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Abstract

Multimodal datasets are a critical component in recent breakthroughs such as CLIP,
Stable Diffusion and GPT-4, yet their design does not receive the same research
attention as model architectures or training algorithms. To address this shortcoming
in the machine learning ecosystem, we introduce DATACOMP, a testbed for dataset
experiments centered around a new candidate pool of 12.8 billion image-text
pairs from Common Crawl. Participants in our benchmark design new filtering
techniques or curate new data sources and then evaluate their new dataset by
running our standardized CLIP training code and testing the resulting model on 38
downstream test sets. Our benchmark consists of multiple compute scales spanning
four orders of magnitude, which enables the study of scaling trends and makes
the benchmark accessible to researchers with varying resources. Our baseline
experiments show that the DATACOMP workflow leads to better training sets. Our
best baseline, DATACOMP-1B, enables training a CLIP ViT-L/14 from scratch to
79.2% zero-shot accuracy on ImageNet, outperforming OpenAI’s CLIP ViT-L/14
by 3.7 percentage points while using the same training procedure and compute. We
release DATACOMP and all accompanying code at www.datacomp.ai.

1 Introduction

Recent advances in multimodal learning such as CLIP [111], DALL-E [115, 116], Stable
Diffusion [123], Flamingo [8], and GPT-4 [103] offer unprecedented generalization capabilities
in zero-shot classification, image generation, and in-context learning. While these advances use
different algorithmic techniques, e.g., contrastive learning, diffusion, or auto-regressive modeling,
they all rest on a common foundation: large datasets containing paired image-text examples. For
instance, CLIP’s training set contains 400 million image-text pairs, and Stable Diffusion was trained
on the two billion examples from LAION-2B [129]. This new generation of image-text datasets is
1,000 times larger than previous datasets such as ImageNet, which contains 1.2M images [37, 126].

Despite the central role of image-text datasets, little is known about them. Many state-of-the-art
datasets are proprietary, and even for public datasets such as LAION-2B [129], it is unclear how
design choices such as the data source or filtering techniques affect the resulting models. While there
are thousands of ablation studies for algorithmic design choices (loss function, model architecture,
etc.), datasets are often treated as monolithic artifacts without detailed investigation. Moreover,

*Equal contribution, randomly ordered. ~Correspondence to contact@datacomp.ai. !University
of Washington 2Columbia University 3Tel Aviv University *Apple *UT Austin SLAION 7AI2 ®Juelich
Supercomputing Center, Research Center Juelich ?University of Tllinois Urbana-Champaign '°Graz University
of Technology '*Hebrew University >?Google Research *®Snorkel Al

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.


www.datacomp.ai
contact@datacomp.ai

Table 1: Zero-shot performance of CLIP models trained on different datasets. DATACOMP-1B,
assembled with a simple filtering procedure on image-text pairs from Common Crawl, leads to a
model with higher accuracy than previous results while using the same number of multiply-accumulate
operations (MACs) or less during training. See Section 3.5 for details on the evaluation datasets.

# samples Train compute ImageNet

Dataset Dataset size Architecture (MACs) accuracy
OpenAI’s WIT [111] 0.4B 13B ViT-L/14 1.1 x 102! 75.5
LAION-400M [128, 28] 0.4B 13B ViT-L/14 1.1 x 102! 72.8
LAION-2B [129, 28] 2.3B 13B ViT-L/14 1.1 x 102! 73.1
LAION-2B [129, 28] 2.3B 34B ViT-H/14 6.5 x 102! 78.0
LAION-2B [129, 28] 2.3B 34B ViT-g/14 9.9 x 102! 78.5
DATACOMP-1B (ours) 1.4B 13B ViT-L/14 1.1 x 1021 79.2

datasets currently lack the benchmark-driven development process that has enabled a steady stream
of improvements on the model side and isolates data enhancements from changes to the model. These
issues impede further progress in multimodal learning, as evidenced by recent work showing that
public datasets currently do not match the scaling behavior of proprietary alternatives [28].

In this paper, we take a step towards a more rigorous dataset development process. Our first and central
contribution is DATACOMP, a new benchmark for multimodal dataset design. DATACOMP flips
the traditional benchmarking paradigm in machine learning where the dataset is fixed and researchers
propose new training algorithms. Instead, we hold the entire training code and computational budget
constant so that participants innovate by proposing new training sets. To evaluate the quality of a
training set, we score the resulting model with a testbed of 38 classification and retrieval tasks such as
ImageNet [37], ImageNetV2 [121], DTD [30], EuroSAT [63], SUN-397 [146], and MSCOCO [26].

DATACOMP focuses on two key challenges that arise when assembling large training datasets: what
data sources to train on, and how to filter a given data source. Each challenge corresponds to one
track in our benchmark. To facilitate the filtering track, our second contribution is COMMONPOOL,
a dataset of 12.8B image-text pairs collected from Common Crawl and currently the largest public
image-text dataset. We release CommonPool as an index of image url-text pairs under a CC-BY-4.0
license, and apply content checks in its construction to remove unsafe or unwanted content. In the
filtering track, the goal of participants is to find the best subset of COMMONPOOL to train on. In the
second track, Bring Your Own Data (BYOD), participants may leverage any data source, as long as
it does not overlap with our evaluation testbed.

Our third contribution is an investigation of scaling trends for dataset design. In particular,
DATACOMP contains four scales, where we vary the training budget and the candidate pool size from
12.8M to 12.8B samples (see Table 2). Expressed in GPU hours, the cost of a single training run
ranges from 4 to 40,000 GPU hours on the A100 cluster we used for development. The different
scales enable researchers with different resources to participate in our benchmark. Moreover, our
results show that the ranking of filtering approaches is largely consistent across scale.

Our fourth contribution is over three hundred baseline experiments, including techniques such
as querying captions for relevant keywords, filtering based on image embeddings, and applying
a threshold on CLIP scores. A key result from our baselines experiments is that smaller, more
stringently filtered datasets can lead to models that generalize better than larger datasets coming from
the same pool. At the 12.8B scale, our best filtering baseline increases ImageNet zero-shot accuracy
by 6.9 percentage points (pp) relative to the unfiltered pool (see Table 3). For the BYOD track, our
initial experiments show that 109M additional data points (less than 1% of the 12.8B pool) improve
the CLIP-filtered subsets of COMMONPOOL by up to 1.2 pp ImageNet accuracy (see Table 18).

Finally, our fifth contribution is DATACOMP-1B, a new state-of-the-art multimodal dataset. We
obtain DATACOMP-1B by combining our two most promising filtering baselines. DATACOMP-1B
enables training a CLIP ViT-L/14 model to an ImageNet zero-shot accuracy of 79.2% (see Table 1),
corresponding to a 9 x computational cost reduction when compared to a larger CLIP ViT-g/14 model
trained on LAION-2B for about 3x longer. Moreover, our model outperforms OpenAlI’s original
CLIP ViT-L/14 by 3.7 percentage points, while using the same compute budget.

To make DATACOMP a shared environment for controlled dataset experiments, we publicly release
our candidate pool url index, our tooling for assembling these pools, our filtering baselines, and our
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Figure 1: DATACOMP participant workflow. A) Choose a scale based on resource constraints. B)
Design a dataset, in either the filtering or BYOD track. C) Train a CLIP model on the designed
dataset using a fixed architecture and hyperparameters (Section 3.4). D) Evaluate the trained model
on a suite of diverse downstream tasks (Section 3.5).

code for training and evaluating models at www.datacomp.ai. We believe that our infrastructure
will help put research on dataset design on rigorous empirical foundations, draw attention to this
understudied research area, and lead to the next generation of multimodal datasets.

2 Related Work
We review the most closely related work and include additional related work in Appendix C.

The effects of data curation. Classical work considers dataset cleaning and outlier removal [74, 152,
124, 125] to discard samples that may lead to undesirable model bias. A related line of work develops
coreset selection algorithms [61, 7, 46, 11, 94, 145, 32], which aim to select data subsets that lead to
the same performance as training on the entire dataset. These techniques appear to scale poorly to
larger data regimes [51, 6]. More recent efforts in subset selection often operate on already curated
datasets [98, 141, 130, 16, 33, 106] (e.g., CIFAR-10, ImageNet) or on smaller data regimes (e.g.,
YFCC-15M [111, 140]). These settings often do not reflect newer training paradigms that involve (1)
noisy image-text pairs instead of category labeled images and (2) large scale datasets (e.g., billions
of samples). While data-centric investigations have led to community competitions like DCBENCH
[43] and DATAPERF [97], existing benchmarks have likewise operated at small data scales [100]
compared to datasets like LAION-2B [129], which contains over two billion images. DATACOMP
bridges this gap by aligning data-centric investigation with large scale image-text training.

There has also been renewed interest in dataset pruning and deduplication. Sorscher et al. [135] show
that data pruning can improve traditional scaling trends on ImageNet, but do not consider image-text
training or larger datasets. Raffel et al. [113] remove sentence redundancies when creating the C4
corpus. Subsequent work further demonstrated the benefits of deduplication for better language
modeling [90]. Radenovic et al. [110] introduce CAT filtering for image-text datasets—a rule-based
system to retain high quality samples. Abbas et al. [6] propose SemDeDup, which starts with the
CAT-filtered LAION-440M subset, further employing clustering to remove semantic duplicates.
DATACOMP facilitates data-centric investigation at an even larger scale (i.e., 12.8B sample scale) and
provides a common experimental setting for fair comparison amongst dataset creation algorithms.

Large-scale multimodal datasets. Datasets have been instrumental to building multimodal models
like CLIP [111], Flamingo [8], Stable Diffusion [123], DALL-E [115, 116] and GPT-4 [103]. These
methods succeeded by training on large, heterogeneous datasets rather than solely through advanced
modelling techniques. For example, OpenAI’s CLIP trains on 400M image-text pairs from the web,
roughly 300x the size of ImageNet [37]. Prior work on scaling image-text datasets also provides
promising trends with respect to zero-shot model performance [73, 107]. Additional large scale
datasets like FILIP-300M [149], FLD-900M [153], and PalLI-10B [25] were constructed to train
multimodal models. However, many datasets used to train such models (including the dataset for
OpenAl’s CLIP) are proprietary, making it hard to conduct data-centric investigations.

Even for public image-text datasets like SBU [104], Flickr30k [151], MS-COCO [26], TaiSu [92],
Conceptual Captions [131], CC12M [24], RedCaps [38], WIT [136], Shutterstock [101], YFCC-
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Table 2: Experimental configurations, with compute in multiply-accumulate operations (MACs).

Scale Model Train compute (MACs) Pool size and # samples seen
small ViT-B/32 9.5 x 10*° 12.8M
medium  ViT-B/32 9.5 x 107 128M
large ViT-B/16 2.6 x 10*° 1.28B
xlarge  ViT-L/14 1.1 x 10*! 12.8B

100M [140], COYO-700M [20], LAION-400M [128], or LAION-2B [129] little is known about what
constitutes a good image-text dataset. Preliminary analysis suggests that different image-text data
sources lead to CLIP models with different properties [101]. However, previous work is limited to
smaller scale data (10-15M examples). Birhane et al. [15] examine LAION-400M and find NSFW
imagery and racial slurs, centering the dangers in web-scale multimodal datasets. To combat toxicity,
we preprocess our pool to remove NSFW content and blur human faces detected in images. For more
details on our safety preprocessing see Section 3.2, Appendices E and G.

3 The DATACOMP benchmark

DATACOMP is meant to facilitate data-centric experimentation. While traditional benchmarks
emphasize model design, DATACOMP is centered around dataset development, where the resulting
datasets can be used to train high accuracy models. We focus on large image-text datasets and
quantify a dataset submission by training a CLIP model on it from scratch [111] and evaluating on 38
downstream image classification and retrieval tasks. We additionally have three secret test sets, which
will be released after a year, to guard against overfitting. To facilitate such investigations, we provide
a candidate pool of uncurated image-text pairs sourced from the public internet. Our benchmark offers
two tracks: one where participants must filter samples from the pools we provide, and another where
participants can use external data. Moreover, DATACOMP is structured to accommodate participants
with diverse levels of computational resources: each track is broken down into four scales with
varying compute requirements. We now discuss high-level design decisions, construction of a 12.8B
image-text data pool to facilitate the competition, benchmark tracks, model training, and evaluation.

3.1 Competition design

Overview. In many areas of machine learning, larger datasets lead to better performing models [87,
79,73, 107, 66, 28, 19, 111, 112]. Hence comparing only datasets with the same size is a natural
starting point. However, this approach is flawed as controlling the dataset size ignores critical curation
constraints: candidate pool size (i.e., number of image-text pairs to harvest) and training compute. For
instance, assembling a dataset like LAION-2B consists of identifying data sources (e.g., Common
Crawl or Reddit) and filtering the data source. Notably, the final dataset size is a design choice and is
only upper-bounded by the data sources. Hence, the true data constraint is the size of the reservoir of
samples: candidate pool to be filtered. To make DATACOMP a realistic benchmark, we therefore fix
the candidate pool in the filtering track, but give participants control over the training set size.

Compute cost is another relevant constraint. To put datasets of different size on equal footing, we
specify the total number of training samples seen. Consider the 12.8B compute scale and filtered
datasets A and B, with 6.4B and 3.2B image-text pairs respectively. At this scale, we train by making
two passes over A, while making four passes over B. A key result from our experiments is that
smaller, more stringently filtered datasets can lead to models that generalize better.

Competition tracks. Two key procedures in assembling a training dataset are filtering a data source
[128, 129, 20] and aggregating data sources [36, 37]. To reflect this structure, DATACOMP has two
tracks: filtering, where participants select a subset of the samples from COMMONPOOL, and Bring
Your Own Data (BYOD), where participants can use any source of data. Key decisions for each tracks
are described in Sections 3.2 and 3.3, respectively. For full competition track rules see Appendix A.

Competition compute scales. To facilitate study of scaling trends and accommodate participants
with various computational resources, we structure DATACOMP using four scales of compute: small,
medium, large and xlarge. Each new scale increases the number of samples seen during training by



10x (from 12.8M to 12.8B samples seen), and the pool we provide by the same factor (from 12.8M
samples to 12.8B samples). Table 2 gives the experimental configuration used for each scale. For the
small scale, our runs took 4 hours on an A100 GPU, and for the xlarge scale 81 hours on 512 GPUs.

3.2 CoOMMONPOOL generation, for the filtering track

We construct a large-scale pool of image-text pairs, COMMONPOOL, from Common Crawl [3].
CommonPool is distributed as an image url-text pair index under a CC-BY-4.0 license. Our pool
construction pipeline has four steps: url extraction and data download, NSFW detection, evaluation
set deduplication, and face blurring. We additionally provide per sample metadata (e.g., CLIP
features). Starting from the xlarge COMMONPOOL, we take successive random subsets to create
large, medium, and small COMMONPOOL (e.g., medium is a subset of large).

Extracting urls and dowloading data. We first use cc2dataset [1], which utilizes Apache
Spark [155], to extract pairs of image urls and nonempty alt-text from all Common Crawl snapshots
from 2014 to 2022. We then deduplicate the url-text pairs and randomly shuffle. This step results in
~88B possible samples. Not all samples are downloadable; other samples are not suitable due to
NSFW content or overlap with our evaluation sets. We attempt to download ~40B samples using
img2dataset [5] resulting in ~16.8B image-text pairs. For more details, see Appendix D.

Safety preprocessing. Since Common Crawl is a snapshot of the internet, we require strict
preprocessing to remove unsafe content. We use Detoxify [60] to prune samples that contain
unsafe text (e.g., obscene, sexually explicit, or threatening language). We also discard samples with
explicit visual content. To do so, we train a classifier on CLIP ViT-L/14 [111] features, using the
NSFW dataset used in LAION-5B [129]. We validate our classifier against the Google commercial
image safety API. See Appendix E for details. Around 19% of image-text pairs are considered NSFW,
taking the pool of ~16.8B downloads to ~13.6B samples.

Evaluation set deduplication. To prevent accidental overfitting to certain test sets in our evaluation
suite, we perform a thorough near-duplicate removal between the candidate pool and our evaluation
sets, using a state-of-the-art image deduplication model [150]. Appendix F contains additional details.
The model flags ~3% of the 16.8B images as near-duplicates, reducing the ~13.6B pool to ~13.1B
samples. From here we select a random subset to get the xlarge pool of 12.8B samples.

Face detection & blurring. To protect the privacy of individuals, we detect and blur faces from
images in our pool using a face detector [53]. As observed by Yang et al. [148], obfuscating faces
has little impact on model performance, as we also observe in our experiments (Appendix G).

Pool metadata. To bootstrap participants we distribute metadata for each sample in COMMONPOOL
(e.g., image url, alt-text, original image resolution, CLIP features, and CLIP similarity scores).
Following Carlini et al. [22], we release SHA256 hashes for each image to guard against data
poisoning in subsequent COMMONPOOL downloads. For additional details see Appendix H. We
open-source our metadata processing pipeline as dataset2metadata [4].

3.3 The bring your own data (BYOD) track

While COMMONPOOL can be used to study different filtering techniques, state-of-the-art models
often train on data from different sources. For instance, the Flamingo model [8] uses both multimodal
massive web (M3W) and ALIGN datasets [73]. To facilitate non-proprietary research on curating
data from many sources, we instantiate a separate DATACOMP track to allow participants to combine
multiple data streams. For example, participants could construct a training set from CC12M [24],
YFCCI100M [140], and data sources they label themselves. In Section 4.2 and Appendix P.2 we
describe our exploration using existing public, image-text datasets. These datasets are acquired from
their respective sources and are not re-release as part of DATACOMP.

3.4 Training

We create a common experimental setting that enables comparable experiments by fixing the training
procedure. We closely follow the CLIP training recipe proposed by Radford et al. [111]: training



models from scratch with a contrastive objective over images and captions. Given a set of image-
caption pairs, we train an image encoder and a text encoder such that the similarity between the
representations of images and their corresponding text is maximized relative to unaligned pairs.'
For each scale, we fix the model architecture and hyperparameters (see Table 2). We pick Vision
Transformers (ViTs) [39] as the image encoder, considering the better scaling trends observed by
Radford et al. [111] compared to ResNets [62]. Models are trained for a fixed number of steps
determined by the scale (Table 2), using the OpenCLIP repository [69]. See Appendix N for details.

3.5 Evaluation

We evaluate on a suite of 38 image classification and retrieval tasks. We also study two additional
fairness tasks, detailed in Section 5 and Appendix Q. As discussed in Section 3.2, we remove test set
images from DATACOMP to avoid contamination. Image classification datasets range from satellite
imagery recognition to classifying metastatic tissues. In total we have (with some overlap): 22 of the
datasets evaluated in Radford et al. [111], 6 ImageNet distribution shifts (i.e., ImageNet-Sketch [143],
ImageNet-V2 [121], ImageNet-A [65], ImageNet-O [65], ImageNet-R [64], and ObjectNet [13]),
13 datasets from VTAB [156], and 3 datasets from WILDS [83, 127]. Retrieval datasets include
Flickr30k [151], MSCOCO [26], and the WinoGAViL commonsense association task [17]. To
aggregate results over all evaluation tasks, we average the preferred metric for each task.

DATACOMP adopts a zero-shot evaluation protocol: models are tested without training on the
evaluation tasks. This approach is computationally efficient and measures a model’s ability to perform
well without any additional training. We find a strong rank correlation (>0.99) between performance
in linear probe zero-shot settings (Appendix Figure 16). Additional details are in Appendix O.

4 Baselines

4.1 Filtering baselines

We study six simple filtering methods for the filtering track; see Appendix P.1 for further details.

No filtering. We simply use the entire pool as the subset, without any filtering. Since each pool size
is equal to the sample budget, training consists of one pass over the data.

Random subsets. To isolate the effects of increasing the compute budget from increasing the dataset
size, we form subsets consisting of 1%, 10%, 25%, 50% and 75% of the pool chosen at random.

Basic filtering. We consider many simple filtering operations inspired by Schuhmann et al. [128]
and Byeon et al. [20]: filtering by language (English captions, using either fasttext [77] or cld3 [2]);
filtering by caption length (over two words and five characters); and filtering by image size (smaller
dimension above 200 pixels and aspect ratio below three). We also experiment with combining
language and caption length filtering and combining language, caption length, image size fitering.
Unless otherwise specified, “basic” refers fasttext English, caption length, and image size filtering.

CLIP score and LAION filtering. We experiment with CLIP score filtering (also employed by
LAION), where we take only examples having cosine similarity scores between CLIP image and text
embeddings that exceed a pre-defined threshold. We investigate a range of thresholds and two OpenAl
CLIP models for computing the scores: the ViT-B/32 model (as in LAION) and the larger ViT-L/14.
We also combine CLIP score thresholds and cld3 English filtering to reproduce the LAION-2B
filtering scheme. Table 16 in Appendix P.1 summarizes the different CLIP score configurations.

Text-based filtering. We select examples that contain text overlapping with ImageNet class names,
which serve as a proxy for relevance to downstream tasks. Specifically, we select English captions
(according to fasttext) that contain words from ImageNet-21K or ImageNet-1K [37] class synsets.

"More precisely, given a batch of data {(x1,%1), ..., (x5, ys)} with images « and captions y, we train
the image encoder g and text encoder v with the loss £ = LS°F g 4 LS™B gi \where
2 1= EJ:I oij 2 1= Z]:l oji

oi; = exp (g(zi), h(y;)). We also use a learnable temperature parameter as in Radford et al. [111].




Table 3: Zero-shot performance for select baselines in the filtering track. On all scales, filtering
strategies lead to better performance than using the entire, unfiltered pool. The intersection between
imaged-based and CLIP score strategies performs well on most tasks and scales. For all metrics,
higher is better (see Appendix O for details). N denotes the intersection of filtering strategies.

Dataset Samples ImageNet Average over

Scale Filtering strategy size seen ImageNet dist. shifts VTAB Retrieval 38 datasets
No filtering 12.8M 12.8M 0.025 0.033 0.145 0.114 0.132
Basic filtering 3M 12.8M 0.038 0.043 0.150 0.118 0.142
Text-based 3.2M 12.8M 0.046 0.052 0.169 0.125 0.157
small  Image-based 3M 12.8M 0.043 0.047 0.178 0.121 0.159
LAION-2B filtering 1.3M 12.8M 0.031 0.040 0.136 0.092 0.133
CLIP score (L/14 30%) 3.8M 12.8M 0.051 0.055 0.190 0.119 0.173
Image-based N CLIP score (L/14 30%) 1.4M 12.8M 0.039 0.045 0.162 0.094 0.144
No filtering 128M 128M 0.176 0.152 0.259 0.219 0.258
Basic filtering 30M 128M 0.226 0.193 0.284 0.251 0.285
Text-based 31M 128M 0.255 0.215 0.328 0.249 0.307
medium Image-based 29M 128M 0.268 0.213 0.319 0.256 0.312
LAION-2B filtering 13M 128M 0.230 0.198 0.307 0.233 0.292
CLIP score (L/14 30%) 38M 128M 0.273 0.230 0.338 0.251 0.328
Image-based N CLIP score (L/14 30%) 14M 128M 0.297 0.239 0.346 0.231 0.328
No filtering 1.28B 1.28B 0.459 0.378 0.426 0.419 0.437
Basic filtering 298M 1.28B 0.516 0.423 0.446 0.480 0.458
Text-based 317M 1.28B 0.561 0.465 0.465 0.352 0.466
large Image-based 293M 1.28B 0.572 0.454 0.483 0.479 0.476
LAION-2B filtering 130M 1.28B 0.553 0.453 0.510 0.495 0.501
CLIP score (L/14 30%) 384M 1.28B 0.578 0.474 0.538 0.466 0.529
Image-based N CLIP score (L/14 30%)  140M 1.28B 0.631 0.508 0.546 0.498 0.537
No filtering 12.8B 12.8B 0.723 0.612 0.611 0.569 0.621
xlarge LAION-2B filtering 1.3B 12.8B 0.755 0.637 0.624 0.620 0.636
CLIP score (L/14 30%) 3.8B 12.8B 0.764 0.655 0.643 0.588 0.650
Image-based N CLIP score (L/14 30%) 1.4B 12.8B 0.792 0.679 0.652 0.608 0.663

Image-based filtering. We select a subset of examples whose visual content overlaps with ImageNet
classes. After applying English language (fasttext) and caption length filtering, we cluster the
image embeddings extracted by the OpenAl ViT-L/14 model for each image into 100K groups using
Faiss [75]. We then find the nearest neighbor group for every ImageNet training example, and keep
examples belonging to these groups. We apply this procedure using either ImageNet-21K (14M
images) or ImageNet-1K (1.2M images), forming two subsets.

4.2 BYOD baselines

We experiment with multiple external data sources, including four moderately sized datasets (10 to
58M samples) studied by Nguyen et al. [101]—CC12M [24], YFCCI15M [140, 111], RedCaps [38]
and Shutterstock [101]—and the larger LAION-2B [129]. Additional experiments, along with more
details about the data sources are provided in Appendix P.2. We consider these data sources as they
are and do not perform additional preprocessing. We also present experiments combining some of
the data sources (using only the external datasets, or in addition to data from our pool).

5 Results and discussion

5.1 Building better datasets

Main results. Our key results are in Table 3. Most notably, the intersection between image-based
filtering and CLIP score filtering excels on most tasks. The exception is at the small scale and
for retrieval datasets.” Furthermore, other filtering strategies like basic, CLIP score, image-based,
text-based filtering show better downstream performance when compared to no filtering. A much
larger suite of experiment results can be found in Appendix R.

DATACOMP leads to better image-text datasets. We hope DATACOMP catalyzes the search for
the next generation of multimodal datasets. We contribute DATACOMP-1B, which is the output of
the Image-based N CLIP score (L/14 30%) baseline filter at the xlarge scale of the filtering track.

2Cherti et al. [28] also observe that models rank differently on classification and retrieval tasks.
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Figure 2: Performance of random subsets (dotted line) and CLIP score filtering (solid line) when
varying the subset size. When taking random subsets, larger subsets are always better. For CLIP
score filtering, subsets with intermediate size perform best.

Our dataset is comprised of 1.4B samples, which not only is smaller than the LAION-2B dataset
with 2.3B samples, but also comes from a smaller pool. Nevertheless, a CLIP L/14 trained on
DATACOMP-1B outperforms the LAION-2B competitor by 6.1 percentage points on ImageNet (see
Table 1). Moreover, training on DATACOMP-1B improves ImageNet accuracy by 3.7 percentage
points over OpenAl’s ViT-L/14 trained with the same compute budget. Additionally, even if we
restrict ourselves to 400M samples, we can still find a subset of DATACOMP-1B that outperforms
OpenAl’s ViT-L/14, as seen in Table 24. These results demonstrate the impact that DATACOMP can
make and provide a foundation upon which participants can build.

External data sources can improve performance. Appendix P.2 Table 18 shows results for several
baselines in the BYOD track. We find several instances where adding external data sources improves
performance over using just data from COMMONPOOL. For example, at the 1arge scale, combining
CLIP-filtered data from COMMONPOOL with external data from CC12M [24], YFCC15M [140, 111],
RedCaps [38] and Shutterstock [101] boosts ImageNet accuracy by 4.3 percentage points. See
Appendix P.2 for more experiments and details.

Trade-off between data diversity and repetition. In Figure 2, we see that randomly selecting
subsets of the pool has little effect and degrades performance substantially when only small fractions
are used. When filtering with CLIP scores, the optimal training set comes from selecting ~30% of
the pool with the highest scores. The difference in performance trends between random subsets and
CLIP score filtering highlights the importance of filtering strategies for selecting samples.

5.2 DATACOMP design analyses

CoMMONPOOL and LAION are comparable with the same filtering. To validate our pool
construction, we show that we can build datasets comparable to LAION-2B by employing their
filtering technique on our pool. LAION-2B selects all samples where the caption is in English and the
cosine similarity score from a trained ViT-B/32 CLIP model is above 0.28. We compare this filtering
approach on our pool using the same number samples, 130M samples at the 1arge scale. We find that
the different data sources perform comparably: 55.3% vs 55.7% accuracy on ImageNet, and 0.501 vs
0.489 average performance over our evaluation sets using our pool and LAION-2B, respectively.

Consistency across scales. We find that the ranking between filtering strategies is typically consistent
across different scales. This is illustrated in Figure 3, which shows that the baselines at small
and medium scales are positively correlated. Moreover, as shown in Appendix Table 22, the rank
correlations of performance is high, between 0.71 and 0.90 for different scale pairs.

Consistency across training changes. DATACOMP fixes the training procedure, so a natural question
is whether better datasets from DATACOMP are better outside of DATACOMP. While DATACOMP-1B
is trained at the x1arge scale, we show in Appendix Table 23 that even when substituting the ViT-L/14
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Figure 3: Correlation between small and medium scale baselines. Smaller scales can serve as useful
guides for larger scales. Results for additional scales are shown in Appendix Figure 22.

for a ViT-B/16 or ViT-B/32, training on DATACOMP-1B outperforms training on OpenAl’s WIT
and LAION-2B. Additionally, we found that modifying hyperparameters such as training steps and
batch size minimally affects the relative ordering of different data curation methods on downstream
performance. Details on hyperparameter ablations are in Appendix L.

5.3 Evaluation trends

ImageNet accuracy is indicative, but not the complete picture. Similarly to Kornblith et al. [84],
in Appendix Figure 25 we find that ImageNet performance is highly correlated with the average
performance across all datasets we study, with an overall correlation of 0.99. * However, ImageNet
performance is not representative of all evaluation tasks, as the correlation between ImageNet
accuracy and accuracy on other individual datasets varies substantially, in some cases even exhibiting
a negative correlation, as discussed in Appendix R.

Robustness and fairness. While typical models trained on a target task suffer large performance
drops under data distribution shift, zero-shot CLIP models are known to exhibit strong performance
across many distributions [111]. In Appendix Figure 26, we show that CLIP models trained with
data from our pool are more robust to distribution shift than ImageNet-trained models from Taori
et al. [139]’s testbed. Examining geographic diversity, we find that our models are better than
ImageNet-trained models, but fall short of models fine-tuned on diverse curated datasets (see
Appendix Figure 21). We also perform a face classification analysis and identify demographic biases
in our models: notably, the BYOD datasets we consider can increase the risk of misclassification.
See Appendix Q for more fairness and diversity analyses.

6 Limitations and conclusion

In terms of societal risks, creating an index of image-text pairs from the public internet can be
problematic. The internet contains unsafe, toxic, and sensitive content, which ideally should not
percolate into machine learning datasets. Though we take steps to remove NSFW content and blur
human faces to protect privacy, we hope future work will further explore the biases and risks from
CoMMONPOOL and DATACOMP-1B. We see several additional directions for future work, including
1) Curating more data sources. 2) Improved data filtering algorithms. 3) Further supervision signals
(e.g., image captions coming from captioning models). 4) Additional input modalities (e.g., video,
3D objects). 5) Broader evaluations for vision-and-language and robotics tasks.

Overall, we see DATACOMP as a first step towards improving training datasets, and hope our new
benchmark will foster further research. By providing a controlled experimental setting, DATACOMP
enables researchers to iterate on dataset design on rigorous empirical foundations. We open-source
all of our code, data, and infrastructure, and hope these resources will help the community build the
next generation of multimodal datasets.

3Note that unlike Kornblith et al. [84] we evaluate zero-shot performance rather than transfer learning.
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