
ChemEval: A Multi-level and Fine-grained Chemical
Capability Evaluation for Large Language Models

Yuqing Huang1, Rongyang Zhang1, Xuesong He1, Xuyang Zhi1, Hao Wang1,
Nuo Chen1,2, Zongbo Liu1,2, Xin Li1,2, Feiyang Xu2, Deguang Liu1,

Huadong Liang2, Yi Li2, Jian Cui2, Yin Xu1, Shijin Wang2,
Guiquan Liu1, Qi Liu1, Defu Lian1, Enhong Chen1

1University of Science and Technology of China
2iFLYTEK Co., Ltd

Abstract

The emergence of Large Language Models (LLMs) in chemistry marks a significant1

advancement in applying artificial intelligence to chemical sciences. While these2

models show promising potential, their effective application in chemistry demands3

sophisticated evaluation protocols that address the field’s inherent complexities.4

To bridge this critical gap, we introduce ChemEval, an innovative hierarchical5

assessment framework specifically designed to evaluate LLMs’ capabilities across6

chemical domains. Our methodology incorporates a distinctive four-tier progres-7

sion system, spanning from basic chemical concepts to advanced theoretical princi-8

ples. Sixty-two textual and multimodal tasks are designed to enable researchers9

to conduct fine-grained analysis of model capabilities and achieve comprehensive10

evaluation via carefully crafted assessment protocols. The framework integrates11

carefully curated open-source datasets with expert-validated materials, ensuring12

both practical relevance and scientific rigor. In our experiments, we evaluated13

the performance of most main-stream LLMs using both zero-shot and few-shot14

approaches, with carefully designed examples and prompts. Results indicate that15

general-purpose LLMs, while proficient in understanding chemical literature and16

following instructions, struggle with tasks requiring deep chemical expertise. In17

contrast, chemical LLMs perform better in technical tasks but show limitations in18

general language processing. These findings highlight both the current limitations19

and future opportunities for LLMs in chemistry. Our research provides a system-20

atic framework for advancing the application of artificial intelligence in chemical21

research, potentially facilitating new discoveries in the field.22

1 Introduction23

The advent of large language models has ushered in a transformative era in artificial intelligence,24

particularly within the domain of natural language processing. The expansive capabilities of these25

models have not only redefined the boundaries of text generation and understanding [1–4] but have26

also opened new avenues for various domains, such as recommendation [5–8], social [9, 10] and27

scientific exploration [11–13]. Researchers have adeptly employed LLMs to accelerate the pace of28

scientific research and instigate a transformative shift in scientific research paradigms. The field of29

chemistry has notably profited from the integration and advancement of LLMs [14–17], becoming a30

key area where these sophisticated technologies have delivered substantial advantages. The intricate31

nature of chemical research, involving complex molecular interactions and reactions, presents unique32

challenges that LLMs can address through advanced pattern recognition and predictive analytics.33
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Figure 1: The overview of ChemEval. It includes 4 progressive levels, evaluating 13 dimensions
of LLMs’ capabilities and featuring 62 distinct chemical tasks that cover a wide range of chemical
knowledge, from foundational concepts to advanced topics suitable for graduate-level research.

In order to systematically assess the capabilities of LLMs across various domains and identify areas for34

their potential enhancement, numerous benchmarking initiatives have been introduced. For instance,35

the MMLU [18] covers 57 tasks spanning basic mathematics, American history, computer science,36

law, and other fields. The XieZhi [19] benchmark includes three major academic categories with 51637

specific subjects. However, general benchmarks [20, 21] often overlook a detailed assessment of38

chemical knowledge. Although Sun et al. introduce SciEVAL [22] as a framework for assessing the39

competencies of LLMs within the scientific domain, the chemistry-related tasks are overly simplistic40

and do not adequately capture the depth required. Regarding chemistry domain-specific benchmarks,41

Guo et al. [23] propose 8 chemical tasks aimed at assessing understanding, reasoning, and explanation42

abilities, but the benchmark consists of tasks derived from existing public datasets, which may be43

insufficient to capture the full spectrum of competencies needed for thorough chemical research.44

Other studies like [24, 25] have similar problems. Moreover, existing benchmarks fail to address the45

capability of LLMs to extract chemical information from text and tables. This limitation prevents46

them from tackling key issues of interest to chemistry researchers and has not fully met the specialized47

needs of chemistry.48

In light of these considerations, we introduce ChemEval, a benchmark designed to address the gap in49

the comprehensive assessment framework for LLMs in chemistry by providing a multi-dimensional50

evaluation. 1). Extensive tasks are included in ChemEval, which encompasses chemical tasks of51

interest to researchers that were not included in previous benchmarks. It has four levels, thirteen52

dimensions, and a total of 62 distinct tasks, covering a vast array of issues within the domain of53

chemical research. Notably, we innovatively introduce test sets related to information extraction54

and inductive generation in chemistry. 2). Multimodal tasks are specifically designed to assess55

models’ capabilities in understanding and reasoning across diverse chemistry-related data types,56

including text, molecular structure diagrams, and spectral images. 3). Domain experts in chemistry57

have meticulously crafted in-depth task datasets and prompts for ChemEval, partly addressing the58

previous lack of domain-specific data in chemistry benchmarks. Compared to previous work, our59

study encompasses a broader range of tasks that are of actual concern in chemical research. It assesses60

models on a graduated scale of capabilities, from general to domain-specific skills, to determine61

the model’s proficiency. Our aim is to construct specialized tasks from the perspective of chemical62

researchers, thereby providing valuable insights for AI researchers and chemists, and improving large63

language models’ effectiveness in chemical research.64

For experiments, we conducted a highly detailed evaluation process, focusing on designing prompts65

that challenge LLMs, including 0-shot and few-shot settings. We evaluated currently widely used66

LLMs, including both general LLMs and specialized chemical LLMs, and gained many meaningful67

insights. This comprehensive evaluation has revealed that though general LLMs like GPT-4o [26]68

excel in Literature Understanding tasks and possess great instruction-following capability, they69

struggle with tasks that require a deeper understanding of molecular structures and scientific inference.70
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On the other hand, specialized LLMs generally show improved chemical abilities even when their71

ability to understand literature and instruction-following capability is diminished. This finding72

underscores the need for significant improvements in the way LLMs are trained and evaluated73

for chemical tasks. In addition, we explored the impact of few-shot learning and model size on74

the performance of large language models and provided corresponding insights. We highlight the75

contributions of this paper as follows:76

• We have established an open-source benchmark for LLMs in the field of chemistry, which provides77

a comprehensive evaluation of their mastery of chemical knowledge as well as their multimodal78

reasoning capabilities, filling the absence of a holistic benchmark that encompasses the diverse79

range of tasks within the chemical domain.80

• We set up 4 progressive levels and access 13 model capability dimensions through 62 tasks81

in ChemEval, which is developed through extensive discussions and collaborative design with82

chemistry researchers, involves constructing novel tasks of interest to chemical researchers and83

encompasses the primary focal points of chemical research.84

• We conducted a comprehensive evaluation of LLMs in chemical tasks, using various prompt85

settings to assess both general and specialized LLMs. This revealed significant differences between86

different types of LLMs and identified challenging tasks with potential for optimization. This work87

offers critical insights to guide researchers in the optimization and application of LLMs, thereby88

enhancing their effectiveness in chemical research.89

2 Related Work90

Large Language Models for Chemistry. The emergence of Large Language Models (LLMs) has91

revolutionized Natural Language Processing, with cutting-edge proprietary models like GPT-4o [26]92

and open-source alternatives such as LlaMA [3] and Qwen [27] demonstrating exceptional capabilities93

across linguistic tasks. However, applying these general models to chemistry reveals significant94

limitations in domain-specific knowledge. To bridge this gap, researchers have developed specialized95

approaches: Galactica [28] underwent pre-training on comprehensive scientific corpora, SciGLM [29]96

employed strategic fine-tuning with scientific datasets, and ChemCrow [30] enhanced performance by97

integrating expert-designed chemistry tools. Chemistry-focused models, including ChemDFM [31],98

LlaSMol [14], and ChemLLM [32], incorporate tailored training methodologies, while specialized99

applications such as Drugchat [33] and Drugassist [34] specifically address molecular structures and100

chemical properties. Despite these advancements, achieving comprehensive chemical understanding101

through LLMs remains a promising frontier for further research and innovation.102

Large Language Models Evaluations for Chemistry. The progress made in the field of LLMs is103

tightly linked to the establishment of robust evaluation frameworks. For general tasks, benchmarks104

such as MMLU [18] and GLUE [35] have become standard tools for assessing model capabilities.105

In the scientific domain, recent initiatives like SciEval [22], SceMQA [36], and SciAssess [37]106

have been introduced to evaluate scientific reasoning and knowledge. In the chemistry domain,107

recent benchmarking initiatives such as ChemLLMbench [23], ChemBench [38], and MaCBench108

[39] have emerged, yet each presents significant limitations: ChemLLMbench covers only eight109

task categories with unreviewed datasets; ChemBench offers 7,000 samples, but is limited by its110

reliance on multiple-choice questions, lack of open-ended tasks, and insufficient evaluation metrics111

for chemical experiment design tasks such as synthesis pathway recommendations; while MaCBench112

introduces multimodal evaluation but exhibits similar constraints in task diversity and assessment113

metrics. The absence of a comprehensive benchmarking framework impedes LLM advancement in114

chemistry, a field characterized by complex conceptual knowledge and computational challenges. To115

address this gap, we introduce ChemEval, a systematic and comprehensive evaluation framework116

designed to rigorously assess LLM capabilities across the multifaceted landscape of chemistry.117

3 ChemEval118

To fill the absence of a holistic benchmark that encompasses the diverse range of tasks within119

the chemical domain, we introduce a refined benchmark named ChemEval specifically designed to120

evaluate the comprehensive capabilities of LLMs within the chemical domain. It not only encompasses121
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Figure 2: Data Collection steps of ChemEval. The process is divided into three main steps: a).
Data Collection: Raw data is collected from academic websites via web crawling, and experts
manually gather data from professional textbooks and experimental data. b). Data Filtering: The
raw data undergoes deduplication and removal of irrelevant items to produce filtered data. c). Q&A
Pair Construction: Experts manually construct Q&A pairs related to chemistry and create prompt
instructions, resulting in four instruction test sets.

text-only tasks such as literature comprehension and experimental planning, but also incorporates122

multimodal tasks, including molecular formula recognition and spectroscopic data analysis. As123

illustrated in Figure 1, it contains four levels in the field of chemistry, each of which includes several124

different chemical dimensions, ensuring a comprehensive evaluation of LLMs. This framework125

measures the models’ ability to understand and infer chemical knowledge from a broad range of126

dimensions through a series of meticulously designed tasks.127

In the following sections, we will provide a detailed introduction to the task content and data128

construction process of ChemEval.129

3.1 Advanced Knowledge Question Answering130

This segment is pivotal in assessing the models’ proficiency in understanding and applying funda-131

mental chemical concepts, which include Objective Question dimension and Subjective Question132

dimension, a total of 15 different tasks. Through a blend of objective and subjective tasks, the133

Advanced Knowledge Question Answering challenges the models to demonstrate their integrated134

capabilities in areas of chemical terminology, quantitative analysis and cross-modal reasoning. The135

tasks within this section are designed to be both comprehensive and diagnostic, providing a clear136

measure of the models’ readiness to tackle more advanced chemical inquiries.137

3.2 Literature Understanding138

Advanced Knowledge Question Answering is designed to assess the model’s comprehension and139

mastery of chemical knowledge, while Literature Understanding evaluates the model’s capacity to140

interpret and assimilate information from chemical literature, which is foundational for subsequent141

inductive generation tasks. Literature Understanding, including Inductive Generation dimension,142

Information Extraction dimension and Molecular Name Recognition, a total of 19 tasks, delves into143

tasks crucial for understanding and extracting meaningful information from the chemical literature.144

The primary focus is on assessing the LLMs’ ability to comprehend and extract key information from145

both textual content and image data in chemical literature, followed by generating new, contextually146

relevant content.147

3.3 Molecular Understanding148

This section builds upon the previous foundation to assess the model’s understanding and generative149

capabilities at the molecular level. It includes 4 dimensions: Molecular Name Generation, Molecular150

Name Translation, Molecular Property Prediction, and Molecular Description, a total of 15 tasks.151

Molecular Understanding focuses on core tasks in molecular cognition, aiming to evaluate LLMs152

in molecular formula conversion, structural diagram interpretation, and the description/prediction153
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of molecular properties based on structural and spectroscopic data. These tasks assess the models’154

proficiency in interpreting and generating chemical information accurately.155

3.4 Scientific Knowledge Deduction156

Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific literature,157

and the capacity to understand molecular structures, we expect that the model will proceed to158

conduct deeper chemical reasoning and deduction. So the part of Scientific Knowledge Deduction159

encompasses four key dimensions: Retrosynthetic Analysis, Reaction Condition Recommendation,160

Reaction Outcome Prediction and Reaction Mechanism Analysis, a total of 13 tasks, which are161

essential for effective chemical synthesis. This part evaluates the LLMs’ capabilities in retrosynthetic162

analysis, recommending reaction conditions, predicting reaction outcomes, and analyzing reaction163

mechanisms. These tasks are essential for efficient chemical synthesis, requiring the model to164

accurately recognize chemical structures from images and perform complex reasoning and analysis165

using specific knowledge.166

3.5 Benchmark Generation Pipeline167

3.5.1 Data Collection168

Table 1: Data Statistics for Different Capabil-
ity Levels.

Level Text-only Multimodal Total

AdvQA 250 320 570
LitUnd 420 150 570
MolUnd 830 470 1300
SciKD 460 260 720

Total 1960 1200 3160

The overall process of benchmark construction is il-169

lustrated in Figure 2. Data plays an indispensable170

role in the realm of LLMs [40]. Our data collection171

is comprised of two components: Open-source Data172

and Domain-Experts data. For the open-source com-173

ponent, we utilized keywords such as "chemistry,"174

"large language models," "knowledge question an-175

swering," and "information extraction" to retrieve176

relevant publications on chemical language models177

from academic repositories. We then systematically178

extracted and codified downstream tasks and their179

associated datasets from these papers to develop our180

chemical evaluation framework [14, 23, 41–45]. Next, download the official datasets for the different181

downstream tasks, using the presence of an official test set as the main criterion for selection. Nev-182

ertheless, the scope of open-source data is inadequate, which is why we collect expert datasets to183

enhance the evaluation’s rigor and breadth. Domain-expert data are sourced from scientific literature,184

professional textbooks, supplementary materials, and laboratory chemical experiment records. These185

resources are used to manually construct question-answer pairs tailored to specific task types.186

3.5.2 Data Processing187

Through our data collection endeavors, we get a vast array of raw data in the chemical domain. How-188

ever, harnessing this data for our benchmarking work necessitates a subsequent phase of meticulous189

selection and filtration aligned with the diverse tasks.190

Our data processing for different levels: 1). Advanced knowledge question-answering. We meticu-191

lously compile question-answer pairs derived from undergraduate and postgraduate-level textbooks,192

as well as ancillary educational materials. These pairs encompass a broad spectrum of seven dis-193

tinct categories: organic chemistry, inorganic chemistry, materials chemistry, analytical chemistry,194

biochemistry, physical chemistry, and polymer chemistry. This comprehensive selection ensures a195

diverse representation of chemical concepts and principles. 2). Literature understanding component.196

We extract relevant fragments and questions from scientific literature, combining them with task-197

specific answers to create question-answer test sets for various downstream tasks. 3). Molecular198

understanding and scientific knowledge deduction. Our approach leverages a combination of open199

datasets and proprietary laboratory data sourced from our collaborating universities. We engage200

in the thoughtful design and construction of test sets meticulously aligned with the unique content201

requirements of downstream tasks.202

It is important to highlight that when integrating multiple open-source datasets for downstream203

tasks, we adopt a methodical approach to constructing the corresponding test sets. This involves204

employing proportional sampling techniques that take into account the varying scales of the different205
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Table 2: Representative Multi-Level 0-Shot Performance Overview on ChemEval. Claude3.7T
represents Claude 3.7-Sonnet-Thinking, while Claude3.7N represents Claude 3.7-Sonnet. For the
complete experimental results, please refer to the appendix C.1.
Dimension Task Metric OpenAI-o1 GPT-4o Claude3.7T Deepseek-R1 Deepseek-V3 Qwen2.5-72B Llama3.3-8B Gemini-2.5-Pro ChemDFM ChemLLM LlaSMol ChemSpark

Advanced Knowledge Question Answering
ObjQA MCTask Accuracy 74.00 66.80 62.80 82.40 76.00 67.20 40.40 87.60 41.20 24.40 24.00 43.60
ObjQA FBTask Score 60.92 51.19 45.28 59.41 63.88 53.92 34.17 63.95 24.16 34.97 13.92 24.57
ObjQA TFTask Accuracy 46.00 57.60 58.80 75.20 67.20 58.40 46.00 77.60 46.00 19.20 58.00 50.00
SubjQA SATask Score 64.50 61.20 56.70 68.50 71.70 58.50 38.40 72.00 32.20 13.20 14.50 33.60
SubjQA CalcTask Score 78.00 61.80 55.74 76.10 79.20 61.90 28.00 82.40 14.70 15.90 7.50 18.50

Literature Understanding
InfoE CNER F1 64.56 65.76 60.21 64.14 60.85 61.61 55.34 68.30 41.17 0.16 11.62 71.44
InfoE CERC F1 22.37 25.66 25.19 27.18 24.94 26.05 17.31 25.43 8.74 0.24 1.24 39.27
InfoE SubE Accuracy 73.71 66.32 61.59 75.18 61.26 62.56 64.02 72.05 20.07 0.00 0.00 74.38
InfoE AddE F1 81.67 85.00 79.33 82.67 80.67 84.00 45.81 95.00 45.00 0.00 0.00 65.00
InfoE SolvE F1 86.50 85.00 87.60 90.20 88.50 85.00 75.47 83.17 80.50 1.67 0.00 83.79
InfoE TempE F1 70.00 67.00 72.00 65.00 72.00 65.00 62.00 69.00 74.33 3.23 0.00 83.00
InfoE TimeE F1 95.00 95.00 95.00 95.00 95.00 90.00 90.00 94.00 78.00 23.10 25.00 95.00
InfoE ProdE Accuracy 90.25 86.09 82.39 91.20 87.52 84.86 74.54 92.82 34.73 0.00 0.00 94.40
InfoE CharME F1 51.67 72.85 81.01 21.33 81.80 74.57 44.18 73.11 27.26 0.00 0.00 12.98
InfoE CatTE F1 95.00 94.00 82.00 99.00 100.00 100.00 65.00 96.00 49.00 0.00 5.00 31.00
InfoE YieldE F1 85.00 79.00 61.00 77.70 65.00 65.00 46.00 74.00 45.00 0.00 5.00 61.00

InducGen AbsGen Score 63.75 63.00 63.00 65.00 64.75 64.75 62.00 67.25 0.00 5.50 26.25 38.25
InducGen OLGen Score 25.00 35.50 26.50 37.00 27.00 24.25 22.75 39.50 0.00 3.75 31.25 30.50
InducGen TopC Accuracy 55.00 49.00 56.00 57.00 50.00 64.00 32.00 67.00 51.00 0.00 0.00 30.00
InducGen ReactTR F1 25.00 32.00 29.00 21.00 28.00 22.00 26.00 31.00 13.00 0.00 5.00 17.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 49.80 (72%) 39.30 (89%) 33.85 (70%) 56.05 (87%) 51.19 (96%) 20.58 (79%) 5.83 (40%) 71.11 (93%) 47.06 (69%) 0.00 (0%) 3.71 (76%) 74.81 (98%)

MNTrans IUPAC2MF L2 0.7737 0.5304 0.3252 0.6026 0.6176 0.3407 0.2433 0.8382 0.6119 0.0454 0.0000 0.8807
MNTrans SMILES2MF L2 0.6330 0.3627 0.3618 0.4402 0.3563 0.2448 0.1728 0.6574 0.6399 0.0375 0.0000 0.8133
MNTrans IUPAC2SMILES Tanimoto (valid) 29.72 (50%) 34.71 (83%) 31.89 (68%) 30.70 (63%) 46.07 (88%) 15.90 (76%) 5.24 (30%) 61.35 (87%) 46.71 (88%) 0.00 (100%) 4.70 (56%) 87.84 (1%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 1.20 0.00 0.00 0.00 1.20 0.00 0.00 0.00 14.00
MNTrans SMILES2IUPAC BLEU 3.24 0.96 3.27 4.17 1.67 0.33 0.44 13.55 0.56 0.00 0.00 48.25
MNTrans SMILES2IUPAC Tanimoto 0.00 12.08 22.73 25.90 19.16 13.01 3.71 56.82 2.06 0.00 2.22 66.26
MNTrans S2S Tanimoto (valid) 9.72 (42%) 13.41 (62%) 9.37 (40%) 16.04 (71%) 16.27 (62%) 11.47 (50%) 1.74 (12%) 13.13 (44%) 2.12 (25%) 0.00 (50%) 0.60 (48%) 87.36 (94%)

MPP MolPC Accuracy 67.50 64.57 58.90 53.54 48.73 48.13 47.26 63.63 61.35 0.00 46.50 85.57
MPP MolPR NRMSE (valid) 12.3852 (99%) 9.9322 (51%) 13.9702 (92%) 15.8881 (100%) 8.3675 (98) 13.0756 (100%) 61.4736 (62%) 11.7270 (100%) 394.9424 (83%) 179.3606 (93%) 29.9686 (73%) 1.2142 (100%)

MolDesc Mol2PC Score 19.00 7.00 9.80 11.90 13.50 20.80 2.10 0.70 3.10 0.30 0.00 48.90
Scientific Knowledge Deduction

ReSyn SubRec F1 1.00 0.00 1.46 1.63 2.27 1.06 0.27 0.00 3.99 0.00 0.00 12.37
ReSyn PathRec Score 30.63 22.88 0.36 52.75 37.38 41.13 20.88 43.75 24.13 10.88 10.00 38.75
ReSyn SynDE NRMSE (valid) - (5%) - (0%) - (0%) - (0%) - (0%) 0.2670 (100%) - (0%) - (0%) - (0%) 33.0049 (78%) 1.2374 (45%) 1.7992 (87%)
RCRec LRec F1 0.00 13.20 2.00 6.80 7.60 4.40 2.13 0.00 26.00 0.00 0.00 37.60
RCRec RRec F1 25.64 15.80 27.43 21.93 8.35 37.75 8.78 0.73 13.13 0.00 0.50 63.72
RCRec SolvRec F1 10.00 20.40 18.80 22.40 24.00 50.40 3.63 0.00 10.53 0.00 0.50 30.40
RCRec CatRec F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50
RCRec TempRec NRMSE (valid) 0.3278 (100%) 0.2545 (100%) 0.2263 (100%) 0.2078 (100%) 0.2096 (100%) 0.3782 (100%) - (0%) 0.1814 (100%) 0.3811 (99%) 1.1184 (98%) 0.8658 (100%) 0.2742 (100%)
RCRec TimeRec NRMSE (valid) 0.2746 (100%) 0.2468 (100%) 0.3662 (100%) 0.2291 (100%) 0.2579 (100%) 0.2022 (100%) - (0%) 0.2425 (100%) 0.4732 (100%) 1.7937 (98%) 0.4351 (80%) 0.3937 (100%)
ROP PPred F1 21.33 1.67 12.27 11.97 0.93 1.73 0.00 29.20 18.80 0.00 16.00 56.40
ROP YPred Accuracy 12.00 43.50 16.00 11.00 22.50 26.00 35.50 17.50 7.20 0.00 28.00 72.00
ROP RatePred Overlap 21.08 13.81 9.06 17.12 17.71 10.71 6.92 27.01 3.79 0.00 3.68 2.90
RMA IMDer Score 80.00 81.50 81.50 79.50 80.50 77.25 81.25 82.25 76.00 4.75 1.50 92.75

data sources. This strategy ensures that the test sets accurately reflect the broader dataset while206

maintaining a balanced distribution of question and answer types.207

3.5.3 Data Statistics208

Through our data collection endeavors, we get a vast array of raw data in the chemical domain.209

Notably, the test sets for different downstream tasks were cross-checked to remove duplicates with210

the training sets of corresponding tasks in open-source domain models, ensuring that there is no risk211

of data leakage in the evaluation of different downstream tasks. The data volumes are presented in212

Table 1, we finally obtained 3120 evaluation data points.213

3.5.4 Instruction Creation214

To evaluate the effectiveness of the model, we constructed task-specific prompts and 3-shot task-215

specific prompts for text-only downstream tasks [46]. For downstream tasks with open-source216

datasets, to facilitate evaluation, the evaluation system in this paper strengthens the format of the217

output data based on its instructions. For the domain expert-built part, the evaluation system in this218

paper will design instructions for task introduction and formatted output according to the task type,219

and continuously adjust the instructions based on the return results of GPT-4o, thereby strengthening220

the instructions for different self-constructed downstream tasks.221

3.5.5 Metrics222

In this study, we utilize a range of evaluation metrics to comprehensively assess our models’ per-223

formance across diverse tasks. For the majority of tasks, we utilize the F1 score and Accuracy. In224

addition, we utilize BLEU [47], Exact Match, Normalized Root Mean Square Error, Valid Output225

Ratio, LLMs Score, L2 Score, and Overlap as evaluation metrics for different tasks to accommodate226

various task requirements. A detailed introduction to the metrics is provided in the appendix B.2.227

4 Experiment228

4.1 Setup229

To comprehensively evaluate the chemical capabilities of LLMs, our framework assesses both general230

and specialized models. For general LLMs, we include OpenAI-o1/o3-mini [48], GPT-4o [26],231
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Table 3: 3-Shot Performance Changes Relative to 0-Shot on ChemEval. The symbols and accompa-
nying values show performance changes compared to 0-shot, where ’↑’ indicates an increase, ’↓’ a
decrease, and ’-’ no change. The three values in the last column (↑, ~, ↓) represent the number of
tasks that show a significant increase, remain unchanged, and significantly decrease, respectively.

Task SATask CalcTask SubE TempE ProdE ReactTR MolPC LRec PathRec RatePred Change
Metric Score Score Accuracy F1 Accuracy F1 Accuracy F1 Score Overlap (↑, ~, ↓)

OpenAI-o1 68.50 ↑4.00 78.50 ↑0.50 78.01 ↑4.30 75.00 ↑5.00 91.48 ↑1.23 60.00 ↑35.00 71.60 ↑4.10 18.00 ↑18.00 40.63 ↑10.01 14.41 ↓6.67 (9, 0, 1)
GPT-4o 61.00 ↓0.20 59.10 ↓2.70 65.93 ↓0.39 73.00 ↑6.00 86.88 ↑0.79 71.00 ↑39.00 68.55 ↑3.98 15.60 ↑2.40 25.00 ↑2.13 20.27 ↑6.47 (7, 0, 3)

Gemini-2.5-Pro 70.00 ↓2.00 81.60 ↓0.80 76.29 ↑4.24 77.00 ↑8.00 93.75 ↑0.93 59.00 ↑28.00 67.62 ↑3.99 0.00 43.00 ↓0.75 29.08 ↑2.06 (6, 1, 3)
Deepseek-v3 70.40 ↓1.30 77.40 ↓1.80 75.78 ↑14.51 80.00 ↑8.00 91.75 ↑4.23 46.00 ↑18.00 55.79 ↑7.06 11.60 ↑4.00 24.00 ↓13.38 13.45 ↓4.26 (6, 0, 4)
Qwen2.5-72B 60.80 ↑2.30 61.61 ↓0.29 70.10 ↑7.54 80.00 ↑15.00 84.05 ↓0.81 61.00 ↑39.00 56.87 ↑8.74 16.40 ↑12.00 33.38 ↓7.75 15.82 ↑5.10 (7, 0, 3)
Llama3.3-8B 29.00 ↓9.40 19.70 ↓8.30 57.71 ↓6.31 69.00 ↑7.00 73.26 ↓1.28 39.00 ↑13.00 53.20 ↑5.95 2.40 ↑0.27 17.88 ↓3.00 14.29 ↑7.38 (5, 0, 5)
ChemDFM 30.50 ↓1.70 16.40 ↑1.70 20.04 ↓0.03 41.00 ↓33.33 8.83 ↓25.90 26.00 ↑13.00 56.65 ↓4.70 12.49 ↓13.51 28.75 ↑4.63 17.46 ↑13.67 (4, 0, 6)
ChemLLM 11.50 ↓1.70 35.46 ↑19.56 0.00 1.53 ↓1.70 0.00 0.00 0.00 0.00 6.75 ↓4.13 0.00 (1, 6, 3)
LlaSMol 23.50 ↑9.00 68.37 ↑60.87 0.00 0.00 0.00 0.00 ↓5.00 40.00 ↓6.50 0.00 17.50 ↑7.50 0.00 ↓3.68 (3, 4, 3)

ChemSpark 31.60 ↓2.00 15.80 ↓2.70 72.86 ↓1.52 80.00 ↓3.00 98.40 ↑4.00 32.00 ↑15.00 82.88 ↓2.68 16.80 ↓20.80 27.00 ↓11.75 11.03 ↑8.13 (3, 0, 7)

Claude-3.7-sonnet [49], Gemini-2.5-pro [50], Qwen2.5-7B/14B/32B/72B [27], LLaMA3.3-8B [3],232

Grok3 [51], and DeepSeek-V3/R1 [52]. For chemistry-specific LLMs, we evaluate ChemDFM233

[31], LlaSMol [14], ChemLLM [32] and ChemSpark. For multimodal chemical tasks, we evaluated234

mainstream MLLMs, including GPT-4o [26], Claude-3.7-sonnet [49], Qwen-VL Max [53], Phi-235

Vision-3.5 [54], across four levels of multimodal chemistry tasks. We used the official APIs of236

general models for evaluation and ran the chemistry-specific models on two A40 48GB GPUs.237

To illustrate the capability of LLMs in various chemical tasks, we present their average zero-shot238

performance across four levels, with detailed results shown in the table 2. To assess their adaptability239

and in-context learning abilities, we also report three-shot performance across the same levels. Some240

tasks, such as Chemical Paper Abstract Generation, are not included in our three-shot evaluation due241

to context length limitations.242

4.2 Performance Results243

We evaluate the model’s performance for each task across four assessment dimensions. Certain244

models are unable to address specific tasks entirely. For example, LLaMA3.3-8B demonstrates poor245

instruction-following capabilities in TempRec task in the 0-shot setting, which significantly impairs246

its ability to generate responses based on task prompts. Consequently, we are unable to provide247

numerical results for the tasks affected by this limitation. We discuss the key findings from our248

benchmark and analyze them to explore how different settings related to LLMs affect performance249

and provide valuable insights into Chemical benchmarks.250

4.2.1 The models’ performance across four levels.251

The performance comparison of LLMs across four levels reveals distinct strengths and weaknesses:252

Basic Knowledge. Within the level of advanced knowledge question answering, the results reveal253

that OpenAI-o1 exhibits superior performance in objective questions, and Gemini outperforms254

other models in subjective questions, which indicates the importance of reasoning ability in Q&A255

questions. Additionally, general LLMs like GPT-4o and Qwen2.5-72B also perform well in literature256

understanding. However, chemistry-specialized models (except ChemSpark) struggle with general257

tasks, highlighting instruction fine-tuning challenges, which suggests that general LLMs succeed258

primarily due to superior document comprehension and reasoning abilities.259

Chemical Expertise. As for molecular understanding, ChemSpark stands out in these tasks de-260

manding an in-depth grasp of chemical molecules. Most models perform poorly in molecular name261

translation due to a lack of formatting constraints in their outputs, owing to the complexity of262

molecular expressions. ChemSpark’s advantage stems from training on diverse chemical literature263

with various molecular formula formats. Besides, we observed that when confronted with complex264

tasks requiring quantitative calculations, models tend to provide overly cautious responses, such265

as "quantification software (Gaussian, ORCA, etc.) is needed" or "cannot determine from a 2D266

structure," which significantly reduces the practical value of their answers.267

Chemistry-specialized LLMs. Compared to general LLMs, specialized chemistry models show268

distinct patterns: 1). Drawbacks: Chemical LLMs significantly underperform in advanced knowl-269
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Table 4: The Impact of Model Scaling on Task Performance.

Task MCTask SATask CalcTask CharME CatTE MolPC CatRec PPred YPred
Metric Accuracy Score Score F1 F1 Accuracy F1 F1 Accuracy

Qwen2.5-7B 59.60 50.80 43.60 43.00 64.00 64.04 0.00 0.00 67.00
Qwen2.5-14B 64.80 57.20 50.80 67.92 75.00 64.22 0.00 0.00 33.50
Qwen2.5-32B 67.20 58.10 57.40 79.42 100.00 67.70 0.00 0.53 85.00
Qwen2.5-72B 67.20 58.50 61.90 74.57 100.00 48.13 0.00 1.73 26.00

edge answering and literature comprehension, suggesting catastrophic forgetting during fine-tuning270

compromises their foundational language processing capabilities. 2). Advantages: Chemical models271

excel in tasks requiring specialized terminology and molecular properties. General models perform272

adequately on simpler tasks but struggle with complex chemical knowledge processing and infer-273

ence. 3). Instruction-following ability: Chemistry-specific LLMs demonstrate significantly lower274

instruction-following capability than general LLMs, likely due to limited exposure to diverse tasks275

during training. Without output format restrictions, these models default to patterns matching their276

fine-tuning data, sometimes producing interpretable results where format-constrained prompts are277

removed, though with uncertain accuracy. This instruction-following deficiency severely impacts the278

practical utility of these specialized models despite their domain expertise.279

4.2.2 Factors Affecting Model Performance in Chemistry Tasks280

The influence of few-shot. Our experiment results of ICL are shown inTable 3. Few-shot prompt-281

ing significantly impacts model performance across different tasks. General LLMs typically benefit282

from few-shot examples, especially in subjective question answering and literature understanding. In283

contrast, specialized chemistry models often show performance decreases with few-shot prompting,284

possibly due to the absence of such examples during their instruction fine-tuning. For complex285

chemistry-specific tasks, performance variations remain minimal across all models, reflecting the286

inherent difficulty of these tasks and current limitations in capturing expert-level chemical reasoning.287

The impact of model scaling. We conducted experiments on Qwen2.5 models of different sizes.288

The results, as shown in Table 4, indicate that increasing model size improves performance in most289

tasks, with notable gains in advanced knowledge Q&A and literature understanding. However, molec-290

ular understanding and scientific knowledge deduction tasks show minimal improvement as the model291

scales. Tasks requiring specialized chemical knowledge (e.g., IUPAC2SMILES, CatRec) remain292

challenging despite parameter increases, with some tasks like MolPC even showing performance293

declines. This suggests that model scaling alone is insufficient for complex chemical tasks without294

specialized training data.295

The impact of thinking models. While intuitively it may seem that thinking models possess296

stronger reasoning capabilities and might benefit in complex chemical tasks, our experimental297

comparison of OpenAI-o1 versus GPT-4o and DeepSeek-R1 versus DeepSeek-V3 reveals a more298

nuanced reality. Although thinking models occasionally excel in specific tasks such as reaction299

product prediction, they demonstrate comparable performance to general models across most chemical300

tasks, with each architecture exhibiting distinct strengths in different tasks. Additionally, when301

prompted to employ chain-of-thought reasoning, some models declined to respond to certain tasks,302

citing insufficient information to formulate complete answers. Therefore, we conclude that the303

primary limitation in addressing sophisticated chemical challenges lies not in long reasoning ability304

but rather in insufficient domain-specific knowledge.305

Stability analysis. As illustrated in the table 10, we conducted robustness testing on multiple306

models and analyzed the stability of metrics across various tasks in the benchmark. The results307

demonstrate that the standard deviation for the vast majority of metrics does not exceed 5.0, indicating308

consistent performance across evaluations. These results collectively indicate that our evaluation309

framework is robust, providing consistent and reliable assessments of system performance.310

8



4.2.3 Multimodal Chemistry Tasks311

The table 7 illustrates the performance of mainstream multimodal large language models on312

ChemEval’s multimodal tasks. Entries marked as ’-’ indicate instances where models failed to313

generate meaningful responses. Examining results across both Domain Knowledge QA and Literature314

Understanding dimensions reveals that while most models demonstrate satisfactory performance on315

elementary tasks such as molecular formula identification, they exhibit significant limitations when316

confronted with more sophisticated challenges involving chemical reaction pathways or molecular317

properties, as evidenced in Pathway Parsing and Multiple Choice tasks. The performance degrada-318

tion becomes even more pronounced in Molecular Understanding and Scientific Reasoning tasks,319

where models demonstrate considerable difficulty. These advanced tasks present a multifaceted320

challenge, requiring models to accurately recognize molecular structures and reaction equations321

from visual inputs while leveraging comprehensive chemical domain knowledge to formulate correct322

responses—a combination that severely tests the models’ integrated capabilities. It is worth noting323

that our evaluation exclusively assessed general-purpose multimodal large language models, without324

including specialized multimodal models designed specifically for chemical applications. Given that325

multimodal capabilities are increasingly crucial in chemical research, we think of this as a critical326

area demanding urgent investigation and development.327

5 Limitations and future work328

Although ChemEval, as proposed in this study, fills the gap in evaluation LLMs in the field of329

chemistry by covering a diverse array of chemical tasks and providing an important reference for330

model capability assessment and chemical research applications, several notable limitations remain331

in practical application. On the one hand, due to insufficient integration with professional molecular332

simulation tools and other chemical software, the performance of LLMs in complex molecular333

structure computation and high-precision optimization analysis is still restricted, making it difficult334

to fully meet the needs of advanced scientific research for specialized computations. On the other335

hand, LLMs may generate toxic, harmful, or illegal content, which presents safety and ethical risks336

and highlights the necessity for strict regulation and oversight of generated content. Therefore, it is337

essential to strengthen the deep integration of LLMs with professional chemical tools and improve338

content safety mechanisms in the future, so as to further enhance the reliability and security of339

ChemEval and LLMs in the field of chemistry.340

In the future refinement of ChemEval, we plan to invite chemical experts to manually evaluate the341

results of the LLMs and compare them with the evaluation results of our ChemEval. This will342

enhance the reliability of our evaluation system and facilitate its alignment with human preferences,343

making it more applicable to chemistry-related research. In addition, research on agents has garnered344

significant attention recently [55]. We aim to explore the integration of end-to-end agents and improve345

the LLM’s understanding as well as deep thinking ability in the chemical field to assist in chemical346

research endeavors in the future.347

6 Conclusion348

In this paper, we developed a comprehensive chemical evaluation system to assess the performance349

of popular LLMs across four levels of chemical tasks. The findings indicate that LLMs exhibit350

relatively poor performance on tasks requiring the understanding of molecular structures and scientific351

knowledge inference, whereas they perform better on tasks involving literature comprehension. This352

suggests both the potential for improvement and the need for further advancements in the application353

of LLMs to chemical tasks. Through this extensive evaluation, we demonstrate that there remains354

significant room for enhancement in the capabilities of LLMs across various chemical tasks. We355

hope our work will inspire future research to further explore and leverage the potential of LLMs356

in the field of chemistry. This has the potential to contribute to the transformation of scientific357

research paradigms and holds significant implications for the advancement of both the scientific358

community and artificial intelligence. Future work on ChemEval will integrate multimodal tasks and359

more sophisticated tasks and expert manual evaluations will be conducted to validate the result of360

ChemEval and other benchmarks to improve the evaluation system’s dependability for practical and361

scientific applications.362
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A ChemEval Tasks560

In order to systematically evaluate the multifaceted capabilities of large language models in the domain561

of chemistry, we propose a multi-level and fine-grained evaluation framework that encompasses562

a broad spectrum of chemical knowledge and reasoning tasks. This framework is delineated into563

four primary categories: Advanced Knowledge Question Answering, Literature Understanding,564

Molecular Understanding, and Scientific Knowledge Deduction. Each of these categories represents565

a progressively sophisticated level of chemical problem-solving, ranging from the assessment of566

fundamental chemical concepts and literature comprehension to molecular-level reasoning and high-567

level scientific deduction. The constituent tasks within each category are meticulously designed to568

interrogate specific competencies, such as objective and subjective answering, information extraction,569

inductive generation, molecular property prediction, and retrosynthetic analysis. Collectively, this570

comprehensive benchmark offers a granular and holistic evaluation of LLMs’ proficiency in both the571

understanding and application of chemical knowledge, thereby illuminating their potential utility and572

limitations in diverse chemical informatics applications.573

A.1 Advanced Knowledge Question Answering574

This segment is pivotal in assessing the models’ proficiency in understanding and applying funda-575

mental chemical concepts, which include Objective Question dimension and Subjective Question576

dimension, total 15 different tasks. Through a blend of objective and subjective tasks, the Advanced577

Knowledge Question Answering component challenges the models to demonstrate their insight in578

areas ranging from chemical terminology and quantitative analysis to the recognition and interpre-579

tation of chemical structures and diagrams. The tasks within this section are designed to be both580

comprehensive and diagnostic, providing a clear measure of the models’ readiness to tackle more581

advanced chemical inquiries.582

A.1.1 Objective Questions (ObjQA)583

The first dimension is objective question answering, which primarily assesses the model’s grasp584

of fundamental chemical knowledge and its capability to apply this knowledge in straightforward585

scenarios. Objective question answering encompasses the following tasks: Multiple Choice Task,586

Fill-in-the-Blank Task, and True/False Task. By incorporating these tasks, ChemEval can more587

effectively gauge the model’s overall proficiency in understanding and applying chemical knowledge588

across various contexts and formats.It should be noted that the True/False Task is exclusive to the589

text-only tasks and is not incorporated within the multimodal task set.590

A.1.2 Subjective Questions (SubjQA)591

The second dimension is subjective question answering, which includes Short Answer Task and592

Calculation Task, both aiming to evaluate the depth of the model’s comprehension and its ability593

to apply chemical knowledge effectively. Because on the basis of the previous task, the model also594

requires providing a detailed solution or reason, which involves the understanding of the chemical595

principles and concepts in the question, and applying these principles and concepts to construct596

logically clear and organized answers, which intuitively reflects the model’s understanding of basic597

chemical knowledge.598

Multimodal tasks further build upon these foundations, covering Statistical Chart QA, Statistical599

Table QA , Reaction Profile Diagram QA, Theoretical Potential Energy Surface QA, Infrared Spectrum600

QA, Raman Spectrum QA, UV-Vis Spectrum QA, Diffraction Pattern QA , Kinetic Behavior Chart QA601

and Mass Spectrum QA.These tasks comprehensively evaluate the model’s ability to interpret and602

reason using chemical graphics and experimental data.603

A.2 Literature Understanding604

Advanced Knowledge Question Answering is designed to assess the model’s comprehension and605

mastery of chemical knowledge. In contrast, Literature Understanding evaluates the model’s ability606

to interpret and assimilate information from chemical literature, which forms the foundation for607

downstream inductive generation tasks. Literature Understanding includes three dimensions: In-608

ductive Generation, Information Extraction, and Molecular Name Recognition, comprising a total609
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of 19 tasks. These tasks are crucial for understanding and extracting meaningful information from610

chemical literature. The primary focus is on assessing LLMs’ ability to accurately extract and611

interpret chemical data from text, and to subsequently generate new, contextually relevant content.612

Importantly, such tasks are not covered by other chemical benchmarks. The following subsections613

detail the specific tasks.614

A.2.1 Information Extraction (InfoE)615

This is the first step to read a paper and also the foundation for the next inductive generation task.616

It involves the extraction of various elements related to chemistry, such as named entities, reaction617

substrates, and catalyst types, encompassing a total of 11 tasks. These tasks aim to decompose and618

organize chemical information found in text, covering entities, relationships, and various aspects of619

chemical reactions.620

A.2.2 Inductive Generation (InducGen)621

Based on Information Extraction, Inductive Generation involves creating new, coherent, and contex-622

tually relevant content based on existing data and knowledge. This process incorporates Chemical623

Paper Abstract Generation, Research Outline Generation, Chemical Literature Topic Classification,624

and Reaction Type Recognition and Induction, all focused on synthesizing and organizing chemical625

information in a coherent and meaningful manner.626

A.2.3 Molecular Name Recognition(MNR)627

Molecular Name Recognition is a foundational step in the extraction and organization of chemical628

information, focusing on the accurate identification of molecular names and related entities from629

scientific literature and data sources. This task goes beyond simple text extraction and leverages630

multimodal techniques to integrate information from textual, structural, and graphical data alike. Its631

subtasks encompass Molecular Formula Recognition, Chemical Reaction Equation Recognition, 2D632

Molecular Structure Recognition, and Synthetic Pathway Analysis. Collectively, these subtasks enable633

comprehensive understanding and representation of chemical compounds and their transformations,634

serving as a crucial underpinning for downstream knowledge discovery and advanced reasoning in635

chemical informatics.636

A.3 Molecular Understanding637

This section builds upon the previous foundation to assess the model’s understanding and generative638

capabilities at the molecular level. It includes 4 dimensions: Molecular Name Generation, Molecular639

Name Translation, Molecular Property Prediction, and Molecular Description, a total of 15 tasks.640

Molecular Understanding explores tasks essential for molecular understanding, evaluating the LLMs’641

ability to generate, translate, and describe molecular names and properties. These tasks assess the642

models’ proficiency in interpreting and generating chemical information accurately. The following643

subsections detail various specific tasks within this objective.644

A.3.1 Molecular Name Generation (MNGen)645

Molecular Name Generation is the basis of Molecular Understanding and only contains one task,646

Molecular Name Generation from Text Description. This task is purposed to evaluate the capacity647

of LLMs to generate valid chemical structure representations. It necessitates that the models, based648

on intricate textual descriptions encompassing molecular structures, properties, and classifications,649

synthesize SMILES molecular formulas effectively.650

A.3.2 Molecular Name Translation (MNTrans)651

Furthermore, Molecular Name Translation aims to enable a deep understanding of molecular struc-652

tures and representations, which should serve as the fundamental knowledge for chemistry LLMs.653

It focuses on converting molecular names between different formats, requiring LLMs to output a654

specified alternative format based on a given molecular representation. It involves the conversion655

between representations of molecules such as IUPAC names and SMILES [56] molecular formulas,656

encompassing a total of five tasks, each focusing on distinct aspects of molecular notation conversion.657
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A.3.3 Molecular Property Prediction (MPP)658

Apart from molecular name understanding, the ability to predict molecular properties is also im-659

portant. Molecular Property Prediction targets the forecast of a wide range of physical, chemical,660

and biological attributes of molecules, encapsulated in two core objectives: Molecule Property661

Classification, which predicts categories of properties such as ClinTox, HIV inhibition, and polarity;662

and Molecule Property Regression, focusing on estimating numerical values such as Lipophilicity,663

polarity, and boiling point.664

A.3.4 Molecular Description (MolDesc)665

To facilitate a deeper assessment of molecular understanding, the Molecular Description task has666

been developed to comprehensively evaluate LLMs’ capabilities in interpreting and describing667

molecular structures and their properties. This task consists of a series of subtasks, each requiring the668

prediction of physicochemical properties of molecules based on diverse input modalities. Besides669

the classic subtask of predicting physicochemical properties directly from molecular structures, this670

multimodal extension incorporates additional challenges: Physicochemical Property Prediction from671

Infrared Spectrum, Physicochemical Property Prediction from Raman Spectrum, Physicochemical672

Property Prediction from UV-Vis Spectrum, Physicochemical Property Prediction from Diffraction673

Pattern, Physicochemical Property Prediction from Mass Spectrum, and Physicochemical Property674

Prediction from NMR Spectrum. Collectively, these tasks aim to assess LLMs’ ability to interpret675

various molecular representations—spanning textual, graphical, and spectral data—for comprehensive676

property annotation and molecular understanding.677

A.4 Scientific Knowledge Deduction678

Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific literature,679

and the capacity to understand molecular structures, we expect that the model will proceed to680

conduct deeper chemical reasoning and deduction. So the part of Scientific Knowledge Deduction681

encompasses four key dimensions: Retrosynthetic Analysis, Reaction Condition Recommendation,682

Reaction Outcome Prediction and Reaction Mechanism Analysis, a total of 13 tasks, which are683

essential for effective chemical synthesis. This part evaluates the LLMs’ capabilities in retrosynthetic684

analysis, recommending reaction conditions, predicting reaction outcomes, and analyzing reaction685

mechanisms. These tasks provide a comprehensive assessment of the models’ performance in these686

critical areas of chemical synthesis.687

A.4.1 Retrosynthetic Analysis (ResSyn)688

Retrosynthetic Analysis is a crucial technique in the field of chemical synthesis, particularly in689

organic synthesis. The process begins with the target product and then examines potential synthesis690

pathways and reactant substrates. This approach highlights the reverse reasoning capabilities of691

LLMs in the field of chemical synthesis. It comprises Substrate Recommendation, Synthetic Pathway692

Recommendation and Synthetic Difficulty Evaluation.693

A.4.2 Reaction Condition Recommendation (RCRec)694

Based on the results of the Retrosynthetic Analysis, LLMs can recommend suitable reaction condi-695

tions. Reaction condition recommendation is a key task in chemical synthesis, involving selecting the696

most suitable conditions for specific chemical reactions to ensure maximum efficiency, selectivity, and697

yield. This task integrates recommendations for conditions such as ligands, reagents, and catalysts,698

encompassing a total of six tasks, each targeting a specific component of the reaction condition699

optimization.700

A.4.3 Reaction Outcome Prediction (ROP)701

After determining the reaction pathway and reaction conditions, the large model can predict possible702

reaction outcomes. Reaction outcome prediction is a core technology in chemical synthesis aimed at703

predicting possible results of a reaction before it is actually carried out. This encompasses Reaction704

Product Prediction, Product Yield Prediction, Reaction Rate Prediction.705
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Table 5: Complete Multi-Level 0-Shot Performance Overview on ChemEval part 1. Claude3.7T
represents Claude 3.7-Sonnet-Thinking, while Claude3.7N represents Claude 3.7-Sonnet.

Dimension Task Metric OpenAI-o3-mini OpenAI-o1 GPT-4o Claude3.7T Claude3.7N Deepseek-R1 Deepseek-V3 Qwen2.5-72B Qwen2.5-32B
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 72.00 74.00 66.80 62.80 60.80 82.40 76.00 67.20 67.20
ObjQA FBTask Score 62.42 60.92 51.19 45.28 44.73 59.41 63.88 53.92 50.93
ObjQA TFTask Accuracy 68.00 46.00 57.60 58.80 58.00 75.20 67.20 58.40 49.20
SubjQA SATask Score 68.00 64.50 61.20 56.70 55.10 68.50 71.70 58.50 58.10
SubjQA CalcTask Score 75.50 78.00 61.80 55.74 53.60 76.10 79.20 61.90 57.40

Literature Understanding
InfoE CNER F1 61.30 64.56 65.76 60.21 54.55 64.14 60.85 61.61 56.33
InfoE CERC F1 29.65 22.37 25.66 25.19 24.77 27.18 24.94 26.05 27.21
InfoE SubE Accuracy 66.91 73.71 66.32 61.59 65.76 75.18 61.26 62.56 58.05
InfoE AddE F1 76.67 81.67 85.00 79.33 81.10 82.67 80.67 84.00 80
InfoE SolvE F1 89.00 86.50 85.00 87.60 84.30 90.20 88.50 85.00 90.00
InfoE TempE F1 65.00 70.00 67.00 72.00 69.00 65.00 72.00 65.00 62.00
InfoE TimeE F1 95.00 95.00 95.00 95.00 95.00 95.00 95.00 90.00 95.00
InfoE ProdE Accuracy 87.62 90.25 86.09 82.39 85.04 91.20 87.52 84.86 76.38
InfoE CharME F1 66.67 51.67 72.85 81.01 71.84 21.33 81.80 74.57 79.42
InfoE CatTE F1 65.00 95.00 94.00 82.00 77.00 99.00 100.00 100.00 100.00
InfoE YieldE F1 65.00 85.00 79.00 61.00 59.00 77.70 65.00 65.00 78.00

InducGen AbsGen Score 68.75 63.75 63.00 63.00 66.75 65.00 64.75 64.75 60.00
InducGen OLGen Score 35.00 25.00 35.50 26.50 28.50 37.00 27.00 24.25 29.75
InducGen TopC Accuracy 50.00 55.00 49.00 56.00 51.00 57.00 50.00 64.00 35.00
InducGen ReactTR F1 20.00 25.00 32.00 29.00 26.00 21.00 28.00 22.00 26.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 51.58 (78%) 49.80 (72%) 39.30 (89%) 33.85 (70%) 42.28 (78%) 56.05 (87%) 51.19 (96%) 20.58 (79%) 14.60 (64%)

MNTrans IUPAC2MF L2 0.6214 0.7737 0.5304 0.3252 0.3349 0.6026 0.6176 0.3407 0.3070
MNTrans SMILES2MF L2 0.6276 0.6330 0.3627 0.3618 0.3468 0.4402 0.3563 0.2448 0.2548
MNTrans IUPAC2SMILES Tanimoto (valid) 29.61 (42%) 29.72 (50%) 34.71 (83%) 31.89 (68%) 39.12 (72%) 30.70 (63%) 46.07 (88%) 15.90 (76%) 10.55 (59%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 0.00 0.00 1.20 0.00 0.00 0.00
MNTrans SMILES2IUPAC BLEU 4.37 3.24 0.96 3.27 3.46 4.17 1.67 0.33 0.15
MNTrans SMILES2IUPAC Tanimoto 0.00 0.00 12.08 22.73 24.99 25.90 19.16 13.01 8.68
MNTrans S2S Tanimoto (valid) 9.76 (30%) 9.72 (42%) 13.41 (62%) 9.37 (40%) 10.58 (44%) 16.04 (71%) 16.27 (62%) 11.47 (50%) 6.93 (37%)

MPP MolPC Accuracy 72.88 67.50 64.57 58.90 54.37 53.54 48.73 48.13 67.70
MPP MolPR NRMSE (valid) 12.7593 (99%) 12.3852 (99%) 9.9322 (51%) 13.9702 (92%) 14.0966 (96%) 15.8881 (100%) 8.3675 (98%) 13.0756 (100%) 17.6710 (91%)

MolDesc Mol2PC Score 19.50 19.00 7.00 9.80 15.70 11.90 13.50 20.80 5.90
Scientific Knowledge Deduction

ReSyn SubRec F1 4.67 1.00 0.00 1.46 1.77 1.63 2.27 1.06 0.20
ReSyn PathRec Score 49.38 30.63 22.88 0.36 41.88 52.75 37.38 41.13 36.88
ReSyn SynDE NRMSE (valid) 5.4045 (20%) - (5%) - (0%) - (0%) 1.9854 (39%) - (0%) - (0%) 0.2670 (100%) - (0%)
RCRec LRec F1 4.00 0.00 13.20 2.00 4.40 6.80 7.60 4.40 8.00
RCRec RRec F1 32.00 25.64 15.80 27.43 25.80 21.93 8.35 37.75 34.56
RCRec SolvRec F1 16.00 10.00 20.40 18.80 17.60 22.40 24.00 50.40 51.60
RCRec CatRec F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RCRec TempRec NRMSE (valid) 0.2201 (100%) 0.3278 (100%) 0.2545 (100%) 0.2263 (100%) 0.5398 (100%) 0.2078 (100%) 0.2096 (100%) 0.3782 (100%) 0.2475 (100%)
RCRec TimeRec NRMSE (valid) 0.2165 (100%) 0.2746 (100%) 0.2468 (100%) 0.3662 (100%) 0.4008 (100%) 0.2291 (100%) 0.2579 (100%) 0.2022 (100%) 0.2377 (100%)
ROP PPred F1 10.00 21.33 1.67 12.27 16.16 11.97 0.93 1.73 0.53
ROP YPred Accuracy 8.00 12.00 43.50 16.00 9.00 11.00 22.50 26.00 85.00
ROP RatePred Overlap 16.74 21.08 13.81 9.06 7.21 17.12 17.71 10.71 9.48
RMA IMDer Score 80.00 80.00 81.50 81.50 81.00 79.50 80.50 77.25 79.00

A.4.4 Reaction Mechanism Analysis (RMA)706

Reaction Mechanism Analysis is a critical area in the study of chemical reactions, aiming to explain707

the detailed steps involved in the transformation from reactants to products. This is the final step708

in the field of chemical synthesis, including identifying various intermediates, and transition states,709

as well as the kinetic and thermodynamic parameters of each step in the reaction. Intermediate710

Derivation is the sole subtask in this phase.711

B Detailed Experimental setups712

In this section, we introduce the details of our experimental setups, including the detailed description713

of the evaluated models and explanations of the metrics used in Section 4.3.714

B.1 Models715

In order to comprehensively assess the scientific capabilities of Large Language Models (LLMs), we716

evaluate several high-performing LLMs that are widely accessible, including general and specialized717

models. These models are selected to represent a diverse range of organizations and vary in size.718

• GPT-4o: GPT-4o is OpenAI’s latest flagship multimodal large language model, capable of process-719

ing and generating text, audio, and images through a unified architecture for seamless cross-modal720

reasoning and interaction. It sets new benchmarks in multilingual, speech, and visual understanding,721

exhibiting advanced performance with significantly improved speed and efficiency compared to722

previous models.723

• OpenAI-o1/o3-mini: OpenAI o1 and o3-mini are lightweight, cost-effective reasoning models724

that deliver strong performance in science, mathematics, and programming tasks while offering725

significantly improved response speed and reliability compared to their predecessors, making them726

well-suited for rapid, real-world applications.727
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Table 6: Complete Multi-Level 0-Shot Performance Overview on ChemEval part 2.

Dimension Task Metric Qwen2.5-14B Qwen2.5-7B Llama3.3-8B Grok3 Gemini-2.5-Pro ChemDFM ChemLLM LlaSMol ChemSpark
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 64.80 59.60 40.40 68.80 87.60 41.20 24.40 24.00 43.60
ObjQA FBTask Score 45.76 39.52 34.17 54.36 63.95 24.16 34.97 13.92 24.57
ObjQA TFTask Accuracy 52.00 55.20 46.00 64.40 77.60 46.00 19.20 58.00 50.00
SubjQA SATask Score 57.20 50.80 38.40 73.59 72.00 32.20 13.20 14.50 33.60
SubjQA CalcTask Score 50.80 43.60 28.00 81.20 82.40 14.70 15.90 7.50 18.50

Literature Understanding
InfoE CNER F1 46.31 61.27 55.34 60.75 68.30 41.17 0.16 11.62 71.44
InfoE CERC F1 28.19 26.10 17.31 26.04 25.43 8.74 0.24 1.24 39.27
InfoE SubE Accuracy 59.61 58.43 64.02 72.87 72.05 20.07 0.00 0.00 74.38
InfoE AddE F1 83.00 61.67 45.81 85.00 95.00 45.00 0.00 0.00 65.00
InfoE SolvE F1 86.50 82.50 75.47 85.00 83.17 80.50 1.67 0.00 83.79
InfoE TempE F1 70.00 65.00 62.00 70.00 69.00 74.33 3.23 0.00 83.00
InfoE TimeE F1 95.00 95.00 90.00 95.00 94.00 78.00 23.10 25.00 95.00
InfoE ProdE Accuracy 82.44 77.00 74.54 91.04 92.82 34.73 0.00 0.00 94.40
InfoE CharME F1 67.92 43.00 44.18 79.36 73.11 27.26 0.00 0.00 12.98
InfoE CatTE F1 75.00 64.00 65.00 97.00 96.00 49.00 0.00 5.00 31.00
InfoE YieldE F1 80.00 67.00 46.00 61.00 74.00 45.00 0.00 5.00 61.00

InducGen AbsGen Score 59.25 54.75 62.00 69.50 67.25 0.00 5.50 26.25 38.25
InducGen OLGen Score 29.75 27.75 22.75 35.25 39.50 0.00 3.75 31.25 30.50
InducGen TopC Accuracy 45.00 41.00 32.00 47.00 67.00 51.00 0.00 0.00 30.00
InducGen ReactTR F1 26.00 31.00 26.00 28.00 31.00 13.00 0.00 5.00 17.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 11.03 (53%) 3.92 (32%) 5.83 (40%) 57.86 (94%) 71.11 (93%) 47.06 (69%) 0.00 (0%) 3.71 (76%) 74.81 (98%)

MNTrans IUPAC2MF L2 0.3126 0.1856 0.2433 0.7110 0.8382 0.6119 0.0454 0.0000 0.8807
MNTrans SMILES2MF L2 0.2114 0.0980 0.1728 0.3980 0.6574 0.6399 0.0375 0.0000 0.8133
MNTrans IUPAC2SMILES Tanimoto (valid) 8.18 (52%) 3.46 (30%) 5.24 (30%) 65.81 (94%) 61.35 (87%) 46.71 (88%) 0.00 (100%) 4.70 (56%) 87.84 (1%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 1.20 1.20 0.00 0.00 0.00 14.00
MNTrans SMILES2IUPAC BLEU 0.22 0.00 0.44 4.69 13.55 0.56 0.00 0.00 48.25
MNTrans SMILES2IUPAC Tanimoto 5.76 3.78 3.71 30.47 56.82 2.06 0.00 2.22 66.26
MNTrans S2S Tanimoto (valid) 10.52 (60%) 2.28 (14%) 1.74 (12%) 17.56 (59%) 13.13 (44%) 2.12 (25%) 0.00 (50%) 0.60 (48%) 87.36 (94%)

MPP MolPC Accuracy 64.22 64.05 47.26 56.61 63.63 61.35 0.00 46.50 85.57
MPP MolPR NRMSE (valid) 11.7005 (90%) 8.5890 (98%) 61.4736 (62%) 9.0283 (100%) 11.7270 (100%) 394.9424 (83%) 179.3606 (93%) 29.9686 (73%) 1.2142 (100%)

MolDesc Mol2PC Score 7.20 14.50 2.10 28.00 0.70 3.10 0.30 0.00 48.90
Scientific Knowledge Deduction

ReSyn SubRec F1 0.00 1.42 0.27 0.87 0.00 3.99 0.00 0.00 12.37
ReSyn PathRec Score 32.63 27.13 20.88 32.13 43.75 24.13 10.88 10.00 38.75
ReSyn SynDE NRMSE (valid) 0.3551 (100%) - (0%) - (0%) - (0%) - (0%) - (0%) 33.0049 (78%) 1.2374 (45%) 1.7992 (87%)
RCRec LRec F1 6.80 2.80 2.13 36.00 0.00 26.00 0.00 0.00 37.60
RCRec RRec F1 37.65 16.93 8.78 44.60 0.73 13.13 0.00 0.50 63.72
RCRec SolvRec F1 15.60 25.60 3.63 24.00 0.00 10.53 0.00 0.50 30.40
RCRec CatRec F1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50
RCRec TempRec NRMSE (valid) 0.1989 (100%) 0.3223 (100%) - (0%) 0.1972 (100%) 0.1814 (100%) 0.3811 (99%) 1.1184 (98%) 0.8658 (100%) 0.2742 (100%)
RCRec TimeRec NRMSE (valid) 0.2505 (100%) 0.3213 (100%) - (0%) 0.2164 (100%) 0.2425 (100%) 0.4732 (100%) 1.7937 (98%) 0.4351 (80%) 0.3937 (100%)
ROP PPred F1 0.00 0.00 0.00 11.33 29.20 18.80 0.00 16.00 56.40
ROP YPred Accuracy 33.50 67.00 35.50 8.00 17.50 7.20 0.00 28.00 72.00
ROP RatePred Overlap 9.54 13.35 6.92 8.77 27.01 3.79 0.00 3.68 2.90
RMA IMDer Score 67.75 78.75 81.25 81.25 82.25 76.00 4.75 1.50 92.75

• Claude-3.7-sonnet: Claude 3.7 Sonnet is Anthropic’s most advanced hybrid reasoning language728

model to date, integrating rapid response with deep, stepwise analytical capabilities and offering729

flexible dual modes for both instant answers and complex multi-stage problem-solving across a730

range of scientific and coding tasks.731

• Gemini-2.5-pro: Gemini 2.5 Pro is Google DeepMind’s latest multimodal large language model732

that integrates advanced “thinking” mechanisms and hybrid attention architectures, enabling state-733

of-the-art reasoning, code generation, and long-context understanding across text, image, audio,734

and video inputs, with support for up to one million tokens in a single context window.735

• Grok3: Grok 3 is a new generation of large language model developed by xAI. It has achieved736

breakthroughs in key benchmark tests such as mathematical reasoning, scientific logical reasoning,737

and code writing. In addition, it supports multimodal interaction and can also access real-time738

information through the X platform to enhance the timeliness and accuracy of its responses.739

• DeepSeek-V3: DeepSeek-V3 is a powerful 671-billion-parameter Mixture-of-Experts (MoE)740

language model developed by DeepSeek, trained on 14.8 trillion tokens with innovations like741

Multi-head Latent Attention (MLA) and Multi-Token Prediction (MTP) to achieve state-of-the-art742

performance in mathematics, coding, and multilingual tasks. It features a 128K context window743

and efficient inference, with future versions expected to include multi-modal capabilities.744

• DeepSeek-R1: DeepSeek-R1 is a reasoning-optimized model based on the DeepSeek-V3-Base745

architecture. It is trained with reinforcement learning and human feedback to enhance its perfor-746

mance in complex reasoning tasks such as logical deduction and mathematical problem-solving747

while maintaining high safety and reliability.748

• Qwen2.5-7B/14B/32B/72B: Qwen 2.5 is a series of advanced large language models developed by749

Alibaba Cloud, featuring models with parameter sizes ranging from 0.5B to 72B. These models750

have significantly improved capabilities in areas such as coding, mathematics, and multilingual751

support, and they are trained on a large-scale dataset of up to 18 trillion tokens752

• LLaMA3.3-8B : Meta Llama 3 8B is a powerful large language model with 8 billion parameters,753

optimized for dialogue and text generation. It is trained on over 15 trillion tokens and features a754

128K token vocabulary and Grouped-Query Attention for enhanced performance.755
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Table 7: Multimodal Performance Overview on ChemEval.

Dimension Task Metric GLM-4V GPT-4o Claude3.7T Qwen-vl-max Phi-vision-3.5 Gemini-2.5-Pro
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 32.22 40.86 7.78 43.33 35.56 45.55
ObjQA FBTask Accuracy 36.67 52.41 17.77 48.12 15.02 58.80
SubjQA SCQA Score 65.33 68.67 30.22 82.00 44.44 80.89
SubjQA STQA Score 64.22 54.22 32.67 72.22 32.67 76.22
SubjQA RPDQA Score 50.67 62.93 20.00 70.67 37.67 70.00
SubjQA TPESQA Score 62.33 69.33 21.67 76.33 45.67 70.67
SubjQA IRSQA Score 53.33 59.00 35.33 62.33 42.00 66.33
SubjQA RSQA Score 64.33 70.00 35.67 71.33 51.33 76.00
SubjQA UVSQA Score 62.67 62.67 33.33 66.00 48.00 69.33
SubjQA DPQA Score 67.00 75.67 37.00 83.33 51.00 76.00
SubjQA KBCQA Score 68.33 77.00 48.67 81.67 51.00 79.33
SubjQA MSQA Score 66.33 74.40 22.00 83.67 46.33 72.00
SubjQA SATask Score 46.67 55.28 46.33 57.67 35.00 71.00
SubjQA CalcTask Score 49.11 60.67 51.78 62.00 36.89 79.78

Literature Understanding
MNR MFR Accuracy 100.00 95.56 2.22 100.00 85.55 84.45
MNR CRER Accuracy 95.56 93.34 3.33 93.33 15.56 42.22
MNR 2DMolR Tanimoto 3.73 20.92 0.00 16.26 1.98 -
MNR PathA F1 0.00 0.00 0.00 0.00 0.00 -

Molecular Understanding
MNTrans IUPAC2MF L2 0.3048 0.5653 0.2106 0.1175 0.1690 0.5892
MNTrans SMILES2MF L2 0.1251 0.2144 0.0468 0.1367 0.1018 0.4951
MNTrans IUPAC2SMILES Tanimoto 8.40 44.43 11.90 24.63 4.37 77.19
MNTrans SMILES2IUPAC Exact 0.00 0.00 0.00 0.00 0.00 2.00
MNTrans SMILES2IUPAC BLEU 23.15 19.04 22.81 24.44 26.19 18.47
MNTrans SMILES2IUPAC Tanimoto 1.73 2.09 8.88 0.74 1.22 4.16

MPP MolPC Accuracy 50.51 49.70 54.67 58.32 53.75 62.08
MPP MolPR NRMSE (valid) 2.3782 (57%) 1.0268 (71%) 0.3491 (29%) 21.8799 (100%) 3.0580 (43%) 16.1085 (100%)

MolDesc IRS2PC Score 54.00 58.00 66.33 60.67 45.00 60.67
MolDesc RS2PC Score 44.00 51.67 63.00 57.67 38.33 55.33
MolDesc UV2PC Score 54.67 59.67 65.67 63.00 40.67 67.00
MolDesc DP2PC Score 58.33 65.00 74.00 69.00 41.33 69.33
MolDesc MS2PC Score 54.33 61.67 75.33 67.00 38.67 69.00
MolDesc NMR2PC Score 54.33 65.00 71.67 68.33 37.67 66.67

Scientific Knowledge Deduction
ReSyn SubRec F1 0.00 0.00 0.00 1.48 0.00 1.48
ReSyn PathRec Score 45.00 57.00 67.00 54.67 31.67 61.67
ReSyn SynDE NRMSE 0.4220 0.3199 0.5575 0.2234 - 0.5437
RCRec LRec F1 0.00 28.33 1.67 8.33 11.67 5.00
RCRec RRec F1 0.00 5.00 5.00 6.67 6.67 8.33
RCRec SolvRec F1 15.00 23.33 21.67 30.00 18.33 28.33
RCRec CatRec F1 0.00 0.00 0.00 0.00 0.00 0.00
RCRec TempRec NRMSE 0.1220 0.4845 0.3913 0.5346 - 0.1777
RCRec TimeRec NRMSE - - 0.4378 - - -
ROP PRec F1 0.00 0.00 0.00 3.33 0.00 1.67
ROP YPred Accuracy - 43.33 20.00 25.00 78.33 31.67
RMA IMPred Score 67.67 71.33 76.67 62.33 35.00 77.67

• Qwen-VL Max: Qwen-VL-Max is the most capable large visual language model in the Qwen-756

VL series, offering optimal performance on a broad range of complex tasks. It has significantly757

enhanced visual reasoning and instruction-following abilities, and can handle high-definition758

images with resolutions above one million pixels.759

• Phi-Vision-3.5: Phi-3.5-vision is a lightweight, state-of-the-art open multimodal model developed760

by Microsoft, with 4.2B parameters and a 128K context length. It excels in handling both text and761

visual inputs, offering capabilities in general image understanding, optical character recognition,762

chart interpretation, and video summarization.763

• ChemDFM: ChemDFM is a pioneering large language model (LLM) specifically designed for764

chemistry, trained on 34 billion tokens from chemical literature and textbooks and fine-tuned765

using 2.7 million instructions. It demonstrates superior performance in various chemical tasks766

such as molecule recognition, molecular property prediction, and reaction analysis, significantly767

outperforming most representative open-source LLMs.768

• LlaSMol: LlaSMol is a series of large language models fine-tuned on a large-scale, comprehensive,769

and high-quality instruction tuning dataset named SMolInstruct for chemistry tasks. These models,770

based on open-source LLMs like Galactica, Llama 2, Code Llama, and Mistral, demonstrate771

strong performance on various chemistry tasks, significantly outperforming previous LLMs and772

approaching the performance of state-of-the-art task-specific models. We select the Mistral-based773

version for experiments due to its superior performance.774
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Table 8: Complete Multi-Level 3-Shot Performance Overview on ChemEval part 1. Claude3.7T
represents Claude 3.7-Sonnet-Thinking, while Claude3.7N represents Claude 3.7-Sonnet.

Dimension Task Metric OpenAI-o3-mini OpenAI-o1 GPT-4o Claude3.7T Claude3.7N Deepseek-R1 Deepseek-V3 Qwen2.5-72B Qwen2.5-32B
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 72.00 82.00 69.20 65.20 65.20 82.40 72.00 68.00 71.20
ObjQA FBTask Score 51.46 62.65 45.59 42.56 42.28 59.96 57.89 53.53 45.99
ObjQA TFTask Accuracy 76.00 86.00 66.00 57.60 62.40 80.80 72.80 48.40 59.60
SubjQA SATask Score 67.00 68.50 61.00 54.10 53.90 71.40 70.40 60.80 55.90
SubjQA CalcTask Score 75.00 78.50 59.10 53.73 55.40 75.10 77.40 61.61 52.61

Literature Understanding
InfoE CNER F1 66.33 70.59 71.14 64.62 62.18 70.85 63.28 65.92 59.45
InfoE CERC F1 29.30 32.69 25.72 23.11 25.39 29.11 25.65 25.63 26.18
InfoE SubE Accuracy 73.17 78.01 65.93 62.66 61.55 76.88 75.78 70.10 60.62
InfoE AddE F1 88.33 95.67 90.94 90.57 92.63 89.57 90.87 88.80 81.84
InfoE SolvE F1 84.00 85.00 80.00 81.50 84.63 85.00 81.60 75.00 84.00
InfoE TempE F1 70.00 75.00 73.00 80.00 80.00 83.00 80.00 80.00 75.00
InfoE TimeE F1 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00
InfoE ProdE Accuracy 88.06 91.48 86.88 82.35 87.34 92.33 91.75 84.05 71.38
InfoE CharME F1 76.02 79.60 78.97 77.88 75.02 77.86 77.34 73.63 72.18
InfoE CatTE F1 95.00 95.00 98.00 91.00 94.00 100.00 100.00 97.00 98.00
InfoE YieldE F1 60.00 60.00 62.00 57.00 56.00 60.00 60.00 56.00 79.00

InducGen TopC Accuracy 40.00 50.00 48.00 47.00 43.00 54.00 49.00 56.00 30.00
InducGen ReactTR F1 60.00 60.00 71.00 44.00 40.00 69.00 46.00 61.00 67.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 51.04 (78%) 54.56 (80%) 41.57 (90%) 31.43 (77%) 38.25 (80%) 53.15 (90%) 48.84 (96%) 25.18 (77%) 18.34 (75%)

MNTrans IUPAC2MF L2 0.6632 0.7636 0.4944 0.3563 0.3847 0.6303 0.5908 0.2795 0.1652
MNTrans SMILES2MF L2 0.5833 0.5942 0.2858 0.3233 0.3359 0.4569 0.3651 0.1953 0.2238
MNTrans IUPAC2SMILES Tanimoto (valid) 31.51 (52%) 33.63 (52%) 31.71 (83%) 29.33 (65%) 40.07 (75%) 33.49 (67%) 49.60 (88%) 16.73 (65%) 10.88 (60%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 0.40 0.40 1.20 0.00 0.00 0.00
MNTrans SMILES2IUPAC BLEU 3.44 4.49 1.37 4.19 4.49 4.33 2.53 1.00 0.11
MNTrans SMILES2IUPAC Tanimoto 0.00 0.00 12.69 17.03 21.01 24.25 17.86 13.05 7.42
MNTrans S2S Tanimoto (valid) 15.17 (44%) 22.62 (80%) 18.24 (74%) 12.16 (72%) 15.70 (68%) 21.25 (85%) 21.76 (62%) 18.80 (72%) 14.37 (79%)

MPP MolPC Accuracy 73.08 71.60 68.55 63.23 58.49 66.72 55.79 56.87 58.71
MPP MolPR NRMSE (valid) 0.2574 (100%) 0.2536 (100%) 0.4128 (85%) 3.3664 (98%) 5.2053 (98%) 0.2697 (100%) 0.2934 (99%) 0.3779 (98%) 0.3860 (100%)

MolDesc Mol2PC Score 18.50 24.50 8.30 21.60 21.30 8.70 14.10 0.40 0.20
Scientific Knowledge Deduction

ReSyn SubRec F1 2.67 3.00 0.43 1.09 2.05 2.03 1.36 0.00 0.00
ReSyn PathRec Score 52.50 40.63 25.00 29.25 28.75 33.13 24.00 33.38 41.13
ReSyn SynDE NRMSE (valid) 0.3806 (100%) 0.5517 (100%) 0.4856 (100%) 0.7561 (100%) 0.6454 (100%) 0.5380 (100%) 0.6527 (96%) 0.3208 (100%) 0.3251 (100%)
RCRec LRec F1 12.00 18.00 15.60 11.20 8.00 5.60 11.60 16.40 6.00
RCRec RRec F1 45.00 41.67 21.31 32.33 33.65 30.54 12.39 37.26 35.27
RCRec SolvRec F1 46.00 26.00 26.40 34.40 22.40 48.00 41.60 46.80 51.20
RCRec CatRec F1 32.50 25.83 5.00 5.08 3.33 34.67 2.00 17.04 0
RCRec TempRec NRMSE (valid) 0.4951 (100%) 0.4137 (100%) 0.4841 (100%) 0.3745 (100%) 0.4625 (100%) 0.4141 (100%) 0.3170 (100%) 0.4143 (100%) 0.2561 (100%)
RCRec TimeRec NRMSE 0.2071 (100%) 0.1970 (100%) 0.2164 (100%) 0.1918 (100%) 0.2614 (100%) 0.1980 (100%) 0.2085 (100%) 0.1870 (100%) 0.2080 (100%)
ROP PPred F1 12.00 20.00 1.07 11.87 16.19 14.10 0.63 0.40 0.96
ROP YPred Accuracy 54.00 34.00 48.50 75.00 32.50 40.50 40.50 61.00 88.00
ROP RatePred Overlap 16.74 14.41 20.27 17.17 15.82 19.24 13.45 15.82 15.40
RMA IMDer Score 81.25 77.50 83.50 79.75 81.50 79.25 84.75 77.25 68.25

• ChemLLM: ChemLLM is the first specialized large language model dedicated to chemistry,775

trained on a unique dataset ChemData, and evaluated on a comprehensive benchmark ChemBench.776

This model shows remarkable capabilities in handling various chemistry tasks and exhibits strong777

general language skills.778

• ChemSpark: ChemSpark is a chemistry-specialized large language model developed by the779

iFLYTEK team through fine-tuning the Spark-13B model on chemical task datasets. It demonstrates780

exceptional proficiency in solving complex chemical tasks while maintaining strong general781

capabilities, outperforming previous chemistry-domain models across most evaluation metrics.782

B.2 metrics783

In this study, we employ a variety of evaluation metrics to comprehensively assess model performance784

across different tasks. The main metrics include:785

• F1 Score and Accuracy: These are the primary metrics used for most tasks. The F1 score combines786

precision and recall to evaluate classification performance, while accuracy measures the proportion787

of correct predictions.788

• BLEU: Calculated by comparing the n-gram overlap between the model-generated text and the789

reference answer, incorporating a brevity penalty to penalize overly short outputs. This metric is790

mainly used to assess the similarity between generated results and reference answers.791

• Exact Match: This metric checks whether the model output exactly matches the ground truth.792

• Normalized Root Mean Square Error (NRMSE): Used to evaluate the prediction error in793

numerical or regression tasks, and lower values indicate better model performance.794

• Valid Output Ratio: The proportion of valid outputs provided by the model.795

• LLMs Score (Score): Subjective evaluation by other large language models, focusing on the796

reasonableness and completeness of the answers.797

• L2 Score (L2): An indicator for evaluating the similarity between molecular formulas. Specifically,798

L2 Score is calculated as 1/(1+L2 distance), where the L2 distance refers to the L2 norm between799
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Table 9: Complete Multi-Level 3-Shot Performance Overview on ChemEval part 2.

Dimension Task Metric Qwen2.5-14B Qwen2.5-7B Llama3.3-8B Grok3 Gemini-2.5-Pro ChemDFM ChemLLM LlaSMol ChemSpark
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 64.80 55.60 38.40 70.40 90.80 44.80 13.60 4.00 32.00
ObjQA FBTask Score 41.00 34.35 29.68 49.19 56.66 20.98 55.40 29.28 26.20
ObjQA TFTask Accuracy 61.60 63.60 46.80 74.40 72.00 65.20 0.80 38.00 57.20
SubjQA SATask Score 52.20 48.70 29.00 73.00 70.00 30.50 11.50 23.50 31.60
SubjQA CalcTask Score 51.10 40.80 19.70 79.30 81.60 16.40 35.46 68.37 15.80

Literature Understanding
InfoE CNER F1 57.42 64.84 51.35 61.47 73.62 36.98 0.09 9.04 72.30
InfoE CERC F1 26.59 25.42 15.34 28.66 29.69 0.37 0.28 0.00 37.18
InfoE SubE Accuracy 62.69 68.17 57.71 79.42 76.29 20.04 0.00 0.00 72.86
InfoE AddE F1 92.33 53.24 41.71 92.66 95.00 47.13 0.29 0.00 67.00
InfoE SolvE F1 83.50 74.00 69.00 81.00 84.67 71.25 0.43 0.05 85.23
InfoE TempE F1 70.00 79.00 69.00 79.00 77.00 41.00 1.53 0.00 80.00
InfoE TimeE F1 95.00 89.00 89.00 95.00 95.00 78.00 0.98 0.00 95.00
InfoE ProdE Accuracy 84.55 83.14 73.26 90.62 93.75 8.83 0.00 0.00 98.40
InfoE CharME F1 70.25 62.96 32.72 79.36 80.09 17.83 0.00 0.00 39.12
InfoE CatTE F1 82.00 78.00 71.00 100.00 99.00 44.00 0.00 0.00 26.00
InfoE YieldE F1 69.00 60.00 61.00 55.00 59.50 41.00 0.00 0.00 69.00

InducGen TopC Accuracy 49.00 47.00 28.00 46.00 73.00 27.00 0.00 0.00 25.00
InducGen ReactTR F1 48.00 40.00 39.00 79.00 59.00 26.00 0.00 0.00 32.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 10.27 (55%) 4.71 (36%) 7.51 (34%) 49.26 (92%) 72.33 (92%) 34.29 (69%) 0.00 (0%) 0.00 (0%) 61.38 (95%)

MNTrans IUPAC2MF L2 0.1864 0.1719 0.2619 0.3393 0.8294 0.3225 0.0102 0.0000 0.8176
MNTrans SMILES2MF L2 0.1333 0.1360 0.1674 0.3781 0.6422 0.4025 0.0072 0.0054 0.7224
MNTrans IUPAC2SMILES Tanimoto (valid) 7.67 (48%) 3.51 (30%) 2.37 (14%) 65.15 (94%) 59.44 (87%) 38.66 (88%) 0.00 (0%) 0.00 (0%) 83.98 (99%)
MNTrans SMILES2IUPAC Exact Match 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 10.80
MNTrans SMILES2IUPAC BLEU 0.62 0.15 0.13 3.44 13.61 0.26 0.08 0.00 45.96
MNTrans SMILES2IUPAC Tanimoto 7.80 3.39 1.91 28.61 54.63 1.82 0.00 0.00 61.08
MNTrans S2S Tanimoto (valid) 12.19 (71%) 6.28 (56%) 3.51 (47%) 27.58 (87%) 20.11 (74%) 0.94 (25%) 0.00 (0%) 0.00 (2%) 79.68 (89%)

MPP MolPC Accuracy 66.84 59.77 53.20 61.71 67.62 56.65 0.00 40.00 82.88
MPP MolPR NRMSE (valid) 1.6757 (100%) 0.5915 (100%) 50.9659 (81%) 0.2886 (100%) 0.2213 (100%) 1.6438 (87%) 8.2422 (98%) 10.0340 (89%) 1.1634 (100%)

MolDesc Mol2PC Score 2.40 1.90 0.40 24.40 2.30 0.00 0.00 9.50 66.20
Scientific Knowledge Deduction

ReSyn SubRec F1 0.20 0.20 0.00 0.80 0.00 2.74 0.00 0.00 10.45
ReSyn PathRec Score 28.75 23.50 17.88 25.25 43.00 28.75 6.75 17.50 27.00
ReSyn SynDE NRMSE (valid) 0.3223 (100%) 0.4794 (100%) 0.7969 (100%) 0.2716 (100%) 0.4284 (100%) 0.6243 (51%) 0.6246 (100%) 0.4367 (95%) 0.5968 (66%)
RCRec LRec F1 9.20 6.40 2.40 29.60 0.00 12.49 0.00 0.00 16.80
RCRec RRec F1 41.69 30.28 30.00 35.14 1.87 14.21 5.60 0.00 57.45
RCRec SolvRec F1 26.00 48.00 33.80 30.40 0.00 24.59 0.00 0.00 32.00
RCRec CatRec F1 18.67 8.13 0.25 2.89 1.80 3.90 3.43 0.00 1.97
RCRec TempRec NRMSE (valid) 0.5359 (100%) 0.4211 (100%) 0.7066 (89%) 0.1687 (100%) 0.1479 (100%) 0.6583 (99%) 1.0526 (100%) 0.9240 (90%) 0.2682 (100%)
RCRec TimeRec NRMSE 0.2053 (100%) 0.2053 (100%) 0.9478 (100%) 0.1944 (100%) 0.2090 (100%) 0.1970 (100%) 0.4404 (100%) 0.3085 (100%) 0.4021 (100%)
ROP PPred F1 0.00 0.40 0.00 10.87 30.00 11.93 0.00 0.00 53.60
ROP YPred Accuracy 92.00 92.00 22.00 9.50 33.00 36.80 0.00 0.00 88.50
ROP RatePred Overlap 16.71 12.29 14.29 22.83 29.08 17.46 0.00 0.00 11.03
RMA IMDer Score 74.25 25.25 67.50 80.50 83.00 42.25 4.75 3.75 73.25

Table 10: The standard deviation results of five-time tests across distinct models on ChemEval.

Task SATask CalcTask CNER CERC ProdE S2S MolPC LRec PPred
Metric Score Score F1 F1 Accuracy Tanimoto Accuracy F1 F1
GPT-4o 61.20 ± 2.25 61.80 ± 1.21 65.76 ± 1.58 25.66 ± 1.48 86.09 ± 1.45 13.41 ± 1.39 64.57 ± 1.23 13.20 ± 2.99 1.67 ± 1.52

claude3.7T 56.70 ± 1.81 55.74 ± 2.82 60.21 ± 2.02 25.19 ± 1.91 82.39 ± 2.53 9.37 ± 0.78 58.90 ± 1.96 2.00 ± 1.26 12.27 ± 4.71
claude3.7N 55.10 ± 2.18 53.60 ± 2.15 54.55 ± 4.02 24.77 ± 1.18 85.04 ± 1.88 10.58 ± 1.14 54.37 ± 3.24 4.40 ± 1.50 16.16 ± 1.89

Deepseek-R1 68.50 ± 2.21 76.10 ± 2.40 64.14 ± 1.72 27.18 ± 0.44 91.20 ± 0.35 16.04 ± 1.12 53.55 ± 0.63 6.80 ± 2.04 11.97 ± 1.73
Deepseek-V3 71.70 ± 1.91 79.20 ± 2.94 60.85 ± 1.13 24.94 ± 1.12 87.52 ± 2.56 16.27 ± 1.44 48.73 ± 1.43 7.60 ± 2.33 0.93 ± 1.14
Qwen2.5-72B 58.50 ± 2.24 61.90 ± 2.08 61.61 ± 0.81 26.05 ± 0.84 84.86 ± 1.15 11.47 ± 1.17 48.13 ± 0.65 4.40 ± 1.50 1.73 ± 1.50
LLama3.3-8B 38.40 ± 1.93 28.00 ± 0.95 55.34 ± 3.85 17.31 ± 2.31 74.54 ± 1.56 1.74 ± 0.65 47.26 ± 1.86 2.13 ± 1.29 0.00 ± 0.00

Grok3 73.59 ± 1.16 81.20 ± 1.60 60.75 ± 0.34 26.04 ± 0.61 91.04 ± 0.28 17.56 ± 1.75 56.62 ± 0.76 36.00 ± 1.26 11.33 ± 1.54
Gemini-2.5-Pro 72.00 ± 1.41 82.40 ± 0.97 68.30 ± 0.99 25.43 ± 1.63 92.82 ± 1.92 13.13 ± 1.01 63.63 ± 1.10 0.00 ± 0.00 29.20 ± 6.01

ChemDFM 32.20 ± 1.57 14.70 ± 1.17 41.17 ± 2.25 8.74 ± 2.52 34.73 ± 2.94 2.12 ± 0.31 61.35 ± 0.80 26.00 ± 3.79 18.80 ± 2.29
ChemLLM 13.20 ± 1.03 15.90 ± 2.91 0.16 ± 0.32 0.24 ± 0.12 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
ChemSpark 33.60 ± 0.97 18.50 ± 2.02 71.44 ± 1.13 39.27 ± 2.59 94.40 ± 0.23 87.36 ± 1.46 85.57 ± 2.19 37.60 ± 0.80 56.40 ± 3.44

the predicted and reference molecular formulas. A higher value indicates greater similarity between800

formulas.801

• Overlap: Used to assess the proximity between the predicted range and the reference range. It is802

calculated as the length of the intersection divided by the length of the union of the predicted and803

reference ranges.804

C Full Performance Results805

C.1 Performance result of 0-shot settings806

The table 5 and the table 6 show the complete experiment results of all models under the zero-shot807

setting. We tested all the aforementioned models under zero-shot settings on ChemEval, as analyzed808

in Section 4.2.1. The results demonstrate that general-purpose models perform relatively well on809

knowledge question answering and literature comprehension tasks, while specialized models excel in810

more complex chemical tasks such as molecular property prediction. For certain tasks like CatRec,811

most models struggled to generate valid outputs, resulting in scores of zero.812
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Table 11: Analysis experiment result of CoT and format constraints.

Dimension Task Metric ChemDFM-NoFormat ChemDFM-CoT ChemLLm-NoFormat Llasmol-NoFormat Qwen2.5-7B-CoT
Advanced Knowledge Question Answering

ObjQA MCTask Accuracy 36.00 ↓5.20 32.00 ↓9.20 28.00 ↑3.60 24.00 50.00 ↓9.60
ObjQA FBTask Score 24.00 ↓0.16 25.38 ↑1.22 31.58 ↓3.39 20.88 ↑6.96 27.64 ↓11.88
ObjQA TFTask Accuracy 46.00 32.00 ↓14.00 16.00 ↓3.20 56.00 ↓2.00 70.00 ↑14.80
SubjQA SATask Score 44.80 ↑12.60 44.40 ↑12.20 32.40 ↑19.20 30.00 ↑15.50 57.60 ↑6.80
SubjQA CalcTask Score 32.00 ↑17.30 32.40 ↑17.70 32.40 ↑16.50 22.00 ↑14.50 51.60 ↑8.00

Literature Understanding
InfoE CNER F1 43.44 ↑2.27 37.98 ↓3.19 47.61 ↑47.45 1.00 ↓10.62 67.02 ↑5.75
InfoE CERC F1 11.53 ↑2.79 9.69 ↑0.95 16.81 ↑16.57 4.13 ↑2.89 22.89 ↓3.21
InfoE SubE Accuracy 0.00 ↓20.07 0.00 ↓20.07 0.00 0.00 0.00 ↓58.43
InfoE AddE F1 33.33 ↓11.67 46.67 ↑1.67 66.67 ↑66.67 36.67 ↑36.67 65.33 ↑3.66
InfoE SolvE F1 65.00 ↓15.50 60.00 ↓20.50 76.50 ↑74.83 0.00 78.33 ↓4.17
InfoE TempE F1 60.00 ↓14.33 70.00 ↓4.33 70.00 ↑66.77 40.00 ↑40.00 65.00
InfoE TimeE F1 80.00 ↑2.00 90.00 ↑12.00 95.00 ↑92.69 50.00 ↑25.00 95.00
InfoE ProdE Accuracy 0.00 ↓34.73 0.61 ↓34.12 0.00 4.13 ↑4.13 26.51 ↓50.49
InfoE CharME F1 74.96 ↑47.70 64.52 ↑37.26 65.00 ↑65.00 44.96 ↑44.96 65.38 ↑22.38
InfoE CatTE F1 35.00 ↓14.00 40.00 ↓9.00 45.00 ↑45.00 0.00 ↓5.00 55.00 ↓9.00
InfoE YieldE F1 60.00 ↑15.00 60.00 ↑15.00 55.00 ↑55.00 55.00 ↑50.00 50.00 ↓17.00

InducGen AbsGen Score 20.00 ↑20.00 20.00 ↑20.00 20.00 ↑14.50 11.00 ↓15.25 73.00 ↑18.25
InducGen OLGen Score 19.00 ↑19.00 18.00 ↑18.00 40.00 ↑36.25 25.00 ↓6.25 58.00 ↑30.25
InducGen TopC Accuracy 30.00 ↓21.00 45.00 ↓6.00 35.00 ↑35.00 20.00 ↑20.00 45.00 ↑4.00
InducGen ReactTR F1 25.00 ↑12.00 15.00 ↑2.00 30.00 ↑30.00 0.00 ↓5.00 20.00 ↓11.00

Molecular Understanding
MNGen MolNG Tanimoto (valid) 71.94 (94%) ↑24.88 61.03 (92%) ↑13.97 0.62 (2%) ↑0.62 0.0 (0%) ↓3.71 3.44 (26%) ↓0.48

MNTrans IUPAC2MF L2 68.15 ↑6.96 21.15 ↓40.04 6.99 ↑2.45 1.00 ↑1.00 9.93 ↓8.63
MNTrans SMILES2MF L2 61.27 ↓2.72 17.14 ↓46.85 4.23 ↑0.48 0.00 3.96 ↓5.84
MNTrans IUPAC2SMILES Tanimoto (valid) 50.37 (96%) ↑3.66 44.77 (84%) ↓1.94 0.0 (0%) 0.0 (0%) ↓4.70 3.23 (28%) ↓0.23
MNTrans S2S Tanimoto (valid) 0.14 (50%) ↓1.98 3.53 (46%) ↑1.41 2 (4%) ↑2.00 0.0 (0%) ↓0.60 2 (2%) ↓0.28

MPP MolPC Accuracy 63.68 ↑2.33 57.12 ↓4.23 45.36 ↑45.36 54.92 ↑8.42 45.60 ↓18.45
MPP MolPR NRMSE 11.88 ↑383.07 240.91 ↑154.03 0.56 ↑178.80 12.19 ↑17.78 46.98 ↓38.39

MolDesc Mol2PC Score 28.40 ↑25.30 28.00 ↑24.90 20.40 ↑20.10 25.60 ↑25.60 30.40 ↑15.90
Scientific Knowledge Deduction

ReSyn SubRec F1 0.00 ↓3.99 0.00 ↓3.99 0.00 1.33 ↑1.33 0.00 ↓1.42
ReSyn PathRec Score 48.00 ↑23.88 40.50 ↑16.38 24.00 ↑13.13 30.50 ↑20.50 47.00 ↑19.88
RCRec LRec F1 4.00 ↓22.00 4.80 ↓21.20 0.00 0.00 6.00 ↑3.20
RCRec RRec F1 8.00 ↓5.13 9.33 ↓3.80 22.00 ↑22.00 0.00 44.00 ↑27.07
RCRec SolvRec F1 6.00 ↓4.53 14.00 ↑3.47 8.00 ↑8.00 2.00 ↑1.50 20.00 ↓5.60
RCRec TempRec NRMSE (valid) 0.421 (85%) ↓0.04 0.2681 (85%) ↑0.11 0.9821 (45%) ↑0.14 7.9004 (15%) ↓7.03 0.3174 (55%)
RCRec TimeRec NRMSE (valid) 0.5337 (70%) ↓0.06 0.6024 (55%) ↓0.13 1.306 (25%) ↑0.49 - (0%) 0.4396 (100%) ↓0.12
ROP PPred F1 4.00 ↓14.80 14.00 ↓4.80 0.00 8.00 ↓8.00 0.00
ROP YPred Accuracy 52.00 (50%) ↑44.80 72.00 (50%) ↑64.80 70.00 (50%) ↑70.00 10.00 (50%) ↓18.00 80.00 (50%) ↑13.00
ROP RatePred Overlap 3.20 ↓0.59 9.86 ↑6.07 0.00 0.00 ↓3.68 2.70 ↓10.65
RMA IMDer Score 57.00 ↓19.00 55.00 ↓21.00 37.00 ↑32.25 32.00 ↑30.50 56.00 ↓22.75

C.2 Performance result of multimodal tasks813

The table 7 shows the performance of mainstream multimodal large language models on ChemEval’s814

multimodal tasks, with ’-’ indicating meaningless responses. While most models handle basic tasks815

like molecular formula identification adequately, they struggle significantly with more complex816

challenges involving chemical reaction pathways and molecular properties. This performance gap817

widens further in Molecular Understanding and Scientific Reasoning tasks, which require both818

accurate molecular structure recognition from visual inputs and comprehensive chemical knowl-819

edge application. Our evaluation focused solely on general-purpose multimodal models, excluding820

chemistry-specific ones. As multimodal capabilities become increasingly essential in chemical821

research, this represents a critical area requiring urgent development.822

C.3 Performance result of 3-shot setting823

As shown in the table 8 and the table 9, we evaluated all the aforementioned models under 3-824

shot settings on ChemEval. The results indicate that, similar to the zero-shot scenario, general-825

purpose models perform relatively well on advanced knowledge question answering and literature826

understanding tasks, while struggling with more complex molecular understanding and scientific827

knowledge deduction tasks. Specialized models such as ChemLLM and LlaSMol, due to their poor828

instruction-following capabilities, failed to return meaningful responses for most tasks, resulting in829

anomalous scores. These findings corroborate our previous analysis.830

D Results of Analysis Experiments831

We conducted experimental analyses in two key areas. First, to establish the reliability of ChemEval832

metrics and demonstrate our evaluation framework’s robustness, we conducted three repeated trials833

across identical task categories and calculated the standard deviation of results. Due to computational834
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resource limitations, we were unable to conduct comprehensive experiments on all models and tasks.835

Therefore, we selected representative models and tasks for evaluation. Second, we investigated the836

differential impact of reasoning-oriented and format-constraint instructions in prompts, examining837

how reasoning capabilities and instruction-following ability influence model performance on complex838

chemical tasks.839

D.1 Benchmark Stability Assessment840

The table 10 shows the result of our repeated experiments. The results reveal that standard deviations841

across most metrics remain below 5.0, demonstrating consistent performance across multiple evalua-842

tions. This statistical stability confirms the robustness of our evaluation framework, ensuring reliable843

and reproducible assessments of system performance.844

D.2 Analysis of CoT and Format Constraints845

As illustrated in the table 11, we evaluate four models—ChemDFM, ChemLLM, LlasMol, and846

Qwen2.5-7B—using varied prompt configurations. When format restrictions were removed from847

prompts, ChemDFM and LlasMol exhibited improved performance on simpler chemical tasks848

but degraded results on more complex ones. Conversely, ChemLLM demonstrated significant849

performance gains across most tasks following format restriction removal. This indicates that the850

loss of instruction-following ability can severely affect the practical usability of domain-specific851

models. Regarding reasoning-oriented instructions, CoT prompting yielded inconsistent results for852

ChemDFM, enhancing performance in some tasks while diminishing it in others. Notably, Qwen2.5-853

7B consistently demonstrated performance deterioration across most tasks under CoT conditions,854

suggesting that explicit reasoning mechanisms do not substantially contribute to performance on855

chemical tasks.856
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NeurIPS Paper Checklist857

1. Claims858

Question: Do the main claims made in the abstract and introduction accurately reflect the859

paper’s contributions and scope?860

Answer: [Yes]861

Justification: The abstract and introduction clearly reflect the main contributions and scope862

of this paper, presenting the chemical large language model benchmark we established and863

relevant experimental results, and systematically evaluating the performance of different864

models on various chemical tasks.865

Guidelines:866

• The answer NA means that the abstract and introduction do not include the claims867

made in the paper.868

• The abstract and/or introduction should clearly state the claims made, including the869

contributions made in the paper and important assumptions and limitations. A No or870

NA answer to this question will not be perceived well by the reviewers.871

• The claims made should match theoretical and experimental results, and reflect how872

much the results can be expected to generalize to other settings.873

• It is fine to include aspirational goals as motivation as long as it is clear that these goals874

are not attained by the paper.875

2. Limitations876

Question: Does the paper discuss the limitations of the work performed by the authors?877

Answer: [Yes]878

Justification: The paper includes a separate "Limitations and Future Work" section.879

Guidelines:880

• The answer NA means that the paper has no limitation while the answer No means that881

the paper has limitations, but those are not discussed in the paper.882

• The authors are encouraged to create a separate "Limitations" section in their paper.883

• The paper should point out any strong assumptions and how robust the results are to884

violations of these assumptions (e.g., independence assumptions, noiseless settings,885

model well-specification, asymptotic approximations only holding locally). The authors886

should reflect on how these assumptions might be violated in practice and what the887

implications would be.888

• The authors should reflect on the scope of the claims made, e.g., if the approach was889

only tested on a few datasets or with a few runs. In general, empirical results often890

depend on implicit assumptions, which should be articulated.891

• The authors should reflect on the factors that influence the performance of the approach.892

For example, a facial recognition algorithm may perform poorly when image resolution893

is low or images are taken in low lighting. Or a speech-to-text system might not be894

used reliably to provide closed captions for online lectures because it fails to handle895

technical jargon.896

• The authors should discuss the computational efficiency of the proposed algorithms897

and how they scale with dataset size.898

• If applicable, the authors should discuss possible limitations of their approach to899

address problems of privacy and fairness.900

• While the authors might fear that complete honesty about limitations might be used by901

reviewers as grounds for rejection, a worse outcome might be that reviewers discover902

limitations that aren’t acknowledged in the paper. The authors should use their best903

judgment and recognize that individual actions in favor of transparency play an impor-904

tant role in developing norms that preserve the integrity of the community. Reviewers905

will be specifically instructed to not penalize honesty concerning limitations.906

3. Theory assumptions and proofs907

Question: For each theoretical result, does the paper provide the full set of assumptions and908

a complete (and correct) proof?909
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Answer: [NA]910

Justification: The paper establishes a benchmark for chemical tasks and provides analysis911

based on experimental results. It does not contain any theoretical results.912

Guidelines:913

• The answer NA means that the paper does not include theoretical results.914

• All the theorems, formulas, and proofs in the paper should be numbered and cross-915

referenced.916

• All assumptions should be clearly stated or referenced in the statement of any theorems.917

• The proofs can either appear in the main paper or the supplemental material, but if918

they appear in the supplemental material, the authors are encouraged to provide a short919

proof sketch to provide intuition.920

• Inversely, any informal proof provided in the core of the paper should be complemented921

by formal proofs provided in appendix or supplemental material.922

• Theorems and Lemmas that the proof relies upon should be properly referenced.923

4. Experimental result reproducibility924

Question: Does the paper fully disclose all the information needed to reproduce the main ex-925

perimental results of the paper to the extent that it affects the main claims and/or conclusions926

of the paper (regardless of whether the code and data are provided or not)?927

Answer: [Yes]928

Justification: We have released the code and data for the chemical task benchmark we929

established, and the evaluation of the models was primarily conducted through the official930

APIs.931

Guidelines:932

• The answer NA means that the paper does not include experiments.933

• If the paper includes experiments, a No answer to this question will not be perceived934

well by the reviewers: Making the paper reproducible is important, regardless of935

whether the code and data are provided or not.936

• If the contribution is a dataset and/or model, the authors should describe the steps taken937

to make their results reproducible or verifiable.938

• Depending on the contribution, reproducibility can be accomplished in various ways.939

For example, if the contribution is a novel architecture, describing the architecture fully940

might suffice, or if the contribution is a specific model and empirical evaluation, it may941

be necessary to either make it possible for others to replicate the model with the same942

dataset, or provide access to the model. In general. releasing code and data is often943

one good way to accomplish this, but reproducibility can also be provided via detailed944

instructions for how to replicate the results, access to a hosted model (e.g., in the case945

of a large language model), releasing of a model checkpoint, or other means that are946

appropriate to the research performed.947

• While NeurIPS does not require releasing code, the conference does require all submis-948

sions to provide some reasonable avenue for reproducibility, which may depend on the949

nature of the contribution. For example950

(a) If the contribution is primarily a new algorithm, the paper should make it clear how951

to reproduce that algorithm.952

(b) If the contribution is primarily a new model architecture, the paper should describe953

the architecture clearly and fully.954

(c) If the contribution is a new model (e.g., a large language model), then there should955

either be a way to access this model for reproducing the results or a way to reproduce956

the model (e.g., with an open-source dataset or instructions for how to construct957

the dataset).958

(d) We recognize that reproducibility may be tricky in some cases, in which case959

authors are welcome to describe the particular way they provide for reproducibility.960

In the case of closed-source models, it may be that access to the model is limited in961

some way (e.g., to registered users), but it should be possible for other researchers962

to have some path to reproducing or verifying the results.963
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5. Open access to data and code964

Question: Does the paper provide open access to the data and code, with sufficient instruc-965

tions to faithfully reproduce the main experimental results, as described in supplemental966

material?967

Answer: [Yes]968

Justification: We have released the code and data for the chemical task benchmark we969

established, and the evaluation of the models was primarily conducted through the official970

APIs.971

Guidelines:972

• The answer NA means that paper does not include experiments requiring code.973

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/974

public/guides/CodeSubmissionPolicy) for more details.975

• While we encourage the release of code and data, we understand that this might not be976

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not977

including code, unless this is central to the contribution (e.g., for a new open-source978

benchmark).979

• The instructions should contain the exact command and environment needed to run to980

reproduce the results. See the NeurIPS code and data submission guidelines (https:981

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.982

• The authors should provide instructions on data access and preparation, including how983

to access the raw data, preprocessed data, intermediate data, and generated data, etc.984

• The authors should provide scripts to reproduce all experimental results for the new985

proposed method and baselines. If only a subset of experiments are reproducible, they986

should state which ones are omitted from the script and why.987

• At submission time, to preserve anonymity, the authors should release anonymized988

versions (if applicable).989

• Providing as much information as possible in supplemental material (appended to the990

paper) is recommended, but including URLs to data and code is permitted.991

6. Experimental setting/details992

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-993

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the994

results?995

Answer: [Yes]996

Justification: We have released the code and data for the chemical task benchmark we997

established, and the evaluation of the models was primarily conducted through the official998

APIs.999

Guidelines:1000

• The answer NA means that the paper does not include experiments.1001

• The experimental setting should be presented in the core of the paper to a level of detail1002

that is necessary to appreciate the results and make sense of them.1003

• The full details can be provided either with the code, in appendix, or as supplemental1004

material.1005

7. Experiment statistical significance1006

Question: Does the paper report error bars suitably and correctly defined or other appropriate1007

information about the statistical significance of the experiments?1008

Answer: [Yes]1009

Justification: Due to computational resource limitations, we were unable to conduct extensive1010

repeated evaluations. Instead, we performed tests on representative models and tasks and1011

reported the standard deviation.1012

Guidelines:1013

• The answer NA means that the paper does not include experiments.1014
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-1015

dence intervals, or statistical significance tests, at least for the experiments that support1016

the main claims of the paper.1017

• The factors of variability that the error bars are capturing should be clearly stated (for1018

example, train/test split, initialization, random drawing of some parameter, or overall1019

run with given experimental conditions).1020

• The method for calculating the error bars should be explained (closed form formula,1021

call to a library function, bootstrap, etc.)1022

• The assumptions made should be given (e.g., Normally distributed errors).1023

• It should be clear whether the error bar is the standard deviation or the standard error1024

of the mean.1025

• It is OK to report 1-sigma error bars, but one should state it. The authors should1026

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1027

of Normality of errors is not verified.1028

• For asymmetric distributions, the authors should be careful not to show in tables or1029

figures symmetric error bars that would yield results that are out of range (e.g. negative1030

error rates).1031

• If error bars are reported in tables or plots, The authors should explain in the text how1032

they were calculated and reference the corresponding figures or tables in the text.1033

8. Experiments compute resources1034

Question: For each experiment, does the paper provide sufficient information on the com-1035

puter resources (type of compute workers, memory, time of execution) needed to reproduce1036

the experiments?1037

Answer: [Yes]1038

Justification: The paper provides detailed information about compute resources.1039

Guidelines:1040

• The answer NA means that the paper does not include experiments.1041

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1042

or cloud provider, including relevant memory and storage.1043

• The paper should provide the amount of compute required for each of the individual1044

experimental runs as well as estimate the total compute.1045

• The paper should disclose whether the full research project required more compute1046

than the experiments reported in the paper (e.g., preliminary or failed experiments that1047

didn’t make it into the paper).1048

9. Code of ethics1049

Question: Does the research conducted in the paper conform, in every respect, with the1050

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1051

Answer: [Yes]1052

Justification: Our research adheres to the NeurIPS Code of Ethics.1053

Guidelines:1054

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1055

• If the authors answer No, they should explain the special circumstances that require a1056

deviation from the Code of Ethics.1057

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1058

eration due to laws or regulations in their jurisdiction).1059

10. Broader impacts1060

Question: Does the paper discuss both potential positive societal impacts and negative1061

societal impacts of the work performed?1062

Answer: [Yes]1063

Justification: We discussed both potential positive and negative societal impacts in the1064

"Limitations and Future Work" sections of the paper.1065
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Guidelines:1066

• The answer NA means that there is no societal impact of the work performed.1067

• If the authors answer NA or No, they should explain why their work has no societal1068

impact or why the paper does not address societal impact.1069

• Examples of negative societal impacts include potential malicious or unintended uses1070

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1071

(e.g., deployment of technologies that could make decisions that unfairly impact specific1072

groups), privacy considerations, and security considerations.1073

• The conference expects that many papers will be foundational research and not tied1074

to particular applications, let alone deployments. However, if there is a direct path to1075

any negative applications, the authors should point it out. For example, it is legitimate1076

to point out that an improvement in the quality of generative models could be used to1077

generate deepfakes for disinformation. On the other hand, it is not needed to point out1078

that a generic algorithm for optimizing neural networks could enable people to train1079

models that generate Deepfakes faster.1080

• The authors should consider possible harms that could arise when the technology is1081

being used as intended and functioning correctly, harms that could arise when the1082

technology is being used as intended but gives incorrect results, and harms following1083

from (intentional or unintentional) misuse of the technology.1084

• If there are negative societal impacts, the authors could also discuss possible mitigation1085

strategies (e.g., gated release of models, providing defenses in addition to attacks,1086

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1087

feedback over time, improving the efficiency and accessibility of ML).1088

11. Safeguards1089

Question: Does the paper describe safeguards that have been put in place for responsible1090

release of data or models that have a high risk for misuse (e.g., pretrained language models,1091

image generators, or scraped datasets)?1092

Answer: [NA]1093

Justification: Our datasets are manually constructed and do not pose any risk of misuse.1094

Guidelines:1095

• The answer NA means that the paper poses no such risks.1096

• Released models that have a high risk for misuse or dual-use should be released with1097

necessary safeguards to allow for controlled use of the model, for example by requiring1098

that users adhere to usage guidelines or restrictions to access the model or implementing1099

safety filters.1100

• Datasets that have been scraped from the Internet could pose safety risks. The authors1101

should describe how they avoided releasing unsafe images.1102

• We recognize that providing effective safeguards is challenging, and many papers do1103

not require this, but we encourage authors to take this into account and make a best1104

faith effort.1105

12. Licenses for existing assets1106

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1107

the paper, properly credited and are the license and terms of use explicitly mentioned and1108

properly respected?1109

Answer: [Yes]1110

Justification: All codes, datasets, and models used in the paper have been properly cited1111

with their original sources.1112
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• The answer NA means that the paper does not use existing assets.1114

• The authors should cite the original paper that produced the code package or dataset.1115

• The authors should state which version of the asset is used and, if possible, include a1116

URL.1117

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1118
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• For scraped data from a particular source (e.g., website), the copyright and terms of1119

service of that source should be provided.1120

• If assets are released, the license, copyright information, and terms of use in the1121
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has curated licenses for some datasets. Their licensing guide can help determine the1123

license of a dataset.1124

• For existing datasets that are re-packaged, both the original license and the license of1125

the derived asset (if it has changed) should be provided.1126

• If this information is not available online, the authors are encouraged to reach out to1127

the asset’s creators.1128

13. New assets1129

Question: Are new assets introduced in the paper well documented and is the documentation1130

provided alongside the assets?1131

Answer: [Yes]1132

Justification: The new assets introduced in this paper are accompanied by documenta-1133

tion, which is provided alongside the assets and includes detailed instructions for dataset1134

evaluation and usage.1135

Guidelines:1136

• The answer NA means that the paper does not release new assets.1137

• Researchers should communicate the details of the dataset/code/model as part of their1138

submissions via structured templates. This includes details about training, license,1139

limitations, etc.1140

• The paper should discuss whether and how consent was obtained from people whose1141

asset is used.1142

• At submission time, remember to anonymize your assets (if applicable). You can either1143

create an anonymized URL or include an anonymized zip file.1144

14. Crowdsourcing and research with human subjects1145

Question: For crowdsourcing experiments and research with human subjects, does the paper1146

include the full text of instructions given to participants and screenshots, if applicable, as1147

well as details about compensation (if any)?1148

Answer: [NA]1149

Justification: This paper does not involve crowdsourcing or research with human subjects.1150

Guidelines:1151

• The answer NA means that the paper does not involve crowdsourcing nor research with1152

human subjects.1153

• Including this information in the supplemental material is fine, but if the main contribu-1154

tion of the paper involves human subjects, then as much detail as possible should be1155

included in the main paper.1156

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1157

or other labor should be paid at least the minimum wage in the country of the data1158
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15. Institutional review board (IRB) approvals or equivalent for research with human1160

subjects1161
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1163

approvals (or an equivalent approval/review based on the requirements of your country or1164

institution) were obtained?1165

Answer: [NA]1166

Justification: This paper does not involve crowdsourcing or research with human subjects.1167

Guidelines:1168

• The answer NA means that the paper does not involve crowdsourcing nor research with1169

human subjects.1170
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1171

may be required for any human subjects research. If you obtained IRB approval, you1172

should clearly state this in the paper.1173

• We recognize that the procedures for this may vary significantly between institutions1174

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1175

guidelines for their institution.1176

• For initial submissions, do not include any information that would break anonymity (if1177

applicable), such as the institution conducting the review.1178

16. Declaration of LLM usage1179

Question: Does the paper describe the usage of LLMs if it is an important, original, or1180

non-standard component of the core methods in this research? Note that if the LLM is used1181

only for writing, editing, or formatting purposes and does not impact the core methodology,1182

scientific rigorousness, or originality of the research, declaration is not required.1183

Answer: [NA]1184

Justification: The development of the core methods in this research does not involve LLMs1185

as any important, original, or non-standard components.1186

Guidelines:1187

• The answer NA means that the core method development in this research does not1188

involve LLMs as any important, original, or non-standard components.1189

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1190

for what should or should not be described.1191
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