## ChemEval: A Multi-level and Fine-grained Chemical Capability Evaluation for Large Language Models

Yuqing Huang<sup>1</sup>, Rongyang Zhang<sup>1</sup>, Xuesong He<sup>1</sup>, Xuyang Zhi<sup>1</sup>, Hao Wang<sup>1</sup>, Nuo Chen<sup>1,2</sup>, Zongbo Liu<sup>1,2</sup>, Xin Li<sup>1,2</sup>, Feiyang Xu<sup>2</sup>, Deguang Liu<sup>1</sup>, Huadong Liang<sup>2</sup>, Yi Li<sup>2</sup>, Jian Cui<sup>2</sup>, Yin Xu<sup>1</sup>, Shijin Wang<sup>2</sup>, Guiquan Liu<sup>1</sup>, Qi Liu<sup>1</sup>, Defu Lian<sup>1</sup>, Enhong Chen<sup>1</sup>

<sup>1</sup>University of Science and Technology of China <sup>2</sup>iFLYTEK Co., Ltd

## **Abstract**

The emergence of Large Language Models (LLMs) in chemistry marks a significant advancement in applying artificial intelligence to chemical sciences. While these models show promising potential, their effective application in chemistry demands sophisticated evaluation protocols that address the field's inherent complexities. To bridge this critical gap, we introduce ChemEval, an innovative hierarchical assessment framework specifically designed to evaluate LLMs' capabilities across chemical domains. Our methodology incorporates a distinctive four-tier progression system, spanning from basic chemical concepts to advanced theoretical principles. Sixty-two textual and multimodal tasks are designed to enable researchers to conduct fine-grained analysis of model capabilities and achieve comprehensive evaluation via carefully crafted assessment protocols. The framework integrates carefully curated open-source datasets with expert-validated materials, ensuring both practical relevance and scientific rigor. In our experiments, we evaluated the performance of most main-stream LLMs using both zero-shot and few-shot approaches, with carefully designed examples and prompts. Results indicate that general-purpose LLMs, while proficient in understanding chemical literature and following instructions, struggle with tasks requiring deep chemical expertise. In contrast, chemical LLMs perform better in technical tasks but show limitations in general language processing. These findings highlight both the current limitations and future opportunities for LLMs in chemistry. Our research provides a systematic framework for advancing the application of artificial intelligence in chemical research, potentially facilitating new discoveries in the field.

## 1 Introduction

2

3

5

8

9

10

11

12

13

14

15

16

17

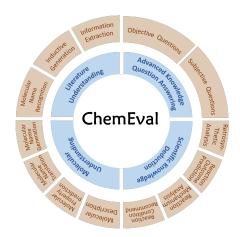
18

19

20

22

The advent of large language models has ushered in a transformative era in artificial intelligence, particularly within the domain of natural language processing. The expansive capabilities of these models have not only redefined the boundaries of text generation and understanding [1–4] but have also opened new avenues for various domains, such as recommendation [5–8], social [9, 10] and scientific exploration [11–13]. Researchers have adeptly employed LLMs to accelerate the pace of scientific research and instigate a transformative shift in scientific research paradigms. The field of chemistry has notably profited from the integration and advancement of LLMs [14–17], becoming a key area where these sophisticated technologies have delivered substantial advantages. The intricate nature of chemical research, involving complex molecular interactions and reactions, presents unique challenges that LLMs can address through advanced pattern recognition and predictive analytics.



35

36

37

38

39

40

41

42 43

44

45

46

47

48 49

50

51

52

53

54

55

56 57

58 59

60

61

62

63

64

65

66

67

68

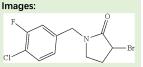
#### Query

If starting from ethyl acetoacetate as the raw material to synthesize the product 2,4-dioxopentanoic acid ethyl ester, can you provide a multi-step synthesis route?

#### Answer:

- 1. Ethyl acetoacetate undergoes bromination under basic conditions to form  $\alpha\text{-bromoethyl}$  acetoacetate.
- 2. The product reacts with a base to form 2,4-dioxopentanoic acid ethyl ester.

# **Query:** Please output the molecular name in SMILES format corresponding to this image <ImageHere>.



#### Answer:

NCCc1ccc2c(c1)CC(=O)N2

Figure 1: The overview of *ChemEval*. It includes 4 progressive levels, evaluating 13 dimensions of LLMs' capabilities and featuring 62 distinct chemical tasks that cover a wide range of chemical knowledge, from foundational concepts to advanced topics suitable for graduate-level research.

In order to systematically assess the capabilities of LLMs across various domains and identify areas for their potential enhancement, numerous benchmarking initiatives have been introduced. For instance, the MMLU [18] covers 57 tasks spanning basic mathematics, American history, computer science, law, and other fields. The XieZhi [19] benchmark includes three major academic categories with 516 specific subjects. However, general benchmarks [20, 21] often overlook a detailed assessment of chemical knowledge. Although Sun et al. introduce SciEVAL [22] as a framework for assessing the competencies of LLMs within the scientific domain, the chemistry-related tasks are overly simplistic and do not adequately capture the depth required. Regarding chemistry domain-specific benchmarks, Guo et al. [23] propose 8 chemical tasks aimed at assessing understanding, reasoning, and explanation abilities, but the benchmark consists of tasks derived from existing public datasets, which may be insufficient to capture the full spectrum of competencies needed for thorough chemical research. Other studies like [24, 25] have similar problems. Moreover, existing benchmarks fail to address the capability of LLMs to extract chemical information from text and tables. This limitation prevents them from tackling key issues of interest to chemistry researchers and has not fully met the specialized needs of chemistry.

In light of these considerations, we introduce *ChemEval*, a benchmark designed to address the gap in the comprehensive assessment framework for LLMs in chemistry by providing a multi-dimensional evaluation. 1). Extensive tasks are included in ChemEval, which encompasses chemical tasks of interest to researchers that were not included in previous benchmarks. It has four levels, thirteen dimensions, and a total of 62 distinct tasks, covering a vast array of issues within the domain of chemical research. Notably, we innovatively introduce test sets related to information extraction and inductive generation in chemistry. 2). Multimodal tasks are specifically designed to assess models' capabilities in understanding and reasoning across diverse chemistry-related data types, including text, molecular structure diagrams, and spectral images. 3). Domain experts in chemistry have meticulously crafted in-depth task datasets and prompts for ChemEval, partly addressing the previous lack of domain-specific data in chemistry benchmarks. Compared to previous work, our study encompasses a broader range of tasks that are of actual concern in chemical research. It assesses models on a graduated scale of capabilities, from general to domain-specific skills, to determine the model's proficiency. Our aim is to construct specialized tasks from the perspective of chemical researchers, thereby providing valuable insights for AI researchers and chemists, and improving large language models' effectiveness in chemical research.

For experiments, we conducted a highly detailed evaluation process, focusing on designing prompts that challenge LLMs, including 0-shot and few-shot settings. We evaluated currently widely used LLMs, including both general LLMs and specialized chemical LLMs, and gained many meaningful insights. This comprehensive evaluation has revealed that though general LLMs like GPT-40 [26] excel in Literature Understanding tasks and possess great instruction-following capability, they struggle with tasks that require a deeper understanding of molecular structures and scientific inference.

On the other hand, specialized LLMs generally show improved chemical abilities even when their ability to understand literature and instruction-following capability is diminished. This finding underscores the need for significant improvements in the way LLMs are trained and evaluated for chemical tasks. In addition, we explored the impact of few-shot learning and model size on the performance of large language models and provided corresponding insights. We highlight the contributions of this paper as follows:

- We have established an open-source benchmark for LLMs in the field of chemistry, which provides
   a comprehensive evaluation of their mastery of chemical knowledge as well as their multimodal
   reasoning capabilities, filling the absence of a holistic benchmark that encompasses the diverse
   range of tasks within the chemical domain.
- We set up 4 progressive levels and access 13 model capability dimensions through 62 tasks in ChemEval, which is developed through extensive discussions and collaborative design with chemistry researchers, involves constructing novel tasks of interest to chemical researchers and encompasses the primary focal points of chemical research.
  - We conducted a comprehensive evaluation of LLMs in chemical tasks, using various prompt settings to assess both general and specialized LLMs. This revealed significant differences between different types of LLMs and identified challenging tasks with potential for optimization. This work offers critical insights to guide researchers in the optimization and application of LLMs, thereby enhancing their effectiveness in chemical research.

#### 2 Related Work

85

86

87

88

Large Language Models for Chemistry. The emergence of Large Language Models (LLMs) has 91 revolutionized Natural Language Processing, with cutting-edge proprietary models like GPT-40 [26] and open-source alternatives such as LlaMA [3] and Qwen [27] demonstrating exceptional capabilities 93 across linguistic tasks. However, applying these general models to chemistry reveals significant limitations in domain-specific knowledge. To bridge this gap, researchers have developed specialized approaches: Galactica [28] underwent pre-training on comprehensive scientific corpora, SciGLM [29] 96 employed strategic fine-tuning with scientific datasets, and ChemCrow [30] enhanced performance by 97 integrating expert-designed chemistry tools. Chemistry-focused models, including ChemDFM [31], 98 LlaSMol [14], and ChemLLM [32], incorporate tailored training methodologies, while specialized 99 applications such as Drugchat [33] and Drugassist [34] specifically address molecular structures and 100 chemical properties. Despite these advancements, achieving comprehensive chemical understanding 101 through LLMs remains a promising frontier for further research and innovation.

Large Language Models Evaluations for Chemistry. The progress made in the field of LLMs is 103 tightly linked to the establishment of robust evaluation frameworks. For general tasks, benchmarks 104 such as MMLU [18] and GLUE [35] have become standard tools for assessing model capabilities. 105 In the scientific domain, recent initiatives like SciEval [22], SceMQA [36], and SciAssess [37] 106 have been introduced to evaluate scientific reasoning and knowledge. In the chemistry domain, 107 recent benchmarking initiatives such as ChemLLMbench [23], ChemBench [38], and MaCBench 108 [39] have emerged, yet each presents significant limitations: ChemLLMbench covers only eight 109 task categories with unreviewed datasets; ChemBench offers 7,000 samples, but is limited by its 110 reliance on multiple-choice questions, lack of open-ended tasks, and insufficient evaluation metrics 111 for chemical experiment design tasks such as synthesis pathway recommendations; while MaCBench 112 introduces multimodal evaluation but exhibits similar constraints in task diversity and assessment 113 metrics. The absence of a comprehensive benchmarking framework impedes LLM advancement in 114 chemistry, a field characterized by complex conceptual knowledge and computational challenges. To 115 address this gap, we introduce *ChemEval*, a systematic and comprehensive evaluation framework 116 designed to rigorously assess LLM capabilities across the multifaceted landscape of chemistry. 117

## 118 3 ChemEval

To fill the absence of a holistic benchmark that encompasses the diverse range of tasks within the chemical domain, we introduce a refined benchmark named *ChemEval* specifically designed to evaluate the comprehensive capabilities of LLMs within the chemical domain. It not only encompasses

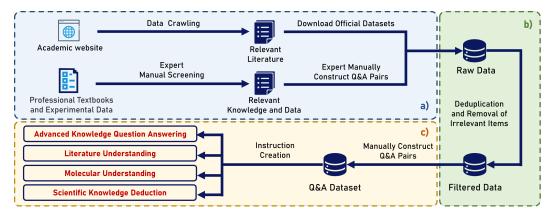


Figure 2: Data Collection steps of *ChemEval*. The process is divided into three main steps: a). Data Collection: Raw data is collected from academic websites via web crawling, and experts manually gather data from professional textbooks and experimental data. b). Data Filtering: The raw data undergoes deduplication and removal of irrelevant items to produce filtered data. c). Q&A Pair Construction: Experts manually construct Q&A pairs related to chemistry and create prompt instructions, resulting in four instruction test sets.

text-only tasks such as literature comprehension and experimental planning, but also incorporates multimodal tasks, including molecular formula recognition and spectroscopic data analysis. As illustrated in Figure 1, it contains four levels in the field of chemistry, each of which includes several different chemical dimensions, ensuring a comprehensive evaluation of LLMs. This framework measures the models' ability to understand and infer chemical knowledge from a broad range of dimensions through a series of meticulously designed tasks.

In the following sections, we will provide a detailed introduction to the task content and data construction process of ChemEval.

## 3.1 Advanced Knowledge Question Answering

This segment is pivotal in assessing the models' proficiency in understanding and applying fundamental chemical concepts, which include *Objective Question* dimension and *Subjective Question* dimension, a total of 15 different tasks. Through a blend of objective and subjective tasks, the Advanced Knowledge Question Answering challenges the models to demonstrate their integrated capabilities in areas of chemical terminology, quantitative analysis and cross-modal reasoning. The tasks within this section are designed to be both comprehensive and diagnostic, providing a clear measure of the models' readiness to tackle more advanced chemical inquiries.

## 3.2 Literature Understanding

130

138

148

Advanced Knowledge Question Answering is designed to assess the model's comprehension and mastery of chemical knowledge, while Literature Understanding evaluates the model's capacity to interpret and assimilate information from chemical literature, which is foundational for subsequent inductive generation tasks. Literature Understanding, including *Inductive Generation* dimension, *Information Extraction* dimension and *Molecular Name Recognition*, a total of 19 tasks, delves into tasks crucial for understanding and extracting meaningful information from the chemical literature. The primary focus is on assessing the LLMs' ability to comprehend and extract key information from both textual content and image data in chemical literature, followed by generating new, contextually relevant content.

## 3.3 Molecular Understanding

This section builds upon the previous foundation to assess the model's understanding and generative capabilities at the molecular level. It includes 4 dimensions: *Molecular Name Generation, Molecular Name Translation, Molecular Property Prediction*, and *Molecular Description*, a total of 15 tasks.

Molecular Understanding focuses on core tasks in molecular cognition, aiming to evaluate LLMs in molecular formula conversion, structural diagram interpretation, and the description/prediction

of molecular properties based on structural and spectroscopic data. These tasks assess the models' proficiency in interpreting and generating chemical information accurately.

#### 3.4 Scientific Knowledge Deduction

156

168

181

182

183

185

186

187

188

189

190

Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific literature, 157 158 and the capacity to understand molecular structures, we expect that the model will proceed to conduct deeper chemical reasoning and deduction. So the part of Scientific Knowledge Deduction 159 encompasses four key dimensions: Retrosynthetic Analysis, Reaction Condition Recommendation, 160 Reaction Outcome Prediction and Reaction Mechanism Analysis, a total of 13 tasks, which are 161 essential for effective chemical synthesis. This part evaluates the LLMs' capabilities in retrosynthetic 162 analysis, recommending reaction conditions, predicting reaction outcomes, and analyzing reaction 163 mechanisms. These tasks are essential for efficient chemical synthesis, requiring the model to accurately recognize chemical structures from images and perform complex reasoning and analysis 165 using specific knowledge. 166

## 167 3.5 Benchmark Generation Pipeline

#### 3.5.1 Data Collection

The overall process of benchmark construction is il-169 lustrated in Figure 2. Data plays an indispensable 170 role in the realm of LLMs [40]. Our data collection is comprised of two components: Open-source Data 172 and Domain-Experts data. For the open-source com-173 ponent, we utilized keywords such as "chemistry," 174 "large language models," "knowledge question an-175 swering," and "information extraction" to retrieve 176 relevant publications on chemical language models 177 from academic repositories. We then systematically 178 179 extracted and codified downstream tasks and their associated datasets from these papers to develop our 180

Table 1: Data Statistics for Different Capability Levels.

| Level  | Text-only | Multimodal | Total |
|--------|-----------|------------|-------|
| AdvQA  | 250       | 320        | 570   |
| LitUnd | 420       | 150        | 570   |
| MolUnd | 830       | 470        | 1300  |
| SciKD  | 460       | 260        | 720   |
| Total  | 1960      | 1200       | 3160  |

chemical evaluation framework [14, 23, 41–45]. Next, download the official datasets for the different downstream tasks, using the presence of an official test set as the main criterion for selection. Nevertheless, the scope of open-source data is inadequate, which is why we collect expert datasets to enhance the evaluation's rigor and breadth. Domain-expert data are sourced from scientific literature, professional textbooks, supplementary materials, and laboratory chemical experiment records. These resources are used to manually construct question-answer pairs tailored to specific task types.

#### 3.5.2 Data Processing

Through our data collection endeavors, we get a vast array of raw data in the chemical domain. However, harnessing this data for our benchmarking work necessitates a subsequent phase of meticulous selection and filtration aligned with the diverse tasks.

Our data processing for different levels: 1). Advanced knowledge question-answering. We meticulously compile question-answer pairs derived from undergraduate and postgraduate-level textbooks, 192 as well as ancillary educational materials. These pairs encompass a broad spectrum of seven dis-193 tinct categories: organic chemistry, inorganic chemistry, materials chemistry, analytical chemistry, 194 biochemistry, physical chemistry, and polymer chemistry. This comprehensive selection ensures a 195 196 diverse representation of chemical concepts and principles. 2). Literature understanding component. 197 We extract relevant fragments and questions from scientific literature, combining them with taskspecific answers to create question-answer test sets for various downstream tasks. 3). Molecular understanding and scientific knowledge deduction. Our approach leverages a combination of open 199 datasets and proprietary laboratory data sourced from our collaborating universities. We engage 200 in the thoughtful design and construction of test sets meticulously aligned with the unique content 201 requirements of downstream tasks. 202

It is important to highlight that when integrating multiple open-source datasets for downstream tasks, we adopt a methodical approach to constructing the corresponding test sets. This involves employing proportional sampling techniques that take into account the varying scales of the different

Table 2: Representative Multi-Level 0-Shot Performance Overview on ChemEval. Claude 3.7T represents Claude 3.7-Sonnet-Thinking, while Claude 3.7N represents Claude 3.7-Sonnet. For the complete experimental results, please refer to the appendix C.1.

| Dimension | Task         | Metric           | OpenAI-o1     | GPT-40      | Claude3.7T    | Deepseek-R1    | Deepseek-V3       | Qwen2.5-72B   | Llama3.3-8B | Gemini-2.5-Pro | ChemDFM       | ChemLLM       | LlaSMol       | ChemSpark     |
|-----------|--------------|------------------|---------------|-------------|---------------|----------------|-------------------|---------------|-------------|----------------|---------------|---------------|---------------|---------------|
|           |              |                  |               |             |               |                | Knowledge Quest   |               |             |                |               |               |               |               |
| ObjQA     | MCTask       | Accuracy         | 74.00         | 66.80       | 62.80         | 82.40          | 76.00             | 67.20         | 40.40       | 87.60          | 41.20         | 24.40         | 24.00         | 43.60         |
| ObjQA     | FBTask       | Score            | 60.92         | 51.19       | 45.28         | 59.41          | 63.88             | 53.92         | 34.17       | 63.95          | 24.16         | 34.97         | 13.92         | 24.57         |
| ObjQA     | TFTask       | Accuracy         | 46.00         | 57.60       | 58.80         | 75.20          | 67.20             | 58.40         | 46.00       | 77.60          | 46.00         | 19.20         | 58.00         | 50.00         |
| SubjQA    | SATask       | Score            | 64.50         | 61.20       | 56.70         | 68.50          | 71.70             | 58.50         | 38.40       | 72.00          | 32.20         | 13.20         | 14.50         | 33.60         |
| SubjQA    | CalcTask     | Score            | 78.00         | 61.80       | 55.74         | 76.10          | 79.20             | 61.90         | 28.00       | 82.40          | 14.70         | 15.90         | 7.50          | 18.50         |
|           |              |                  |               |             |               |                | terature Underste |               |             |                |               |               |               |               |
| InfoE     | CNER         | FI               | 64.56         | 65.76       | 60.21         | 64.14          | 60.85             | 61.61         | 55.34       | 68.30          | 41.17         | 0.16          | 11.62         | 71.44         |
| InfoE     | CERC         | FI               | 22.37         | 25.66       | 25.19         | 27.18          | 24.94             | 26.05         | 17.31       | 25.43          | 8.74          | 0.24          | 1.24          | 39.27         |
| InfoE     | SubE         | Accuracy         | 73.71         | 66.32       | 61.59         | 75.18          | 61.26             | 62.56         | 64.02       | 72.05          | 20.07         | 0.00          | 0.00          | 74.38         |
| InfoE     | AddE         | FI               | 81.67         | 85.00       | 79.33         | 82.67          | 80.67             | 84.00         | 45.81       | 95.00          | 45.00         | 0.00          | 0.00          | 65.00         |
| InfoE     | SolvE        | FI               | 86.50         | 85.00       | 87.60         | 90.20          | 88.50             | 85.00         | 75.47       | 83.17          | 80.50         | 1.67          | 0.00          | 83.79         |
| InfoE     | TempE        | FI               | 70.00         | 67.00       | 72.00         | 65.00          | 72.00             | 65.00         | 62.00       | 69.00          | 74.33         | 3.23          | 0.00          | 83.00         |
| InfoE     | TimeE        | FI               | 95.00         | 95.00       | 95.00         | 95.00          | 95.00             | 90.00         | 90.00       | 94.00          | 78.00         | 23.10         | 25.00         | 95.00         |
| InfoE     | ProdE        | Accuracy         | 90.25         | 86.09       | 82.39         | 91.20          | 87.52             | 84.86         | 74.54       | 92.82          | 34.73         | 0.00          | 0.00          | 94.40         |
| InfoE     | CharME       | FI               | 51.67         | 72.85       | 81.01         | 21.33          | 81.80             | 74.57         | 44.18       | 73.11          | 27.26         | 0.00          | 0.00          | 12.98         |
| InfoE     | CatTE        | FI               | 95.00         | 94.00       | 82.00         | 99.00          | 100.00            | 100.00        | 65.00       | 96.00          | 49.00         | 0.00          | 5.00          | 31.00         |
| InfoE     | YieldE       | FI               | 85.00         | 79.00       | 61.00         | 77.70          | 65.00             | 65.00         | 46.00       | 74.00          | 45.00         | 0.00          | 5.00          | 61.00         |
| InducGen  | AbsGen       | Score            | 63.75         | 63.00       | 63.00         | 65.00          | 64.75             | 64.75         | 62.00       | 67.25          | 0.00          | 5.50          | 26.25         | 38.25         |
| InducGen  | OLGen        | Score            | 25.00         | 35.50       | 26.50         | 37.00          | 27.00             | 24.25         | 22.75       | 39.50          | 0.00          | 3.75          | 31.25         | 30.50         |
| InducGen  | TopC         | Accuracy         | 55.00         | 49.00       | 56.00         | 57.00          | 50.00             | 64.00         | 32.00       | 67.00          | 51.00         | 0.00          | 0.00          | 30.00         |
| InducGen  | ReactTR      | FI               | 25.00         | 32.00       | 29.00         | 21.00          | 28.00             | 22.00         | 26.00       | 31.00          | 13.00         | 0.00          | 5.00          | 17.00         |
|           |              |                  |               |             |               | Me             | olecular Underst  | anding        |             |                |               |               |               |               |
| MNGen     | MolNG        | Tanimoto (valid) | 49.80 (72%)   | 39.30 (89%) | 33.85 (70%)   | 56.05 (87%)    | 51.19 (96%)       | 20.58 (79%)   | 5.83 (40%)  | 71.11 (93%)    | 47.06 (69%)   | 0.00 (0%)     | 3.71 (76%)    | 74.81 (98%)   |
| MNTrans   | IUPAC2MF     | L2               | 0.7737        | 0.5304      | 0.3252        | 0.6026         | 0.6176            | 0.3407        | 0.2433      | 0.8382         | 0.6119        | 0.0454        | 0.0000        | 0.8807        |
| MNTrans   | SMILES2MF    | L2               | 0.6330        | 0.3627      | 0.3618        | 0.4402         | 0.3563            | 0.2448        | 0.1728      | 0.6574         | 0.6399        | 0.0375        | 0.0000        | 0.8133        |
| MNTrans   | IUPAC2SMILES | Tanimoto (valid) | 29.72 (50%)   | 34.71 (83%) | 31.89 (68%)   | 30.70 (63%)    | 46.07 (88%)       | 15.90 (76%)   | 5.24 (30%)  | 61.35 (87%)    | 46.71 (88%)   | 0.00 (100%)   | 4.70 (56%)    | 87.84 (1%)    |
| MNTrans   | SMILES2IUPAC | Exact Match      | 0.00          | 0.00        | 0.00          | 1.20           | 0.00              | 0.00          | 0.00        | 1.20           | 0.00          | 0.00          | 0.00          | 14.00         |
| MNTrans   | SMILES2IUPAC | BLEU             | 3.24          | 0.96        | 3.27          | 4.17           | 1.67              | 0.33          | 0.44        | 13.55          | 0.56          | 0.00          | 0.00          | 48.25         |
| MNTrans   | SMILES2IUPAC | Tanimoto         | 0.00          | 12.08       | 22.73         | 25.90          | 19.16             | 13.01         | 3.71        | 56.82          | 2.06          | 0.00          | 2.22          | 66.26         |
| MNTrans   | S2S          | Tanimoto (valid) | 9.72 (42%)    | 13.41 (62%) | 9.37 (40%)    | 16.04 (71%)    | 16.27 (62%)       | 11.47 (50%)   | 1.74 (12%)  | 13.13 (44%)    | 2.12 (25%)    | 0.00 (50%)    | 0.60 (48%)    | 87.36 (94%)   |
| MPP       | MolPC        | Accuracy         | 67.50         | 64.57       | 58.90         | 53.54          | 48.73             | 48.13         | 47.26       | 63.63          | 61.35         | 0.00          | 46.50         | 85.57         |
| MPP       | MolPR        | NRMSE (valid)    |               |             |               | 15.8881 (100%) |                   |               |             | 11.7270 (100%) |               |               |               |               |
| MolDesc   | Mol2PC       | Score            | 19.00         | 7.00        | 9.80          | 11.90          | 13.50             | 20.80         | 2.10        | 0.70           | 3.10          | 0.30          | 0.00          | 48.90         |
|           |              |                  |               |             |               | Scien          | tific Knowledge I | Deduction     |             |                |               |               |               |               |
| ReSyn     | SubRec       | FI               | 1.00          | 0.00        | 1.46          | 1.63           | 2.27              | 1.06          | 0.27        | 0.00           | 3.99          | 0.00          | 0.00          | 12.37         |
| ReSyn     | PathRec      | Score            | 30.63         | 22.88       | 0.36          | 52.75          | 37.38             | 41.13         | 20.88       | 43.75          | 24.13         | 10.88         | 10.00         | 38.75         |
| ReSyn     | SynDE        | NRMSE (valid)    | - (5%)        | - (0%)      | - (0%)        | - (0%)         | - (0%)            | 0.2670 (100%) | - (0%)      | - (0%)         | - (0%)        | 33.0049 (78%) | 1.2374 (45%)  | 1.7992 (87%)  |
| RCRec     | LRec         | FI               | 0.00          | 13.20       | 2.00          | 6.80           | 7.60              | 4.40          | 2.13        | 0.00           | 26.00         | 0.00          | 0.00          | 37.60         |
| RCRec     | RRec         | FI               | 25.64         | 15.80       | 27.43         | 21.93          | 8.35              | 37.75         | 8.78        | 0.73           | 13.13         | 0.00          | 0.50          | 63.72         |
| RCRec     | SolvRec      | FI               | 10.00         | 20.40       | 18.80         | 22.40          | 24.00             | 50.40         | 3.63        | 0.00           | 10.53         | 0.00          | 0.50          | 30.40         |
| RCRec     | CatRec       | FI               | 0.00          | 0.00        | 0.00          | 0.00           | 0.00              | 0.00          | 0.00        | 0.00           | 0.00          | 0.00          | 0.00          | 0.50          |
| RCRec     | TempRec      | NRMSE (valid)    | 0.3278 (100%) |             | 0.2263 (100%) | 0.2078 (100%)  | 0.2096 (100%)     | 0.3782 (100%) | - (0%)      | 0.1814 (100%)  | 0.3811 (99%)  | 1.1184 (98%)  | 0.8658 (100%) |               |
| RCRec     | TimeRec      | NRMSE (valid)    |               |             |               |                | 0.2579 (100%)     | 0,2022 (100%) | - (0%)      | 0.2425 (100%)  | 0.4732 (100%) | 1.7937 (98%)  | 0.4351 (80%)  | 0.3937 (100%) |
| ROP       | PPred        | FI               | 21.33         | 1.67        | 12.27         | 11.97          | 0.93              | 1.73          | 0.00        | 29.20          | 18.80         | 0.00          | 16.00         | 56,40         |
| ROP       | YPred        | Accuracy         | 12.00         | 43.50       | 16.00         | 11.00          | 22.50             | 26.00         | 35.50       | 17.50          | 7.20          | 0.00          | 28.00         | 72.00         |
| ROP       | RatePred     | Overlap          | 21.08         | 13.81       | 9.06          | 17.12          | 17.71             | 10.71         | 6.92        | 27.01          | 3.79          | 0.00          | 3.68          | 2.90          |
|           |              |                  |               |             |               |                |                   |               |             |                |               |               |               |               |

data sources. This strategy ensures that the test sets accurately reflect the broader dataset while maintaining a balanced distribution of question and answer types.

## 3.5.3 Data Statistics

208

222

Through our data collection endeavors, we get a vast array of raw data in the chemical domain.

Notably, the test sets for different downstream tasks were cross-checked to remove duplicates with
the training sets of corresponding tasks in open-source domain models, ensuring that there is no risk
of data leakage in the evaluation of different downstream tasks. The data volumes are presented in

Table 1, we finally obtained 3120 evaluation data points.

## 3.5.4 Instruction Creation

To evaluate the effectiveness of the model, we constructed task-specific prompts and 3-shot task-specific prompts for text-only downstream tasks [46]. For downstream tasks with open-source datasets, to facilitate evaluation, the evaluation system in this paper strengthens the format of the output data based on its instructions. For the domain expert-built part, the evaluation system in this paper will design instructions for task introduction and formatted output according to the task type, and continuously adjust the instructions based on the return results of GPT-40, thereby strengthening the instructions for different self-constructed downstream tasks.

#### **3.5.5 Metrics**

In this study, we utilize a range of evaluation metrics to comprehensively assess our models' performance across diverse tasks. For the majority of tasks, we utilize the F1 score and Accuracy. In addition, we utilize BLEU [47], Exact Match, Normalized Root Mean Square Error, Valid Output Ratio, LLMs Score, L2 Score, and Overlap as evaluation metrics for different tasks to accommodate various task requirements. A detailed introduction to the metrics is provided in the appendix B.2.

## 228 4 Experiment

## 229 4.1 Setup

To comprehensively evaluate the chemical capabilities of LLMs, our framework assesses both general and specialized models. For general LLMs, we include OpenAI-o1/o3-mini [48], GPT-4o [26],

Table 3: 3-Shot Performance Changes Relative to 0-Shot on ChemEval. The symbols and accompanying values show performance changes compared to 0-shot, where ' $\uparrow$ ' indicates an increase, ' $\downarrow$ ' a decrease, and '-' no change. The three values in the last column ( $\uparrow$ ,  $\sim$ ,  $\downarrow$ ) represent the number of tasks that show a significant increase, remain unchanged, and significantly decrease, respectively.

| Task<br>Metric | SATask<br>Score           | CalcTask<br>Score   | SubE<br>Accuracy   | TempE<br>F1             | ProdE<br>Accuracy  | ReactTR<br>F1           | MolPC<br>Accuracy          | LRec<br>F1               | PathRec<br>Score        | RatePred<br>Overlap    | Change<br>(↑, ~, ↓) |
|----------------|---------------------------|---------------------|--------------------|-------------------------|--------------------|-------------------------|----------------------------|--------------------------|-------------------------|------------------------|---------------------|
| OpenAI-o1      | 68.50 ↑4.00               | 78.50 <b>†0.50</b>  | 78.01 <b>†4.30</b> | 75.00 <b>↑5.00</b>      | 91.48 ↑1.23        | 60.00 ↑35.00            | 71.60 ↑4.10                | 18.00 ↑18.00             | 40.63 ↑10.01            | 14.41 ↓6.67            | (9, 0, 1)           |
| GPT-4o         | 61.00 \( \psi 0.20 \)     | 59.10 \2.70         | 65.93 \ \ 0.39     | 73.00 <del>↑6.00</del>  | 86.88 10.79        | 71.00 \(\gamma 39.00\)  | 68.55 <b>†3.98</b>         | 15.60 \(\frac{1}{2}.40\) | 25.00 \( \frac{1}{2}.13 | 20.27 ↑6.47            | (7, 0, 3)           |
| Gemini-2.5-Pro | 70.00 \2.00               | 81.60 \ \ 0.80      | 76.29 14.24        | 77.00 ↑8.00             | 93.75 10.93        | 59.00 ↑28.00            | 67.62 \( \frac{1}{3.99} \) | 0.00                     | 43.00 \ \ 0.75          | 29.08 ↑2.06            | (6, 1, 3)           |
| Deepseek-v3    | 70.40 1.30                | 77.40 \1.80         | 75.78 14.51        | 80.00 <b>18.00</b>      | 91.75 ↑4.23        | 46.00 18.00             | 55.79 †7.06                | 11.60 \(\frac{4.00}{}    | 24.00 \ \ 13.38         | 13.45 \ \ 4.26         | (6, 0, 4)           |
| Qwen2.5-72B    | 60.80 \(\frac{1}{2}.30\)  | 61.61 \ \ 0.29      | 70.10 <b>↑7.54</b> | 80.00 \( \frac{15.00}{} | 84.05 \ \ 0.81     | 61.00 \( \frac{39.00}{} | 56.87 ↑8.74                | 16.40 \( \frac{12.00}{}  | 33.38 \17.75            | 15.82 <b>↑5.10</b>     | (7, 0, 3)           |
| Llama3.3-8B    | 29.00 19.40               | 19.70 \ 8.30        | 57.71 \ 6.31       | 69.00 ↑7.00             | 73.26 1.28         | 39.00 ↑13.00            | 53.20 ↑5.95                | 2.40 <b>†0.27</b>        | 17.88 \ \ 3.00          | 14.29 ↑7.38            | (5, 0, 5)           |
| ChemDFM        | 30.50 1.70                | 16.40 <b>1.70</b>   | 20.04 \ \ 0.03     | 41.00 \ \ 33.33         | 8.83 \25.90        | 26.00 \( \frac{13.00}{} | 56.65 \ 4.70               | 12.49 \13.51             | 28.75 \( \dagger 4.63   | 17.46 \( \)13.67       | (4, 0, 6)           |
| ChemLLM        | 11.50 11.70               | 35.46 19.56         | 0.00               | $1.53 \downarrow 1.70$  | 0.00               | 0.00                    | 0.00                       | 0.00                     | 6.75 \ 4.13             | 0.00                   | (1, 6, 3)           |
| LlaSMol        | 23.50 \( \dagger{9.00} \) | 68.37 ↑60.87        | 0.00               | 0.00                    | 0.00               | $0.00 \downarrow 5.00$  | 40.00 \(\frac{16.50}{}     | 0.00                     | 17.50 <b>↑7.50</b>      | $0.00 \downarrow 3.68$ | (3, 4, 3)           |
| ChemSpark      | 31.60 \( \preceq 2.00 \)  | 15.80 \( \pm2.70 \) | 72.86 \1.52        | 80.00 \ \ 3.00          | 98.40 <b>^4.00</b> | 32.00 ↑15.00            | 82.88 \ 2.68               | 16.80 \( \pmu 20.80 \)   | 27.00 \11.75            | 11.03 <b>↑8.13</b>     | (3, 0, 7)           |

Claude-3.7-sonnet [49], Gemini-2.5-pro [50], Qwen2.5-7B/14B/32B/72B [27], LLaMA3.3-8B [3], Grok3 [51], and DeepSeek-V3/R1 [52]. For chemistry-specific LLMs, we evaluate ChemDFM [31], LlaSMol [14], ChemLLM [32] and ChemSpark. For multimodal chemical tasks, we evaluated mainstream MLLMs, including GPT-4o [26], Claude-3.7-sonnet [49], Qwen-VL Max [53], Phi-Vision-3.5 [54], across four levels of multimodal chemistry tasks. We used the official APIs of general models for evaluation and ran the chemistry-specific models on two A40 48GB GPUs.

To illustrate the capability of LLMs in various chemical tasks, we present their average zero-shot performance across four levels, with detailed results shown in the table 2. To assess their adaptability and in-context learning abilities, we also report three-shot performance across the same levels. Some tasks, such as *Chemical Paper Abstract Generation*, are not included in our three-shot evaluation due to context length limitations.

#### 4.2 Performance Results

We evaluate the model's performance for each task across four assessment dimensions. Certain models are unable to address specific tasks entirely. For example, LLaMA3.3-8B demonstrates poor instruction-following capabilities in TempRec task in the 0-shot setting, which significantly impairs its ability to generate responses based on task prompts. Consequently, we are unable to provide numerical results for the tasks affected by this limitation. We discuss the key findings from our benchmark and analyze them to explore how different settings related to LLMs affect performance and provide valuable insights into Chemical benchmarks.

## 4.2.1 The models' performance across four levels.

The performance comparison of LLMs across four levels reveals distinct strengths and weaknesses:

Basic Knowledge. Within the level of advanced knowledge question answering, the results reveal that OpenAI-o1 exhibits superior performance in objective questions, and Gemini outperforms other models in subjective questions, which indicates the importance of reasoning ability in Q&A questions. Additionally, general LLMs like GPT-40 and Qwen2.5-72B also perform well in literature understanding. However, chemistry-specialized models (except ChemSpark) struggle with general tasks, highlighting instruction fine-tuning challenges, which suggests that general LLMs succeed primarily due to superior document comprehension and reasoning abilities.

Chemical Expertise. As for molecular understanding, ChemSpark stands out in these tasks demanding an in-depth grasp of chemical molecules. Most models perform poorly in molecular name translation due to a lack of formatting constraints in their outputs, owing to the complexity of molecular expressions. ChemSpark's advantage stems from training on diverse chemical literature with various molecular formula formats. Besides, we observed that when confronted with complex tasks requiring quantitative calculations, models tend to provide overly cautious responses, such as "quantification software (Gaussian, ORCA, etc.) is needed" or "cannot determine from a 2D structure," which significantly reduces the practical value of their answers.

**Chemistry-specialized LLMs.** Compared to general LLMs, specialized chemistry models show distinct patterns: 1). *Drawbacks:* Chemical LLMs significantly underperform in advanced knowl-

Table 4: The Impact of Model Scaling on Task Performance.

| Task        | MCTask   | SATask | CalcTask | CharME | CatTE  | MolPC    | CatRec | PPred | YPred    |
|-------------|----------|--------|----------|--------|--------|----------|--------|-------|----------|
| Metric      | Accuracy | Score  | Score    | F1     | F1     | Accuracy | F1     | F1    | Accuracy |
| Qwen2.5-7B  | 59.60    | 50.80  | 43.60    | 43.00  | 64.00  | 64.04    | 0.00   | 0.00  | 67.00    |
| Qwen2.5-14B | 64.80    | 57.20  | 50.80    | 67.92  | 75.00  | 64.22    | 0.00   | 0.00  | 33.50    |
| Qwen2.5-32B | 67.20    | 58.10  | 57.40    | 79.42  | 100.00 | 67.70    | 0.00   | 0.53  | 85.00    |
| Qwen2.5-72B | 67.20    | 58.50  | 61.90    | 74.57  | 100.00 | 48.13    | 0.00   | 1.73  | 26.00    |

edge answering and literature comprehension, suggesting catastrophic forgetting during fine-tuning compromises their foundational language processing capabilities. 2). Advantages: Chemical models excel in tasks requiring specialized terminology and molecular properties. General models perform adequately on simpler tasks but struggle with complex chemical knowledge processing and inference. 3). Instruction-following ability: Chemistry-specific LLMs demonstrate significantly lower instruction-following capability than general LLMs, likely due to limited exposure to diverse tasks during training. Without output format restrictions, these models default to patterns matching their fine-tuning data, sometimes producing interpretable results where format-constrained prompts are removed, though with uncertain accuracy. This instruction-following deficiency severely impacts the practical utility of these specialized models despite their domain expertise.

## 4.2.2 Factors Affecting Model Performance in Chemistry Tasks

The influence of few-shot. Our experiment results of ICL are shown in Table 3. Few-shot prompting significantly impacts model performance across different tasks. General LLMs typically benefit from few-shot examples, especially in subjective question answering and literature understanding. In contrast, specialized chemistry models often show performance decreases with few-shot prompting, possibly due to the absence of such examples during their instruction fine-tuning. For complex chemistry-specific tasks, performance variations remain minimal across all models, reflecting the inherent difficulty of these tasks and current limitations in capturing expert-level chemical reasoning.

The impact of model scaling. We conducted experiments on Qwen2.5 models of different sizes. The results, as shown in <a href="Table 4">Table 4</a>, indicate that increasing model size improves performance in most tasks, with notable gains in advanced knowledge Q&A and literature understanding. However, molecular understanding and scientific knowledge deduction tasks show minimal improvement as the model scales. Tasks requiring specialized chemical knowledge (e.g., IUPAC2SMILES, CatRec) remain challenging despite parameter increases, with some tasks like MolPC even showing performance declines. This suggests that model scaling alone is insufficient for complex chemical tasks without specialized training data.

The impact of thinking models. While intuitively it may seem that thinking models possess stronger reasoning capabilities and might benefit in complex chemical tasks, our experimental comparison of OpenAI-o1 versus GPT-40 and DeepSeek-R1 versus DeepSeek-V3 reveals a more nuanced reality. Although thinking models occasionally excel in specific tasks such as reaction product prediction, they demonstrate comparable performance to general models across most chemical tasks, with each architecture exhibiting distinct strengths in different tasks. Additionally, when prompted to employ chain-of-thought reasoning, some models declined to respond to certain tasks, citing insufficient information to formulate complete answers. Therefore, we conclude that the primary limitation in addressing sophisticated chemical challenges lies not in long reasoning ability but rather in insufficient domain-specific knowledge.

**Stability analysis.** As illustrated in the table 10, we conducted robustness testing on multiple models and analyzed the stability of metrics across various tasks in the benchmark. The results demonstrate that the standard deviation for the vast majority of metrics does not exceed 5.0, indicating consistent performance across evaluations. These results collectively indicate that our evaluation framework is robust, providing consistent and reliable assessments of system performance.

### 4.2.3 Multimodal Chemistry Tasks

The table 7 illustrates the performance of mainstream multimodal large language models on ChemEval's multimodal tasks. Entries marked as '-' indicate instances where models failed to generate meaningful responses. Examining results across both Domain Knowledge QA and Literature Understanding dimensions reveals that while most models demonstrate satisfactory performance on elementary tasks such as molecular formula identification, they exhibit significant limitations when confronted with more sophisticated challenges involving chemical reaction pathways or molecular properties, as evidenced in Pathway Parsing and Multiple Choice tasks. The performance degrada-tion becomes even more pronounced in Molecular Understanding and Scientific Reasoning tasks, where models demonstrate considerable difficulty. These advanced tasks present a multifaceted challenge, requiring models to accurately recognize molecular structures and reaction equations from visual inputs while leveraging comprehensive chemical domain knowledge to formulate correct responses—a combination that severely tests the models' integrated capabilities. It is worth noting that our evaluation exclusively assessed general-purpose multimodal large language models, without including specialized multimodal models designed specifically for chemical applications. Given that multimodal capabilities are increasingly crucial in chemical research, we think of this as a critical area demanding urgent investigation and development. 

## 5 Limitations and future work

Although ChemEval, as proposed in this study, fills the gap in evaluation LLMs in the field of chemistry by covering a diverse array of chemical tasks and providing an important reference for model capability assessment and chemical research applications, several notable limitations remain in practical application. On the one hand, due to insufficient integration with professional molecular simulation tools and other chemical software, the performance of LLMs in complex molecular structure computation and high-precision optimization analysis is still restricted, making it difficult to fully meet the needs of advanced scientific research for specialized computations. On the other hand, LLMs may generate toxic, harmful, or illegal content, which presents safety and ethical risks and highlights the necessity for strict regulation and oversight of generated content. Therefore, it is essential to strengthen the deep integration of LLMs with professional chemical tools and improve content safety mechanisms in the future, so as to further enhance the reliability and security of ChemEval and LLMs in the field of chemistry.

In the future refinement of ChemEval, we plan to invite chemical experts to manually evaluate the results of the LLMs and compare them with the evaluation results of our ChemEval. This will enhance the reliability of our evaluation system and facilitate its alignment with human preferences, making it more applicable to chemistry-related research. In addition, research on agents has garnered significant attention recently [55]. We aim to explore the integration of end-to-end agents and improve the LLM's understanding as well as deep thinking ability in the chemical field to assist in chemical research endeavors in the future.

## 348 6 Conclusion

In this paper, we developed a comprehensive chemical evaluation system to assess the performance of popular LLMs across four levels of chemical tasks. The findings indicate that LLMs exhibit relatively poor performance on tasks requiring the understanding of molecular structures and scientific knowledge inference, whereas they perform better on tasks involving literature comprehension. This suggests both the potential for improvement and the need for further advancements in the application of LLMs to chemical tasks. Through this extensive evaluation, we demonstrate that there remains significant room for enhancement in the capabilities of LLMs across various chemical tasks. We hope our work will inspire future research to further explore and leverage the potential of LLMs in the field of chemistry. This has the potential to contribute to the transformation of scientific research paradigms and holds significant implications for the advancement of both the scientific community and artificial intelligence. Future work on ChemEval will integrate multimodal tasks and more sophisticated tasks and expert manual evaluations will be conducted to validate the result of ChemEval and other benchmarks to improve the evaluation system's dependability for practical and scientific applications.

## References

- [1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
   Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
   few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
   Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
   follow instructions with human feedback. Advances in neural information processing systems,
   35:27730–27744, 2022.
- [3] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- [4] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [5] Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin,
   Chen Zhu, Hengshu Zhu, Qi Liu, et al. A survey on large language models for recommendation.
   World Wide Web, 27(5):60, 2024.
- [6] Mingjia Yin, Hao Wang, Wei Guo, Yong Liu, Suojuan Zhang, Sirui Zhao, Defu Lian, and
   Enhong Chen. Dataset regeneration for sequential recommendation. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 3954–3965, 2024.
- Tingjia Shen, Hao Wang, Jiaqing Zhang, Sirui Zhao, Liangyue Li, Zulong Chen, Defu Lian, and Enhong Chen. Exploring user retrieval integration towards large language models for cross-domain sequential recommendation. *arXiv preprint arXiv:2406.03085*, 2024.
- Yongqiang Han, Hao Wang, Kefan Wang, Likang Wu, Zhi Li, Wei Guo, Yong Liu, Defu Lian,
   and Enhong Chen. Efficient noise-decoupling for multi-behavior sequential recommendation.
   In *Proceedings of the ACM on Web Conference 2024*, pages 3297–3306, 2024.
- [9] Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, and Wen Su.
   Mcne: An end-to-end framework for learning multiple conditional network representations
   of social network. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pages 1064–1072, 2019.
- 1393 [10] Hao Wang, Defu Lian, Hanghang Tong, Qi Liu, Zhenya Huang, and Enhong Chen. Hypersorec: 1394 Exploiting hyperbolic user and item representations with multiple aspects for social-aware recommendation. *ACM Transactions on Information Systems (TOIS)*, 40(2):1–28, 2021.
- <sup>396</sup> [11] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text. *arXiv preprint arXiv:1903.10676*, 2019.
- Zhi Hong, Aswathy Ajith, Gregory Pauloski, Eamon Duede, Kyle Chard, and Ian Foster. The
   diminishing returns of masked language models to science. arXiv preprint arXiv:2205.11342,
   2022.
- Bishwaranjan Bhattacharjee, Aashka Trivedi, Masayasu Muraoka, Muthukumaran Ramasubramanian, Takuma Udagawa, Iksha Gurung, Rong Zhang, Bharath Dandala, Rahul Ramachandran,
   Manil Maskey, et al. Indus: Effective and efficient language models for scientific applications.
   arXiv preprint arXiv:2405.10725, 2024.
- Botao Yu, Frazier N Baker, Ziqi Chen, Xia Ning, and Huan Sun. Llasmol: Advancing large language models for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset. *arXiv preprint arXiv:2402.09391*, 2024.
- Linqing Chen, Weilei Wang, Zilong Bai, Peng Xu, Yan Fang, Jie Fang, Wentao Wu, Lizhi Zhou, Ruiji Zhang, Yubin Xia, et al. Pharmgpt: Domain-specific large language models for bio-pharmaceutical and chemistry. *arXiv preprint arXiv:2406.18045*, 2024.

- [16] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph
   self-supervised learning for molecular property prediction. Advances in Neural Information
   Processing Systems, 34:15870–15882, 2021.
- In It is a series of the State of the Acm SIGKDD international conference on knowledge discovery & data mining, pages 731–752, 2020.
   In It is a series of the State of the SigkDD international conference on knowledge discovery & data mining, pages 731–752, 2020.
- [18] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
   Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
   arXiv:2009.03300, 2020.
- Intelligence, volume 38, pages 18099–18107, 2024.
   Zhouhong Gu, Xiaoxuan Zhu, Haoning Ye, Lin Zhang, Jianchen Wang, Yixin Zhu, Sihang Jiang, Zhuozhi Xiong, Zihan Li, Weijie Wu, et al. Xiezhi: An ever-updating benchmark for holistic domain knowledge evaluation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 18099–18107, 2024.
- [20] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
   Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
   models. arXiv preprint arXiv:2304.06364, 2023.
- 428 [21] Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng 429 Liu, Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese 430 evaluation suite for foundation models. *Advances in Neural Information Processing Systems*, 431 36, 2024.
- Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan Shen, Baocai Chen, Lu Chen, and Kai
   Yu. Scieval: A multi-level large language model evaluation benchmark for scientific research. In
   Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 19053–19061,
   2024.
- Taicheng Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh Chawla, Olaf Wiest, Xiangliang Zhang, et al. What can large language models do in chemistry? a comprehensive benchmark on eight tasks. *Advances in Neural Information Processing Systems*, 36:59662–59688, 2023.
- [24] Andrew D White, Glen M Hocky, Heta A Gandhi, Mehrad Ansari, Sam Cox, Geemi P
   Wellawatte, Subarna Sasmal, Ziyue Yang, Kangxin Liu, Yuvraj Singh, et al. Assessment
   of chemistry knowledge in large language models that generate code. *Digital Discovery*, 2(2):
   368–376, 2023.
- [25] Shengchao Liu, Jiongxiao Wang, Yijin Yang, Chengpeng Wang, Ling Liu, Hongyu Guo,
   and Chaowei Xiao. Chatgpt-powered conversational drug editing using retrieval and domain
   feedback. arXiv preprint arXiv:2305.18090, 2023.
- [26] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
   AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
   preprint arXiv:2410.21276, 2024.
- 450 [27] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
   451 Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
   452 arXiv:2412.15115, 2024.
- Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science. *arXiv preprint arXiv:2211.09085*, 2022.
- [29] Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao Du, Kaiyu Yang, Zihan Wang, Yisong Yue,
   Yuxiao Dong, and Jie Tang. Sciglm: Training scientific language models with self-reflective
   instruction annotation and tuning. arXiv preprint arXiv:2401.07950, 2024.

- 459 [30] Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe 460 Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. *arXiv preprint* 461 *arXiv*:2304.05376, 2023.
- Image: Ima
- [32] Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,
   Xiangyu Yue, Dongzhan Zhou, et al. Chemllm: A chemical large language model. arXiv
   preprint arXiv:2402.06852, 2024.
- Youwei Liang, Ruiyi Zhang, Li Zhang, and Pengtao Xie. Drugchat: towards enabling chatgpt-like capabilities on drug molecule graphs. *arXiv preprint arXiv:2309.03907*, 2023.
- 470 [34] Geyan Ye, Xibao Cai, Houtim Lai, Xing Wang, Junhong Huang, Longyue Wang, Wei Liu, and Xiangxiang Zeng. Drugassist: A large language model for molecule optimization. *arXiv* preprint arXiv:2401.10334, 2023.
- 473 [35] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
  474 Glue: A multi-task benchmark and analysis platform for natural language understanding. *arXiv*475 *preprint arXiv:1804.07461*, 2018.
- Image: Incomplete the control of the c
- Hengxing Cai, Xiaochen Cai, Junhan Chang, Sihang Li, Lin Yao, Changxin Wang, Zhifeng Gao, Yongge Li, Mujie Lin, Shuwen Yang, et al. Sciassess: Benchmarking llm proficiency in scientific literature analysis. *arXiv preprint arXiv:2403.01976*, 2024.
- [38] Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Martiño Ríos-García, Benedict Emoek-482 abu, Aswanth Krishnan, Tanya Gupta, Mara Schilling-Wilhelmi, Macjonathan Okereke, Anagha 483 Aneesh, Amir Mohammad Elahi, Mehrdad Asgari, Juliane Eberhardt, Hani M. Elbeheiry, 484 María Victoria Gil, Maximilian Greiner, Caroline T. Holick, Christina Glaubitz, Tim Hoffmann, 485 Abdelrahman Ibrahim, Lea C. Klepsch, Yannik Köster, Fabian Alexander Kreth, Jakob Meyer, 486 Santiago Miret, Jan Matthias Peschel, Michael Ringleb, Nicole Roesner, Johanna Schreiber, 487 Ulrich S. Schubert, Leanne M. Stafast, Dinga Wonanke, Michael Pieler, Philippe Schwaller, 488 and Kevin Maik Jablonka. Are large language models superhuman chemists?, 2024. URL 489 https://arxiv.org/abs/2404.01475. 490
- [39] Nawaf Alampara, Mara Schilling-Wilhelmi, Martiño Ríos-García, Indrajeet Mandal, Pranav
   Khetarpal, Hargun Singh Grover, N. M. Anoop Krishnan, and Kevin Maik Jablonka. Probing
   the limitations of multimodal language models for chemistry and materials research, 2025. URL
   https://arxiv.org/abs/2411.16955.
- [40] Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
   Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and Ilm
   performance. arXiv preprint arXiv:2407.06645, 2024.
- 498 [41] Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation 499 between molecules and natural language. *arXiv preprint arXiv:2204.11817*, 2022.
- 500 [42] Ziqi Chen, Oluwatosin R Ayinde, James R Fuchs, Huan Sun, and Xia Ning. G 2 retro as a
   501 two-step graph generative models for retrosynthesis prediction. *Communications Chemistry*, 6
   502 (1):102, 2023.
- Jiang Guo, A Santiago Ibanez-Lopez, Hanyu Gao, Victor Quach, Connor W Coley, Klavs F
   Jensen, and Regina Barzilay. Automated chemical reaction extraction from scientific literature.
   Journal of chemical information and modeling, 62(9):2035–2045, 2021.
- Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng
   Zhang, and Guolin Ke. Uni-mol: A universal 3d molecular representation learning framework.
   2023.

- 509 [45] Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language models. *arXiv* preprint arXiv:2306.08018, 2023.
- [46] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
   Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
   Advances in neural information processing systems, 35:24824–24837, 2022.
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association for Computational Linguistics*, pages 311–318, 2002.
- [48] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
   Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
   preprint arXiv:2412.16720, 2024.
- 521 [49] Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/claude/sonnet, 2025.
- 522 [50] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, 523 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly 524 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- 525 [51] Team xAI. Grok. https://x.ai/, 2025.
- [52] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
   Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
   arXiv:2412.19437, 2024.
- [53] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
   Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding,
   localization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.
- Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen 532 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha 533 Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, 534 Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, 535 Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min 536 Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, 537 Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan 538 Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, 539 Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen 540 Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, 541 Xiaodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, 542 Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, 543 Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, 545 Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong 546 Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, 547 Chunyu Wang, Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel 548 Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, 549 Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi 550 Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, 551 Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable 552 language model locally on your phone, 2024. URL https://arxiv.org/abs/2404.14219. 553
- [55] Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
   Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey. arXiv
   preprint arXiv:2402.02716, 2024.
- 557 [56] David Weininger. Smiles, a chemical language and information system. 1. introduction to 558 methodology and encoding rules. *Journal of chemical information and computer sciences*, 28 559 (1):31–36, 1988.

## 560 A ChemEval Tasks

In order to systematically evaluate the multifaceted capabilities of large language models in the domain 561 562 of chemistry, we propose a multi-level and fine-grained evaluation framework that encompasses a broad spectrum of chemical knowledge and reasoning tasks. This framework is delineated into 563 four primary categories: Advanced Knowledge Question Answering, Literature Understanding, 564 Molecular Understanding, and Scientific Knowledge Deduction. Each of these categories represents 565 a progressively sophisticated level of chemical problem-solving, ranging from the assessment of 566 fundamental chemical concepts and literature comprehension to molecular-level reasoning and highlevel scientific deduction. The constituent tasks within each category are meticulously designed to interrogate specific competencies, such as objective and subjective answering, information extraction, inductive generation, molecular property prediction, and retrosynthetic analysis. Collectively, this 570 comprehensive benchmark offers a granular and holistic evaluation of LLMs' proficiency in both the 571 understanding and application of chemical knowledge, thereby illuminating their potential utility and 572 limitations in diverse chemical informatics applications. 573

## 574 A.1 Advanced Knowledge Question Answering

This segment is pivotal in assessing the models' proficiency in understanding and applying fundamental chemical concepts, which include *Objective Question* dimension and *Subjective Question* dimension, total 15 different tasks. Through a blend of objective and subjective tasks, the Advanced Knowledge Question Answering component challenges the models to demonstrate their insight in areas ranging from chemical terminology and quantitative analysis to the recognition and interpretation of chemical structures and diagrams. The tasks within this section are designed to be both comprehensive and diagnostic, providing a clear measure of the models' readiness to tackle more advanced chemical inquiries.

## A.1.1 Objective Questions (ObjQA)

583

591

604

The first dimension is objective question answering, which primarily assesses the model's grasp of fundamental chemical knowledge and its capability to apply this knowledge in straightforward scenarios. Objective question answering encompasses the following tasks: *Multiple Choice Task*, *Fill-in-the-Blank Task*, and *True/False Task*. By incorporating these tasks, ChemEval can more effectively gauge the model's overall proficiency in understanding and applying chemical knowledge across various contexts and formats. It should be noted that the *True/False Task* is exclusive to the text-only tasks and is not incorporated within the multimodal task set.

## A.1.2 Subjective Questions (SubjQA)

The second dimension is subjective question answering, which includes *Short Answer Task* and *Calculation Task*, both aiming to evaluate the depth of the model's comprehension and its ability to apply chemical knowledge effectively. Because on the basis of the previous task, the model also requires providing a detailed solution or reason, which involves the understanding of the chemical principles and concepts in the question, and applying these principles and concepts to construct logically clear and organized answers, which intuitively reflects the model's understanding of basic chemical knowledge.

Multimodal tasks further build upon these foundations, covering Statistical Chart QA, Statistical
Table QA, Reaction Profile Diagram QA, Theoretical Potential Energy Surface QA, Infrared Spectrum
QA, Raman Spectrum QA, UV-Vis Spectrum QA, Diffraction Pattern QA, Kinetic Behavior Chart QA
and Mass Spectrum QA. These tasks comprehensively evaluate the model's ability to interpret and
reason using chemical graphics and experimental data.

## A.2 Literature Understanding

Advanced Knowledge Question Answering is designed to assess the model's comprehension and mastery of chemical knowledge. In contrast, Literature Understanding evaluates the model's ability to interpret and assimilate information from chemical literature, which forms the foundation for downstream inductive generation tasks. Literature Understanding includes three dimensions: *Inductive Generation, Information Extraction*, and *Molecular Name Recognition*, comprising a total

of 19 tasks. These tasks are crucial for understanding and extracting meaningful information from

- chemical literature. The primary focus is on assessing LLMs' ability to accurately extract and
- interpret chemical data from text, and to subsequently generate new, contextually relevant content.
- Importantly, such tasks are not covered by other chemical benchmarks. The following subsections
- 614 detail the specific tasks.

#### 615 A.2.1 Information Extraction (InfoE)

- This is the first step to read a paper and also the foundation for the next inductive generation task.
- It involves the extraction of various elements related to chemistry, such as named entities, reaction
- substrates, and catalyst types, encompassing a total of 11 tasks. These tasks aim to decompose and
- organize chemical information found in text, covering entities, relationships, and various aspects of
- 620 chemical reactions.

#### 621 A.2.2 Inductive Generation (InducGen)

- Based on Information Extraction, Inductive Generation involves creating new, coherent, and contex-
- tually relevant content based on existing data and knowledge. This process incorporates Chemical
- 624 Paper Abstract Generation, Research Outline Generation, Chemical Literature Topic Classification,
- and Reaction Type Recognition and Induction, all focused on synthesizing and organizing chemical
- information in a coherent and meaningful manner.

## 627 A.2.3 Molecular Name Recognition(MNR)

- Molecular Name Recognition is a foundational step in the extraction and organization of chemical
- 629 information, focusing on the accurate identification of molecular names and related entities from
- 630 scientific literature and data sources. This task goes beyond simple text extraction and leverages
- multimodal techniques to integrate information from textual, structural, and graphical data alike. Its
- subtasks encompass Molecular Formula Recognition, Chemical Reaction Equation Recognition, 2D
- 633 Molecular Structure Recognition, and Synthetic Pathway Analysis. Collectively, these subtasks enable
- comprehensive understanding and representation of chemical compounds and their transformations,
- serving as a crucial underpinning for downstream knowledge discovery and advanced reasoning in
- 636 chemical informatics.

#### 637 A.3 Molecular Understanding

- This section builds upon the previous foundation to assess the model's understanding and generative
- capabilities at the molecular level. It includes 4 dimensions: Molecular Name Generation, Molecular
- Name Translation, Molecular Property Prediction, and Molecular Description, a total of 15 tasks.
- Molecular Understanding explores tasks essential for molecular understanding, evaluating the LLMs'
- ability to generate, translate, and describe molecular names and properties. These tasks assess the
- models' proficiency in interpreting and generating chemical information accurately. The following
- subsections detail various specific tasks within this objective.

#### 645 A.3.1 Molecular Name Generation (MNGen)

- Molecular Name Generation is the basis of Molecular Understanding and only contains one task,
- 647 Molecular Name Generation from Text Description. This task is purposed to evaluate the capacity
- of LLMs to generate valid chemical structure representations. It necessitates that the models, based
- on intricate textual descriptions encompassing molecular structures, properties, and classifications,
- 650 synthesize SMILES molecular formulas effectively.

## A.3.2 Molecular Name Translation (MNTrans)

- Furthermore, Molecular Name Translation aims to enable a deep understanding of molecular struc-
- tures and representations, which should serve as the fundamental knowledge for chemistry LLMs.
- 654 It focuses on converting molecular names between different formats, requiring LLMs to output a
- specified alternative format based on a given molecular representation. It involves the conversion
- between representations of molecules such as *IUPAC names* and *SMILES* [56] molecular formulas,
- encompassing a total of five tasks, each focusing on distinct aspects of molecular notation conversion.

### 8 A.3.3 Molecular Property Prediction (MPP)

Apart from molecular name understanding, the ability to predict molecular properties is also important. Molecular Property Prediction targets the forecast of a wide range of physical, chemical, and biological attributes of molecules, encapsulated in two core objectives: *Molecule Property Classification*, which predicts categories of properties such as ClinTox, HIV inhibition, and polarity; and *Molecule Property Regression*, focusing on estimating numerical values such as Lipophilicity, polarity, and boiling point.

## 665 A.3.4 Molecular Description (MolDesc)

To facilitate a deeper assessment of molecular understanding, the Molecular Description task has 666 been developed to comprehensively evaluate LLMs' capabilities in interpreting and describing 667 molecular structures and their properties. This task consists of a series of subtasks, each requiring the 668 prediction of physicochemical properties of molecules based on diverse input modalities. Besides 669 the classic subtask of predicting physicochemical properties directly from molecular structures, this 670 multimodal extension incorporates additional challenges: Physicochemical Property Prediction from 671 Infrared Spectrum, Physicochemical Property Prediction from Raman Spectrum, Physicochemical Property Prediction from UV-Vis Spectrum, Physicochemical Property Prediction from Diffraction 673 Pattern, Physicochemical Property Prediction from Mass Spectrum, and Physicochemical Property 674 Prediction from NMR Spectrum. Collectively, these tasks aim to assess LLMs' ability to interpret 675 various molecular representations—spanning textual, graphical, and spectral data—for comprehensive 676 property annotation and molecular understanding. 677

### 678 A.4 Scientific Knowledge Deduction

Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific literature, 679 and the capacity to understand molecular structures, we expect that the model will proceed to 680 conduct deeper chemical reasoning and deduction. So the part of Scientific Knowledge Deduction 681 encompasses four key dimensions: Retrosynthetic Analysis, Reaction Condition Recommendation, 682 Reaction Outcome Prediction and Reaction Mechanism Analysis, a total of 13 tasks, which are 683 essential for effective chemical synthesis. This part evaluates the LLMs' capabilities in retrosynthetic 684 analysis, recommending reaction conditions, predicting reaction outcomes, and analyzing reaction 685 mechanisms. These tasks provide a comprehensive assessment of the models' performance in these 686 critical areas of chemical synthesis. 687

## 688 A.4.1 Retrosynthetic Analysis (ResSyn)

694

701

Retrosynthetic Analysis is a crucial technique in the field of chemical synthesis, particularly in organic synthesis. The process begins with the target product and then examines potential synthesis pathways and reactant substrates. This approach highlights the reverse reasoning capabilities of LLMs in the field of chemical synthesis. It comprises Substrate Recommendation, Synthetic Pathway Recommendation and Synthetic Difficulty Evaluation.

## A.4.2 Reaction Condition Recommendation (RCRec)

Based on the results of the Retrosynthetic Analysis, LLMs can recommend suitable reaction conditions. Reaction condition recommendation is a key task in chemical synthesis, involving selecting the most suitable conditions for specific chemical reactions to ensure maximum efficiency, selectivity, and yield. This task integrates recommendations for conditions such as *ligands*, *reagents*, and *catalysts*, encompassing a total of six tasks, each targeting a specific component of the reaction condition optimization.

## A.4.3 Reaction Outcome Prediction (ROP)

After determining the reaction pathway and reaction conditions, the large model can predict possible reaction outcomes. Reaction outcome prediction is a core technology in chemical synthesis aimed at predicting possible results of a reaction before it is actually carried out. This encompasses *Reaction Product Prediction*, *Product Yield Prediction*, *Reaction Rate Prediction*.

Table 5: Complete Multi-Level 0-Shot Performance Overview on ChemEval part 1. Claude3.7T represents Claude 3.7-Sonnet-Thinking, while Claude3.7N represents Claude 3.7-Sonnet.

| Dimension | Task         | Metric           | OpenAI-o3-mini | OpenAI-o1     | GPT-4o          | Claude3.7T      | Claude3.7N    | Deepseek-R1    | Deepseek-V3   | Qwen2.5-72B    | Qwen2.5-32B   |
|-----------|--------------|------------------|----------------|---------------|-----------------|-----------------|---------------|----------------|---------------|----------------|---------------|
|           |              |                  |                | Adv           | anced Knowledg  | e Question Answ | ering         |                |               |                |               |
| ObjQA     | MCTask       | Accuracy         | 72.00          | 74.00         | 66.80           | 62.80           | 60.80         | 82.40          | 76.00         | 67.20          | 67.20         |
| ObjQA     | FBTask       | Score            | 62.42          | 60.92         | 51.19           | 45.28           | 44.73         | 59.41          | 63.88         | 53.92          | 50.93         |
| ObjQA     | TFTask       | Accuracy         | 68.00          | 46.00         | 57.60           | 58.80           | 58.00         | 75.20          | 67.20         | 58.40          | 49.20         |
| SubjQA    | SATask       | Score            | 68.00          | 64.50         | 61.20           | 56.70           | 55.10         | 68.50          | 71.70         | 58.50          | 58.10         |
| SubjQA    | CalcTask     | Score            | 75.50          | 78.00         | 61.80           | 55.74           | 53.60         | 76.10          | 79.20         | 61.90          | 57.40         |
|           |              |                  |                |               | Literature U    | Inderstanding   |               |                |               |                |               |
| InfoE     | CNER         | F1               | 61.30          | 64.56         | 65.76           | 60.21           | 54.55         | 64.14          | 60.85         | 61.61          | 56.33         |
| InfoE     | CERC         | F1               | 29.65          | 22.37         | 25.66           | 25.19           | 24.77         | 27.18          | 24.94         | 26.05          | 27.21         |
| InfoE     | SubE         | Accuracy         | 66.91          | 73.71         | 66.32           | 61.59           | 65.76         | 75.18          | 61.26         | 62.56          | 58.05         |
| InfoE     | AddE         | F1               | 76.67          | 81.67         | 85.00           | 79.33           | 81.10         | 82.67          | 80.67         | 84.00          | 80            |
| InfoE     | SolvE        | F1               | 89.00          | 86.50         | 85.00           | 87.60           | 84.30         | 90.20          | 88.50         | 85.00          | 90.00         |
| InfoE     | TempE        | F1               | 65.00          | 70.00         | 67.00           | 72.00           | 69.00         | 65.00          | 72.00         | 65.00          | 62.00         |
| InfoE     | TimeE        | F1               | 95.00          | 95.00         | 95.00           | 95.00           | 95.00         | 95.00          | 95.00         | 90.00          | 95.00         |
| InfoE     | ProdE        | Accuracy         | 87.62          | 90.25         | 86.09           | 82.39           | 85.04         | 91.20          | 87.52         | 84.86          | 76.38         |
| InfoE     | CharME       | F1               | 66.67          | 51.67         | 72.85           | 81.01           | 71.84         | 21.33          | 81.80         | 74.57          | 79.42         |
| InfoE     | CatTE        | F1               | 65.00          | 95.00         | 94.00           | 82.00           | 77.00         | 99.00          | 100.00        | 100.00         | 100.00        |
| InfoE     | YieldE       | F1               | 65.00          | 85.00         | 79.00           | 61.00           | 59.00         | 77.70          | 65.00         | 65.00          | 78.00         |
| InducGen  | AbsGen       | Score            | 68.75          | 63.75         | 63.00           | 63.00           | 66.75         | 65.00          | 64.75         | 64.75          | 60.00         |
| InducGen  | OLGen        | Score            | 35.00          | 25.00         | 35.50           | 26.50           | 28.50         | 37.00          | 27.00         | 24.25          | 29.75         |
| InducGen  | TopC         | Accuracy         | 50.00          | 55.00         | 49.00           | 56.00           | 51.00         | 57.00          | 50.00         | 64.00          | 35.00         |
| InducGen  | ReactTR      | F1               | 20.00          | 25.00         | 32.00           | 29.00           | 26.00         | 21.00          | 28.00         | 22.00          | 26.00         |
|           |              |                  |                |               | Molecular U     | Inderstanding   |               |                |               |                |               |
| MNGen     | MolNG        | Tanimoto (valid) | 51.58 (78%)    | 49.80 (72%)   | 39.30 (89%)     | 33.85 (70%)     | 42.28 (78%)   | 56.05 (87%)    | 51.19 (96%)   | 20.58 (79%)    | 14.60 (64%)   |
| MNTrans   | IUPAC2MF     | L2               | 0.6214         | 0.7737        | 0.5304          | 0.3252          | 0.3349        | 0.6026         | 0.6176        | 0.3407         | 0.3070        |
| MNTrans   | SMILES2MF    | L2               | 0.6276         | 0.6330        | 0.3627          | 0.3618          | 0.3468        | 0.4402         | 0.3563        | 0.2448         | 0.2548        |
| MNTrans   | IUPAC2SMILES | Tanimoto (valid) | 29.61 (42%)    | 29.72 (50%)   | 34.71 (83%)     | 31.89 (68%)     | 39.12 (72%)   | 30.70 (63%)    | 46.07 (88%)   | 15.90 (76%)    | 10.55 (59%)   |
| MNTrans   | SMILES2IUPAC | Exact Match      | 0.00           | 0.00          | 0.00            | 0.00            | 0.00          | 1.20           | 0.00          | 0.00           | 0.00          |
| MNTrans   | SMILES2IUPAC | BLEU             | 4.37           | 3.24          | 0.96            | 3.27            | 3.46          | 4.17           | 1.67          | 0.33           | 0.15          |
| MNTrans   | SMILES2IUPAC | Tanimoto         | 0.00           | 0.00          | 12.08           | 22.73           | 24.99         | 25.90          | 19.16         | 13.01          | 8.68          |
| MNTrans   | S2S          | Tanimoto (valid) | 9.76 (30%)     | 9.72 (42%)    | 13.41 (62%)     | 9.37 (40%)      | 10.58 (44%)   | 16.04 (71%)    | 16.27 (62%)   | 11.47 (50%)    | 6.93 (37%)    |
| MPP       | MolPC        | Accuracy         | 72.88          | 67.50         | 64.57           | 58.90           | 54.37         | 53.54          | 48.73         | 48.13          | 67.70         |
| MPP       | MolPR        | NRMSE (valid)    | 12.7593 (99%)  | 12.3852 (99%) | 9.9322 (51%)    |                 |               | 15.8881 (100%) | 8.3675 (98%)  | 13.0756 (100%) |               |
| MolDesc   | Mol2PC       | Score            | 19.50          | 19.00         | 7.00            | 9.80            | 15.70         | 11.90          | 13.50         | 20.80          | 5.90          |
|           |              |                  |                |               | Scientific Know | ledge Deduction | 1             |                |               |                |               |
| ReSyn     | SubRec       | F1               | 4.67           | 1.00          | 0.00            | 1.46            | 1.77          | 1.63           | 2.27          | 1.06           | 0.20          |
| ReSyn     | PathRec      | Score            | 49.38          | 30.63         | 22.88           | 0.36            | 41.88         | 52.75          | 37.38         | 41.13          | 36.88         |
| ReSyn     | SynDE        | NRMSE (valid)    | 5.4045 (20%)   | - (5%)        | - (0%)          | - (0%)          | 1.9854 (39%)  | - (0%)         | - (0%)        | 0.2670 (100%)  | - (0%)        |
| RCRec     | LRec         | F1               | 4.00           | 0.00          | 13.20           | 2.00            | 4.40          | 6.80           | 7.60          | 4.40           | 8.00          |
| RCRec     | RRec         | F1               | 32.00          | 25.64         | 15.80           | 27.43           | 25.80         | 21.93          | 8.35          | 37.75          | 34.56         |
| RCRec     | SolvRec      | F1               | 16.00          | 10.00         | 20.40           | 18.80           | 17.60         | 22.40          | 24.00         | 50.40          | 51.60         |
| RCRec     | CatRec       | F1               | 0.00           | 0.00          | 0.00            | 0.00            | 0.00          | 0.00           | 0.00          | 0.00           | 0.00          |
| RCRec     | TempRec      | NRMSE (valid)    | 0.2201 (100%)  |               |                 |                 | 0.5398 (100%) |                | 0.2096 (100%) | 0.3782 (100%)  | 0.2475 (100%) |
| RCRec     | TimeRec      | NRMSE (valid)    | 0.2165 (100%)  |               |                 |                 | 0.4008 (100%) |                | 0.2579 (100%) | 0.2022 (100%)  | 0.2377 (100%) |
| ROP       | PPred        | F1               | 10.00          | 21.33         | 1.67            | 12.27           | 16.16         | 11.97          | 0.93          | 1.73           | 0.53          |
| ROP       | YPred        | Accuracy         | 8.00           | 12.00         | 43.50           | 16.00           | 9.00          | 11.00          | 22.50         | 26.00          | 85.00         |
| ROP       | RatePred     | Overlap          | 16.74          | 21.08         | 13.81           | 9.06            | 7.21          | 17.12          | 17.71         | 10.71          | 9.48          |
| RMA       | IMDer        | Score            | 80.00          | 80.00         | 81.50           | 81.50           | 81.00         | 79.50          | 80.50         | 77.25          | 79.00         |

## o6 A.4.4 Reaction Mechanism Analysis (RMA)

Reaction Mechanism Analysis is a critical area in the study of chemical reactions, aiming to explain
the detailed steps involved in the transformation from reactants to products. This is the final step
in the field of chemical synthesis, including identifying various intermediates, and transition states,
as well as the kinetic and thermodynamic parameters of each step in the reaction. *Intermediate Derivation* is the sole subtask in this phase.

## 2 B Detailed Experimental setups

In this section, we introduce the details of our experimental setups, including the detailed description of the evaluated models and explanations of the metrics used in Section 4.3.

## 715 B.1 Models

719

720

721

722

723

724

725

726

727

In order to comprehensively assess the scientific capabilities of Large Language Models (LLMs), we evaluate several high-performing LLMs that are widely accessible, including general and specialized models. These models are selected to represent a diverse range of organizations and vary in size.

- **GPT-40**: GPT-40 is OpenAI's latest flagship multimodal large language model, capable of processing and generating text, audio, and images through a unified architecture for seamless cross-modal reasoning and interaction. It sets new benchmarks in multilingual, speech, and visual understanding, exhibiting advanced performance with significantly improved speed and efficiency compared to previous models.
- OpenAI-o1/o3-mini: OpenAI o1 and o3-mini are lightweight, cost-effective reasoning models that deliver strong performance in science, mathematics, and programming tasks while offering significantly improved response speed and reliability compared to their predecessors, making them well-suited for rapid, real-world applications.

| ObjQA<br>ObjQA<br>ObjQA |              |                  |               |               | Llama3.3-8B    | Grok3            | Gemini-2.5-Pro | ChemDFM        | ChemLLM        | LlaSMol       | ChemSpark     |
|-------------------------|--------------|------------------|---------------|---------------|----------------|------------------|----------------|----------------|----------------|---------------|---------------|
| ObjQA                   |              |                  |               | Ad            | vanced Knowled | ge Question Ans  | vering         |                |                |               |               |
| ObjQA                   | MCTask       | Accuracy         | 64.80         | 59.60         | 40.40          | 68.80            | 87.60          | 41.20          | 24.40          | 24.00         | 43.60         |
| OF:O4                   | FBTask       | Score            | 45.76         | 39.52         | 34.17          | 54.36            | 63.95          | 24.16          | 34.97          | 13.92         | 24.57         |
| ObjQA                   | TFTask       | Accuracy         | 52.00         | 55.20         | 46.00          | 64.40            | 77.60          | 46.00          | 19.20          | 58.00         | 50.00         |
| SubjQA                  | SATask       | Score            | 57.20         | 50.80         | 38.40          | 73.59            | 72.00          | 32.20          | 13.20          | 14.50         | 33.60         |
| SubjQA                  | CalcTask     | Score            | 50.80         | 43.60         | 28.00          | 81.20            | 82.40          | 14.70          | 15.90          | 7.50          | 18.50         |
|                         |              |                  |               |               | Literature     | Understanding    |                |                |                |               |               |
| InfoE                   | CNER         | F1               | 46.31         | 61.27         | 55.34          | 60.75            | 68.30          | 41.17          | 0.16           | 11.62         | 71.44         |
| InfoE                   | CERC         | F1               | 28.19         | 26.10         | 17.31          | 26.04            | 25.43          | 8.74           | 0.24           | 1.24          | 39.27         |
| InfoE                   | SubE         | Accuracy         | 59.61         | 58.43         | 64.02          | 72.87            | 72.05          | 20.07          | 0.00           | 0.00          | 74.38         |
| InfoE                   | AddE         | F1               | 83.00         | 61.67         | 45.81          | 85.00            | 95.00          | 45.00          | 0.00           | 0.00          | 65.00         |
| InfoE                   | SolvE        | F1               | 86.50         | 82.50         | 75.47          | 85.00            | 83.17          | 80.50          | 1.67           | 0.00          | 83.79         |
| InfoE                   | TempE        | F1               | 70.00         | 65.00         | 62.00          | 70.00            | 69.00          | 74.33          | 3.23           | 0.00          | 83.00         |
| InfoE                   | TimeE        | F1               | 95.00         | 95.00         | 90.00          | 95.00            | 94.00          | 78.00          | 23.10          | 25.00         | 95.00         |
| InfoE                   | ProdE        | Accuracy         | 82.44         | 77.00         | 74.54          | 91.04            | 92.82          | 34.73          | 0.00           | 0.00          | 94.40         |
| InfoE                   | CharME       | F1               | 67.92         | 43.00         | 44.18          | 79.36            | 73.11          | 27.26          | 0.00           | 0.00          | 12.98         |
| InfoE                   | CatTE        | F1               | 75.00         | 64.00         | 65.00          | 97.00            | 96.00          | 49.00          | 0.00           | 5.00          | 31.00         |
| InfoE                   | YieldE       | F1               | 80.00         | 67.00         | 46.00          | 61.00            | 74.00          | 45.00          | 0.00           | 5.00          | 61.00         |
| InducGen                | AbsGen       | Score            | 59.25         | 54.75         | 62.00          | 69.50            | 67.25          | 0.00           | 5.50           | 26.25         | 38.25         |
| InducGen                | OLGen        | Score            | 29.75         | 27.75         | 22.75          | 35.25            | 39.50          | 0.00           | 3.75           | 31.25         | 30.50         |
| InducGen                | TopC         | Accuracy         | 45.00         | 41.00         | 32.00          | 47.00            | 67.00          | 51.00          | 0.00           | 0.00          | 30.00         |
| InducGen                | ReactTR      | F1               | 26.00         | 31.00         | 26.00          | 28.00            | 31.00          | 13.00          | 0.00           | 5.00          | 17.00         |
|                         |              |                  |               |               | Molecular      | Understanding    |                |                |                |               |               |
| MNGen                   | MolNG        | Tanimoto (valid) | 11.03 (53%)   | 3.92 (32%)    | 5.83 (40%)     | 57.86 (94%)      | 71.11 (93%)    | 47.06 (69%)    | 0.00 (0%)      | 3.71 (76%)    | 74.81 (98%)   |
| MNTrans                 | IUPAC2MF     | L2               | 0.3126        | 0.1856        | 0.2433         | 0.7110           | 0.8382         | 0.6119         | 0.0454         | 0.0000        | 0.8807        |
| MNTrans                 | SMILES2MF    | L2               | 0.2114        | 0.0980        | 0.1728         | 0.3980           | 0.6574         | 0.6399         | 0.0375         | 0.0000        | 0.8133        |
| MNTrans I               | IUPAC2SMILES | Tanimoto (valid) | 8.18 (52%)    | 3.46 (30%)    | 5.24 (30%)     | 65.81 (94%)      | 61.35 (87%)    | 46.71 (88%)    | 0.00 (100%)    | 4.70 (56%)    | 87.84 (1%)    |
| MNTrans S               | SMILES2IUPAC | Exact Match      | 0.00          | 0.00          | 0.00           | 1.20             | 1.20           | 0.00           | 0.00           | 0.00          | 14.00         |
| MNTrans S               | SMILES2IUPAC | BLEU             | 0.22          | 0.00          | 0.44           | 4.69             | 13.55          | 0.56           | 0.00           | 0.00          | 48.25         |
| MNTrans S               | SMILES2IUPAC | Tanimoto         | 5.76          | 3.78          | 3.71           | 30.47            | 56.82          | 2.06           | 0.00           | 2.22          | 66.26         |
| MNTrans                 | S2S          | Tanimoto (valid) | 10.52 (60%)   | 2.28 (14%)    | 1.74 (12%)     | 17.56 (59%)      | 13.13 (44%)    | 2.12 (25%)     | 0.00 (50%)     | 0.60 (48%)    | 87.36 (94%)   |
| MPP                     | MolPC        | Accuracy         | 64.22         | 64.05         | 47.26          | 56.61            | 63.63          | 61.35          | 0.00           | 46.50         | 85.57         |
| MPP                     | MolPR        | NRMSE (valid)    | 11.7005 (90%) | 8.5890 (98%)  | 61.4736 (62%)  | 9.0283 (100%)    | 11.7270 (100%) | 394.9424 (83%) | 179.3606 (93%) | 29.9686 (73%) | 1.2142 (100%) |
| MolDesc                 | Mol2PC       | Score            | 7.20          | 14.50         | 2.10           | 28.00            | 0.70           | 3.10           | 0.30           | 0.00          | 48.90         |
|                         |              |                  |               |               | Scientific Kno | wledge Deduction | ı              |                |                |               |               |
| ReSyn                   | SubRec       | F1               | 0.00          | 1.42          | 0.27           | 0.87             | 0.00           | 3.99           | 0.00           | 0.00          | 12.37         |
| ReSyn                   | PathRec      | Score            | 32.63         | 27.13         | 20.88          | 32.13            | 43.75          | 24.13          | 10.88          | 10.00         | 38.75         |
| ReSyn                   | SynDE        | NRMSE (valid)    |               | - (0%)        | - (0%)         | - (0%)           | - (0%)         | - (0%)         | 33.0049 (78%)  | 1.2374 (45%)  | 1.7992 (87%)  |
| RCRec                   | LRec         | F1               | 6.80          | 2.80          | 2.13           | 36.00            | 0.00           | 26.00          | 0.00           | 0.00          | 37.60         |
| RCRec                   | RRec         | F1               | 37.65         | 16.93         | 8.78           | 44.60            | 0.73           | 13.13          | 0.00           | 0.50          | 63.72         |
| RCRec                   | SolvRec      | F1               | 15.60         | 25.60         | 3.63           | 24.00            | 0.00           | 10.53          | 0.00           | 0.50          | 30.40         |
| RCRec                   | CatRec       | F1               | 0.00          | 0.00          | 0.00           | 0.00             | 0.00           | 0.00           | 0.00           | 0.00          | 0.50          |
| RCRec                   | TempRec      | NRMSE (valid)    |               |               | - (0%)         | 0.1972 (100%)    | 0.1814 (100%)  | 0.3811 (99%)   | 1.1184 (98%)   |               | 0.2742 (100%) |
| RCRec                   | TimeRec      | NRMSE (valid)    | 0.2505 (100%) | 0.3213 (100%) | - (0%)         | 0.2164 (100%)    | 0.2425 (100%)  | 0.4732 (100%)  | 1.7937 (98%)   | 0.4351 (80%)  | 0.3937 (100%) |
| ROP                     | PPred        | F1               | 0.00          | 0.00          | 0.00           | 11.33            | 29.20          | 18.80          | 0.00           | 16.00         | 56.40         |
| ROP                     | YPred        | Accuracy         | 33.50         | 67.00         | 35.50          | 8.00             | 17.50          | 7.20           | 0.00           | 28.00         | 72.00         |
| ROP                     | RatePred     | Overlap          | 9.54          | 13.35         | 6.92           | 8.77             | 27.01          | 3.79           | 0.00           | 3.68          | 2.90          |
| RMA                     | IMDer        | Score            | 67.75         | 78.75         | 81.25          | 81.25            | 82.25          | 76.00          | 4.75           | 1.50          | 92.75         |

• Claude-3.7-sonnet: Claude 3.7 Sonnet is Anthropic's most advanced hybrid reasoning language model to date, integrating rapid response with deep, stepwise analytical capabilities and offering flexible dual modes for both instant answers and complex multi-stage problem-solving across a range of scientific and coding tasks.

- **Gemini-2.5-pro**: Gemini 2.5 Pro is Google DeepMind's latest multimodal large language model that integrates advanced "thinking" mechanisms and hybrid attention architectures, enabling state-of-the-art reasoning, code generation, and long-context understanding across text, image, audio, and video inputs, with support for up to one million tokens in a single context window.
- **Grok 3**: Grok 3 is a new generation of large language model developed by xAI. It has achieved breakthroughs in key benchmark tests such as mathematical reasoning, scientific logical reasoning, and code writing. In addition, it supports multimodal interaction and can also access real-time information through the X platform to enhance the timeliness and accuracy of its responses.
- DeepSeek-V3: DeepSeek-V3 is a powerful 671-billion-parameter Mixture-of-Experts (MoE) language model developed by DeepSeek, trained on 14.8 trillion tokens with innovations like Multi-head Latent Attention (MLA) and Multi-Token Prediction (MTP) to achieve state-of-the-art performance in mathematics, coding, and multilingual tasks. It features a 128K context window and efficient inference, with future versions expected to include multi-modal capabilities.
- DeepSeek-R1: DeepSeek-R1 is a reasoning-optimized model based on the DeepSeek-V3-Base architecture. It is trained with reinforcement learning and human feedback to enhance its performance in complex reasoning tasks such as logical deduction and mathematical problem-solving while maintaining high safety and reliability.
  - Qwen2.5-7B/14B/32B/72B: Qwen 2.5 is a series of advanced large language models developed by Alibaba Cloud, featuring models with parameter sizes ranging from 0.5B to 72B. These models have significantly improved capabilities in areas such as coding, mathematics, and multilingual support, and they are trained on a large-scale dataset of up to 18 trillion tokens
  - **LLaMA3.3-8B**: Meta Llama 3 8B is a powerful large language model with 8 billion parameters, optimized for dialogue and text generation. It is trained on over 15 trillion tokens and features a 128K token vocabulary and Grouped-Query Attention for enhanced performance.

Table 7: Multimodal Performance Overview on ChemEval.

| Dimension | Task         | Metric        | GLM-4V     | GPT-40          | Claude3.7T     | Qwen-vl-max | Phi-vision-3.5 | Gemini-2.5-Pro |
|-----------|--------------|---------------|------------|-----------------|----------------|-------------|----------------|----------------|
|           |              |               | Advanced F | Knowledge Ques  | tion Answering |             |                |                |
| ObjQA     | MCTask       | Accuracy      | 32.22      | 40.86           | 7.78           | 43.33       | 35.56          | 45.55          |
| ObjQA     | FBTask       | Accuracy      | 36.67      | 52.41           | 17.77          | 48.12       | 15.02          | 58.80          |
| SubjQA    | SCQA         | Score         | 65.33      | 68.67           | 30.22          | 82.00       | 44.44          | 80.89          |
| SubjQA    | STQA         | Score         | 64.22      | 54.22           | 32.67          | 72.22       | 32.67          | 76.22          |
| SubjQA    | RPDQA        | Score         | 50.67      | 62.93           | 20.00          | 70.67       | 37.67          | 70.00          |
| SubjQA    | TPESQA       | Score         | 62.33      | 69.33           | 21.67          | 76.33       | 45.67          | 70.67          |
| SubjQA    | IRSQA        | Score         | 53.33      | 59.00           | 35.33          | 62.33       | 42.00          | 66.33          |
| SubjQA    | RSQA         | Score         | 64.33      | 70.00           | 35.67          | 71.33       | 51.33          | 76.00          |
| SubjQA    | UVSQA        | Score         | 62.67      | 62.67           | 33.33          | 66.00       | 48.00          | 69.33          |
| SubjQA    | DPQA         | Score         | 67.00      | 75.67           | 37.00          | 83.33       | 51.00          | 76.00          |
| SubjQA    | KBCQA        | Score         | 68.33      | 77.00           | 48.67          | 81.67       | 51.00          | 79.33          |
| SubjQA    | MSQA         | Score         | 66.33      | 74.40           | 22.00          | 83.67       | 46.33          | 72.00          |
| SubjQA    | SATask       | Score         | 46.67      | 55.28           | 46.33          | 57.67       | 35.00          | 71.00          |
| SubjQA    | CalcTask     | Score         | 49.11      | 60.67           | 51.78          | 62.00       | 36.89          | 79.78          |
|           |              |               | Lit        | erature Undersi | anding         |             |                |                |
| MNR       | MFR          | Accuracy      | 100.00     | 95.56           | 2.22           | 100.00      | 85.55          | 84.45          |
| MNR       | CRER         | Accuracy      | 95.56      | 93.34           | 3.33           | 93.33       | 15.56          | 42.22          |
| MNR       | 2DMolR       | Tanimoto      | 3.73       | 20.92           | 0.00           | 16.26       | 1.98           | -              |
| MNR       | PathA        | F1            | 0.00       | 0.00            | 0.00           | 0.00        | 0.00           | -              |
|           |              |               | Мо         | lecular Unders  | tanding        |             |                |                |
| MNTrans   | IUPAC2MF     | L2            | 0.3048     | 0.5653          | 0.2106         | 0.1175      | 0.1690         | 0.5892         |
| MNTrans   | SMILES2MF    | L2            | 0.1251     | 0.2144          | 0.0468         | 0.1367      | 0.1018         | 0.4951         |
| MNTrans   | IUPAC2SMILES | Tanimoto      | 8.40       | 44.43           | 11.90          | 24.63       | 4.37           | 77.19          |
| MNTrans   | SMILES2IUPAC | Exact         | 0.00       | 0.00            | 0.00           | 0.00        | 0.00           | 2.00           |
| MNTrans   | SMILES2IUPAC | BLEU          | 23.15      | 19.04           | 22.81          | 24.44       | 26.19          | 18.47          |
| MNTrans   | SMILES2IUPAC | Tanimoto      | 1.73       | 2.09            | 8.88           | 0.74        | 1.22           | 4.16           |
| MPP       | MolPC        | Accuracy      | 50.51      | 49.70           | 54.67          | 58.32       | 53.75          | 62.08          |
| MPP       | MolPR        | NRMSE (valid) |            |                 |                |             | 3.0580 (43%)   | 16.1085 (100%) |
| MolDesc   | IRS2PC       | Score         | 54.00      | 58.00           | 66.33          | 60.67       | 45.00          | 60.67          |
| MolDesc   | RS2PC        | Score         | 44.00      | 51.67           | 63.00          | 57.67       | 38.33          | 55.33          |
| MolDesc   | UV2PC        | Score         | 54.67      | 59.67           | 65.67          | 63.00       | 40.67          | 67.00          |
| MolDesc   | DP2PC        | Score         | 58.33      | 65.00           | 74.00          | 69.00       | 41.33          | 69.33          |
| MolDesc   | MS2PC        | Score         | 54.33      | 61.67           | 75.33          | 67.00       | 38.67          | 69.00          |
| MolDesc   | NMR2PC       | Score         | 54.33      | 65.00           | 71.67          | 68.33       | 37.67          | 66.67          |
|           |              |               |            | ific Knowledge  |                |             |                |                |
| ReSyn     | SubRec       | F1            | 0.00       | 0.00            | 0.00           | 1.48        | 0.00           | 1.48           |
| ReSyn     | PathRec      | Score         | 45.00      | 57.00           | 67.00          | 54.67       | 31.67          | 61.67          |
| ReSyn     | SynDE        | NRMSE         | 0.4220     | 0.3199          | 0.5575         | 0.2234      | -              | 0.5437         |
| RCRec     | LRec         | F1            | 0.00       | 28.33           | 1.67           | 8.33        | 11.67          | 5.00           |
| RCRec     | RRec         | F1            | 0.00       | 5.00            | 5.00           | 6.67        | 6.67           | 8.33           |
| RCRec     | SolvRec      | F1            | 15.00      | 23.33           | 21.67          | 30.00       | 18.33          | 28.33          |
| RCRec     | CatRec       | F1            | 0.00       | 0.00            | 0.00           | 0.00        | 0.00           | 0.00           |
| RCRec     | TempRec      | NRMSE         | 0.1220     | 0.4845          | 0.3913         | 0.5346      | -              | 0.1777         |
| RCRec     | TimeRec      | NRMSE         | 0.1220     | U.TUT.J         | 0.4378         | 0.5540      | -              | 0.1777         |
| ROP       | PRec         | F1            | 0.00       | 0.00            | 0.00           | 3.33        | 0.00           | 1.67           |
| ROP       | YPred        | Accuracy      | 0.00       | 43.33           | 20.00          | 25.00       | <b>78.33</b>   | 31.67          |
| RMA       | IMPred       | Score         | 67.67      | 71.33           | 76.67          | 62.33       | 35.00          | 77.67          |
| IXIVIA    | IIVII ICU    | SCOLE         | 07.07      | 11.33           | 70.07          | 04.55       | 33.00          | 77.07          |

• Qwen-VL Max: Qwen-VL-Max is the most capable large visual language model in the Qwen-VL series, offering optimal performance on a broad range of complex tasks. It has significantly enhanced visual reasoning and instruction-following abilities, and can handle high-definition images with resolutions above one million pixels.

- **Phi-Vision-3.5**: Phi-3.5-vision is a lightweight, state-of-the-art open multimodal model developed by Microsoft, with 4.2B parameters and a 128K context length. It excels in handling both text and visual inputs, offering capabilities in general image understanding, optical character recognition, chart interpretation, and video summarization.
  - ChemDFM: ChemDFM is a pioneering large language model (LLM) specifically designed for chemistry, trained on 34 billion tokens from chemical literature and textbooks and fine-tuned using 2.7 million instructions. It demonstrates superior performance in various chemical tasks such as molecule recognition, molecular property prediction, and reaction analysis, significantly outperforming most representative open-source LLMs.
  - LlaSMol: LlaSMol is a series of large language models fine-tuned on a large-scale, comprehensive, and high-quality instruction tuning dataset named SMolInstruct for chemistry tasks. These models, based on open-source LLMs like Galactica, Llama 2, Code Llama, and Mistral, demonstrate strong performance on various chemistry tasks, significantly outperforming previous LLMs and approaching the performance of state-of-the-art task-specific models. We select the Mistral-based version for experiments due to its superior performance.

Table 8: Complete Multi-Level 3-Shot Performance Overview on ChemEval part 1. Claude3.7T represents Claude 3.7-Sonnet-Thinking, while Claude3.7N represents Claude 3.7-Sonnet.

| Dimension | Task         | Metric           | OpenAI-o3-mini | OpenAI-o1     | GPT-4o          | Claude3.7T      | Claude3.7N    | Deepseek-R1   | Deepseek-V3   | Qwen2.5-72B   | Qwen2.5-32B   |
|-----------|--------------|------------------|----------------|---------------|-----------------|-----------------|---------------|---------------|---------------|---------------|---------------|
|           |              |                  |                | Adva          | nced Knowledge  | Question Answe  | ring          |               |               |               |               |
| ObjQA     | MCTask       | Accuracy         | 72.00          | 82.00         | 69.20           | 65.20           | 65.20         | 82.40         | 72.00         | 68.00         | 71.20         |
| ObjQA     | FBTask       | Score            | 51.46          | 62.65         | 45.59           | 42.56           | 42.28         | 59.96         | 57.89         | 53.53         | 45.99         |
| ObjQA     | TFTask       | Accuracy         | 76.00          | 86.00         | 66.00           | 57.60           | 62.40         | 80.80         | 72.80         | 48.40         | 59.60         |
| SubjQA    | SATask       | Score            | 67.00          | 68.50         | 61.00           | 54.10           | 53.90         | 71.40         | 70.40         | 60.80         | 55.90         |
| SubjQA    | CalcTask     | Score            | 75.00          | 78.50         | 59.10           | 53.73           | 55.40         | 75.10         | 77.40         | 61.61         | 52.61         |
|           |              |                  |                |               | Literature U    | nderstanding    |               |               |               |               |               |
| InfoE     | CNER         | F1               | 66.33          | 70.59         | 71.14           | 64.62           | 62.18         | 70.85         | 63.28         | 65.92         | 59.45         |
| InfoE     | CERC         | F1               | 29.30          | 32.69         | 25.72           | 23.11           | 25.39         | 29.11         | 25.65         | 25.63         | 26.18         |
| InfoE     | SubE         | Accuracy         | 73.17          | 78.01         | 65.93           | 62.66           | 61.55         | 76.88         | 75.78         | 70.10         | 60.62         |
| InfoE     | AddE         | F1               | 88.33          | 95.67         | 90.94           | 90.57           | 92.63         | 89.57         | 90.87         | 88.80         | 81.84         |
| InfoE     | SolvE        | F1               | 84.00          | 85.00         | 80.00           | 81.50           | 84.63         | 85.00         | 81.60         | 75.00         | 84.00         |
| InfoE     | TempE        | F1               | 70.00          | 75.00         | 73.00           | 80.00           | 80.00         | 83.00         | 80.00         | 80.00         | 75.00         |
| InfoE     | TimeE        | F1               | 95.00          | 95.00         | 95.00           | 95.00           | 95.00         | 95.00         | 95.00         | 95.00         | 95.00         |
| InfoE     | ProdE        | Accuracy         | 88.06          | 91.48         | 86.88           | 82.35           | 87.34         | 92.33         | 91.75         | 84.05         | 71.38         |
| InfoE     | CharME       | F1               | 76.02          | 79.60         | 78.97           | 77.88           | 75.02         | 77.86         | 77.34         | 73.63         | 72.18         |
| InfoE     | CatTE        | F1               | 95.00          | 95.00         | 98.00           | 91.00           | 94.00         | 100.00        | 100.00        | 97.00         | 98.00         |
| InfoE     | YieldE       | F1               | 60.00          | 60.00         | 62.00           | 57.00           | 56.00         | 60.00         | 60.00         | 56.00         | 79.00         |
| InducGen  | TopC         | Accuracy         | 40.00          | 50.00         | 48.00           | 47.00           | 43.00         | 54.00         | 49.00         | 56.00         | 30.00         |
| InducGen  | ReactTR      | F1               | 60.00          | 60.00         | 71.00           | 44.00           | 40.00         | 69.00         | 46.00         | 61.00         | 67.00         |
|           |              |                  |                |               | Molecular U     | nderstanding    |               |               |               |               |               |
| MNGen     | MolNG        | Tanimoto (valid) | 51.04 (78%)    | 54.56 (80%)   | 41.57 (90%)     | 31.43 (77%)     | 38.25 (80%)   | 53.15 (90%)   | 48.84 (96%)   | 25.18 (77%)   | 18.34 (75%)   |
| MNTrans   | IUPAC2MF     | L2               | 0.6632         | 0.7636        | 0.4944          | 0.3563          | 0.3847        | 0.6303        | 0.5908        | 0.2795        | 0.1652        |
| MNTrans   | SMILES2MF    | L2               | 0.5833         | 0.5942        | 0.2858          | 0.3233          | 0.3359        | 0.4569        | 0.3651        | 0.1953        | 0.2238        |
| MNTrans   | IUPAC2SMILES |                  | 31.51 (52%)    | 33.63 (52%)   | 31.71 (83%)     | 29.33 (65%)     | 40.07 (75%)   | 33.49 (67%)   | 49.60 (88%)   | 16.73 (65%)   | 10.88 (60%)   |
| MNTrans   | SMILES2IUPAC | Exact Match      | 0.00           | 0.00          | 0.00            | 0.40            | 0.40          | 1.20          | 0.00          | 0.00          | 0.00          |
| MNTrans   | SMILES2IUPAC | BLEU             | 3.44           | 4.49          | 1.37            | 4.19            | 4.49          | 4.33          | 2.53          | 1.00          | 0.11          |
| MNTrans   | SMILES2IUPAC | Tanimoto         | 0.00           | 0.00          | 12.69           | 17.03           | 21.01         | 24.25         | 17.86         | 13.05         | 7.42          |
| MNTrans   | S2S          | Tanimoto (valid) | 15.17 (44%)    | 22.62 (80%)   | 18.24 (74%)     | 12.16 (72%)     | 15.70 (68%)   | 21.25 (85%)   | 21.76 (62%)   | 18.80 (72%)   | 14.37 (79%)   |
| MPP       | MolPC        | Accuracy         | 73.08          | 71.60         | 68.55           | 63.23           | 58.49         | 66.72         | 55.79         | 56.87         | 58.71         |
| MPP       | MolPR        | NRMSE (valid)    | 0.2574 (100%)  | 0.2536 (100%) |                 | 3.3664 (98%)    | 5.2053 (98%)  | 0.2697 (100%) |               | 0.3779 (98%)  | 0.3860 (100%) |
| MolDesc   | Mol2PC       | Score            | 18.50          | 24.50         | 8.30            | 21.60           | 21.30         | 8.70          | 14.10         | 0.40          | 0.20          |
|           |              |                  |                |               | Scientific Know | ledge Deduction |               |               |               |               |               |
| ReSyn     | SubRec       | F1               | 2.67           | 3.00          | 0.43            | 1.09            | 2.05          | 2.03          | 1.36          | 0.00          | 0.00          |
| ReSyn     | PathRec      | Score            | 52.50          | 40.63         | 25.00           | 29.25           | 28.75         | 33.13         | 24.00         | 33.38         | 41.13         |
| ReSyn     | SynDE        | NRMSE (valid)    | 0.3806 (100%)  | 0.5517 (100%) | 0.4856 (100%)   | 0.7561 (100%)   | 0.6454 (100%) |               | 0.6527 (96%)  | 0.3208 (100%) | 0.3251 (100%) |
| RCRec     | LRec         | F1               | 12.00          | 18.00         | 15.60           | 11.20           | 8.00          | 5.60          | 11.60         | 16.40         | 6.00          |
| RCRec     | RRec         | F1               | 45.00          | 41.67         | 21.31           | 32.33           | 33.65         | 30.54         | 12.39         | 37.26         | 35.27         |
| RCRec     | SolvRec      | F1               | 46.00          | 26.00         | 26.40           | 34.40           | 22.40         | 48.00         | 41.60         | 46.80         | 51.20         |
| RCRec     | CatRec       | F1               | 32.50          | 25.83         | 5.00            | 5.08            | 3.33          | 34.67         | 2.00          | 17.04         | 0             |
| RCRec     | TempRec      | NRMSE (valid)    | 0.4951 (100%)  |               |                 | 0.3745 (100%)   |               |               |               |               |               |
| RCRec     | TimeRec      | NRMSE (Valid)    | 0.2071 (100%)  |               |                 | 0.1918 (100%)   |               |               |               |               |               |
| ROP       | PPred        | F1               | 12.00          | 20.00         | 1.07            | 11.87           | 16.19         | 14.10         | 0.2083 (100%) | 0.40          | 0.2080 (100%) |
| ROP       | YPred        | Accuracy         | 54.00          | 34.00         | 48.50           | 75.00           | 32.50         | 40.50         | 40.50         | 61.00         | 88.00         |
| ROP       | RatePred     | Overlap          | 16.74          | 14.41         | 20.27           | 17.17           | 15.82         | 19.24         | 13.45         | 15.82         | 15.40         |
| RMA       | IMDer        | Score            | 81.25          | 77.50         | 83.50           | 79.75           | 81.50         | 79.25         | 84.75         | 77.25         | 68.25         |
| KIVIA     | IIVIL/CI     | SCOIC            | 01.43          | 77.50         | 05.50           | 19.13           | 01.50         | 17.43         | 04.73         | 11.43         | 06.23         |

- ChemLLM: ChemLLM is the first specialized large language model dedicated to chemistry, trained on a unique dataset ChemData, and evaluated on a comprehensive benchmark ChemBench. This model shows remarkable capabilities in handling various chemistry tasks and exhibits strong general language skills.
- ChemSpark: ChemSpark is a chemistry-specialized large language model developed by the iFLYTEK team through fine-tuning the Spark-13B model on chemical task datasets. It demonstrates exceptional proficiency in solving complex chemical tasks while maintaining strong general capabilities, outperforming previous chemistry-domain models across most evaluation metrics.

#### 783 B.2 metrics

775

776

777

778

779

780

781

782

786

787

788

In this study, we employ a variety of evaluation metrics to comprehensively assess model performance across different tasks. The main metrics include:

- F1 Score and Accuracy: These are the primary metrics used for most tasks. The F1 score combines precision and recall to evaluate classification performance, while accuracy measures the proportion of correct predictions.
- **BLEU:** Calculated by comparing the n-gram overlap between the model-generated text and the reference answer, incorporating a brevity penalty to penalize overly short outputs. This metric is mainly used to assess the similarity between generated results and reference answers.
- Exact Match: This metric checks whether the model output exactly matches the ground truth.
- Normalized Root Mean Square Error (NRMSE): Used to evaluate the prediction error in numerical or regression tasks, and lower values indicate better model performance.
- **Valid Output Ratio:** The proportion of valid outputs provided by the model.
- **LLMs Score** (**Score**): Subjective evaluation by other large language models, focusing on the reasonableness and completeness of the answers.
  - L2 Score (L2): An indicator for evaluating the similarity between molecular formulas. Specifically, L2 Score is calculated as 1/(1+L2) distance, where the L2 distance refers to the L2 norm between

Table 9: Complete Multi-Level 3-Shot Performance Overview on ChemEval part 2.

| Dimension  | Task         | Metric           | Qwen2.5-14B | Qwen2.5-7B | Llama3.3-8B     | Grok3           | Gemini-2.5-Pro | ChemDFM      | ChemLLM       | LlaSMol      | ChemSpark     |
|------------|--------------|------------------|-------------|------------|-----------------|-----------------|----------------|--------------|---------------|--------------|---------------|
|            |              |                  |             | Adv        | anced Knowledg  | e Question Answ | ering          |              |               |              |               |
| ObjQA      | MCTask       | Accuracy         | 64.80       | 55.60      | 38.40           | 70.40           | 90.80          | 44.80        | 13.60         | 4.00         | 32.00         |
| ObjQA      | FBTask       | Score            | 41.00       | 34.35      | 29.68           | 49.19           | 56.66          | 20.98        | 55.40         | 29.28        | 26.20         |
| ObjQA      | TFTask       | Accuracy         | 61.60       | 63.60      | 46.80           | 74.40           | 72.00          | 65.20        | 0.80          | 38.00        | 57.20         |
| SubjQA     | SATask       | Score            | 52.20       | 48.70      | 29.00           | 73.00           | 70.00          | 30.50        | 11.50         | 23.50        | 31.60         |
| SubjQA     | CalcTask     | Score            | 51.10       | 40.80      | 19.70           | 79.30           | 81.60          | 16.40        | 35.46         | 68.37        | 15.80         |
|            |              |                  |             |            | Literature U    | nderstanding    |                |              |               |              |               |
| InfoE      | CNER         | F1               | 57.42       | 64.84      | 51.35           | 61.47           | 73.62          | 36.98        | 0.09          | 9.04         | 72.30         |
| InfoE      | CERC         | F1               | 26.59       | 25.42      | 15.34           | 28.66           | 29.69          | 0.37         | 0.28          | 0.00         | 37.18         |
| InfoE      | SubE         | Accuracy         | 62.69       | 68.17      | 57.71           | 79.42           | 76.29          | 20.04        | 0.00          | 0.00         | 72.86         |
| InfoE      | AddE         | F1               | 92.33       | 53.24      | 41.71           | 92.66           | 95.00          | 47.13        | 0.29          | 0.00         | 67.00         |
| InfoE      | SolvE        | F1               | 83.50       | 74.00      | 69.00           | 81.00           | 84.67          | 71.25        | 0.43          | 0.05         | 85.23         |
| InfoE      | TempE        | F1               | 70.00       | 79.00      | 69.00           | 79.00           | 77.00          | 41.00        | 1.53          | 0.00         | 80.00         |
| InfoE      | TimeE        | F1               | 95.00       | 89.00      | 89.00           | 95.00           | 95.00          | 78.00        | 0.98          | 0.00         | 95.00         |
| InfoE      | ProdE        | Accuracy         | 84.55       | 83.14      | 73.26           | 90.62           | 93.75          | 8.83         | 0.00          | 0.00         | 98.40         |
| InfoE      | CharME       | F1               | 70.25       | 62.96      | 32.72           | 79.36           | 80.09          | 17.83        | 0.00          | 0.00         | 39.12         |
| InfoE      | CatTE        | F1               | 82.00       | 78.00      | 71.00           | 100.00          | 99.00          | 44.00        | 0.00          | 0.00         | 26.00         |
|            |              |                  |             |            |                 |                 |                |              |               |              |               |
| InfoE      | YieldE       | F1               | 69.00       | 60.00      | 61.00           | 55.00           | 59.50          | 41.00        | 0.00          | 0.00         | 69.00         |
| InducGen   | TopC         | Accuracy         | 49.00       | 47.00      | 28.00           | 46.00           | 73.00          | 27.00        | 0.00          | 0.00         | 25.00         |
| InducGen   | ReactTR      | F1               | 48.00       | 40.00      | 39.00           | 79.00           | 59.00          | 26.00        | 0.00          | 0.00         | 32.00         |
|            |              |                  |             |            |                 | Inderstanding   |                |              |               |              |               |
| MNGen      | MolNG        | Tanimoto (valid) |             | 4.71 (36%) | 7.51 (34%)      | 49.26 (92%)     | 72.33 (92%)    | 34.29 (69%)  | 0.00(0%)      | 0.00(0%)     | 61.38 (95%)   |
| MNTrans    | IUPAC2MF     | L2               | 0.1864      | 0.1719     | 0.2619          | 0.3393          | 0.8294         | 0.3225       | 0.0102        | 0.0000       | 0.8176        |
| MNTrans    | SMILES2MF    | L2               | 0.1333      | 0.1360     | 0.1674          | 0.3781          | 0.6422         | 0.4025       | 0.0072        | 0.0054       | 0.7224        |
| MNTrans    | IUPAC2SMILES | Tanimoto (valid) | 7.67 (48%)  | 3.51 (30%) | 2.37 (14%)      | 65.15 (94%)     | 59.44 (87%)    | 38.66 (88%)  | 0.00(0%)      | 0.00(0%)     | 83.98 (99%)   |
| MNTrans    | SMILES2IUPAC | Exact Match      | 0.00        | 0.00       | 0.00            | 0.00            | 0.40           | 0.00         | 0.00          | 0.00         | 10.80         |
| MNTrans    | SMILES2IUPAC | BLEU             | 0.62        | 0.15       | 0.13            | 3.44            | 13.61          | 0.26         | 0.08          | 0.00         | 45.96         |
| MNTrans    | SMILES2IUPAC | Tanimoto         | 7.80        | 3.39       | 1.91            | 28.61           | 54.63          | 1.82         | 0.00          | 0.00         | 61.08         |
| MNTrans    | S2S          | Tanimoto (valid) |             | 6.28 (56%) | 3.51 (47%)      | 27.58 (87%)     | 20.11 (74%)    | 0.94 (25%)   | 0.00(0%)      | 0.00(2%)     | 79.68 (89%)   |
| MPP        | MolPC        | Accuracy         | 66.84       | 59.77      | 53.20           | 61.71           | 67.62          | 56.65        | 0.00          | 40.00        | 82.88         |
| MPP        | MolPR        |                  |             |            |                 |                 | 0.2213 (100%)  |              |               |              | 1.1634 (100%) |
| MolDesc    | Mol2PC       | Score            | 2.40        | 1.90       | 0.40            | 24.40           | 2.30           | 0.00         | 0.00          | 9.50         | 66.20         |
|            |              |                  |             |            | Scientific Know | ledge Deduction |                |              |               |              |               |
| ReSyn      | SubRec       | F1               | 0.20        | 0.20       | 0.00            | 0.80            | 0.00           | 2.74         | 0.00          | 0.00         | 10.45         |
| ReSyn      | PathRec      | Score            | 28.75       | 23.50      | 17.88           | 25.25           | 43.00          | 28.75        | 6.75          | 17.50        | 27.00         |
| ReSyn      | SynDE        | NRMSE (valid)    |             |            |                 |                 | 0.4284 (100%)  |              | 0.6246 (100%) | 0.4367 (95%) | 0.5968 (66%)  |
| RCRec      | LRec         | F1               | 9.20        | 6.40       | 2.40            | 29.60           | 0.00           | 12.49        | 0.0240 (100%) | 0.00         | 16.80         |
| RCRec      | RRec         | F1               | 41.69       | 30.28      | 30.00           | 35.14           | 1.87           | 14.21        | 5.60          | 0.00         | 57.45         |
| RCRec      | SolvRec      | F1               | 26.00       | 48.00      | 33.80           | 30.40           | 0.00           | 24.59        | 0.00          | 0.00         | 32.00         |
|            | CatRec       | F1               | 18.67       | 8.13       | 0.25            | 2.89            | 1.80           | 3.90         | 3.43          | 0.00         | 1.97          |
| RCRec      |              |                  |             |            |                 |                 |                |              |               |              |               |
| RCRec      | TempRec      | NRMSE (valid)    |             |            |                 |                 | 0.1479 (100%)  | 0.6583 (99%) | 1.0526 (100%) | 0.9240 (90%) | 0.2682 (100%) |
| RCRec      | TimeRec      | NRMSE            |             |            | 0.9478 (100%)   |                 | 0.2090 (100%)  |              | 0.4404 (100%) |              |               |
| ROP        | PPred        | F1               | 0.00        | 0.40       | 0.00            | 10.87           | 30.00          | 11.93        | 0.00          | 0.00         | 53.60         |
| ROP        | YPred        | Accuracy         | 92.00       | 92.00      | 22.00           | 9.50            | 33.00          | 36.80        | 0.00          | 0.00         | 88.50         |
|            | RatePred     | Overlap          | 16.71       | 12.29      | 14.29           | 22.83           | 29.08          | 17.46        | 0.00          | 0.00         | 11.03         |
| ROP<br>RMA | IMDer        | Score            | 74.25       | 25.25      | 67.50           | 80.50           | 83.00          | 42.25        | 4.75          | 3.75         | 73.25         |

Table 10: The standard deviation results of five-time tests across distinct models on ChemEval.

| Task           | SATask           | CalcTask         | CNER             | CERC             | ProdE            | S2S              | MolPC            | LRec             | PPred            |
|----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Metric         | Score            | Score            | F1               | F1               | Accuracy         | Tanimoto         | Accuracy         | F1               | F1               |
| GPT-40         | $61.20\pm2.25$   | $61.80\pm1.21$   | $65.76 \pm 1.58$ | $25.66\pm1.48$   | $86.09 \pm 1.45$ | $13.41 \pm 1.39$ | $64.57 \pm 1.23$ | $13.20\pm2.99$   | $1.67 \pm 1.52$  |
| claude3.7T     | $56.70 \pm 1.81$ | $55.74 \pm 2.82$ | $60.21 \pm 2.02$ | $25.19 \pm 1.91$ | $82.39 \pm 2.53$ | $9.37 \pm 0.78$  | $58.90 \pm 1.96$ | $2.00 \pm 1.26$  | $12.27 \pm 4.71$ |
| claude3.7N     | $55.10 \pm 2.18$ | $53.60 \pm 2.15$ | $54.55 \pm 4.02$ | $24.77 \pm 1.18$ | $85.04 \pm 1.88$ | $10.58 \pm 1.14$ | $54.37 \pm 3.24$ | $4.40 \pm 1.50$  | $16.16 \pm 1.89$ |
| Deepseek-R1    | $68.50 \pm 2.21$ | $76.10 \pm 2.40$ | $64.14 \pm 1.72$ | $27.18 \pm 0.44$ | $91.20 \pm 0.35$ | $16.04 \pm 1.12$ | $53.55 \pm 0.63$ | $6.80 \pm 2.04$  | $11.97 \pm 1.73$ |
| Deepseek-V3    | $71.70 \pm 1.91$ | $79.20 \pm 2.94$ | $60.85 \pm 1.13$ | $24.94\pm1.12$   | $87.52 \pm 2.56$ | $16.27 \pm 1.44$ | $48.73 \pm 1.43$ | $7.60 \pm 2.33$  | $0.93 \pm 1.14$  |
| Qwen2.5-72B    | $58.50 \pm 2.24$ | $61.90 \pm 2.08$ | $61.61 \pm 0.81$ | $26.05\pm0.84$   | $84.86 \pm 1.15$ | $11.47 \pm 1.17$ | $48.13 \pm 0.65$ | $4.40 \pm 1.50$  | $1.73 \pm 1.50$  |
| LLama3.3-8B    | $38.40 \pm 1.93$ | $28.00 \pm 0.95$ | $55.34 \pm 3.85$ | $17.31 \pm 2.31$ | $74.54 \pm 1.56$ | $1.74 \pm 0.65$  | $47.26\pm1.86$   | $2.13 \pm 1.29$  | $0.00 \pm 0.00$  |
| Grok3          | $73.59 \pm 1.16$ | $81.20 \pm 1.60$ | $60.75 \pm 0.34$ | $26.04 \pm 0.61$ | $91.04 \pm 0.28$ | $17.56 \pm 1.75$ | $56.62 \pm 0.76$ | $36.00\pm1.26$   | $11.33 \pm 1.54$ |
| Gemini-2.5-Pro | $72.00 \pm 1.41$ | $82.40 \pm 0.97$ | $68.30 \pm 0.99$ | $25.43 \pm 1.63$ | $92.82 \pm 1.92$ | $13.13 \pm 1.01$ | $63.63 \pm 1.10$ | $0.00 \pm 0.00$  | $29.20 \pm 6.01$ |
| ChemDFM        | $32.20 \pm 1.57$ | $14.70 \pm 1.17$ | $41.17 \pm 2.25$ | $8.74 \pm 2.52$  | $34.73 \pm 2.94$ | $2.12 \pm 0.31$  | $61.35 \pm 0.80$ | $26.00 \pm 3.79$ | $18.80 \pm 2.29$ |
| ChemLLM        | $13.20 \pm 1.03$ | $15.90 \pm 2.91$ | $0.16 \pm 0.32$  | $0.24 \pm 0.12$  | $0.00 \pm 0.00$  |
| ChemSpark      | $33.60 \pm 0.97$ | $18.50\pm2.02$   | $71.44\pm1.13$   | $39.27 \pm 2.59$ | $94.40 \pm 0.23$ | $87.36 \pm 1.46$ | $85.57 \pm 2.19$ | $37.60 \pm 0.80$ | $56.40\pm3.44$   |

the predicted and reference molecular formulas. A higher value indicates greater similarity between formulas.

• Overlap: Used to assess the proximity between the predicted range and the reference range. It is calculated as the length of the intersection divided by the length of the union of the predicted and reference ranges.

## **C** Full Performance Results

800

801

802

803

804

805

809

810

## **C.1** Performance result of 0-shot settings

The table 5 and the table 6 show the complete experiment results of all models under the zero-shot setting. We tested all the aforementioned models under zero-shot settings on ChemEval, as analyzed in Section 4.2.1. The results demonstrate that general-purpose models perform relatively well on knowledge question answering and literature comprehension tasks, while specialized models excel in more complex chemical tasks such as molecular property prediction. For certain tasks like CatRec, most models struggled to generate valid outputs, resulting in scores of zero.

Table 11: Analysis experiment result of CoT and format constraints.

| Dimension | Task         | Metric           | ChemDFM-NoFormat                           | ChemDFM-CoT                               | M-CoT ChemLLm-NoFormat Llasmol-NoFor |                            | Qwen2.5-7B-CoT             |
|-----------|--------------|------------------|--------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------|----------------------------|
|           |              |                  | Advanced Kn                                | owledge Question An                       | swering                              |                            |                            |
| ObjQA     | MCTask       | Accuracy         | 36.00 ↓5.20                                | 32.00 ↓9.20                               | 28.00 ↑3.60                          | 24.00                      | 50.00 \ \ 9.60             |
| ObjQA     | FBTask       | Score            | 24.00 \ \ 0.16                             | 25.38 1.22                                | 31.58 \ \ 3.39                       | 20.88 ↑6.96                | 27.64 111.88               |
| ObjQA     | TFTask       | Accuracy         | 46.00                                      | 32.00 \ 14.00                             | 16.00 \( \Jackslash 3.20 \)          | 56.00 \( \pm2.00 \)        | 70.00 114.80               |
| SubjQA    | SATask       | Score            | 44.80 <b>12.60</b>                         | 44.40 12.20                               | 32.40 \(\daggregarright)19.20        | 30.00 ↑15.50               | 57.60 <del>16.80</del>     |
| SubjQA    | CalcTask     | Score            | 32.00 17.30                                | 32.40 \( \frac{17.70}{}                   | 32.40 \( \frac{16.50}{}              | 22.00 14.50                | 51.60 ***8.00              |
| •         |              |                  | Liter                                      | ature Understanding                       |                                      |                            |                            |
| InfoE     | CNER         | F1               | 43.44 ↑2.27                                | 37.98 ↓3.19                               | 47.61 ↑47.45                         | 1.00 \ 10.62               | 67.02 ↑5.75                |
| InfoE     | CERC         | F1               | 11.53 ↑2.79                                | 9.69 <b>†0.95</b>                         | 16.81 16.57                          | 4.13 <b>†2.89</b>          | 22.89 \ 3.21               |
| InfoE     | SubE         | Accuracy         | 0.00 \20.07                                | 0.00 \( \pm20.07 \)                       | 0.00                                 | 0.00                       | 0.00 \ \ 58.43             |
| InfoE     | AddE         | F1               | 33.33 \11.67                               | 46.67 <b>↑1.67</b>                        | 66.67 <del>166.67</del>              | 36.67 <b>†36.67</b>        | 65.33 <b>†3.66</b>         |
| InfoE     | SolvE        | F1               | 65.00 \15.50                               | 60.00 \( \pm20.50 \)                      | 76.50 ↑74.83                         | 0.00                       | 78.33 14.17                |
| InfoE     | TempE        | F1               | 60.00 14.33                                | 70.00 \4.33                               | 70.00 166.77                         | 40.00 \(\frac{40.00}{}     | 65.00                      |
| InfoE     | TimeE        | F1               | 80.00 <b>↑2.00</b>                         | 90.00 \(\frac{12.00}{}\)                  | 95.00 192.69                         | 50.00 ↑25.00               | 95.00                      |
| InfoE     | ProdE        | Accuracy         | 0.00 \ \ 34.73                             | 0.61 \ 34.12                              | 0.00                                 | 4.13 ↑4.13                 | 26.51 \ \ 50.49            |
| InfoE     | CharME       | F1               | 74.96 ↑47.70                               | 64.52 \(\frac{37.26}{}\)                  | 65.00 \(\phi 65.00\)                 | 44.96 ↑44.96               | 65.38 ↑22.38               |
| InfoE     | CatTE        | F1               | 35.00 \14.00                               | 40.00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 45.00 \( \dagger 45.00 \)            | 0.00 \ \ 5.00              | 55.00 19.00                |
| InfoE     | YieldE       | F1               | 60.00 \( \frac{15.00}{}                    | 60.00 \(\pm\)15.00                        | 55.00 ↑55.00                         | 55.00 <b>↑50.00</b>        | 50.00 117.00               |
| InducGen  | AbsGen       | Score            | 20.00 †20.00                               | 20.00 †20.00                              | 20.00 \( \frac{14.50}{}              | 11.00 \ 15.25              | 73.00 18.25                |
| InducGen  | OLGen        | Score            | 19.00 19.00                                | 18.00 18.00                               | 40.00 136.25                         | 25.00 \( \dagger{16.25} \) | 58.00 ↑30.25               |
| InducGen  | TopC         | Accuracy         | 30.00 \( \preceq 21.00 \)                  | 45.00 \( \( \frac{16.00}{45.00} \)        | 35.00 \(\frac{1}{35.00}\)            | 20.00 \(\frac{1}{20.00}\)  | 45.00 ↑4.00                |
| InducGen  | ReactTR      | F1               | 25.00 ↑12.00                               | 15.00 ↑2.00                               | 30.00 ↑30.00                         | 0.00 \15.00                | 20.00 \11.00               |
|           |              |                  | Mole                                       | cular Understanding                       |                                      |                            |                            |
| MNGen     | MolNG        | Tanimoto (valid) | 71.94 (94%) †24.88                         | 61.03 (92%) 13.97                         | 0.62 (2%) †0.62                      | 0.0 (0%) \_3.71            | 3.44 (26%) 10.48           |
| MNTrans   | IUPAC2MF     | L2               | 68.15 ↑6.96                                | 21.15 \_40.04                             | 6.99 ↑2.45                           | 1.00 \(\frac{1}{1}\).00    | 9.93 18.63                 |
| MNTrans   | SMILES2MF    | L2               | 61.27 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 17.14 146.85                              | 4.23 <b>†0.48</b>                    | 0.00                       | 3.96 15.84                 |
| MNTrans   | IUPAC2SMILES | Tanimoto (valid) | 50.37 (96%) \$\dagger\$3.66                | 44.77 (84%) 11.94                         | 0.0 (0%)                             | $0.0(0\%) \downarrow 4.70$ | 3.23 (28%) \( \psi_0.23 \) |
| MNTrans   | S2S          | Tanimoto (valid) | 0.14 (50%) 11.98                           | 3.53 (46%) 11.41                          | 2 (4%) †2.00                         | $0.0(0\%) \downarrow 0.60$ | $2(2\%) \downarrow 0.28$   |
| MPP       | MolPC        | Accuracy         | 63.68 ↑2.33                                | 57.12 <del>14.23</del>                    | 45.36 145.36                         | 54.92 18.42                | 45.60 118.45               |
| MPP       | MolPR        | NRMSE            | 11.88 ↑383.07                              | 240.91 \(\gamma\)154.03                   | 0.56 178.80                          | 12.19 17.78                | 46.98 \ 38.39              |
| MolDesc   | Mol2PC       | Score            | 28.40 ↑25.30                               | 28.00 ↑24.90                              | 20.40 ↑20.10                         | 25.60 ↑25.60               | 30.40 \(\frac{15.90}{}     |
|           |              |                  | Scientifi                                  | c Knowledge Deducti                       | on                                   |                            |                            |
| ReSyn     | SubRec       | F1               | 0.00 \_3.99                                | 0.00 \_3.99                               | 0.00                                 | 1.33 1.33                  | 0.00 11.42                 |
| ReSyn     | PathRec      | Score            | 48.00 <b>†23.88</b>                        | 40.50 116.38                              | 24.00 \(\psi 13.13\)                 | 30.50 ↑20.50               | 47.00 119.88               |
| RCRec     | LRec         | F1               | 4.00 ↓22.00                                | 4.80 ↓21.20                               | 0.00                                 | 0.00                       | 6.00 ↑3.20                 |
| RCRec     | RRec         | F1               | 8.00 15.13                                 | 9.33 ↓3.80                                | 22.00 <b>†22.00</b>                  | 0.00                       | 44.00 127.07               |
| RCRec     | SolvRec      | F1               | 6.00 14.53                                 | 14.00 ↑3.47                               | 8.00 ↑8.00                           | 2.00 11.50                 | 20.00 \_5.60               |
| RCRec     | TempRec      | NRMSE (valid)    | 0.421 (85%) 10.04                          | 0.2681 (85%) †0.11                        | 0.9821 (45%) †0.14                   | 7.9004 (15%) \_7.03        | 0.3174 (55%)               |
| RCRec     | TimeRec      | NRMSE (valid)    | 0.5337 (70%) 10.06                         | 0.6024 (55%) 10.13                        | 1.306 (25%) 10.49                    | - (0%)                     | 0.4396 (100%) \_0.12       |
| ROP       | PPred        | F1               | 4.00 ↓14.80                                | 14.00 \ 4.80                              | 0.00                                 | 8.00 \ \ 8.00              | 0.00                       |
| ROP       | YPred        | Accuracy         | 52.00 (50%) †44.80                         | 72.00 (50%) ↑64.80                        | 70.00 (50%) †70.00                   | 10.00 (50%) \18.00         | 80.00 (50%) 13.00          |
| ROP       | RatePred     | Overlap          | 3.20 \( \( \text{\$\)0.59} \)              | 9.86 ↑6.07                                | 0.00                                 | 0.00 \ \ \ 3.68            | 2.70 \( \preceq 10.65 \)   |
| RMA       | IMDer        | Score            | 57.00 119.00                               | 55.00 \21.00                              | 37.00 <b>↑32.25</b>                  | 32.00 ↑30.50               | 56.00 \ \ 22.75            |
|           |              |                  | •                                          | •                                         |                                      |                            | <u>.</u>                   |

#### C.2 Performance result of multimodal tasks

The table 7 shows the performance of mainstream multimodal large language models on ChemEval's multimodal tasks, with '-' indicating meaningless responses. While most models handle basic tasks like molecular formula identification adequately, they struggle significantly with more complex challenges involving chemical reaction pathways and molecular properties. This performance gap widens further in Molecular Understanding and Scientific Reasoning tasks, which require both accurate molecular structure recognition from visual inputs and comprehensive chemical knowledge application. Our evaluation focused solely on general-purpose multimodal models, excluding chemistry-specific ones. As multimodal capabilities become increasingly essential in chemical research, this represents a critical area requiring urgent development.

## C.3 Performance result of 3-shot setting

As shown in the table 8 and the table 9, we evaluated all the aforementioned models under 3-shot settings on ChemEval. The results indicate that, similar to the zero-shot scenario, general-purpose models perform relatively well on advanced knowledge question answering and literature understanding tasks, while struggling with more complex molecular understanding and scientific knowledge deduction tasks. Specialized models such as ChemLLM and LlaSMol, due to their poor instruction-following capabilities, failed to return meaningful responses for most tasks, resulting in anomalous scores. These findings corroborate our previous analysis.

## D Results of Analysis Experiments

We conducted experimental analyses in two key areas. First, to establish the reliability of ChemEval metrics and demonstrate our evaluation framework's robustness, we conducted three repeated trials across identical task categories and calculated the standard deviation of results. Due to computational

resource limitations, we were unable to conduct comprehensive experiments on all models and tasks.
Therefore, we selected representative models and tasks for evaluation. Second, we investigated the differential impact of reasoning-oriented and format-constraint instructions in prompts, examining

how reasoning capabilities and instruction-following ability influence model performance on complex

839 chemical tasks.

## D.1 Benchmark Stability Assessment

The table 10 shows the result of our repeated experiments. The results reveal that standard deviations across most metrics remain below 5.0, demonstrating consistent performance across multiple evaluations. This statistical stability confirms the robustness of our evaluation framework, ensuring reliable and reproducible assessments of system performance.

## 845 D.2 Analysis of CoT and Format Constraints

As illustrated in the table 11, we evaluate four models—ChemDFM, ChemLLM, LlasMol, and 846 Qwen2.5-7B—using varied prompt configurations. When format restrictions were removed from 847 prompts, ChemDFM and LlasMol exhibited improved performance on simpler chemical tasks 848 but degraded results on more complex ones. Conversely, ChemLLM demonstrated significant 849 performance gains across most tasks following format restriction removal. This indicates that the 850 loss of instruction-following ability can severely affect the practical usability of domain-specific 851 models. Regarding reasoning-oriented instructions, CoT prompting yielded inconsistent results for 852 ChemDFM, enhancing performance in some tasks while diminishing it in others. Notably, Qwen2.5-853 7B consistently demonstrated performance deterioration across most tasks under CoT conditions, 854 suggesting that explicit reasoning mechanisms do not substantially contribute to performance on chemical tasks.

## NeurIPS Paper Checklist

#### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly reflect the main contributions and scope of this paper, presenting the chemical large language model benchmark we established and relevant experimental results, and systematically evaluating the performance of different models on various chemical tasks.

## Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a separate "Limitations and Future Work" section.

#### Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

## 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

#### 910 Answer: [NA]

Justification: The paper establishes a benchmark for chemical tasks and provides analysis based on experimental results. It does not contain any theoretical results.

#### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented
  by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

## 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

#### Answer: [Yes]

Justification: We have released the code and data for the chemical task benchmark we established, and the evaluation of the models was primarily conducted through the official APIs.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
  - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

#### 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We have released the code and data for the chemical task benchmark we established, and the evaluation of the models was primarily conducted through the official APIs.

#### Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
  possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
  including code, unless this is central to the contribution (e.g., for a new open-source
  benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
  to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
  proposed method and baselines. If only a subset of experiments are reproducible, they
  should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

## 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have released the code and data for the chemical task benchmark we established, and the evaluation of the models was primarily conducted through the official APIs.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

## 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Due to computational resource limitations, we were unable to conduct extensive repeated evaluations. Instead, we performed tests on representative models and tasks and reported the standard deviation.

#### Guidelines:

The answer NA means that the paper does not include experiments.

- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
  of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
  they were calculated and reference the corresponding figures or tables in the text.

### 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030 1031

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1044

1045

1046 1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

Justification: The paper provides detailed information about compute resources.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

## 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics.

## Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
  deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

#### 10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed both potential positive and negative societal impacts in the "Limitations and Future Work" sections of the paper.

#### Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

## 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our datasets are manually constructed and do not pose any risk of misuse.

#### Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
  necessary safeguards to allow for controlled use of the model, for example by requiring
  that users adhere to usage guidelines or restrictions to access the model or implementing
  safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
  not require this, but we encourage authors to take this into account and make a best
  faith effort.

#### 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All codes, datasets, and models used in the paper have been properly cited with their original sources.

#### Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.

- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
  - If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
  - For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
  - If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1135

1136

1137

1139

1140

1141

1142

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1160

1161

1162

1163

1164

1165 1166

1167

1168

1169

1170

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in this paper are accompanied by documentation, which is provided alongside the assets and includes detailed instructions for dataset evaluation and usage.

#### Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

#### 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

## 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Guidelines:

Justification: This paper does not involve crowdsourcing or research with human subjects.

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent)
  may be required for any human subjects research. If you obtained IRB approval, you
  should clearly state this in the paper.
  - We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
  - For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

#### 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

## Answer: [NA]

Justification: The development of the core methods in this research does not involve LLMs as any important, original, or non-standard components.

#### Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.