show the constructed skill 1237

set and one compositional exemplar, respectively. 1238

We compare our SKiC with Chain-of-Thoughts 1239

prompting (CoT) (Wei et al., 2022b), Least-to-Most 1240

prompting (LtM) (Zhou et al., 2022a), ComplexCot 1241

(Fu et al., 2022) and PHP (Zheng et al., 2023a) on 1242

different foundation models (i.e., text-davinvi-003, 1243

ChatGPT and GPT-4). 1244

D.2.2 MATH 1245

We then apply our Skills-in-Context prompting to 1246

MATH (Hendrycks et al., 2021), which is a sig- 1247

nificantly more challenging benchmark on math- 1248

ematical reasoning. It encompasses problems in 1249

Algebra, Counting and Probability, Geometry, In- 1250

termediate Algebra, Number Theory, PreAlgebra, 1251

and PreCalculus. Due to the large variety of foun- 1252

dational capabilities needed for solving these math 1253

problems, it is infeasible to distill and enumerate 1254

the needed skills manually. Therefore, we adopt the 1255

second approach as described in Section 2, where 1256

we prompt the LLM to generate the skills and then 1257

craft the compositional examples manually. Specif- 1258

ically, we first prompt the LLM (i.e., the same LLM 1259

that we will use to solve the problems) to generate a 1260

list of skills for each subject category in the MATH 1261

dataset (e.g., “Counting and Probability”) with the 1262

instruction “Basic skills in [subject]”. Then we 1263

further ask the model to generate the description 1264

of each skill, and the resulting skill set is listed in 1265

Figure 22. In Figure 23, we show a compositional 1266

19

exemplar that demonstrates how to utilize the skills1267

to solve a problem in MATH dataset. Note from1268

this example that we ground a part of the reason-1269

ing steps to in-context skills such as “Combination”1270

and “Sub” and anchor others to internal skills (e.g.,1271

“Pascal’s Triangle”). In our experiment, we pro-1272

vide the model with seven exemplars (one exam-1273

ple per category in the MATH dataset). We com-1274

pare our SKiC prompting with different prompting1275

strategies: CoT (Wei et al., 2022b), Scratchpad1276

(Nye et al., 2021), Learning-to-Program(LtP) (Guo1277

et al., 2023), and ComplexCoT (Fu et al., 2022)1278

on two representative foundation models: Chat-1279

GPT and GPT-4 6. In addition, we also include1280

different ensemble strategies that are commonly1281

combined together with these baselines: major-1282

ity voting (maj1@k) (Lewkowycz et al., 2022),1283

Self-Consistency (SC) (Wang et al., 2022), and1284

Progressive-Hint Prompting (PHP) (Zheng et al.,1285

2023a).1286

E Appendix: Detailed Results for Last1287

Leter, Addition, Multiplication,1288

Commaqa-E and DP1289

We report the results for last letter concatenation,1290

addition&multiplication, Commaqa-E and DP in1291

Tables 8, 9, 16, and 11.1292

Standard zero/few-shot prompting generalizes1293

poorly on the problems that are harder than the1294

exemplars in the prompting context. For example,1295

on last letter concatenation tasks, 4-shot standard1296

prompting only achieves 10% accuracy with text-1297

davinci-003 when solving testing problems that1298

involve 12 words. CoT, LtM and Decomp improve1299

the overall performance but still degrade quickly1300

over harder inputs (e.g., CoT slightly improves the1301

accuracy on arithmetic tasks, LtM outperform CoT1302

on last letter concatenation and Decomp prompting1303

boosts the exact match on Commaqa-E dataset.).1304

SKiC significantly boosts the performance with1305

less demonstration examplesespecially in harder1306

cases (e.g., gaining over 68.9% improvements on 7-1307

digits summation with text-davinci-003 compared1308

to baselines). Notably, SKiC achieves nearly per-1309

fect generalization on tasks like last letter concate-1310

nation, addition, and dynamic programming with1311

text-davinci-003, ChatGPT or GPT4. Compared1312

to fine-tuneded baselines such as finetuning text-1313

6We use the same model to construct the SKiC skills and
to do the inference. That is, we prompt ChatGPT to construct
the SKiC when testing with ChatGPT and we prompt GPT-4
to construct the SKiC when testing with GPT-4.

Table 17: Accuracy of different sets of examples in CoT
and our SKiC prompts on the last-letter-concatenation
task with ChatGPT models.

Examples in Prompts COT SKiC

’apple, banana’; ’apple, pie’ 91.4 100.0
’math, code’; ’science, computer’ 92.5 100.0

’ashc, edhoh’; ’shbod, wojois’ 90.8 100.0

davinci-003 with scratchpad, SKiC is also signifi- 1314

cantly better in the out-of-distribution regime, al- 1315

though its performance at the in-distribution regime 1316

is worse. 7 These significant improvements demon- 1317

strate that by jointly presenting the models with 1318

skills and how to use these skills within the con- 1319

text, the models are instructed to resolve problems 1320

grounded to these basic skills. Consequently, it 1321

performs the reasoning steps more accurately and 1322

could generalize better to harder examples by fol- 1323

lowing similar patterns to compose the basic skills. 1324

Examples of the generated answer with SKiC on 1325

these tasks when the inputs are harder can be found 1326

in Figures 26–30. 1327

Results on Commaqa-E also illustrate the superi- 1328

ority of our 1-stage SKiC compared to multi-stage 1329

prompts. Unlike Decomp, both the ability to break 1330

down questions and answer simple questions are 1331

treated as skills in SKiC, and they are presented 1332

with the exemplars to demonstrate how to com- 1333

pose the skills (Figure 17) in the same context. 1334

Consequently, the LLM is able to flexibly apply 1335

these skills to reach the final answer within 1-stage, 1336

which could make different simple question answer- 1337

ing help each other. For an example in Figure 39, 1338

errors made in early stages in Decomp result in 1339

wrong prediction while our SKiC accurately an- 1340

swer different questions in one context. This is a 1341

further manifestation of the advantage of concur- 1342

rently demonstrating the skills and compositions. 1343

F Appendix: The Performance of SKiC 1344

Prompting using LLAMA2 1345

We further evaluate the performance of SKiC 1346

prompting by using the LLAMA2 and LLAMA2- 1347

chat models (Touvron et al., 2023b) on the fol- 1348

lowing tasks: last latter concatenation, addition, 1349

multiplication, CommaQA-E, and dynamic pro- 1350

gramming tasks. The results are reported in the 1351

Tables 12,16. 1352

7This is expected as the it is finetuned directly on input se-
quences with length 4 and 5, while our method is not finetuned
at all.

20

Table 18: Accuracy of different orders of examples in
CoT and our SKiC prompts GSM8K task with ChatGPT
models.

Order of Examples COT SKiC

Order 1 74.4 87.2
Order 2 73.8 86.9
Order 3 73.0 87.8

Table 19: Accuracy of MATH and FOLIO when using
prompts designed for GSM8K with ChatGPT models.

TASK COT for GSM8K SKiC for GSM8K

MATH 28.2 31.34
FOLIO 68.8 72.5

We observe that LLAMA2-70B generally out-1353

performs LLAMA-65B and demonstrate stronger1354

capabilities in following the exemplars for com-1355

posing the in-context skills to solve the problems.1356

There are still performance gaps between the open1357

source LLAMA models and the proprietery LLMs1358

such as text-davinci-003, ChatGPT and GPT4.1359

G Appendix: Different Sources of the1360

In-context Skills1361

One important question we want to understand is1362

whether it is beneficial to generate the in-context1363

skills from the same foundation model used for1364

prediction. Our hypothesis is that in-context skills1365

generated from the same foundation model can1366

initiate stronger synergize with the internal knowl-1367

edge, due to their higher alignment. To test this hy-1368

pothesis, we prompt the ChatGPT using the SKiC1369

constructed from GPT-4 (i.e., the in-context skills1370

are generated by GPT-4). The accuracy and the1371

internal skill activation rate on MATH are reported1372

in Table 20. With the skills prompted from itself,1373

we observe both improved accuracy and higher in-1374

ternal skill activation rate, even though the skills1375

prompted from GPT-4 generally have higher qual-1376

ity. This suggests that (i) aligning the model that is1377

used to prompt the in-context skills and the model1378

that is used to generate answers helps the models’1379

capability to link and utilize the internal skills, and1380

(ii) activating more internal skills generally leads to1381

higher performance, especially when solving prob-1382

lems that require compositions over wider range of1383

skills.1384

H Appendix: Ablation Study on 1385

Examples in SKiC Prompts 1386

Different Examples in Prompts We randomly 1387

selected examples in our SKiC prompts. The per- 1388

formance improvements are consistent even if we 1389

perturb the examples in the prompts. The results on 1390

last-letter tasks with ChatGPT with the use of dif- 1391

ferent choices of few-shot exemplars in the prompts 1392

are shown in Table 17. It shows the robustness of 1393

our proposed SKiC prompt to the selection of the 1394

few-shot exemplars. 1395

Different Orders of Examples in Prompts We 1396

also explore the order of different examples in the 1397

prompts. Through experiments, we find that the 1398

order of the examples also does not matter a lot 1399

because we randomly sample a limited number 1400

of examples (2 examples in most of the cases) to 1401

design SKiC. We shuffle the order in our prompts 1402

(consisting of 4 examples) for GSM8K and the 1403

performances are shown in Table 18. 1404

I Appendix: Generalization to Different 1405

Tasks 1406

We further show that our SKiC which teach the 1407

model how to compose skills can also help the 1408

performances even if the provided prompts are de- 1409

signed for different tasks: We use the skills and 1410

prompts designed for GSM8K and directly apply 1411

them on MATH (competition-level math reasoning) 1412

(Hendrycks et al., 2021) and FOLIO (logical infer- 1413

ence) (Han et al., 2022) which are unseen tasks 1414

with ChatGPT as shown in Table 19. 1415

J Appendix: Different Components in 1416

SKiC 1417

Previous work (Khot et al., 2022; Zhou et al., 1418

2022a) introduced step-by-step reasoning and 1419

breaking down hard problems to simple problems 1420

to improve the easy-to-hard generalization. How- 1421

ever, in our work, we make another important dis- 1422

covery that, in order to teach models how to com- 1423

pose skills, it is also crucial to demonstrate the 1424

foundational skills and how to ground each of its 1425

reasoning steps onto the foundation skills. That is, 1426

besides step-by-step reasoning, explicit grounding 1427

is another key factor to elicit compositionality and 1428

easy-to-hard generalization. We achieve that by 1429

proposing SKiC and our SKiC shows significantly 1430

better performances compared to previous work in 1431

21

Table 20: Accuracy and internal skill activation rate on the MATH with two different versions of SKiC on ChatGPT:
the prompt with the skills generated from (i) ChatGPT and (ii) GPT-4. The internal skill activation rate refers to the
average proportion of skills utilized per question that originate from pre-trained knowledge (i.e., internal skills)
rather than from the SKiC prompt context (i.e., the in-context skills).

Metric Source of SKiC Pre-Algebra Geometry Inter-Algebra Algebra Probability Pre-Calculus NumTheory Overall

Accuracy
GPT4 60.7 27.8 16.8 58.2 33.3 19.0 34.2 38.9

ChatGPT 62.0 30.1 17.8 57.9 38.2 23.0 35.5 40.6

Internal Skill
Activation Rate

GPT4 5.9 18.5 11.2 6.6 7.0 43.8 6.2 12.5
ChatGPT 6.5 19.0 13.2 5.7 9.1 45.2 7.8 14.9

Table 21: Accuracy on Dynamic Programming task
(8 numbers) of SKiC with ChatGPT after removing
different components.

Methods Dynamic Programming

COT 72.0

SKiC 98.0
- skill 94.0

- skill grounding 82.0

Table 22: Accuracy on SCAN with ChatGPT models.

Methods SCAN

COT 72.5
SKiC 100.0

all the experiments. Additionally, we perfrom abla-1432

tion study to highlight our finding (the importance1433

of skill grounding in reasoning steps). We com-1434

pare SKiC with the setting where (i) we remove1435

the skills but keep the skill grounding in reasoning1436

steps and (ii) we remove the skill grounding in rea-1437

soning steps but keep the basic skill introduction in1438

the front. The performance on Dynamic Program-1439

ming is shown in Table 21. Removing both parts1440

would bring in the performance drop, which further1441

indicates the importance of skills and skill ground-1442

ing in reasoning steps to improve the easy-to-hard1443

generalization.1444

K Appendix: Applying SKiC to Semantic1445

Parsing (SCAN)1446

We further design SKiC prompts and perform ex-1447

periments on SCAN dataset (Chen et al., 2020) that1448

evaluates the ability to do semantic parsing. Specif-1449

ically, our skills and examples of composing these1450

skills are shown in Figure 24, 25. The performance1451

with ChatGPT is shown in Table 22.1452

L Appendix: Can LLMs discover skills 1453

for solving general NLU tasks? 1454

We further provide experiments to show that 1455

the skills in our SKiC prompts can actually be 1456

discovered or summarized from examples by 1457

LLMs,which makes our SKiC more applicable 1458

to a wider range of tasks. Specifically, we pro- 1459

vide ChatGPT with 2 examples of NLI tasks from 1460

RTE (Wang et al., 2018) and instruct ChatGPT 1461

to discover the skills from the given examples to 1462

perform the NLI tasks, which results in the skills 1463

including Context Understanding and Inference 1464

Evaluation. Based on the summarized skills from 1465

LLMs, we then construct our SKiC prompts and 1466

the results on RTE are shown in Table 23. Simi- 1467

larly, we utilize ChatGPT to discover skills for the 1468

last letter tasks which leading to the skill set in- 1469

cluding Identify Words, Determine Last Letters, 1470

Concatenate Last Letters, Form New Sequence. 1471

These are actually similar to what we have shown 1472

in Figure 10. With such skills, we could further 1473

construct the SKiC prompts by adding these basic 1474

skills in the context and grounding reasoning steps 1475

onto these basic skills. This gives the similar perfor- 1476

mance compared to what we constructed manually 1477

as shown in Table 23. The results show the effec- 1478

tiveness of automatically discovering skills from 1479

LLMs and then using them to construct the SKiC 1480

prompts. 1481

M SKiC Helps Instruction Tuning 1482

In this section, we show that instruction data which 1483

is constructed with SKiC can further be utilized 1484

to fine-tune LLMs to improve their capabilities of 1485

easy-to-hard generalization. Specifically, we gen- 1486

erate training data by utilizing GPT4 to generate 1487

answers for GSM8K problems with SKiC prompts. 1488

That is, the generated reasoning steps for each 1489

GSM8K problem would be explicitly grounded 1490

to basic skills as shown in Figure 33 and 34. With 1491

the GSM8K data annotated with SKiC-format rea- 1492

22

Table 23: Accuracy on RTE and Last Letter with ChatGPT models.

Methods RTE Last Letter (12 words)

COT 85.2 72.5

SKiC - 100.0
SKiC(Skills discoverd by LLM) 89.8 100.0

Table 24: Accuracy on MATH for models fine-tuned with GSM8K data labeled with CoT reasoning steps of SKiC
reasoning steps.

Model Train Set Source Reasoning Step MATH

LLAMA2-7B
- - 2.5

GSM8K CoT 5.2
GSM8K SKiC 7.6

LLAMA2-13B
- - 3.9

GSM8K CoT 5.1
GSM8K SKiC 8.1

LLAMA2-70B
- - 13.5

GSM8K CoT 14.1
GSM8K SKiC 18.5

soning steps, we then finetune LLAMA2 models1493

and evaluate their performances on MATH (which1494

consists of significantly harder evaluation problems1495

compared to the training problems from GSM8K)1496

in zero-shot standard prompting settings. The re-1497

sults are shown in Table 24. Compared to training1498

data annotated with CoT reasoning steps, SKiC1499

significantly improve the performances on MATH,1500

which demonstrates that models that are fine-tuned1501

with SKiC reasoning steps could achieve better1502

generalization abilities to more complex and chal-1503

lenging testing cases. The results imply that SKiC1504

data could potentially be used to replace CoT data1505

in instruction tuning for eliciting stronger reason-1506

ing capabilities and weak-to-strong generalization1507

for LLMs.1508

N Appendix: Generation Examples1509

We further share some example generation from1510

ChatGPT with our Skills-in-Context prompts on all1511

the tasks in Figure 26,27, 28, 29, 30, 31, 32, 33, 34,1512

35, 36, 37, 38, 2.1513

O Appendix: the Most Frequently Used 1514

Skills by GPT-4 for Solving MATH 1515

Benchmark 1516

In Table 25, we report the most frequently used 1517

skills by GPT-4 to solve the MATH problems. 1518

There are two sources of the skills: (i) the ones 1519

provided in the context of SKiC prompts, and (ii) 1520

the ones originating from GPT-4’s internal knowl- 1521

edge (acquired through pretraining). 1522

23

Table 25: The most frequently used skills by GPT-4 for solving MATH benchmark with SKiC prompting. The skills
can be from the context of the SKiC prompts (denoted as “in-context” in the table) or from the internal knowledge
acquired during the pretraining stage (denoted as “internal”).

Category Source Top Used Skills

Pre-Algebra
In-context Div, Mul, Add, Sub, Solve Equation, Area, Exp, Counting Principle, Radicals, Prime Numbers

Internal
Pythagorean Theorem, Rounding, Divisibility Rules, Percentage, Angles, Simply Fraction,
Mean, Ratio, Triangle Angle Sum, Order of Operations

Geometry
In-context Area, Mul, Div, Add, Sub, Solve Equation, Volume, Radicals, Exp, Perimeter

Internal
Pythagorean Theorem, Trigonometry, Triangle, Triangle Inequality, Similar Triangles,
Circle, Geometry, Triangle Angle Sum, Angle Bisector Theorem, Trigonometric Ratios

Inter-Algebra
In-context Factoring, Solve Equation, Add, Mul, Sub, Complex Number, Inequality, Quadratic Formula, Div, Exp

Internal
Substitution, Completing the Square, Polynomial, Logarithm, AM-GM Inequality,
Polynomial Division, Absolute Value, Summation, Sequences, Simplify

Algebra
In-context Add, Mul, Solve Equation, Sub, Div, Exp, Factoring, Quadratic Formula, Radicals, Distance Formula

Internal
Absolute Value, Slope, Logarithm, Arithmetic Sequence, Completing the Square, Interval Notation,
Inverse Function, Substitution, Midpoint Formula, Ceiling Function

Probability
In-context Factorial, Combination, Counting Principle, Probability, Add, Sub, Permutations, Mul, Div, Exp

Internal
Simplify Fraction, Binomial Theorem, Expected Value, Arithmetic Sequence, Sum of Arithmetic Series,
Counting, Stars and Bars, Divisibility Rules, Binomial Probability, Perfect Squares

Pre-Calculus
In-context Solve Equation, Add, Mul, Sub, Complex Number, Div, Factoring, Radicals, Area, Distance Formula

Internal
Trigonometric Identities, Trigonometry, Dot Product, Matrix Multiplication, Pythagorean Theorem,
Cross Product, Inverse Trigonometric Functions, Determinant, Vector Projection, Vectors

NumTheory
In-context Add, Mod, Base Conversion, Mul, Congruences, Div, Sub, Factoring, Prime Number, GCD

Internal
Divisors, Divisibility Rules, Units Digit, Prime Fraction, Chinese Remainder Theorem, Arithmetic
Sequence, Exponents, Cyclic Patterns, Perfect Squares, Modular Arithmetic

24

Skills for Last Letter Concatenation

Skill <words_to_list>: Put the asked words to a list. For example, put the words in ’apple’ to
D=[’apple’]; put the words in ’apple, banana’ to D=[’apple’,’banana’].

Skill <last_letter>: Get the last letter of one word. For example, the last letter of ’apple’ is ’e’;
the last letter of ’banana’ is ’a’.

Figure 10: The skills in Skills-in-Context prompt for last-letter-concatenation task.

25

An Example of Skill Composition for Last Letter Concatenation

Example: Take the last letters of the words in ’apple, banana’ and concatenate them.

Answer:
1. Using the Skill <words_to_list>, put the asked words, ’apple, banana’, to a list.
D=[’apple’,’banana’]

2. Get the last letter of each word in the list D=[’apple’,’banana’] to a new list R=[]:
i. Using the Skill <last_letter>, the last letter of D[0]=’apple’ is ’e’. R=[e]

ii. Using the Skill <last_letter>, the last letter of D[1]=’banana’ is ’a’. R=[e,a]

3. R=[e,a]. The answer is ’ea’.

Figure 11: An exemplar of skill composition in Skills-in-Context prompt for last-letter-concatenation task.

26

Skills for Addition

Skill <extract_digits>: Extract the digits in a number to a list.
For example, Extract digits in 123 to D=[1,2,3]. Extract digits in 7654 to D=[7,6,5,4].

Skill <list_length>: Get the number of elements in a list.
For example, D=[1,2,3], len(D)=3. A=[1,2,4,5,6], len(A)=5.

Skill <add_two_single_digit_number>: Add two single-digit numbers.
0+0=0 0+1=1 0+2=2 0+3=3 0+4=4 0+5=5 0+6=6 0+7=7 0+8=8 0+9=9
1+0=1 1+1=2 1+2=3 1+3=4 1+4=5 1+5=6 1+6=7 1+7=8 1+8=9 1+9=10
2+0=2 2+1=3 2+2=4 2+3=5 2+4=6 2+5=7 2+6=8 2+7=9 2+8=10 2+9=11
3+0=3 3+1=4 3+2=5 3+3=6 3+4=7 3+5=8 3+6=9 3+7=10 3+8=11 3+9=12
4+0=4 4+1=5 4+2=6 4+3=7 4+4=8 4+5=9 4+6=10 4+7=11 4+8=12 4+9=13
5+0=5 5+1=6 5+2=7 5+3=8 5+4=9 5+5=10 5+6=11 5+7=12 5+8=13 5+9=14
6+0=6 6+1=7 6+2=8 6+3=9 6+4=10 6+5=11 6+6=12 6+7=13 6+8=14 6+9=15
7+0=7 7+1=8 7+2=9 7+3=10 7+4=11 7+5=12 7+6=13 7+7=14 7+8=15 7+9=16
8+0=8 8+1=9 8+2=10 8+3=11 8+4=12 8+5=13 8+6=14 8+7=15 8+8=16 8+9=17
9+0=9 9+1=10 9+2=11 9+3=12 9+4=13 9+5=14 9+6=15 9+7=16 9+8=17 9+9=18

Skill <sub_10>: Subtract 10 from a given number.
10-10=0 11-10=1 12-10=2 13-10=3 14-10=4 15-10=5 16-10=6 17-10=7 18-10=8 19-10=9

Skill <compare_10>: Compare a number with 10.
0<10 1<10 2<10 3<10 4<10 5<10 6<10 7<10 8<10 9<10 10=10
11>10 12>10 13>10 14>10 15>10 16>10 17>10 18>10 19>10

Figure 12: The skills in Skills-in-Context prompt for the task of adding two numbers.

27

An Example of Skill Composition for Addition

Example: Calculate 86+964:

Answer:
1. Using Skill <extract_digits> and Skill <list_length>, extract the digits in 86 to DM=[8,6].
len(DM)=2. Extract the digits in 964 to DN=[9,6,4]. len(DN)=3.

2. len(DM)=2<len(DN)=3. Align the two lists by adding len(DN)-len(DM)=1 zeros to
the shorter list (DM): DM=[0,8,6].

3. Using Skill <add_two_single_digit_number>, add every number in DM=[0,8,6] to
the corresponding number in DN =[9,6,4] to form a list, DS=[0+9,8+6,6+4]=[9,14,10].

4. Append a 0 to the beginning of DS: DS=[0,9,14,10].Construct a list R=[0,0,0,0] with
len(DS)=4 zeros.

5. DS=[0,9,14,10] (DS[0]=0, DS[1]=9, DS[2]=14, DS[3]=10), starting from DS[3] to
DS[1] (DS[3]=10, DS[2]=14, DS[1]=9):

i. DS[3]=10, R[3]=0, R[3]=R[3]+DS[3]=0+10=10. Based on Skill
<compare_10>, R[3]=10=10, so R[2]=1 and R[3]=10-10=0 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3]]=[0,0,1,0].

ii. DS[2]=14, R[2]=1, R[2]=R[2]+DS[2]=1+14=15. Based on Skill
<compare_10>, R[2]=15>10, so R[1]=1 and R[2]=15-10=5 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3]]=[0,1,5,0].

iii. DS[1]=9, R[1]=1, R[1]=R[1]+DS[1]=1+9=10. Based on Skill
<compare_10>, R[1]=10=10, so R[0]=1 and R[1]=10-10=0 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3]]=[1,0,5,0].

6. R=[1,0,5,0]. The answer is 1050.

Figure 13: An exemplar of skill composition in Skills-in-Context prompting for the task of adding two numbers.

28

Skills for Multiplication

Skill <extract_digits>: Extract the digits in a number to a list.
For example, Extract digits in 123 to D=[1,2,3]. Extract digits in 7654 to D=[7,6,5,4].

Skill <list_length>: Get the number of elements in a list.
For example, D=[1,2,3], len(D)=3. A=[1,2,4,5,6], len(A)=5.

Skill <mul_two_single_digit_number>: Multiply two single-digit numbers.
0*1=0 0*2=0 0*3=0 0*4=0 0*5=0 0*6=0 0*7=0 0*8=0 0*9=0
1*1=1 1*2=2 1*3=3 1*4=4 1*5=5 1*6=6 1*7=7 1*8=8 1*9=9
2*1=2 2*2=4 2*3=6 2*4=8 2*5=10 2*6=12 2*7=14 2*8=16 2*9=18
3*1=3 3*2=6 3*3=9 3*4=12 3*5=15 3*6=18 3*7=21 3*8=24 3*9=27
4*1=4 4*2=8 4*3=12 4*4=16 4*5=20 4*6=24 4*7=28 4*8=32 4*9=36
5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 5*6=30 5*7=35 5*8=40 5*9=45
6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 6*7=42 6*8=48 6*9=54
7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 7*8=56 7*9=63
8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 8*9=72
9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81

Skill <add_multiple_numbers>: Add multiple numbers such as m+n+p:
1. Add the first two numbers m+n and get the result r1=m+n.
2. Add the third number p to r1 and get the result r2=r1+p.

For example, calculate 128+64+79:
1. Add the first two numbers 128+64 and get the result r1=128+64=192.
2. Add the third number 79 to r1 and get the result r2=192+79=271.
So 128+64+79=271

Figure 14: The skills in Skills-in-Context prompt for the task of multiplying two numbers.

29

An Example of Skill Composition for Multiplication

Example: Calculate 184*67:

Answer:
1. Using Skill <extract_digits> and Skill <list_length>, extract the digits in 184 to DM=[1,8,4].
len(DM)=3. Extract the digits in 67 to DN=[6,7]. len(DN)=2.

2. Add 0,1,len(DM)-1=2 zeros to the end of every number in DM=[1,8,4] according to
the position of the number in DM: DMO=[1*100,8*10,4*1]=[100,80,4].

3. Add 0,len(DN)-1=1 zeros to the end of every number in DN=[6,7] according to the
position of the number in DN: DNO=[6*10,7*1]=[60,7].

4. Using Skill <mul_two_single_digit_number>, multiple every number in DMO=[100,80,4]
with every number in DNO=[60,7] and get R=[100*60,100*7,80*60,80*7,4*60,4*7]=
[6000,700,4800,560,240,28].

5. Using Skill <add_multiple_numbers>, add all the numbers in R=[6000,700,4800,560,240,28],
6000+700+4800+560+240+28:

i. Add the first two numbers: r1=6000+700=6700.
ii. Add the third number 4800 to r1=6700: r2=6700+4800=11500.
iii. Add the fourth number 560 to r2=11500: r3=11500+560=12060.
iv. Add the fifth number 240 to r3=12060: r4=12060+240=12300.
v. Add the sixth number 28 to r4=12300: r5=12300+28=12328.

6. So the answer is 12328

Figure 15: An exemplar of skill composition in Skills-in-Context prompting for the task of multiplying two numbers.

30

Skills for CommaQA-E task

Skill <decompose_qa>: Decompose a complex question into a set of sub-questions.
For example: Decompose the question "What awards have movies produced by people born
in 1910 won?" into the following sub-questions:
Q1: Who were born in the year 1910?
Q2: Which movies did [A1] produce?
Q3: Which awards were given to [A2]?
Decompose the question "What movies have people from the country Stridery acted in?" into
the following sub-questions: Q1: Who is from the country Stridery?
Q2: Which movies did [A1] act in?

Skill <answer_simple_question>: Answer simple questions about the passage.
For example:
[A Passage]

Q: Which awards were given to Zalate?
A: movie: Zalate ; awarded: Hallowcock. ["Hallowcock”]
Q: Which movies were given the Hallowcock award?
A: movie: Zalate ; awarded: Hallowcock. movie: SkirtSiCine ; award: Hallowcock. ["Zalate",
"SkirtSiCine"]
Q: Which movies did Muntaril direct?
A: movie: Premercy ; directed by: Muntaril. ["Premercy]
Q: Which movies did Muntrail produce?
A: Muntaril produced the movie Premercy with others. Muntaril produced the movie SkirtSiCine
with others. ["Premercy", "SkirtSiCine"]
Q: Which movies did Muntrail write?
A: Muntaril was one of the writers for the movie Zalate. Muntaril wrote for the movie
Featsaw. ["Zalate", "Featsaw"]
Q: Who are the actors in the movie Premercy?
A: Monsterscar was an actor in the movie Premercy. ["Monsterscar"]
Q: When was the moive Featsaw released?
A: Monsterscar was an actor in the movie Premercy. ["1973"]

Figure 16: The skills in Skills-in-Context prompt for the CommaQA-E task.

31

An Example of Skill Composition for the CommaQA-E Task

Example: [A Passage]
Q: What movies have people from the country Stridery acted in?

Answer:
1. Using Skill <decompose_qa>, decompose the question "What movies have people from the
country Stridery acted in?" into the following sub-questions:

Q1: Who is from the country Stridery?
Q2: Which movies did [A1] act in?

2. Using Skill <answer_simple_question>, answer Q1: Who is from the country Stridery?

Gastrat grew up in the nation of Stridery. A1=["Gastrat"]

3. A1=["Gastrat"], answer Q2: Which movies did [A1] act in?

i. A1[0]="Gastrat", Using Skill <answer_simple_question>, answer Q2.1: Which movies
did Gastrat act in?

A2.1: Gastrat was an actor in the movie Partnershipmaker. Gastrat was an actor in the
movie Partnershipmaker. Gastrat acted in the movie Warpstone. A2.1=["Partnershipmaker",
"Nilitude", "Warpstone"]

ii.So A2=[A2.1]=["Partnershipmaker", "Nilitude", "Warpstone"]

4. The answer is ["Partnershipmaker", "Nilitude", "Warpstone"]

Figure 17: An exemplar of skill composition in Skills-in-Context prompting for the CommaQA-E task.

32

Skills for Dynamic Programming

Skill <list_length>: Get the number of elements in a list.
For example, D=[1,2,3], len(D)=3. A=[1,2,3,4,5,6], len(A)=6.

Skill <find_max>: Find the max number in a list.
For example, max(2,0,-1)=2. max(-3,-2,-1)=-1. max(5,-2,0)=5. max(0,-2,4)=4. max(0,0,0)=0.
max(-2,-1,0)=0.

Skill <add>: Add two numbers.
For example, 1+2=3. -2+1=-1. 0+(-3)=-3. 1+(-1)=0.

Figure 18: The skills in Skills-in-Context prompt for the task of dynamic programming.

33

An Example of Skill Composition for the Dynamic Programming Task

Example: Compose these skills to do the task: Given a sequence of integers, find a subsequence
with the highest sum, such that no two numbers in the subsequence are adjacent in the original
sequence.
A=[3,2,1,5].

Answer:
1. A=[3,2,1,5] (A[0]=3,A[1]=2,A[2]=1,A[3]=5). Using Skill <list_length>, len(A)=4. Construct
a list D=[0,0,0,0] with the len(A)=4 zeros.

2. Update the last element in D. A[3]=5. Using Skill <find_max>, max(5,0)=5. D[3]=5 and
D=[0,0,0,5].

3. Update the second last element in D. A[3] = 5, A[2] = 1. Using Skill <find_max>,
max(5,1,0) = 5. D[2] = 5 and D=[0,0,5,5].

4. Starting from the third last (len(A)-2=2) element in D, update each element in D
based on A=[3,2,1,5] (A[0]=3,A[1]=2,A[2]=1,A[3]=5):

i. D[3]=5, D[2]=5, A[1]=2. Using Skill <add>, A[1]+D[3]=2+5=7. Using Skill
<find_max>, max(D[2],A[1]+D[3],0)=max(5,7,0)=7. D[1]=7 and D=[0,7,5,5].

ii. D[2]=5, D[1]=7, A[0]=3. Using Skill <add>, A[0]+D[2]=3+5=8. Using Skill
<find_max>, max(D[1],A[0]+D[2],0)=max(7,8,0)=8. D[0]=8 and D=[8,7,5,5].

5. D=[8,7,5,5]. The highest sum is D[0]=8.

Figure 19: An exemplar of skill composition in Skills-in-Context prompting for the dynamic programming task to
find the highest sum of the subsequence.

34

Skills for GSM8K

Skill <extract_digits>: Extract the digits in a number to a list. For example, extract digits in 123 to D=[1,2,3]. Extract
digits in 7654 to D=[7,6,5,4]

Skill <list_length>: Get the number of elements in a list. For example, D=[1,2,3], len(D)=3. A=[1,2,4,5,6], len(A)=5.

Skill <add_two_single_digit_number>: Add two single-digit numbers. For example, 0+0=0 0+1=1 0+2=2 0+3=3
0+4=4 0+5=5 0+6=6 0+7=7 0+8=8 0+9=9

Skill <sub_two_single_digit_number>: Subtract two single-digit numbers. For example, 0-0=0 0-1=-1 0-2=-2 0-3=-3
0-4=-4 0-5=-5 0-6=-6 0-7=-7 0-8=-8 0-9=-9

Skill <sub_10>: Subtract 10 from a given number. 10-10=0 11-10=1 12-10=2 13-10=3 14-10=4 15-10=5 16-10=6
17-10=7 18-10=8 19-10=9

Skill <add_10>: Add 10 to a given number. -10+10=0 -9+10=1 -8+10=2 -7+10=3 -6+10=4 -5+10=5 -4+10=6 -3+10=7
-2+10=8 -1+10=9

Skill <compare_0>: Compare a number with 0. 10>0 9>0 8>0 7>0 6>0 5>0 4>0 3>0 2>0 1>0 0=0 -1>0 -2>0
-3>0 -4>0 -5>0 -6>0 -7>0 -8>0 -9>0

Skill <compare_10>: Compare a number with 10. 0<10 1<10 2<10 3<10 4<10 5<10 6<10 7<10 8<10 9<10
10=10 11>10 12>10 13>10 14>10 15>10 16>10 17>10 18>10 19>10

Skill <mul_two_single_digit_number>: Multiply two single-digit numbers. For example, 4*1=4 4*2=8 4*3=12
4*4=16 4*5=20 4*6=24 4*7=28 4*8=32 4*9=36

Skill <add_multiple_numbers>: Add multiple numbers such as m+n+p:
1. Add the first two numbers m+n and get the result r1=m+n.
2. Add the third number p to r1 and get the result r2=r1+p.

Skill <add>: Use the skills to add two numbers. For example, calculate 86+964 [The steps to perform the add]

Skill <mul>: Use the skills to multiply two numbers. For example, calculate 86*964 [The steps to perform the
multiplication]

Skill <sub>: Use the skills to subtract a number from another number. For example, calculate 964-86 [The steps to
perform the subtractraction]

Skill <age>: Describe the age of a person. If a person is P years old, Q years ago, the person was P-Q years old. If a
person is P years old, in Q years, the person will be P+Q years old. If person A is P years old, person B is Q years old,
and person A is R years older than person B, then P=Q+R. If person A is P years old, person B is Q years old, and
person A is R years younger than person B, then P=Q-R.

Skill <solve_equation>: Solve an equation. When subtracting or adding the same number from both sides of the
equation, the equation is still true. When moving a number from one side of the equation to the other side, the sign of
the number changes. When moving a multiplication from one side of the equation to the other side, the sign of the
multiplication changes. When moving a division from one side of the equation to the other side, the sign of the division
changes.
For example, if the equation is 3x+5=7, move +5 to the other side, then 3x=7-5. Using the Skill <sub>, 3x=7-5=2.
Move 3 to the other side, then x=2/3.

Figure 20: The skills in Skills-in-Context prompt for GSM8K.

35

An Example of Skill Composition for GSM8K

Example: Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice
30 years old, how old is Kody?

Answer:
1. Mohamed is currently twice 30 years old. Using the Skill <mul>, Mohamed is currently 30*2
= 60 years old.

2. Using Skill <age>, four years ago, Mohamed was 4 years younger than now. Using
the Skill <sub>, Mohamed was 60-4 = 56 years old.

3. Four years ago, Kody was only half as old as Mohamed. Using the Skill <div>,
Kody was 56/2 = 28 years old.

4. Using Skill <age>, currently, Kody is 4 years older than four years ago. Using the
Skill <add>, Kody is currently 28+4 = 32 years old.

5. The answer is 32.

Figure 21: An exemplar of skill composition in Skills-in-Context prompting for GSM8K math problems.

36

Skills for MATH

You have the knowledge of many skills, the following are some examples:
Skill <Add>: Add two numbers. For example, 128+987=1115.

Skill <Sub>: Subtract a number from another number. For example, 128-67=61.

Skill <Mul>: Multiply two numbers. For example, 128*76=9728.

Skill <Div>: Divide a number from another number. For example 12/3=4.

Skill <Mod>: Modulus or modulo, it finds the remainder of a division operation. For example, 10 mod 3 = 1, because 10 divided by 3 leaves a
remainder of 1.

Skill <Exp>: An exponent refers to the number of times a number is multiplied by itself. [More Details]

Skill <Base Conversion>: Base conversion is a way to change numbers from one base to another. [More Details]

Skill <Radicals>: A radical represents the root of a number. The square root (represented by sqrt) is the most common radical. [More Details]

Skill <Factoring>: In the context of integers, factorization involves expressing a number as the product of prime numbers. [More Details]

Skill <Solve Equation>: Solve an equation. [More Details]

Skill <Quadratic Formula>: The quadratic formula is used to solve quadratic equations. [More Details]

Skill <Complex Number>: The quadratic formula is used to solve quadratic equations. [More Details]

Skill <Piecewise Function: Continuous>: A piecewise function is continuous if it is continuous at every point in its domain. [More Details]

Skill <Factorial>: Factorial is a function that multiplies a given number by every number below it until 1. [More Details]

Skill <Probability>: Probability is the measure of the likelihood that an event will occur. [More Details]

Skill <Conditional Probability>: The probability of an event occurring given that another event has already occurred. [More Details]

Skill <Probability Addition Rule>: The Addition Rule in probability is used to calculate the probability of either of two events happening.
[More Details]

Skill <Probability Multiplication Rule>: A way to determine the probability of two events occurring at the same time (conjointly). [More
Details]

Skill <Counting Principle>: If there are m ways to do one thing, and n ways to do another, then there are m*n ways of doing both. [More
Details]

Skill <Permutations>: Permutations refer to the arrangement of items in a specific order. [More Details]

Skill <Combination>: Combinations refer to the selection of items without regard to the order. [More Details]

Skill <Perimeter>: The perimeter of a shape is the distance around its boundary. [More Details]

Skill <Area>: The area of a shape is the amount of space that it covers. [More Details]

Skill <Volume>: Volume is the measure of the amount of space that a three-dimensional object occupies. [More Details]

Skill <Prime Numbers>: A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. [More Details]

Skill <Composite Numbers>: Composite numbers are positive integers that have at least one positive divisor other than one or the number
itself. [More Details]

Skill <GCD>:The Greatest Common Divisor (GCD), also known as the Greatest Common Factor (GCF), [More Details]

Skill <LCM>:The Least Common Multiple (LCM) of two integers is the smallest positive integer that is divisible by both numbers without
leaving a remainder. [More Details]

Skill <Congruences>: Two integers a and b are said to be congruent modulo n if they have the same remainder when divided by n. [More Details]

Figure 22: The skills in Skills-in-Context prompt for MATH.

37

An Example of Skill Composition for MATH

Example: Shown below are rows 1, 2, and 3 of Pascal’s triangle.[Pascal’s triangle]. Let (ai),
(bi), (ci) be the sequence, from left to right, of elements in the 2005th, 2006th, and 2007th rows,
respectively, with the leftmost element occurring at i = 0. Compute [

∑2006
i=0

bi
ci
−
∑2005

i=0
ai
bi
.]

Answer:
1. Using the Skill <Pascal’s Triangle>, the number in the n-th row and k-th column of the Pascal’s
triangle is C(n,k).

2. Suppose (ai), (bi), (ci) represent the entries in rows n - 1, n, n + 1 of Pascal’s trian-
gle. ai = C(n− 1, i), bi = C(n, i), ci = C(n+ 1, i)

3. Using the Skill <Combination>,
∑2006

i=0
bi
ci

=
∑2006

i=0
(2006i)
(2007i)

=
∑2006

i=0
2007−i
2007 =

2007− 2006·2007
2·2007 = 2007− (2006 ∗ 2007)/(2 ∗ 2007) = 2007− 1003 = 1004

4. Using the Skill <Combination>,
∑2005

i=0
ai
bi

=
∑2005

i=0
(2005i)
(2006i)

=
∑2005

i=0
2006−i
2006 =

2006− 2005·2006
2·2006 = 2006− (2005 ∗ 2006)/(2 ∗ 2006) = 2006− 1002.5 = 1003.5

5. Using the Skill <Sub>, [
∑2006

i=0
bi
ci
−

∑2005
i=0

ai
bi
] = 1004− 1003.5 = 0.5

6. The answer is 0.5.

Figure 23: An exemplar of skill composition in Skills-in-Context prompting for MATH problems.

38

Skills for SACN

Skill <command_parse>: Parse a simple command into structured output.
For example, ‘Walk’ is parsed to ‘WALK’,‘Look’ is parsed to ‘LOOK’,‘Run’ is parsed to
‘RUN’,‘Jump’ is parsed to ‘JUMP” ‘turn left’ is parsed to ‘LTURN”,‘turn right’ is parsed to
‘RTURN”, ‘Turn opposite left’ is parsed to ‘LTURN LTURN’, ‘Turn opposite right’ is parsed to
’RTURN RTURN’

Skill <decompose_commands>: Find the max number in a list.
For example, ‘Look right’ can be decomposed to ‘look’ and ‘turn right’,‘Look twice’ can be
decomposed to ‘look’ and ‘look’,‘Look right after look twice’ can be decompose to ‘look right’
and ‘look twice’,‘Jump opposite right thrice and walk’ can be decomposed to ‘jump opposite right
thrice’, ‘walk’

Figure 24: The skills in Skills-in-Context prompt for the task of SACN.

39

An Example of Skill Composition for SCAN

Example: run and look twice.

Answer:
1. Using the Skill <decompose_commands>, ‘run and look twice’ can be decomposed to ‘run’,
and ‘look twice’.

2. For ‘run’, using the Skill <command_parse>, ‘run’ is parsed to ‘RUN’

3. For ‘look twice’, using the Skill <decompose_commands>, ‘look twice’ can be de-
composed to ‘look’ and ‘look’:

i. For ‘look’, using the Skill <command_parse>, ‘look’ is parsed to ‘LOOK’
ii. For ‘look’, using the Skill <command_parse>, ‘look’ is parsed to ‘LOOK’

4. The output is ‘RUN’+’LOOK’+’LOOK’ = ‘RUN’ + ‘LOOK’*2

Figure 25: An exemplar of skill composition in Skills-in-Context prompting for SCAN.

40

Last Letter Concatenation

Question: Take the last letters of the words in ’than, appropriate, sees, daisy, disturbed, espn,
stable, double, luther, shut’ and concatenate them.

Model Output:

1. Using the Skill <words_to_list>, put the asked words, ’than, appropriate, sees, daisy, disturbed,
espn, stable, double, luther, shut’, to a list. D=[’than’, ’appropriate’, ’sees’, ’daisy’, ’disturbed’,
’espn’, ’stable’, ’double’, ’luther’, ’shut’]

2. Get the last letter of each word in the list D=[’than’, ’appropriate’, ’sees’, ’daisy’,
’disturbed’, ’espn’, ’stable’, ’double’, ’luther’, ’shut’] to a new list R=[]:

i. Using the Skill <last_letter>, the last letter of D[0]=’than’ is ’n’. R=[n]
ii. Using the Skill <last_letter>, the last letter of D[1]=’appropriate’ is ’e’. R=[n, e] iii.

Using the Skill <last_letter>, the last letter of D[2]=’sees’ is ’s’. R=[n, e, s]
iv. Using the Skill <last_letter>, the last letter of D[3]=’daisy’ is ’y’. R=[n, e, s, y]
v. Using the Skill <last_letter>, the last letter of D[4]=’disturbed’ is ’d’. R=[n, e, s, y, d]
vi. Using the Skill <last_letter>, the last letter of D[5]=’espn’ is ’n’. R=[n, e, s, y, d, n]
vii. Using the Skill <last_letter>, the last letter of D[6]=’stable’ is ’e’. R=[n, e, s, y, d, n, e]
viii. Using the Skill <last_letter>, the last letter of D[7]=’double’ is ’e’. R=[n, e, s, y, d, n, e,

e]
ix. Using the Skill <last_letter>, the last letter of D[8]=’luther’ is ’r’. R=[n, e, s, y, d, n, e, e,

r]
x. Using the Skill <last_letter>, the last letter of D[9]=’shut’ is ’t’. R=[n, e, s, y, d, n, e, e, r,

t]

3. R=[n, e, s, y, d, n, e, e, r, t]. The answer is ’n e s y d n e e r t’.

Figure 26: An example of the generated answer on last-letter-concatenation task using ChatGPT with our Skills-in-
Context prompting.

41

Addition

Question: Calculate 165789+876534

Model Output:

1. Using Skill <extract_digits> and Skill <list_length>, extract the digits in 165789 to
DM=[1,6,5,7,8,9]. len(DM)=6. Extract the digits in 876534 to DN=[8,7,6,5,3,4]. len(DN)=6.

2. len(DM)=6=len(DN)=6. Align the two lists: DM=[1,6,5,7,8,9], DN=[8,7,6,5,3,4].

3. Using Skill <add_two_single_digit_number>, add every number in
DM=[1,6,5,7,8,9] to the corresponding number in DN =[8,7,6,5,3,4] to form a list,
DS=[1+8,6+7,5+6,7+5,8+3,9+4]=[9,13,11,12,11,13].

4. Append a 0 to the beginning of DS: DS=[0,9,13,11,12,11,13]. Construct a list R=[0,0,0,0,0,0,0]
with len(DS)=7 zeros.

5. DS=[0,9,13,11,12,11,13] (DS[0]=0, DS[1]=9, DS[2]=13, DS[3]=11, DS[4]=12, DS[5]=11,
DS[6]=13), starting from DS[6] to DS[1] (DS[6]=13, DS[5]=11, DS[4]=12, DS[3]=11, DS[2]=13,
DS[1]=9):

i. DS[6]=13, R[6]=0, R[6]=R[6]+DS[6]=0+13=13. Based on Skill
<compare_10>, 13>10, R[6]=13>10, so R[5]=1 and R[6]=13-10=3 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,0,0,0,1,3].

ii. DS[5]=11, R[5]=1, R[5]=R[5]+DS[5]=1+11=12. Based on Skill
<compare_10>, 12>10, R[5]=12>10, so R[4]=1 and R[5]=12-10=2 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,0,0,1,2,3].

iii. DS[4]=12, R[4]=1, R[4]=R[4]+DS[4]=1+12=13. Based on Skill
<compare_10>, 13>10, R[4]=13>10, so R[3]=1 and R[4]=13-10=3 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,0,1,3,2,3].

iv. DS[3]=11, R[3]=1, R[3]=R[3]+DS[3]=1+11=12. Based on Skill
<compare_10>, 12>10, R[3]=12>10, so R[2]=1 and R[3]=12-10=2 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,1,2,3,2,3].

v. DS[2]=13, R[2]=1, R[2]=R[2]+DS[2]=1+13=14. Based on Skill
<compare_10>, 14>10, R[2]=14>10, so R[1]=1 and R[2]=14-10=4 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,1,4,2,3,2,3].

vi. DS[1]=9, R[1]=1, R[1]=R[1]+DS[1]=1+9=10. Based on Skill
<compare_10>, 10=10, R[1]=10=10, so R[0]=1 and R[1]=10-10=0 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[1,0,4,2,3,2,3].
6. R=[1,0,4,2,3,2,3]. The answer is 1042323.

Figure 27: An example of the generated answer on the addition task using ChatGPT with Skills-in-Context
prompting.

42

Multiplication

Question: Calculate 1467*7651

Model Output:

1. Using Skill <extract_digits> and Skill <list_length>, extract the digits in 1467 to
DM=[1,4,6,7]. len(DM)=4. Extract the digits in 7651 to DN=[7,6,5,1]. len(DN)=4.

2. Add 0,1,len(DM)-1=3 zeros to the end of every number in DM=[1,4,6,7] according to
the position of the number in DM: DMO=[1*1000,4*100,6*10,7*1]=[1000,400,60,7].

3. Add 0,len(DN)-1=3 zeros to the end of every number in DN=[7,6,5,1] according to
the position of the number in DN: DNO=[7*1000,6*100,5*10,1*1]=[7000,600,50,1].

4. Using Skill <mul_two_single_digit_number>, multiple every number in DMO=[1000,400,60,7]
with every number in DNO=[7000,600,50,1] and get R=[1000*7000,1000*600,1000*50,1000*1,
400*7000,400*600,400*50,400*1,60*7000,60*600,60*50,60*1,7*7000,7*600,7*50,7*1]=
[7000000,600000,50000,1000,2800000,240000,20000,400,420000,36000,3000,60,
49000,4200,350,7].

5. Using Skill <add_multiple_numbers>, add all the numbers in R=[7000000,600000,50000,1000,
2800000,240000,20000,400,420000,36000,3000,60,
49000,4200,350,7], 7000000+600000+50000+1000+2800000+240000+20000+400+420000
+36000+3000+60+49000+4200+350+7:

i. Add the first two numbers: r1=7000000+600000=7600000.
ii. Add the third number 50000 to r1=7600000: r2=7600000+50000=7650000.
iii. Add the fourth number 1000 to r2=7650000: r3=7650000+1000=7651000.
iv. Add the fifth number 2800000 to r3=7651000: r4=7651000+2800000=10451000.
v. Add the sixth number 240000 to r4=10451000: r5=10451000+240000=10691000.
vi. Add the seventh number 20000 to r5=10691000: r6=10691000+20000=10711000.
vii. Add the eighth number 400 to r6=10711000: r7=10711000+400=10711400.
viii. Add the ninth number 420000 to r7=10711400: r8=10711400+420000=11131400.
ix. Add the tenth number 36000 to r8=11131400: r9=11131400+36000=11167400.
x. Add the eleventh number 3000 to r9=11167400: r10=11167400+3000=11170400.
xi. Add the twelfth number 60 to r10=11170400: r11=11170400+60=11170460.
xii. Add the thirteenth number 49000 to r11=11170460: r12=11170460+49000=11219460.
xiii. Add the fourteenth number 4200 to r12=11219460: r13=11219460+4200=11223660.
xiv. Add the fifteenth number 350 to r13=11223660: r14=11223660+350=11224010.
xv. Add the sixteenth number 7 to r14=11224010: r15=11224010+7=11224017.

6. So the answer is 11224017

Figure 28: An example of the generated answer on the multiplication task using ChatGPT with Skills-in-Context
prompting.

43

CommaQA-E

Question:

movie: Skob ; directed by: Haldron. movie: Riften ; directed by: Conanopeia. movie: Tetroxidine
; directed by: Conanopeia. movie: Sheepcrest ; directed by: Flumph. movie: Sheepcrest ; award:
Mariskenna. movie: Skob ; award: Jubeus. movie: Tetroxidine ; award: Handt. movie: Riften
; awarded: Handt. movie: Tetroxidine ; written by: Conanopeia. movie: Riften ; written by:
Conanopeia. movie: Riften ; writer: Flumph. movie: Tetroxidine ; written by: Haldron. movie:
Skob ; written by: Haldron. movie: Sheepcrest ; writer: Flumph. movie: Skob ; year: 1962. movie:
Tetroxidine ; release year: 1997. movie: Riften ; release year: 1972. movie: Sheepcrest ; release
year: 1997. Flumph was an actor in the movie Riften. Flumph acted in the movie Sheepcrest.
Conanopeia was an actor in the movie Riften. Conanopeia acted in the movie Tetroxidine.
Conanopeia acted in the movie Sheepcrest. Haldron acted in the movie Tetroxidine. Haldron
acted in the movie Skob. Haldron was born in the year 1939. Flumph was born in the year 1938.
Conanopeia was born in 1938. Haldron is from the country of Poquet. Conanopeia grew up in the
nation of Poquet. Flumph grew up in the nation of Stridery. Diaqum was awarded to Flumph.
Lidus was awarded to Conanopeia. Haldron won the Lidus award. Conanopeia was one of the
producers of the movie Tetroxidine. Flumph was one of the producers of the movie Sheepcrest.
Flumph produced the movie Skob with others. Haldron was one of the producers of the movie
Sheepcrest. Haldron was one of the producers of the movie Riften. Haldron produced the movie
Skob with others. Conanopeia was one of the producers of the movie Riften.

Q: What movies have the people from Poquet written?

Model Output:

1. Using Skill <decompose_qa>, decompose the question "What movies have the people from
Poquet written?" into the following sub-questions:

Q1: Who is from the country Poquet?
Q2: Which movies did [A1] write?

2. Using Skill <answer_simple_question>, answer Q1: Who is from the country Poquet?
Conanopeia grew up in the nation of Poquet. Haldron is from the country of Poquet.
A1=["Conanopeia", "Haldron"]
3. A1=["Conanopeia", "Haldron"]. Using Skill <answer_simple_question>, answer Q2: Which
movies did [A1] write?

i. A1[0]="Conanopeia", answer Q2.1: Which movies did Conanopeia write?
A2.1: movie: Tetroxidine ; written by: Conanopeia. movie: Riften ; written by:

Conanopeia. A2.1=["Tetroxidine", "Riften"]
ii. A1[1]="Haldron", answer Q2.2: Which movies did Haldron write?

A2.2: movie: Skob ; written by: Haldron. A2.2=["Skob"]
iii. So A2=A2.1+A2.2=["Tetroxidine", "Riften", "Skob"]

4. The answer is ["Tetroxidine", "Riften", "Skob"]

Figure 29: An example of the generated answer on the CommaQA-E task using ChatGPT with our Skills-in-Context
prompting.

44

DP

Question: Given a sequence of integers, find a subsequence with the highest sum, such that no
two numbers in the subsequence are adjacent in the original sequence.
A=[1, -5, 3, -4, -1, -1, 2, 2].

Model Output:

1. A=[1, -5, 3, -4, -1, -1, 2, 2] (A[0]=1,A[1]=-5,A[2]=3,A[3]=-4,A[4]=-1,A[5]=-1,A[6]=2,A[7]=2).
Using Skill <list_length>, len(A)=8. Construct a list D=[0,0,0,0,0,0,0,0] with the len(A)=8 zeros.

2. Update the last element in D. A[7]=2. Using Skill <find_max>, max(2,0)=2. D[7]=2 and
D=[0,0,0,0,0,0,0,2].

3. Update the second last element in D. A[7]=2, A[6]=2. Using Skill <find_max>,
max(2,2,0)=2. D[6]=2 and D=[0,0,0,0,0,0,2,2].

4. Starting from the third last (len(A)-2=6) element in D, update each element in D based on A=[1,
-5, 3, -4, -1, -1, 2, 2] (A[0]=1,A[1]=-5,A[2]=3,A[3]=-4, A[4]=-1,A[5]=-1,A[6]=2,A[7]=2):

i. D[7]=2, D[6]=2, A[5]=-1. Using Skill <add>, A[5]+D[7]=-1+2=1. Using Skill
<find_max>, max(D[6],A[5]+D[7],0)=max(2,1,0)=2. D[5]=2 and D=[0,0,0,0,0,2,2,2].

ii. D[6]=2, D[5]=2, A[4]=-1. Using Skill <add>, A[4]+D[6]=-1+2=1. Using Skill
<find_max>, max(D[5],A[4]+D[6],0)=max(2,1,0)=2. D[4]=2 and D=[0,0,0,0,2,2,2,2].

iii. D[5]=2, D[4]=2, A[3]=-4. Using Skill <add>, A[3]+D[5]=-4+2=-2. Using Skill
<find_max>, max(D[4],A[3]+D[5],0)=max(2,-2,0)=2. D[3]=2 and D=[0,0,0,2,2,2,2,2].

iv. D[4]=2, D[3]=2, A[2]=3. Using Skill <add>, A[2]+D[4]=3+2=5. Using Skill
<find_max>, max(D[3],A[2]+D[4],0)=max(2,5,0)=5. D[2]=5 and D=[0,0,5,2,2,2,2,2].

v. D[3]=2, D[2]=5, A[1]=-5. Using Skill <add>, A[1]+D[3]=-5+2=-3. Using Skill
<find_max>, max(D[2],A[1]+D[3],0)=max(5,-3,0)=5. D[1]=5 and D=[0,5,5,2,2,2,2,2].

vi. D[2]=5, D[1]=5, A[0]=1. Using Skill <add>, A[0]+D[2]=1+5=6. Using Skill
<find_max>, max(D[1],A[0]+D[2],0)=max(5,6,0)=6. D[0]=6 and D=[6,5,5,2,2,2,2,2].

5. D=[6,5,5,2,2,2,2,2]. The highest sum is D[0]=6.

Figure 30: An example of the generated answer on the dynamic programming task using ChatGPT with our
Skills-in-Context prompting.

45

GSM8K

Question: The girls are trying to raise money for a carnival. Kim raises $320 more than Alexandra,
who raises $430, and Maryam raises $400 more than Sarah, who raises $300. How much money,
in dollars, did they all raise in total?

Model Output:

1. Alexandra raises $430.

2. Kim raises $320 more than Alexandra. Using the Skill <add>, Kim raises $430+$320=$750.

3. Sarah raises $300.

4. Maryam raises $400 more than Sarah. Using the Skill <add>, Maryam raises $300+$400=$700.

5. Using the Skill <add>, they all raise $430+$750+$300+$700=$2180 in total.

6. The answer is 2180.

Figure 31: An example of the generated answer on the GSM8K task using ChatGPT with Skills-in-Context
prompting.

46

GSM8K

Question: It’s strawberry-picking time on Grandma Concetta’s farm. Tony can pick 6 quarts of
strawberries per hour, while Bobby picks one less quart of strawberries per hour than Tony. Kathy
can pick twice as many strawberries per hour as Bobby, and Ricky picks two fewer quarts of
strawberries per hour than does Kathy. In total, how many quarts of strawberries can Tony, Bobby,
Ricky, and Kathy pick per hour on Grandma Concetta’s farm?

Model Output:
1. Tony can pick 6 quarts of strawberries per hour.

2. Bobby picks one less quart of strawberries per hour than Tony. Using the Skill <sub>, Bobby
picks 6-1=5 quarts of strawberries per hour.

3. Kathy can pick twice as many strawberries per hour as Bobby. Using the Skill <mul>, Kathy
picks 5*2=10 quarts of strawberries per hour.

4. Ricky picks two fewer quarts of strawberries per hour than does Kathy. Using the
Skill <sub>, Ricky picks 10-2=8 quarts of strawberries per hour.

5. In total, Tony, Bobby, Ricky, and Kathy can pick 6+5+10+8 quarts of strawberries
per hour. Using the Skill <add_multiple_numbers> :

i. Add the first two numbers using Skill <add>: r1=6+5=11.
ii. Add the third number 10 to r1=11 using Skill <add>: r2=11+10=21.
iii. Add the fourth number 8 to r2=21 using Skill <add>: r3=21+8=29.

6. So the answer is 29.

Figure 32: An example of the generated answer on the GSM8K task with our Skills-in-Context prompting, where
<add_multiple_numbers> is included as a basic skill in the SKiC prompting context (see Table 20) but is not
demonstrated in any given exemplar to show how to use it. LLMs automatically figure out how to use such skills in
an innovative composition to solve an unseen complex problem.

47

GSM8K

Question: A merchant wants to make a choice of purchase between 2 purchase plans: jewelry
worth $5,000 or electronic gadgets worth $8,000. His financial advisor speculates that the jewelry
market will go up 2.5% while the electronic gadgets market will rise 1.2% within the same month.
If the merchant is looking to maximize profit at the end of this month by making a choice, how
much profit would this be?

Model Output:

1. If the merchant buys jewelry worth $5,000 and the jewelry market goes up 2.5%, using the Skill
<mul>, the value of the jewelry will increase by $5,000*2.5%= $125. Using Skill <add>, the
value of the jewelry will be $5,000+$125=$5125.

2. If the merchant buys electronic gadgets worth $8,000 and the electronic gadgets mar-
ket goes up 1.2%, using the Skill <mul>, the value of the electronic gadgets will increase
by $8,000*1.2%= $96. Using Skill <add>, the value of the electronic gadgets will be
$8,000+$96=$8096.

3. The merchant wants to maximize profit. Using the Skill <sub>, the profit from buy-
ing jewelry will be $5125-$5000=$125. The profit from buying electronic gadgets will be
$8096-$8000=$96.

4. Using the Skill <compare> , $125>$96, so the merchant should buy jewelry to maxi-
mize profit. The profit will be $125.

5. The answer is 125.

Figure 33: An example of the generated answer on the GSM8K task with our Skills-in-Context prompting, where
the skill <compare> are neither included in the SKiC prompting context (see Table 20) nor used in any given
exemplars. LLMs utilize the skills pre-existing in their pre-trained knowledge to solve the problem.

48

GSM8K

Question: Mr. Jackson’s fourth-grade class has 27 students. He wants to give each student 2 glue
sticks. The glue sticks come in packs of 8. How many packs will Mr. Jackson need to buy so every
student can have 2 glue sticks, assuming he can only buy whole packs and he expects to have some
extra glue sticks left over?

Model Output:

1. Mr. Jackson’s fourth-grade class has 27 students and he wants to give each student 2 glue sticks.
Using the Skill <mul>, Mr. Jackson needs 27*2=54 glue sticks.

2. The glue sticks come in packs of 8. Using the Skill <div>, Mr. Jackson needs
54/8=6.75 packs of glue sticks.

3. Mr. Jackson can only buy whole packs. Using the Skill <round> , Mr. Jackson
needs to buy 7 packs of glue sticks.

4. The answer is 7.

Figure 34: An example of the generated answer on the GSM8K task with our Skills-in-Context prompting, where
the skill <round> are neither included in the original SKiC prompting context (see Table 20) nor used in any given
exemplars. LLMs utilize the skills pre-existing in their pre-trained knowledge to solve the problem.

49

MATH

Question: What is the smallest possible average of four distinct positive even integers?

Model Output:

1. The smallest possible average of four distinct positive even integers is achieved when the four
integers are the smallest possible.

2. The smallest four distinct positive even integers are 2, 4, 6, and 8.

3. Using the Skill <Average> , the average of these four numbers is (2+4+6+8)/4=20/4=5.

4. The answer is 5.

Figure 35: An example of the generated answer on the MATH task with our Skills-in-Context prompting, where the
skill <Average> are neither included in the original SKiC prompting context (see Table 22) nor used in any given
exemplars. LLMs(GPT4) utilize the skills pre-existing in their pre-trained knowledge to solve the problem.

50

MATH

Question: How many numbers are in the list 2008, 2003, 1998, . . . , 8, 3?

Model Output:

1. The list starts at 2008 and ends at 3, and the difference between consecutive terms is 5.

2. Using the Skill <Arithmetic Sequence> , the n-th term of an arithmetic sequence can
be found using the formula an = a1 + (n− 1)d, where an is the nth term, a1 is the first term, n is
the term number, and d is the common difference.

3. Substitute an with 3, a1 with 2008, and d with −5 into the formula, 3 = 2008 + (n− 1)(−5).

4. Using the Skill <Solve Equation>, move 2008 to the other side, (n − 1)(−5) = 3 − 2008.
Using the Skill <Sub>, (n− 1)(−5) = −2005.

5. Using the Skill <Solve Equation>, move ∗(−5) to the other side, n− 1 = −2005/− 5. Using
the Skill <Div>, n− 1 = 401.

6. Using the Skill <Solve Equation>, move −1 to the other side, n = 401 + 1. Using
the Skill <Add>, n = 402.

7. The answer is 402.

Figure 36: An example of the generated answer on the MATH task with our Skills-in-Context prompting, where
the skill <Arithmetic Sequence> are neither included in the original SKiC prompting context (see Table 22) nor
used in any given exemplars. LLMs(GPT4) utilize the skills pre-existing in their pre-trained knowledge to solve the
problem.

51

MATH

Question: Suppose P is the point (5, 3) and Q is the point (−3, 6). What is the midpoint of PQ?

Model Output:

1. Using the Skill <Midpoint Formula> , the midpoint of two points (x1, y1) and (x2, y2) is given
by

(
x1+x2

2 , y1+y2
2

)
.

2. For points P (5, 3) and Q(−3, 6), the midpoint is
(
5+(−3)

2 , 3+6
2

)
.

3. Using the Skill <Add> and <Div>, the midpoint is
(
2
2 ,

9
2

)
= (1, 4.5).

4. The answer is (1, 4.5).

Figure 37: An example of the generated answer on the MATH task with our Skills-in-Context prompting, where the
skill <Midpoint Formula> are neither included in the original SKiC prompting context (see Table 22) nor used
in any given exemplars. LLMs(GPT4) utilize the skills pre-existing in their pre-trained knowledge to solve the
problem.

MATH

Question: If a and b are vectors such that ∥a∥ = 2, ∥b∥ = 7, and a× b =

3
2
6

, then find the

smallest possible angle between a and b.

Model Output:

1. Using the Skill <Cross Product> , the magnitude of the cross product of two vectors is equal to
the product of the magnitudes of the vectors and the sine of the angle between them. So, we have
∥a× b∥ = ∥a∥∥b∥ sin θ, where θ is the angle between a and b.

2. Using the Skill <Vector Magnitude> , the magnitude of the cross product ∥a × b∥ is√
32 + 22 + 62 =

√
49 = 7.

3. Substituting the given values, we get 7 = 2 ∗ 7 ∗ sin θ. Using the Skill <Div> and
<Mul>, we get sin θ = 7/(2 ∗ 7) = 1/2.

4. Using the Skill <Inverse Trigonometric Functions> , the angle whose sine is 1/2 is 30
degrees or 150 degrees. But we want the smallest possible angle, so θ = 30 degrees.

5. The answer is 30.

Figure 38: An example of the generated answer on the MATH task with our Skills-in-Context prompting, where
the skill <Cross Product>, <Vector Magnitude>,<Inverse Trigonometric Functions> are neither included in the
original SKiC prompting context (see Table 22) nor used in any given exemplars. LLMs(GPT4) utilize the skills
pre-existing in their pre-trained knowledge to solve the problem.

52

Figure 39: Examples of the generated answers from Decomp prompting and our SKiC prompting, respectively. The
correct answer should be “Myristorrhoid, Chimpwurst, Geissant, Riften”. Errors (highlighted in red) in early stages
in Decomp propagate to final incorrect answers while our SKiC avoids such errors (highlighted in green).

53

	Introduction
	SKiC: Elicit Compositionality with In-Context Skills and Grounding
	Analysis of Compositional Abilities
	Near-Perfect Systematic Generalization
	Enhanced Complex Reasoning
	Synergy between Skills and Composition
	Error Analysis

	Beyond In-Context Learning
	Related Work
	Conclusion
	Limitations
	Appendix: Comparison to Previous Prompting Strategies
	Appendix: More Details about the Construction of Skills
	Appendix: Comparison to Tool-using Works
	Appendix: Experimental Setup
	Systematic Generalization: Composition over In-Context Skills: Easy-to-Hard Generalization
	Symbolic Manipulation: Last Letters
	Arithmetic Operation
	Long-Context Question Answering: CommaQA-E
	Dynamic Programming

	Enhanced Complex Reasoning: Generalization Beyond In-Context Skills: Complex Reasoning
	GSM8K
	MATH

	Appendix: Detailed Results for Last Leter, Addition, Multiplication, Commaqa-E and DP
	Appendix: The Performance of SKiC Prompting using LLAMA2
	Appendix: Different Sources of the In-context Skills
	Appendix: Ablation Study on Examples in SKiC Prompts
	Appendix: Generalization to Different Tasks
	Appendix: Different Components in SKiC
	Appendix: Applying SKiC to Semantic Parsing (SCAN)
	Appendix: Can LLMs discover skills for solving general NLU tasks?
	SKiC Helps Instruction Tuning
	Appendix: Generation Examples
	Appendix: the Most Frequently Used Skills by GPT-4 for Solving MATH Benchmark

