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ABSTRACT

3D morphable face models (3DMMs) methods cannot accurately
estimate facial expressions and geometric details. We propose a
framework for regressing 3D facial expressions and geometric de-
tails to address this problem. First, we propose a parameter re-
finement module to learn rich feature representations. Second, a
novel feature consistency loss during training is designed, which
exploits the powerful representation ability of CLIP (Contrastive-
Language-Image-Pretraining) to capture facial expressions and geo-
metric details. Finally, we leverage text-guided expression-specific
transfer for 3D face reconstruction. Our method achieves significant
performance in terms of reconstructed expressions and geometric
details.

Index Terms: Human-centered computing—Computer vision and
graphics—3D face reconstruction

1 INTRODUCTION

It is challenging to recover realistic 3D face shapes from single 2D
images. Since the paired 3D data is not readily available, some
unsupervised or weakly supervised learning approaches [1, 2] for
the training process of 3D face reconstruction have obtained accept-
able results. However, these methods can only reconstruct coarse
geometry and texture information and cannot capture the geometric
details. Some methods [3, 4] can recover the detailed facial shape
via displacement map, but these methods still cannot accurately
represent facial geometric details.

This paper proposes a method to recover realistic facial expres-
sions and geometric details. Unlike previous work, we utilize the
CLIP model as a supervision signal to encourage the similarity of
geometric details between input and rendered images during training.
Meanwhile, we propose a parameter refinement module to accelerate
the convergence speed of the model during the training. We utilize
a parallel transformer encoders and depthwise separable residual
blocks to learn global semantic and local detail features. In addition,
we are the first to implement expression transfer for 3D faces using
expressive text. In contrast to DECA, which utilizes reference im-
ages for expression transfer, we employ the text-guided CLIP model
to reconstruct 3D faces with specific expressions and maintain the
consistency of face identities.

2 METHOD
2.1 Parameter Refinement Module

Given a 2D image [ as input. First, we use a backbone to extract
the coarse feature representation, which can be defined as ¢ = R([).
Then we employ parallel depthwise separable residual blocks and
transformer encoders to learn local high-frequency and global se-
mantic features. Local detail features and global semantic features
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Figure 1: The framework of our method consists of a parameter refine-
ment model, a Feature Consistency Loss, and 3D Facial Expression
Transfer Module. The parameter refinement model refiners to obtain
rich features. The feature consistency loss utilizes the CLIP model
to recover detailed 3D face shapes. 3D Facial Expression Transfer
module adopt the text-driven of CLIP model to 3D face expression
transfer.

are fused into rich feature representations. It can be defined as
v =cat(T(c') +R(c")). The depthwise separable residual block
can effectively learn the local details. The transformer encoders
can learn global semantic features from coarse feature representa-
tions. Enrich feature representation v using a classifier to obtain
low-dimensional parametric codes. The parameter code consists of
shape code o € R30, expression code B € R%, texture code r € R30,
pose code p € RS, and lighting code I € SO(2).

2.2 3D Facial Expression Transfer

‘We aim to learn an additional mapper to achieve expression transfer
while training 3D faces. Given a source image /, a text st describing
the expression is used as input. First, we use a pretrained backbone
network to extract feature representation w from the source image.
Then we employ a mapper to predict the feature representation of
expression changes Aw. w' = w + Aw. The mapper is composed
of 3 transformer block, and the operation of attributes is realized
by mapping the 3 transformer block. The expression described by
the text uses the text encoder of the CLIP model to obtain a 512-
dimensional expression feature vector. The rendered image uses
the image encoder of the CLIP model to obtain 512-dimensional
face features. Finally, the text manipulation loss is used to bias
the expression of the facial features towards the expression feature.
Specifically, we use the expression feature representing the textual
expression to control the mapper to manipulate the expression of the
source image.

2.3 Loss Function
2.3.1 Feature Consistency Loss

we present the feature consistency loss to reconstruct accurate 3D
face shapes. The feature consistency loss includes both geometric
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Figure 2: Comparison with recent methods. Our method exprecsses
the sentiment of the input image better than other methods.

feature consistency and semantic feature consistency. We utilize
CLIP’s pretrained image encoder model to extract features from in-
put and rendered images without needing further training. We adopt
geometric feature consistency to measure the geometric similarity
of the input image and the rendered image. We define the geometric
feature consistency loss as:

3
Lgeametric = Z wi ”CLIPI(I) 7CLIPI(IY)”27 (1

=2

where CLIP; is layers 2 and 3 of the RN50x4 CLIP model. w; is the
weight of CLIP;, w; = {1,1/2}. I, I, are the input image and the
rendered image, respectively. ||-||, is Ly paradigm.

The semantic feature consistency computes the cosine similarity
distance between the input and the rendered images’ features. It can
be defined as:

Lyemantic = 1 — cos(CLIP(I),CLIP(I,)), (2)
where CLIP is the layer of the last layer of the ViT-B/32 CLIP
model, /, I, are the input image and the rendered image, respectively.
cos(+)is the cosine distance.

Finally, the feature consistency loss can be defined as:

3

Ly= Lgeometric + Lsemantic
2.3.2 Text Manipulation Loss

To perform corresponding expression operations according to the
text prompts of expressions, we use CLIP to design the following
text manipulation loss:

Lclip(st) =1 —COS(Ei(I,«),E,(SI)), (C))

where cos(.) means cosine similarity, E; represents the image en-
coder of CLIP, E; represents the text encoder of CLIP, the embedding
of a given expression description text st.

Other evaluation indicators can be seen in [2]

2.4 Implementation Details

Our method is implemented in Pytorch and uses Adam to optimize
the objective function. We train 200 batches on RTX 3060 GPU
with batch size 16. The initial learning rate is set to 2 x 10~%, and
the learning rate decay is performed every 25 batches with a decay
rate of 0.75. For the loss weight of the objective function, we set it
10 Apioro = 1, Aia = 2, Ay = LT x 1073 Ayeg = 1 x 1074, Ay = 2.
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Figure 3: Our method utilizes text-driven to generate rendered images
of different expressions.

3 RESULTS

To qualitatively evaluate the effectiveness of our method in recon-
structing expression details, we compare our approach with recent
3D face reconstructions. As shown in Fig.2, The 3DDFA-V2 method
cannot learn accurate expressions, resulting in some expression con-
fusion. The results of Deng et al. and DAD methods cannot recover
the facial expression details. Although the results of the DECA
method can recover the facial expression details, the conveyed ex-
pressions are not realistic enough. The results generated by our
method can recover the geometric details of the expressions, and the
generated expressions are sufficiently realistic.

In Fig.3, we leverage text to drive expression transfer for 3D faces.
It can be seen from the generated results that Our method realizes
the transfer of expressions. We did not use feature consistency loss
to learn details in the training process of expression transfer, which
makes our results not outstanding in detail. Moreover, we use the
textured skin tone of the model, which makes our results slightly
different from natural images. However, these are not the most
important because we aim to learn the transfer of expressions.

4 CONCLUSIONS

We present a method that learns the geometric details from many
unconstrained face images and reconstructs 3D face models with
slightly different expressions using the text. First, we propose a
parameter refinement module to learn rich feature representations.
Second, a novel feature consistency loss is designed, which uti-
lizes the powerful representational CLIP model to capture facial
expressions and geometric details. The feature consistency loss can
effectively recover the local geometric details. Finally, we use the
CLIP model’s ability to prompt text to compare and learn the prompt
text and the rendered image and reconstruct a 3D face model of the
expression indicated by the text.
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