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Abstract

The emergence of Large Language Models (LLMs) in chemistry marks a significant
advancement in applying artificial intelligence to chemical sciences. While these
models show promising potential, their effective application in chemistry demands
sophisticated evaluation protocols that address the field’s inherent complexities.
To bridge this critical gap, we introduce ChemEval, an innovative hierarchical
assessment framework specifically designed to evaluate LLMs’ capabilities across
chemical domains. Our methodology incorporates a distinctive four-tier progres-
sion system, spanning from basic chemical concepts to advanced theoretical princi-
ples. Sixty-two textual and multimodal tasks are designed to enable researchers
to conduct fine-grained analysis of model capabilities and achieve comprehensive
evaluation via carefully crafted assessment protocols. The framework integrates
carefully curated open-source datasets with expert-validated materials, ensuring
both practical relevance and scientific rigor. In our experiments, we evaluated
the performance of most main-stream LLMs using both zero-shot and few-shot
approaches, with carefully designed examples and prompts. Results indicate that
general-purpose LLMs, while proficient in understanding chemical literature and
following instructions, struggle with tasks requiring deep chemical expertise. In
contrast, chemical LLMs perform better in technical tasks but show limitations in
general language processing. These findings highlight both the current limitations
and future opportunities for LLMs in chemistry. Our research provides a system-
atic framework for advancing the application of artificial intelligence in chemical
research, potentially facilitating new discoveries in the field.

1 Introduction

The advent of large language models has ushered in a transformative era in artificial intelligence,
particularly within the domain of natural language processing. The expansive capabilities of these
models have not only redefined the boundaries of text generation and understanding [[1-4]] but have
also opened new avenues for various domains, such as recommendation [SH8], social [9} [10] and
scientific exploration [[11H13]]. Researchers have adeptly employed LLMs to accelerate the pace of
scientific research and instigate a transformative shift in scientific research paradigms. The field of
chemistry has notably profited from the integration and advancement of LLMs [14H17], becoming a
key area where these sophisticated technologies have delivered substantial advantages. The intricate
nature of chemical research, involving complex molecular interactions and reactions, presents unique
challenges that LLMs can address through advanced pattern recognition and predictive analytics.
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Figure 1: The overview of ChemEval. 1t includes 4 progressive levels, evaluating 13 dimensions
of LLMs’ capabilities and featuring 62 distinct chemical tasks that cover a wide range of chemical
knowledge, from foundational concepts to advanced topics suitable for graduate-level research.

In order to systematically assess the capabilities of LLMSs across various domains and identify areas for
their potential enhancement, numerous benchmarking initiatives have been introduced. For instance,
the MMLU [ 18] covers 57 tasks spanning basic mathematics, American history, computer science,
law, and other fields. The XieZhi [19] benchmark includes three major academic categories with 516
specific subjects. However, general benchmarks [20} 21]] often overlook a detailed assessment of
chemical knowledge. Although Sun et al. introduce SciEVAL [22] as a framework for assessing the
competencies of LLMs within the scientific domain, the chemistry-related tasks are overly simplistic
and do not adequately capture the depth required. Regarding chemistry domain-specific benchmarks,
Guo et al. 23] propose 8 chemical tasks aimed at assessing understanding, reasoning, and explanation
abilities, but the benchmark consists of tasks derived from existing public datasets, which may be
insufficient to capture the full spectrum of competencies needed for thorough chemical research.
Other studies like [24, [25] have similar problems. Moreover, existing benchmarks fail to address the
capability of LLMs to extract chemical information from text and tables. This limitation prevents
them from tackling key issues of interest to chemistry researchers and has not fully met the specialized
needs of chemistry.

In light of these considerations, we introduce ChemEval, a benchmark designed to address the gap in
the comprehensive assessment framework for LLMs in chemistry by providing a multi-dimensional
evaluation. 1). Extensive tasks are included in ChemEval, which encompasses chemical tasks of
interest to researchers that were not included in previous benchmarks. It has four levels, thirteen
dimensions, and a total of 62 distinct tasks, covering a vast array of issues within the domain of
chemical research. Notably, we innovatively introduce test sets related to information extraction
and inductive generation in chemistry. 2). Multimodal tasks are specifically designed to assess
models’ capabilities in understanding and reasoning across diverse chemistry-related data types,
including text, molecular structure diagrams, and spectral images. 3). Domain experts in chemistry
have meticulously crafted in-depth task datasets and prompts for ChemEval, partly addressing the
previous lack of domain-specific data in chemistry benchmarks. Compared to previous work, our
study encompasses a broader range of tasks that are of actual concern in chemical research. It assesses
models on a graduated scale of capabilities, from general to domain-specific skills, to determine
the model’s proficiency. Our aim is to construct specialized tasks from the perspective of chemical
researchers, thereby providing valuable insights for Al researchers and chemists, and improving large
language models’ effectiveness in chemical research.

For experiments, we conducted a highly detailed evaluation process, focusing on designing prompts
that challenge LLMs, including 0-shot and few-shot settings. We evaluated currently widely used
LLMs, including both general LLMs and specialized chemical LLMs, and gained many meaningful
insights. This comprehensive evaluation has revealed that though general LLMs like GPT-40 [26]
excel in Literature Understanding tasks and possess great instruction-following capability, they
struggle with tasks that require a deeper understanding of molecular structures and scientific inference.
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On the other hand, specialized LLMs generally show improved chemical abilities even when their
ability to understand literature and instruction-following capability is diminished. This finding
underscores the need for significant improvements in the way LLMs are trained and evaluated
for chemical tasks. In addition, we explored the impact of few-shot learning and model size on
the performance of large language models and provided corresponding insights. We highlight the
contributions of this paper as follows:

* We have established an open-source benchmark for LLMs in the field of chemistry, which provides
a comprehensive evaluation of their mastery of chemical knowledge as well as their multimodal
reasoning capabilities, filling the absence of a holistic benchmark that encompasses the diverse
range of tasks within the chemical domain.

* We set up 4 progressive levels and access 13 model capability dimensions through 62 tasks
in ChemEval, which is developed through extensive discussions and collaborative design with
chemistry researchers, involves constructing novel tasks of interest to chemical researchers and
encompasses the primary focal points of chemical research.

* We conducted a comprehensive evaluation of LLMs in chemical tasks, using various prompt
settings to assess both general and specialized LLMs. This revealed significant differences between
different types of LLMs and identified challenging tasks with potential for optimization. This work
offers critical insights to guide researchers in the optimization and application of LLMs, thereby
enhancing their effectiveness in chemical research.

2 Related Work

Large Language Models for Chemistry. The emergence of Large Language Models (LLMs) has
revolutionized Natural Language Processing, with cutting-edge proprietary models like GPT-40 [26]
and open-source alternatives such as LlaMA [3]] and Qwen [27] demonstrating exceptional capabilities
across linguistic tasks. However, applying these general models to chemistry reveals significant
limitations in domain-specific knowledge. To bridge this gap, researchers have developed specialized
approaches: Galactica [28]] underwent pre-training on comprehensive scientific corpora, SciGLM [29]
employed strategic fine-tuning with scientific datasets, and ChemCrow [30] enhanced performance by
integrating expert-designed chemistry tools. Chemistry-focused models, including ChemDFM [31],
LlaSMol [14]], and ChemLLM [32]], incorporate tailored training methodologies, while specialized
applications such as Drugchat [33]] and Drugassist [34]] specifically address molecular structures and
chemical properties. Despite these advancements, achieving comprehensive chemical understanding
through LLMs remains a promising frontier for further research and innovation.

Large Language Models Evaluations for Chemistry. The progress made in the field of LLMs is
tightly linked to the establishment of robust evaluation frameworks. For general tasks, benchmarks
such as MMLU [[18]] and GLUE [35]] have become standard tools for assessing model capabilities.
In the scientific domain, recent initiatives like SciEval [22], SceMQA [36], and SciAssess [37]]
have been introduced to evaluate scientific reasoning and knowledge. In the chemistry domain,
recent benchmarking initiatives such as ChemLLMbench [23]], ChemBench [38]], and MaCBench
[39] have emerged, yet each presents significant limitations: ChemLLMbench covers only eight
task categories with unreviewed datasets; ChemBench offers 7,000 samples, but is limited by its
reliance on multiple-choice questions, lack of open-ended tasks, and insufficient evaluation metrics
for chemical experiment design tasks such as synthesis pathway recommendations; while MaCBench
introduces multimodal evaluation but exhibits similar constraints in task diversity and assessment
metrics. The absence of a comprehensive benchmarking framework impedes LLM advancement in
chemistry, a field characterized by complex conceptual knowledge and computational challenges. To
address this gap, we introduce ChemEval, a systematic and comprehensive evaluation framework
designed to rigorously assess LLM capabilities across the multifaceted landscape of chemistry.

3 ChemkEval

To fill the absence of a holistic benchmark that encompasses the diverse range of tasks within
the chemical domain, we introduce a refined benchmark named ChemEval specifically designed to
evaluate the comprehensive capabilities of LLMs within the chemical domain. It not only encompasses
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Figure 2: Data Collection steps of ChemEval. The process is divided into three main steps: a).
Data Collection: Raw data is collected from academic websites via web crawling, and experts
manually gather data from professional textbooks and experimental data. b). Data Filtering: The
raw data undergoes deduplication and removal of irrelevant items to produce filtered data. c¢). Q&A
Pair Construction: Experts manually construct Q&A pairs related to chemistry and create prompt
instructions, resulting in four instruction test sets.

text-only tasks such as literature comprehension and experimental planning, but also incorporates
multimodal tasks, including molecular formula recognition and spectroscopic data analysis. As
illustrated in it contains four levels in the field of chemistry, each of which includes several
different chemical dimensions, ensuring a comprehensive evaluation of LLMs. This framework
measures the models’ ability to understand and infer chemical knowledge from a broad range of
dimensions through a series of meticulously designed tasks.

In the following sections, we will provide a detailed introduction to the task content and data
construction process of ChemEval.

3.1 Advanced Knowledge Question Answering

This segment is pivotal in assessing the models’ proficiency in understanding and applying funda-
mental chemical concepts, which include Objective Question dimension and Subjective Question
dimension, a total of 15 different tasks. Through a blend of objective and subjective tasks, the
Advanced Knowledge Question Answering challenges the models to demonstrate their integrated
capabilities in areas of chemical terminology, quantitative analysis and cross-modal reasoning. The
tasks within this section are designed to be both comprehensive and diagnostic, providing a clear
measure of the models’ readiness to tackle more advanced chemical inquiries.

3.2 Literature Understanding

Advanced Knowledge Question Answering is designed to assess the model’s comprehension and
mastery of chemical knowledge, while Literature Understanding evaluates the model’s capacity to
interpret and assimilate information from chemical literature, which is foundational for subsequent
inductive generation tasks. Literature Understanding, including Inductive Generation dimension,
Information Extraction dimension and Molecular Name Recognition, a total of 19 tasks, delves into
tasks crucial for understanding and extracting meaningful information from the chemical literature.
The primary focus is on assessing the LLMs’ ability to comprehend and extract key information from
both textual content and image data in chemical literature, followed by generating new, contextually
relevant content.

3.3 Molecular Understanding

This section builds upon the previous foundation to assess the model’s understanding and generative
capabilities at the molecular level. It includes 4 dimensions: Molecular Name Generation, Molecular
Name Translation, Molecular Property Prediction, and Molecular Description, a total of 15 tasks.
Molecular Understanding focuses on core tasks in molecular cognition, aiming to evaluate LLMs
in molecular formula conversion, structural diagram interpretation, and the description/prediction
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of molecular properties based on structural and spectroscopic data. These tasks assess the models’
proficiency in interpreting and generating chemical information accurately.

3.4 Scientific Knowledge Deduction

Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific literature,
and the capacity to understand molecular structures, we expect that the model will proceed to
conduct deeper chemical reasoning and deduction. So the part of Scientific Knowledge Deduction
encompasses four key dimensions: Retrosynthetic Analysis, Reaction Condition Recommendation,
Reaction Outcome Prediction and Reaction Mechanism Analysis, a total of 13 tasks, which are
essential for effective chemical synthesis. This part evaluates the LLMs’ capabilities in retrosynthetic
analysis, recommending reaction conditions, predicting reaction outcomes, and analyzing reaction
mechanisms. These tasks are essential for efficient chemical synthesis, requiring the model to
accurately recognize chemical structures from images and perform complex reasoning and analysis
using specific knowledge.

3.5 Benchmark Generation Pipeline
3.5.1 Data Collection

The overall process of benchmark construction is il-
lustrated in Figure 2] Data plays an indispensable Taple 1: Data Statistics for Different Capabil-
role in the realm of LLMs [40]. Our data collection ity Levels.

is comprised of two components: Open-source Data

and Domain-Experts data. For the open-source com- Level Text-only Multimodal Total

ponent, we utilized keywords such as "chemistry,"

" "o . AdvQA 250 320 570
large language models," "knowledge question an- LitUnd 120 150 570
swering," and "information extraction" to retrieve MolUnd 830 470 1300
relevant publications on chemical language models g kD 460 260 720

from academic repositories. We then systematically
Total 1960 1200 3160

extracted and codified downstream tasks and their

associated datasets from these papers to develop our

chemical evaluation framework [14} 23] 141-45]]. Next, download the official datasets for the different
downstream tasks, using the presence of an official test set as the main criterion for selection. Nev-
ertheless, the scope of open-source data is inadequate, which is why we collect expert datasets to
enhance the evaluation’s rigor and breadth. Domain-expert data are sourced from scientific literature,
professional textbooks, supplementary materials, and laboratory chemical experiment records. These
resources are used to manually construct question-answer pairs tailored to specific task types.

3.5.2 Data Processing

Through our data collection endeavors, we get a vast array of raw data in the chemical domain. How-
ever, harnessing this data for our benchmarking work necessitates a subsequent phase of meticulous
selection and filtration aligned with the diverse tasks.

Our data processing for different levels: ). Advanced knowledge question-answering. We meticu-
lously compile question-answer pairs derived from undergraduate and postgraduate-level textbooks,
as well as ancillary educational materials. These pairs encompass a broad spectrum of seven dis-
tinct categories: organic chemistry, inorganic chemistry, materials chemistry, analytical chemistry,
biochemistry, physical chemistry, and polymer chemistry. This comprehensive selection ensures a
diverse representation of chemical concepts and principles. 2). Literature understanding component.
We extract relevant fragments and questions from scientific literature, combining them with task-
specific answers to create question-answer test sets for various downstream tasks. 3). Molecular
understanding and scientific knowledge deduction. Our approach leverages a combination of open
datasets and proprietary laboratory data sourced from our collaborating universities. We engage
in the thoughtful design and construction of test sets meticulously aligned with the unique content
requirements of downstream tasks.

It is important to highlight that when integrating multiple open-source datasets for downstream
tasks, we adopt a methodical approach to constructing the corresponding test sets. This involves
employing proportional sampling techniques that take into account the varying scales of the different
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Table 2: Representative Multi-Level 0-Shot Performance Overview on ChemEval. Claude3.7T
represents Claude 3.7-Sonnet-Thinking, while Claude3.7N represents Claude 3.7-Sonnet. For the
complete experimental results, please refer to the appendix @

Dimension Task Metric OpenAl-ol GPT-do___ Claude3.7T _ Deepseck-RI__ Deepseek-V3 _Qwen2.5-72B_ Llamad3-8B_ Gemini-25-Pro__ ChemDFM___ ChemLLM LlaSMol __ ChemSpark
Advanced Knowledge Question Answering
ObjQA MCTask ‘Accuracy, 74.00 66.80 62.80 8240 76.00 67.20 40.40 87.60 4120 24.40 2400 4360
ObjQA FBTask Score 60.92 5119 458 5941 63.88 53.92 34.17 63.95 24.16 3497 13.92 24.57
ObjQA TFTask Accuracy 46.00 57.60 58.80 75.20 67.20 58.40 46.00 71.60 46.00 1920 58.00 50.00
SubjQA SATask Score 64.50 6120 56.70 68.50 71.70 58.50 38.40 72.00 3220 1320 14.50 33.60
SubjQA CalcTask Score 78.00 61.80 55.74 76.10 79.20 61.90 28.00 82.40 14.70 1590 7.50 18.50
Literature Understanding
InfoE CNER Fl 64.56 65.76 60.21 64.14 60.85 61.61 55.34 68.30 4117 0.16 11.62 71.44
InfoE CERC Fl 2237 25.66 2519 27.18 24.94 26.05 1731 25.43 874 024 124 3927
InfoE SubE Accuracy 73.71 66.32 61.59 75.18 61.26 62.56 64.02 72.05 20.07 0.00 0.00 74.38
InfoE AddE Fl 81.67 85.00 79.33 82.67 80.67 84.00 4581 95.00 45.00 0.00 0.00 65.00
InfoE SolvE Fl 86.50 85.00 87.60 90.20 88.50 85.00 75.47 83.17 80.50 167 0.00 83.79
InfoE TempE Fl 70.00 67.00 72.00 65.00 72.00 65.00 62.00 69.00 74.33 323 0.00 83.00
InfoE TimeE Fl 95.00 95.00 95.00 95.00 95.00 90.00 90.00 94.00 78.00 23.10 25.00 95.00
InfoE ProdE Accuracy 90.25 86.09 8239 91.20 87.52 84.86 74.54 92.82 3473 0.00 0.00 94.40
InfoE CharME. Fl 5167 7285 8101 2133 8180 74.57 4418 73.11 27.26 0.00 0.00 12.98
InfoE CatTE Fl 95.00 94.00 82.00 99.00 100.00 100.00 65.00 96.00 49.00 0.00 5.00 31.00
InfoE YieldE Fl 85.00 79.00 61.00 7170 65.00 63.00 46.00 74.00 45.00 0.00 5.00 61.00
InducGen AbsGen Score 63.75 63.00 63.00 65.00 64.75 64.75 62.00 67.25 000 5.50 26.25 3825
InducGen OLGen Score 25.00 35.50 26.50 37.00 27.00 2425 275 39.50 0.0 3175 3125 30.50
InducGen TopC Accuracy 55.00 49.00 56.00 57.00 50.00 64.00 3200 67.00 51.00 0.00 0.00 30.00
InducGen ReaclTR Fl 25.00 32.00 29.00 2100 28.00 22.00 26.00 31.00 13.00 0.00 5.00 17.00
Molecular Understanding

MNGen MoING Tanimoto (valid) ~ 49.80 (72%) 39.30 (89%) 33.85 (70%) 56.05 (87%) 51.19 (96%) 20.58 (79%) 5.83 (40%) TL11 (93%) 47.06 (69%) 0.00 (0%) 3.71 (76%) 74.81 (98%)

MNTrans  IUPAC2MF L2 05304 03252 0.6026 06176 0.3407 02433 08382 06119 0.0454 0.0000 0.8807

MNTrans  SMILES2MF 2 0.6330 03627 03618 4402 03563 02448 0.1728 0.657. 0.6399 0375 0.0000 08133
MNTrans  [UPAC2SMILES Tamimoto (valid) 2972 (50%) 3471 (83%) 3189 (68%)  30.70(63%) 4607 (88%)  1590(76%)  524(0%)  6135(87%) 4671 (88%)  000(100%)  470(56%)  87.84(1%)
MNTrans  SMILES2IUPAC  Exact Match 000 000 000 1.20 0.00 0.00 0.00 120 0.00 000 0.00 1400

MNTrans  SMILES2IUPAC BLEU 324 096 327 417 1.67 033 044 13.55 056 0.00 0.00 48.25
MNTrans  SMILES2IUPAC  Tanimoto 0.00 12.08 273 25.90 19.16 13.01 371 56.82 206 0.00 66.26
MNTrans 525 Tanimoto (valid) 972 (42%) 1341 (62%) 937 (40%) 1604 (71%)  1627(62%)  1147(50%)  174(12%)  13.03(44%)  212025%)  000(50%)  0.60(48%)  87.36 (94%)
MPP MolPC Accuracy . 64.57 58.90 3 3 13 47,24 63.63 35 X 46.5 57
MPP MolPR NRMSE (valid) 123852 (99%) 9.9322(51%) 13.9702 (92%) 15.8881 (100%)  8.3675 (98) 13.0756 (100%) 61.4736 (62%) 11.7270 (100%) 394.9424 (83%) 179.3606 (93%) 29.9686 (73%) 1.2142 (100%)
MolDesc Mol2PC Score 19.00 7.00 9.80 1190 13.50 20.80 210 0.70 3.10 0.30 0.00 4890
Scientific Knowledge Deduction
ReSyn SubRec Fl 1.00 0.00 1.46 1.63 227 1.06 0.27 0.00 3.99 0.00 0.00 12.37
ReSyn PathRec Score 30.63 2288 0.36 52.75 3738 4113 2088 4375 24.13 10.88 10.00 3875
ReSyn SynDE NRMSE (valid) - (5%) - (0%) - (0%) - (0%) -(0%) 0.2670 (100%) - (0%) -(0%) -(0%) 33.0049 (78%)  1.2374 (45%)  1.7992 (87%)
RCRee LRec Fl 0.00 13.20 2,00 6.80 7.60 440 213 000 26.00 0.00 0.00 37.60
RCRec RRec Fl 25.64 15.80 27.43 21.93 835 3775 878 073 13.13 0.00 050 6372
RCRec SolvRec Fl 10.00 20,40 18.80 2240 24.00 50.40 3.63 000 10.53 0.00 050 3040
RCRec CatRec 0.00 0.00 0.00 0.00 0 0.50
RCRec TempRec ~ NRMSE (valid) 0.3278 (100%) 02545 (100%) 0.2263 (100%) 0.2078 (100%) 02096 (100%) 03782 (100%) - (0%) 01814 (100%) 03811 (99%) 11184 (98%)  0.8658 (100%) 0.2742 (100%)
RCRec TimeRec  NRMSE (valid) 0.2746 (100%) 0.2468 (100%) 03662 (100%) 02291 (100%) 02579 (100%) 0.2022 (100%) - (0%) 02425 (100%) 04732 (100%) 17937 (98%)  0.4351 (80%) 03937 (100%)
ROP PPred Fl 21.33 7 12.27 11.97 093 1.73 0.00 29 0. 56.40
ROP YPred Accuracy 1200 43.50 16.00 1100 22.50 26.00 35.50 17.50 7.20 0.00 28.00 72.00
ROP RatePred Overlap 21.08 13.81 9.06 17.12 17.71 10.71 6.92 27.01 3.79 0.00 3.68 2.90
RMA IMDer Score 80.00 81.50 81.50 79.50 80.50 71.25 81.25 8225 76.00 475 1.50 9275

data sources. This strategy ensures that the test sets accurately reflect the broader dataset while
maintaining a balanced distribution of question and answer types.

3.5.3 Data Statistics

Through our data collection endeavors, we get a vast array of raw data in the chemical domain.
Notably, the test sets for different downstream tasks were cross-checked to remove duplicates with
the training sets of corresponding tasks in open-source domain models, ensuring that there is no risk
of data leakage in the evaluation of different downstream tasks. The data volumes are presented in
we finally obtained 3120 evaluation data points.

3.5.4 Instruction Creation

To evaluate the effectiveness of the model, we constructed task-specific prompts and 3-shot task-
specific prompts for text-only downstream tasks [46]]. For downstream tasks with open-source
datasets, to facilitate evaluation, the evaluation system in this paper strengthens the format of the
output data based on its instructions. For the domain expert-built part, the evaluation system in this
paper will design instructions for task introduction and formatted output according to the task type,
and continuously adjust the instructions based on the return results of GPT-4o, thereby strengthening
the instructions for different self-constructed downstream tasks.

3.5.5 Maetrics

In this study, we utilize a range of evaluation metrics to comprehensively assess our models’ per-
formance across diverse tasks. For the majority of tasks, we utilize the F1 score and Accuracy. In
addition, we utilize BLEU [47]], Exact Match, Normalized Root Mean Square Error, Valid Output
Ratio, LLMs Score, L2 Score, and Overlap as evaluation metrics for different tasks to accommodate
various task requirements. A detailed introduction to the metrics is provided in the appendix [B.2]

4 Experiment

4.1 Setup

To comprehensively evaluate the chemical capabilities of LLMs, our framework assesses both general
and specialized models. For general LLMs, we include OpenAl-ol/03-mini [48], GPT-40 [26],
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Table 3: 3-Shot Performance Changes Relative to 0-Shot on ChemEval. The symbols and accompa-
nying values show performance changes compared to 0-shot, where *1” indicates an increase, ’]’ a
decrease, and ’-’ no change. The three values in the last column (T, ~, |) represent the number of
tasks that show a significant increase, remain unchanged, and significantly decrease, respectively.

Task SATask CalcTask SubE TempE ProdE ReactTR MolPC LRec PathRec RatePred ~ Change
Metric Score Score Accuracy Fl1 Accuracy Fl1 Accuracy Fl1 Score Overlap 1, ~ b

OpenAl-ol  68.50 14.00 78.5010.50 78.01 1430 75.0015.00 91.48 11.23 60.00 135.00 71.6014.10 18.00 118.00 40.63 110.01 1441 6.67 (9,0, 1)

GPT-4o 6100 [0.20 59.10 [2.70 6593 [0.39  73.00 76.00 86.8870.79 71.00 139.00 68.5513.98 15.6012.40 25.0012.13 20271647 (7,0,3)
Gemini-2.5-Pro 70.00 [2.00 81.60 [0.80 76.29 1424  77.0018.00 93.7510.93 59.00128.00 67.6213.99 0.00 43.00 [0.75  29.0872.06 (6,1,3)
Deepseek-v3 7040 [1.30 7740 [1.80 75.78 11451 80.0018.00 91.7514.23 46.00 118.00 55.7917.06 11.6014.00 24.00 [13.38 1345|426 (6,0, 4)
Qwen25-72B  60.80 1230 61.61[0.29 70.1017.54 80.00 115.00 84.05 [0.81 61.00139.00 56.87 18.74 16.40112.00 33.3817.75 15.8215.10 (7,0,3)
Llama33-8B  29.00 [9.40 1970 [8.30 57.71 [6.31 69.0017.00 73.26 [1.28 39.00 113.00 53201595 2.4070.27 17.88/3.00 14291738 (5,0,5)
ChemDFM  30.50 [1.70 1640 11.70  20.04 [0.03 41.00 }33.33 8.83 2590 26.00 113.00 56.65 |4.70 12.49 |13.51 28.7514.63 17.46 113.67 (4,0,6)
ChemLLM  11.50 [1.70 35.46119.56 0.00 1.53 [1.70 0.00 0.00 0.00 0.00 6.75 14.13 0.00 (1,6,3)
LlaSMol  23.5019.00 68.37 160.87 0.00 0.00 0.00 0.00 15.00  40.00 16.50 0.00 1750 17.50  0.00 13.68  (3,4,3)
ChemSpark 3160 [2.00 15.80 [2.70  72.86 [1.52  80.00 /3.00 98.40 74.00 32.00 115.00 82.88 |2.68 16.80[20.80 27.00 [11.75 11.0378.13 (3,0,7)

Claude-3.7-sonnet [49], Gemini-2.5-pro [50], Qwen2.5-7B/14B/32B/72B [27], LLaMA3.3-8B [3],
Grok3 [51], and DeepSeek-V3/R1 [52]. For chemistry-specific LLMs, we evaluate ChemDFM
[31]], LlIaSMol [14], ChemLLM [32] and ChemSpark. For multimodal chemical tasks, we evaluated
mainstream MLLMs, including GPT-40 [26]], Claude-3.7-sonnet [49], Qwen-VL Max [53], Phi-
Vision-3.5 [54]], across four levels of multimodal chemistry tasks. We used the official APIs of
general models for evaluation and ran the chemistry-specific models on two A40 48GB GPUs.

To illustrate the capability of LLMs in various chemical tasks, we present their average zero-shot
performance across four levels, with detailed results shown in the table[2] To assess their adaptability
and in-context learning abilities, we also report three-shot performance across the same levels. Some
tasks, such as Chemical Paper Abstract Generation, are not included in our three-shot evaluation due
to context length limitations.

4.2 Performance Results

We evaluate the model’s performance for each task across four assessment dimensions. Certain
models are unable to address specific tasks entirely. For example, LLaMA3.3-8B demonstrates poor
instruction-following capabilities in TempRec task in the 0-shot setting, which significantly impairs
its ability to generate responses based on task prompts. Consequently, we are unable to provide
numerical results for the tasks affected by this limitation. We discuss the key findings from our
benchmark and analyze them to explore how different settings related to LLMs affect performance
and provide valuable insights into Chemical benchmarks.

4.2.1 The models’ performance across four levels.

The performance comparison of LLMs across four levels reveals distinct strengths and weaknesses:

Basic Knowledge. Within the level of advanced knowledge question answering, the results reveal
that OpenAl-ol exhibits superior performance in objective questions, and Gemini outperforms
other models in subjective questions, which indicates the importance of reasoning ability in Q&A
questions. Additionally, general LLMs like GPT-40 and Qwen2.5-72B also perform well in literature
understanding. However, chemistry-specialized models (except ChemSpark) struggle with general
tasks, highlighting instruction fine-tuning challenges, which suggests that general LLMs succeed
primarily due to superior document comprehension and reasoning abilities.

Chemical Expertise. As for molecular understanding, ChemSpark stands out in these tasks de-
manding an in-depth grasp of chemical molecules. Most models perform poorly in molecular name
translation due to a lack of formatting constraints in their outputs, owing to the complexity of
molecular expressions. ChemSpark’s advantage stems from training on diverse chemical literature
with various molecular formula formats. Besides, we observed that when confronted with complex
tasks requiring quantitative calculations, models tend to provide overly cautious responses, such
as "quantification software (Gaussian, ORCA, etc.) is needed" or "cannot determine from a 2D
structure," which significantly reduces the practical value of their answers.

Chemistry-specialized LLMs. Compared to general LLMs, specialized chemistry models show
distinct patterns: /). Drawbacks: Chemical LLMs significantly underperform in advanced knowl-
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Table 4: The Impact of Model Scaling on Task Performance.

Task MCTask SATask CalcTask CharME CatTE MolPC CatRec PPred  YPred
Metric Accuracy  Score Score F1 F1 Accuracy F1 F1  Accuracy

Qwen2.5-7B 59.60 50.80 43.60 43.00 64.00 64.04 0.00  0.00 67.00
Qwen2.5-14B  64.80 57.20 50.80 6792  75.00 64.22 0.00  0.00 33.50
Qwen2.5-32B  67.20 58.10 57.40 7942 100.00 67.70 0.00 0.53 85.00
Qwen2.5-72B  67.20 58.50 61.90 74.57 100.00 48.13 0.00 1.73 26.00

edge answering and literature comprehension, suggesting catastrophic forgetting during fine-tuning
compromises their foundational language processing capabilities. 2). Advantages: Chemical models
excel in tasks requiring specialized terminology and molecular properties. General models perform
adequately on simpler tasks but struggle with complex chemical knowledge processing and infer-
ence. 3). Instruction-following ability: Chemistry-specific LLMs demonstrate significantly lower
instruction-following capability than general LLMs, likely due to limited exposure to diverse tasks
during training. Without output format restrictions, these models default to patterns matching their
fine-tuning data, sometimes producing interpretable results where format-constrained prompts are
removed, though with uncertain accuracy. This instruction-following deficiency severely impacts the
practical utility of these specialized models despite their domain expertise.

4.2.2 Factors Affecting Model Performance in Chemistry Tasks

The influence of few-shot. Our experiment results of ICL are shown infTable 3] Few-shot prompt-
ing significantly impacts model performance across different tasks. General LLMs typically benefit
from few-shot examples, especially in subjective question answering and literature understanding. In
contrast, specialized chemistry models often show performance decreases with few-shot prompting,
possibly due to the absence of such examples during their instruction fine-tuning. For complex
chemistry-specific tasks, performance variations remain minimal across all models, reflecting the
inherent difficulty of these tasks and current limitations in capturing expert-level chemical reasoning.

The impact of model scaling. We conducted experiments on Qwen2.5 models of different sizes.
The results, as shown in [Table 4/, indicate that increasing model size improves performance in most
tasks, with notable gains in advanced knowledge Q&A and literature understanding. However, molec-
ular understanding and scientific knowledge deduction tasks show minimal improvement as the model
scales. Tasks requiring specialized chemical knowledge (e.g., [UPAC2SMILES, CatRec) remain
challenging despite parameter increases, with some tasks like MolPC even showing performance
declines. This suggests that model scaling alone is insufficient for complex chemical tasks without
specialized training data.

The impact of thinking models. While intuitively it may seem that thinking models possess
stronger reasoning capabilities and might benefit in complex chemical tasks, our experimental
comparison of OpenAl-ol versus GPT-40 and DeepSeek-R1 versus DeepSeek-V3 reveals a more
nuanced reality. Although thinking models occasionally excel in specific tasks such as reaction
product prediction, they demonstrate comparable performance to general models across most chemical
tasks, with each architecture exhibiting distinct strengths in different tasks. Additionally, when
prompted to employ chain-of-thought reasoning, some models declined to respond to certain tasks,
citing insufficient information to formulate complete answers. Therefore, we conclude that the
primary limitation in addressing sophisticated chemical challenges lies not in long reasoning ability
but rather in insufficient domain-specific knowledge.

Stability analysis. As illustrated in the table we conducted robustness testing on multiple
models and analyzed the stability of metrics across various tasks in the benchmark. The results
demonstrate that the standard deviation for the vast majority of metrics does not exceed 5.0, indicating
consistent performance across evaluations. These results collectively indicate that our evaluation
framework is robust, providing consistent and reliable assessments of system performance.
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4.2.3 Multimodal Chemistry Tasks

The table [7] illustrates the performance of mainstream multimodal large language models on
ChemEval’s multimodal tasks. Entries marked as ’-’ indicate instances where models failed to
generate meaningful responses. Examining results across both Domain Knowledge QA and Literature
Understanding dimensions reveals that while most models demonstrate satisfactory performance on
elementary tasks such as molecular formula identification, they exhibit significant limitations when
confronted with more sophisticated challenges involving chemical reaction pathways or molecular
properties, as evidenced in Pathway Parsing and Multiple Choice tasks. The performance degrada-
tion becomes even more pronounced in Molecular Understanding and Scientific Reasoning tasks,
where models demonstrate considerable difficulty. These advanced tasks present a multifaceted
challenge, requiring models to accurately recognize molecular structures and reaction equations
from visual inputs while leveraging comprehensive chemical domain knowledge to formulate correct
responses—a combination that severely tests the models’ integrated capabilities. It is worth noting
that our evaluation exclusively assessed general-purpose multimodal large language models, without
including specialized multimodal models designed specifically for chemical applications. Given that
multimodal capabilities are increasingly crucial in chemical research, we think of this as a critical
area demanding urgent investigation and development.

5 Limitations and future work

Although ChemEval, as proposed in this study, fills the gap in evaluation LLMs in the field of
chemistry by covering a diverse array of chemical tasks and providing an important reference for
model capability assessment and chemical research applications, several notable limitations remain
in practical application. On the one hand, due to insufficient integration with professional molecular
simulation tools and other chemical software, the performance of LLMs in complex molecular
structure computation and high-precision optimization analysis is still restricted, making it difficult
to fully meet the needs of advanced scientific research for specialized computations. On the other
hand, LLMs may generate toxic, harmful, or illegal content, which presents safety and ethical risks
and highlights the necessity for strict regulation and oversight of generated content. Therefore, it is
essential to strengthen the deep integration of LLMs with professional chemical tools and improve
content safety mechanisms in the future, so as to further enhance the reliability and security of
ChemEval and LLMs in the field of chemistry.

In the future refinement of ChemEval, we plan to invite chemical experts to manually evaluate the
results of the LLMs and compare them with the evaluation results of our ChemEval. This will
enhance the reliability of our evaluation system and facilitate its alignment with human preferences,
making it more applicable to chemistry-related research. In addition, research on agents has garnered
significant attention recently [55]. We aim to explore the integration of end-to-end agents and improve
the LLM’s understanding as well as deep thinking ability in the chemical field to assist in chemical
research endeavors in the future.

6 Conclusion

In this paper, we developed a comprehensive chemical evaluation system to assess the performance
of popular LLMs across four levels of chemical tasks. The findings indicate that LLMs exhibit
relatively poor performance on tasks requiring the understanding of molecular structures and scientific
knowledge inference, whereas they perform better on tasks involving literature comprehension. This
suggests both the potential for improvement and the need for further advancements in the application
of LLMs to chemical tasks. Through this extensive evaluation, we demonstrate that there remains
significant room for enhancement in the capabilities of LLMs across various chemical tasks. We
hope our work will inspire future research to further explore and leverage the potential of LLMs
in the field of chemistry. This has the potential to contribute to the transformation of scientific
research paradigms and holds significant implications for the advancement of both the scientific
community and artificial intelligence. Future work on ChemEval will integrate multimodal tasks and
more sophisticated tasks and expert manual evaluations will be conducted to validate the result of
ChemEval and other benchmarks to improve the evaluation system’s dependability for practical and
scientific applications.
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A ChemEval Tasks

In order to systematically evaluate the multifaceted capabilities of large language models in the domain
of chemistry, we propose a multi-level and fine-grained evaluation framework that encompasses
a broad spectrum of chemical knowledge and reasoning tasks. This framework is delineated into
four primary categories: Advanced Knowledge Question Answering, Literature Understanding,
Molecular Understanding, and Scientific Knowledge Deduction. Each of these categories represents
a progressively sophisticated level of chemical problem-solving, ranging from the assessment of
fundamental chemical concepts and literature comprehension to molecular-level reasoning and high-
level scientific deduction. The constituent tasks within each category are meticulously designed to
interrogate specific competencies, such as objective and subjective answering, information extraction,
inductive generation, molecular property prediction, and retrosynthetic analysis. Collectively, this
comprehensive benchmark offers a granular and holistic evaluation of LLMs’ proficiency in both the
understanding and application of chemical knowledge, thereby illuminating their potential utility and
limitations in diverse chemical informatics applications.

A.1 Advanced Knowledge Question Answering

This segment is pivotal in assessing the models’ proficiency in understanding and applying funda-
mental chemical concepts, which include Objective Question dimension and Subjective Question
dimension, total 15 different tasks. Through a blend of objective and subjective tasks, the Advanced
Knowledge Question Answering component challenges the models to demonstrate their insight in
areas ranging from chemical terminology and quantitative analysis to the recognition and interpre-
tation of chemical structures and diagrams. The tasks within this section are designed to be both
comprehensive and diagnostic, providing a clear measure of the models’ readiness to tackle more
advanced chemical inquiries.

A.1.1 Objective Questions (ObjQA)

The first dimension is objective question answering, which primarily assesses the model’s grasp
of fundamental chemical knowledge and its capability to apply this knowledge in straightforward
scenarios. Objective question answering encompasses the following tasks: Multiple Choice Task,
Fill-in-the-Blank Task, and True/False Task. By incorporating these tasks, ChemEval can more
effectively gauge the model’s overall proficiency in understanding and applying chemical knowledge
across various contexts and formats.It should be noted that the True/False Task is exclusive to the
text-only tasks and is not incorporated within the multimodal task set.

A.1.2 Subjective Questions (SubjQA)

The second dimension is subjective question answering, which includes Short Answer Task and
Calculation Task, both aiming to evaluate the depth of the model’s comprehension and its ability
to apply chemical knowledge effectively. Because on the basis of the previous task, the model also
requires providing a detailed solution or reason, which involves the understanding of the chemical
principles and concepts in the question, and applying these principles and concepts to construct
logically clear and organized answers, which intuitively reflects the model’s understanding of basic
chemical knowledge.

Multimodal tasks further build upon these foundations, covering Statistical Chart QA, Statistical
Table QA , Reaction Profile Diagram QA, Theoretical Potential Energy Surface QA, Infrared Spectrum
QA, Raman Spectrum QA, UV-Vis Spectrum QA, Diffraction Pattern QA , Kinetic Behavior Chart QA
and Mass Spectrum QA.These tasks comprehensively evaluate the model’s ability to interpret and
reason using chemical graphics and experimental data.

A.2 Literature Understanding

Advanced Knowledge Question Answering is designed to assess the model’s comprehension and
mastery of chemical knowledge. In contrast, Literature Understanding evaluates the model’s ability
to interpret and assimilate information from chemical literature, which forms the foundation for
downstream inductive generation tasks. Literature Understanding includes three dimensions: In-
ductive Generation, Information Extraction, and Molecular Name Recognition, comprising a total
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of 19 tasks. These tasks are crucial for understanding and extracting meaningful information from
chemical literature. The primary focus is on assessing LLMs’ ability to accurately extract and
interpret chemical data from text, and to subsequently generate new, contextually relevant content.
Importantly, such tasks are not covered by other chemical benchmarks. The following subsections
detail the specific tasks.

A.2.1 Information Extraction (InfoE)

This is the first step to read a paper and also the foundation for the next inductive generation task.
It involves the extraction of various elements related to chemistry, such as named entities, reaction
substrates, and catalyst types, encompassing a total of 11 tasks. These tasks aim to decompose and
organize chemical information found in text, covering entities, relationships, and various aspects of
chemical reactions.

A.2.2 Inductive Generation (InducGen)

Based on Information Extraction, Inductive Generation involves creating new, coherent, and contex-
tually relevant content based on existing data and knowledge. This process incorporates Chemical
Paper Abstract Generation, Research Outline Generation, Chemical Literature Topic Classification,
and Reaction Type Recognition and Induction, all focused on synthesizing and organizing chemical
information in a coherent and meaningful manner.

A.2.3 Molecular Name Recognition(MNR)

Molecular Name Recognition is a foundational step in the extraction and organization of chemical
information, focusing on the accurate identification of molecular names and related entities from
scientific literature and data sources. This task goes beyond simple text extraction and leverages
multimodal techniques to integrate information from textual, structural, and graphical data alike. Its
subtasks encompass Molecular Formula Recognition, Chemical Reaction Equation Recognition, 2D
Molecular Structure Recognition, and Synthetic Pathway Analysis. Collectively, these subtasks enable
comprehensive understanding and representation of chemical compounds and their transformations,
serving as a crucial underpinning for downstream knowledge discovery and advanced reasoning in
chemical informatics.

A.3 Molecular Understanding

This section builds upon the previous foundation to assess the model’s understanding and generative
capabilities at the molecular level. It includes 4 dimensions: Molecular Name Generation, Molecular
Name Translation, Molecular Property Prediction, and Molecular Description, a total of 15 tasks.
Molecular Understanding explores tasks essential for molecular understanding, evaluating the LLMs’
ability to generate, translate, and describe molecular names and properties. These tasks assess the
models’ proficiency in interpreting and generating chemical information accurately. The following
subsections detail various specific tasks within this objective.

A.3.1 Molecular Name Generation (MNGen)

Molecular Name Generation is the basis of Molecular Understanding and only contains one task,
Molecular Name Generation from Text Description. This task is purposed to evaluate the capacity
of LLMs to generate valid chemical structure representations. It necessitates that the models, based
on intricate textual descriptions encompassing molecular structures, properties, and classifications,
synthesize SMILES molecular formulas effectively.

A.3.2 Molecular Name Translation (MNTrans)

Furthermore, Molecular Name Translation aims to enable a deep understanding of molecular struc-
tures and representations, which should serve as the fundamental knowledge for chemistry LLMs.
It focuses on converting molecular names between different formats, requiring LLMs to output a
specified alternative format based on a given molecular representation. It involves the conversion
between representations of molecules such as IUPAC names and SMILES [56] molecular formulas,
encompassing a total of five tasks, each focusing on distinct aspects of molecular notation conversion.
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A.3.3 Molecular Property Prediction (MPP)

Apart from molecular name understanding, the ability to predict molecular properties is also im-
portant. Molecular Property Prediction targets the forecast of a wide range of physical, chemical,
and biological attributes of molecules, encapsulated in two core objectives: Molecule Property
Classification, which predicts categories of properties such as ClinTox, HIV inhibition, and polarity;
and Molecule Property Regression, focusing on estimating numerical values such as Lipophilicity,
polarity, and boiling point.

A.3.4 Molecular Description (MolDesc)

To facilitate a deeper assessment of molecular understanding, the Molecular Description task has
been developed to comprehensively evaluate LLMs’ capabilities in interpreting and describing
molecular structures and their properties. This task consists of a series of subtasks, each requiring the
prediction of physicochemical properties of molecules based on diverse input modalities. Besides
the classic subtask of predicting physicochemical properties directly from molecular structures, this
multimodal extension incorporates additional challenges: Physicochemical Property Prediction from
Infrared Spectrum, Physicochemical Property Prediction from Raman Spectrum, Physicochemical
Property Prediction from UV-Vis Spectrum, Physicochemical Property Prediction from Diffraction
Pattern, Physicochemical Property Prediction from Mass Spectrum, and Physicochemical Property
Prediction from NMR Spectrum. Collectively, these tasks aim to assess LLMs’ ability to interpret
various molecular representations—spanning textual, graphical, and spectral data—for comprehensive
property annotation and molecular understanding.

A.4 Scientific Knowledge Deduction

Having established a solid grasp of basic chemical knowledge, the skill to interpret scientific literature,
and the capacity to understand molecular structures, we expect that the model will proceed to
conduct deeper chemical reasoning and deduction. So the part of Scientific Knowledge Deduction
encompasses four key dimensions: Retrosynthetic Analysis, Reaction Condition Recommendation,
Reaction Outcome Prediction and Reaction Mechanism Analysis, a total of 13 tasks, which are
essential for effective chemical synthesis. This part evaluates the LLMs’ capabilities in retrosynthetic
analysis, recommending reaction conditions, predicting reaction outcomes, and analyzing reaction
mechanisms. These tasks provide a comprehensive assessment of the models’ performance in these
critical areas of chemical synthesis.

A.4.1 Retrosynthetic Analysis (ResSyn)

Retrosynthetic Analysis is a crucial technique in the field of chemical synthesis, particularly in
organic synthesis. The process begins with the target product and then examines potential synthesis
pathways and reactant substrates. This approach highlights the reverse reasoning capabilities of
LLMs in the field of chemical synthesis. It comprises Substrate Recommendation, Synthetic Pathway
Recommendation and Synthetic Difficulty Evaluation.

A.4.2 Reaction Condition Recommendation (RCRec)

Based on the results of the Retrosynthetic Analysis, LLMs can recommend suitable reaction condi-
tions. Reaction condition recommendation is a key task in chemical synthesis, involving selecting the
most suitable conditions for specific chemical reactions to ensure maximum efficiency, selectivity, and
yield. This task integrates recommendations for conditions such as ligands, reagents, and catalysts,
encompassing a total of six tasks, each targeting a specific component of the reaction condition
optimization.

A.4.3 Reaction Outcome Prediction (ROP)

After determining the reaction pathway and reaction conditions, the large model can predict possible
reaction outcomes. Reaction outcome prediction is a core technology in chemical synthesis aimed at
predicting possible results of a reaction before it is actually carried out. This encompasses Reaction
Product Prediction, Product Yield Prediction, Reaction Rate Prediction.
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Table 5: Complete Multi-Level 0-Shot Performance Overview on ChemEval part 1. Claude3.7T
represents Claude 3.7-Sonnet-Thinking, while Claude3.7N represents Claude 3.7-Sonnet.

Dimension Task Metric OpenAl-o3-mini _ OpenAl-ol GPT-40 Claude3.7T  Claude3.7N  Deepseck-RI  Deepseek-V3  Qwen2.5-72B  Qwen2.5-32B
Advanced Knowledge Question A
ObjQA MCTask Accuracy 72.00 74.00 66.80 62.80 60.80 82.40 76.00 67.20 67.20
ObjQA FBTask Score 62.42 60.92 51.19 4528 44.73 59.41 63.88 53.92 50.93
ObjQA TFTask Accuracy 68.00 46.00 57.60 58.80 58.00 75.20 67.20 58.40 49.20
SubjQA SATask Score 68.00 64.50 61.20 56.70 55.10 68.50 71.70 58.50 58.10
SubjQA CalcTask Score 75.50 78.00 61.80 55.74 53.60 76.10 79.20 61.90 57.40
Literature Understanding
InfoE CNER FI 61.30 64.56 65.76 60.21 54.55 64.14 60.85 61.61 56.33
InfoE CERC FI 29.65 2237 25.66 25.19 24.77 27.18 24.94 26.05 2721
InfoE SubE Accuracy 66.91 73.71 66.32 61.59 65.76 75.18 61.26 62.56 58.05
InfoE AddE FI 76.67 81.67 85.00 79.33 81.10 82.67 80.67 84.00 80
InfoE SolvE FI 89.00 86.50 85.00 87.60 84.30 90.20 88.50 85.00 90.00
InfoE TempE FlI 65.00 70.00 67.00 72.00 69.00 65.00 72.00 65.00 62.00
InfoE TimeE Fi 95.00 95.00 95.00 95.00 95.00 95.00 95.00 90.00 95.00
InfoE ProdE Accuracy 87.62 90.25 86.09 82.39 85.04 91.20 87.52 84.86 76.38
InfoE CharME FlI 66.67 51.67 72.85 81.01 71.84 2133 81.80 74.57 79.42
InfoE CalTE FlI 65.00 95.00 94.00 82.00 77.00 99.00 100.00 100.00 100.00
InfoE YieldE FlI 65.00 85.00 79.00 61.00 59.00 77.70 65.00 65.00 78.00
InducGen AbsGen Score 68.75 63.75 63.00 63.00 66.75 65.00 64.75 64.75 60.00
InducGen OLGen Score 35.00 25.00 35.50 26.50 28.50 37.00 27.00 24.25 2975
InducGen TopC Accuracy 50.00 55.00 49.00 56.00 51.00 57.00 50.00 64.00 35.00
InducGen ReactTR FlI 20.00 25.00 32.00 29.00 26.00 21.00 28.00 22.00 26.00
Molecular Understanding
MNGen MoING Tanimoto (valid)  51.58 (78%)  49.80(12%) 3930 (89%) 3385 (710%) 4228 (78%)  56.05 (87%)  51.19(9%6%) 2058 (79%)  14.60 (64%)
MNTrans  [UPAC2MF L2 0.6214 0.7737 0.5304 13252 0.3349 0.6026 06176 0.3407 03070
MNTrans  SMILES2MF L2 06276 0.6330 0.3627 03618 0.3468 0.4402 0.3563 0.2448 02548
MNTrans [UPAC2SMILES Tanimoto (valid) ~ 29.61 (42%)  29.72(50%)  34.71(83%)  31.89(68%)  39.12(72%) 3070 (63%)  46.07(88%)  15.90(76%)  10.55 (59%)
MNTrans SMILES2IUPAC  Exact Match 0.00 0.00 0.00 0.00 .00 1.20 0.00 X .00
MNTrans ~ SMILES2IUPAC BLEU 437 3.24 096 327 3.46 4.17 167 033 0.15
MNTrans  SMILES2IUPAC  Tanimoto 0.00 0.00 12.08 273 24.99 25.90 19.16 13.01 8.68
MNTrans $28 Tanimoto (valid) ~ 9.76 (30%) 972(42%)  1341(62%) 937 (40%)  10.58(44%)  16.04(71%)  1627(62%)  11.47(50%) 693 (37%)
MPP MolPC Accuracy 72.88 67.50 64.57 58.90 54.37 53.54 48.73 48.13 67.70
MPP MolPR NRMSE (valid) 127593 (99%)  12.3852(99%) 9.9322(51%) 13.9702(92%) 14.0966 (96%) 15.8881 (100%) 8.3675 (98%) 13.0756 (100%) 17.6710 (91%)
MolDesc Mol2PC Score 19.50 19.00 7.00 9.80 15.70 11.90 13.50 20.80 5.90

Scientific Knowledge Deduction
ReSyn SubRec FI 2.67 1.00 0.00 1.46 177 1.63 227 1.06 0.20

ReSyn PathRec Score 49.38 30.63 22.88 036 41.88 52.75 37.38 41.13 36.88
ReSyn SynDE NRMSE (valid)  5.4045 (20%) - (5%) - (0%) - (0%) 19854 (39%) - (0%) - (0%) 02670 (100%) - (0%)
RCRec LRec Fl . 0.00 13.20 2.00 440 6.80 7.60 440 8.00
RCRec RRec FlI 32.00 25.64 15.80 27.43 25.80 21.93 835 3775 34.56
RCRec SolvRec Fl 16.00 10.00 20.40 18.80 17.60 2240 24.00 50.40 51.60
RCRec CatRec FlI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RCRec TempRec NRMSE (valid) 02201 (100%)  0.3278 (100%) 0.2545 (100%) 0.2263 (100%) 0.5398 (100%) 0.2078 (100%) 0.2096 (100%) 0.3782 (100%) 0.2475 (100%)
RCRec TimeRec NRMSE (valid) ~ 0.2165 (100%)  0.2746 (100%) 0.2468 (100%) 0.3662 (100%) 0.4008 (100%) 0.2291 (100%) 0.2579 (100%) 0.2022 (100%) 0.2377 (100%)
ROP PPred Fl 0.00 133 1.67 2. .16 11.97 093 173 053
ROP YPred Accuracy 8.00 12.00 43.50 16.00 9.00 11.00 2250 26.00 85.00
ROP RatePred Overlap 16.74 21.08 13.81 9.06 7.21 17.12 17.71 10.71 9.48
RMA IMDer Score 80.00 80.00 81.50 81.50 81.00 79.50 80.50 77.25 79.00

A.4.4 Reaction Mechanism Analysis (RMA)

Reaction Mechanism Analysis is a critical area in the study of chemical reactions, aiming to explain
the detailed steps involved in the transformation from reactants to products. This is the final step
in the field of chemical synthesis, including identifying various intermediates, and transition states,
as well as the kinetic and thermodynamic parameters of each step in the reaction. Intermediate
Derivation is the sole subtask in this phase.

B Detailed Experimental setups

In this section, we introduce the details of our experimental setups, including the detailed description
of the evaluated models and explanations of the metrics used in Section 4.3.

B.1 Models

In order to comprehensively assess the scientific capabilities of Large Language Models (LLMs), we
evaluate several high-performing LLMs that are widely accessible, including general and specialized
models. These models are selected to represent a diverse range of organizations and vary in size.

* GPT-40: GPT-40 is OpenAl’s latest flagship multimodal large language model, capable of process-
ing and generating text, audio, and images through a unified architecture for seamless cross-modal
reasoning and interaction. It sets new benchmarks in multilingual, speech, and visual understanding,
exhibiting advanced performance with significantly improved speed and efficiency compared to
previous models.

* OpenAl-01/03-mini: OpenAl ol and 03-mini are lightweight, cost-effective reasoning models
that deliver strong performance in science, mathematics, and programming tasks while offering
significantly improved response speed and reliability compared to their predecessors, making them
well-suited for rapid, real-world applications.
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Table 6: Complete Multi-Level 0-Shot Performance Overview on ChemEval part 2.

Dimension Task Metric Qwen2.5-14B Qwen25-7B Llama3.3-8B Grok3  Gemini-25-Pro  ChemDFM  ChemLLM LlaSMol  ChemSpark
Advanced Knowledge Question Answering
ObjQA MCTask Accuracy 64.80 59.60 40.40 68.80 87.60 41.20 24.40 24.00 43.60
ObjQA FBTask Score 45.76 39.52 34.17 54.36 63.95 24.16 34.97 13.92 24.57
ObjQA TFTask Accuracy 52.00 55.20 46.00 64.40 77.60 46.00 19.20 58.00 50.00
SubjQA SATask Score 57.20 50.80 38.40 73.59 72.00 32.20 13.20 14.50 33.60
SubjQA CalcTask Score 50.80 43.60 28.00 81.20 82.40 14.70 15.90 7.50 18.50
Literature Understanding
InfoE CNER F1 4631 61.27 55.34 60.75 68.30 4117 0.16 11.62 71.44
InfoE CERC Fl 28.19 26.10 17.31 26.04 2543 8.74 0.24 124 39.27
InfoE SubE Accuracy 59.61 58.43 64.02 72.87 72.05 20.07 0.00 0.00 74.38
InfoE AddE F1 83.00 61.67 45.81 85.00 95.00 45.00 0.00 0.00 65.00
InfoE. SolvE Fl 86.50 82.50 75.47 85.00 83.17 80.50 1.67 0.00 83.79
InfoE TempE FI 70.00 65.00 62.00 70.00 69.00 74.33 323 0.00 83.00
InfoE TimeE FI 95.00 95.00 90.00 95.00 94.00 78.00 23.10 25.00 95.00
InfoE ProdE Accuracy 82.44 77.00 74.54 91.04 92.82 34.73 0.00 0.00 94.40
InfoE. CharME Fli 67.92 43.00 44.18 79.36 73.11 27.26 0.00 0.00 12,98
InfoE CatTE FI 75.00 64.00 65.00 97.00 96.00 49.00 0.00 5.00 31.00
InfoE YieldE FI 80.00 67.00 46.00 61.00 74.00 45.00 0.00 5.00 61.00
InducGen AbsGen Score 59.25 54.75 62.00 69.50 67.25 0.00 550 26.25 38.25
InducGen OLGen Score 29.75 27.75 275 35.25 39.50 0.00 375 31.25 30.50
InducGen TopC Accuracy 45.00 41.00 32.00 47.00 67.00 51.00 0.00 0.00 30.00
InducGen ReactTR Fl 26.00 31.00 26.00 28.00 31.00 13.00 0.00 5.00 17.00
Molecular Understanding
MNGen MoING Tanimoto (valid)  11.03 (53%)  3.92(32%)  5.83(40%)  57.86(94%)  7L11(93%)  47.06 (69%) 0.00 (0%) 371(76%)  74.81 (98%)
MNTrans  TUPAC2MF 03126 0.1856 0.2433 07110 0.8382 06119 0.0454 0.0000 0.8807
MNTrans  SMILES2MF L2 02114 0.0980 0.1728 03980 0.6574 0.6399 0.0375 0.0000 0.8133
MNTrans TUPAC2SMILES Tanimoto (valid) ~ 8.18 (52%) 346 (30%)  5.24(30%)  65.81(94%)  6135(87%)  46.71(88%) 000 (100%)  470(56%)  87.84(1%)
MNTrans  SMILES2IUPAC  Exact Match 0.00 0.00 0.00 1.20 1.20 0.00 0.00 0.00 14.00
MNTrans  SMILES2IUPAC BLEU 022 0.00 044 4.69 13.55 056 0.00 0.00 48.25
MNTrans  SMILES2IUPAC ~ Tanimoto 5.76 378 371 30.47 56.82 206 0.00 222 66.26
MNTrans 528 Tanimoto (valid) 1052 (60%) 228 (14%)  1.74(12%)  17.56(59%)  13.13 (44%) 212 (25%) 0.00 (50%) 0.60 (48%)  87.36 (94%)
MPP MolPC Accuracy 64.22 64.05 47.26 6. 63.63 61.35 0.00 46.50 85.57
MPP MolPR NRMSE (valid) 117005 (90%) 8.5890 (98%) 61.4736 (62%) 9.0283 (100%) 11.7270 (100%) 394.9424 (83%) 179.3606 (93%) 29.9686 (73%) 1.2142 (100%)
MolDesc Mol2PC Score 14.50 2 0.70 3.10 0 48.90
Scientific Knowledge Deduction
ReSyn SubRec FI 0.00 142 027 0.87 0.00 399 0.00 0.00 1237
ReSyn PathRec Score 32.63 27.13 20.88 32.13 43.75 24.13 10.88 10.00 38.75
ReSyn SynDE NRMSE (valid)  0.3551 (100%) - (0%) - (0%) - (0%) -(0%) - (0%) 33.0049 (78%) 1.2374 (45%) 17992 (87%)
RCRec LRec FI 6.80 2.80 213 36.00 0.00 26.00 0.00 0.00 37.60
RCRec RRec FI 37.65 16.93 8.78 44.60 073 13.13 0.00 050 63.72
RCRec SolvRec FI 15.60 25.60 3.63 24.00 0.00 10.53 0.00 050 30.40
RCRec CatRec Fl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50
RCRec TempRec NRMSE (valid) 0.1989 (100%) 03223 (100%)  -(0%)  0.1972(100%) 0.1814(100%)  0.3811(99%)  1.1184(98%) 0.8658 (100%) 0.2742 (100%)
RCRec TimeRec NRMSE (valid) 0.2505 (100%) 03213 (100%)  -(0%) 02164 (100%) 0.2425(100%) 04732 (100%) 17937 (98%) 04351 (80%) 03937 (100%)
ROP PPred Fl 0.00 0.00 0.00 11.33 29.20 18.80 0.00 16.00 56.40
ROP YPred Accuracy 33.50 67.00 35.50 8.00 17.50 7.20 0.00 28.00 72.00
ROP RatePred Overlap 954 13.35 6.92 8.77 27.01 379 0.00 368 2.90
RMA IMDer Score 67.75 78.75 81.25 81.25 82.25 76.00 475 150 92.75

Claude-3.7-sonnet: Claude 3.7 Sonnet is Anthropic’s most advanced hybrid reasoning language
model to date, integrating rapid response with deep, stepwise analytical capabilities and offering
flexible dual modes for both instant answers and complex multi-stage problem-solving across a
range of scientific and coding tasks.

Gemini-2.5-pro: Gemini 2.5 Pro is Google DeepMind’s latest multimodal large language model
that integrates advanced “thinking” mechanisms and hybrid attention architectures, enabling state-
of-the-art reasoning, code generation, and long-context understanding across text, image, audio,
and video inputs, with support for up to one million tokens in a single context window.

Grok3: Grok 3 is a new generation of large language model developed by xAl. It has achieved
breakthroughs in key benchmark tests such as mathematical reasoning, scientific logical reasoning,
and code writing. In addition, it supports multimodal interaction and can also access real-time
information through the X platform to enhance the timeliness and accuracy of its responses.

DeepSeek-V3: DeepSeek-V3 is a powerful 671-billion-parameter Mixture-of-Experts (MoE)
language model developed by DeepSeek, trained on 14.8 trillion tokens with innovations like
Multi-head Latent Attention (MLA) and Multi-Token Prediction (MTP) to achieve state-of-the-art
performance in mathematics, coding, and multilingual tasks. It features a 128K context window
and efficient inference, with future versions expected to include multi-modal capabilities.

DeepSeek-R1: DeepSeek-R1 is a reasoning-optimized model based on the DeepSeek-V3-Base
architecture. It is trained with reinforcement learning and human feedback to enhance its perfor-
mance in complex reasoning tasks such as logical deduction and mathematical problem-solving
while maintaining high safety and reliability.

Qwen2.5-7B/14B/32B/72B: Qwen 2.5 is a series of advanced large language models developed by
Alibaba Cloud, featuring models with parameter sizes ranging from 0.5B to 72B. These models
have significantly improved capabilities in areas such as coding, mathematics, and multilingual
support, and they are trained on a large-scale dataset of up to 18 trillion tokens

LLaMA3.3-8B : Meta Llama 3 8B is a powerful large language model with 8 billion parameters,
optimized for dialogue and text generation. It is trained on over 15 trillion tokens and features a
128K token vocabulary and Grouped-Query Attention for enhanced performance.
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Table 7: Multimodal Performance Overview on ChemEval.

Dimension Task Metric GLM-4V GPT-40 Claude3.7T Qwen-vl-max Phi-vision-3.5 Gemini-2.5-Pro
Advanced Knowledge Question Answering
ObjQA MCTask Accuracy 3222 40.86 7.78 43.33 35.56 45.55
ObjQA FBTask Accuracy 36.67 5241 17.77 48.12 15.02 58.80
SubjQA SCQA Score 65.33 68.67 30.22 82.00 44.44 80.89
SubjQA STQA Score 64.22 54.22 32.67 72.22 32.67 76.22
SubjQA RPDQA Score 50.67 62.93 20.00 70.67 37.67 70.00
SubjQA TPESQA Score 62.33 69.33 21.67 76.33 45.67 70.67
SubjQA IRSQA Score 53.33 59.00 35.33 62.33 42.00 66.33
SubjQA RSQA Score 64.33 70.00 35.67 71.33 51.33 76.00
SubjQA UVSQA Score 62.67 62.67 33.33 66.00 48.00 69.33
SubjQA DPQA Score 67.00 75.67 37.00 83.33 51.00 76.00
SubjQA KBCQA Score 68.33 77.00 48.67 81.67 51.00 79.33
SubjQA MSQA Score 66.33 74.40 22.00 83.67 46.33 72.00
SubjQA SATask Score 46.67 55.28 46.33 57.67 35.00 71.00
SubjQA CalcTask Score 49.11 60.67 51.78 62.00 36.89 79.78
Literature Understanding
MNR MFR Accuracy 100.00 95.56 2.22 100.00 85.55 84.45
MNR CRER Accuracy 95.56 93.34 3.33 93.33 15.56 42.22
MNR 2DMolR Tanimoto 3.73 20.92 0.00 16.26 1.98 -
MNR PathA Fl1 0.00 0.00 0.00 0.00 0.00 -
Molecular Understanding
MNTrans IUPAC2MF L2 0.3048 0.5653 0.2106 0.1175 0.1690 0.5892
MNTrans SMILES2MF L2 0.1251 0.2144 0.0468 0.1367 0.1018 0.4951
MNTrans TUPAC2SMILES Tanimoto 8.40 44.43 11.90 24.63 4.37 77.19
MNTrans SMILES2IUPAC Exact 0.00 0.00 0.00 0.00 0.00 2.00
MNTrans SMILES2IUPAC BLEU 23.15 19.04 22.81 24.44 26.19 18.47
MNTrans SMILES2IUPAC Tanimoto 1.73 2.09 8.88 0.74 1.22 4.16
MPP MolPC Accuracy 50.51 49.70 54.67 58.32 53.75 62.08
MPP MolPR NRMSE (valid) 2.3782 (57%) 1.0268 (71%) 0.3491 (29%) 21.8799 (100%) 3.0580 (43%) 16.1085 (100%)
MolDesc IRS2PC Score 54.00 58.00 66.33 60.67 45.00 60.67
MolDesc RS2PC Score 44.00 51.67 63.00 57.67 38.33 55.33
MolDesc UV2PC Score 54.67 59.67 65.67 63.00 40.67 67.00
MolDesc DP2PC Score 58.33 65.00 74.00 69.00 41.33 69.33
MolDesc MS2PC Score 54.33 61.67 75.33 67.00 38.67 69.00
MolDesc NMR2PC Score 54.33 65.00 71.67 68.33 37.67 66.67
Scientific Knowledge Deducti
ReSyn SubRec Fl1 0.00 0.00 0.00 1.48 0.00 1.48
ReSyn PathRec Score 45.00 57.00 67.00 54.67 31.67 61.67
ReSyn SynDE NRMSE 0.4220 0.3199 0.5575 0.2234 - 0.5437
RCRec LRec F1 0.00 28.33 1.67 8.33 11.67 5.00
RCRec RRec F1 0.00 5.00 5.00 6.67 6.67 8.33
RCRec SolvRec F1 15.00 23.33 21.67 30.00 18.33 28.33
RCRec CatRec Fl1 0.00 0.00 0.00 0.00 0.00 0.00
RCRec TempRec NRMSE 0.1220 0.4845 0.3913 0.5346 - 0.1777
RCRec TimeRec NRMSE - - 0.4378 - - -
ROP PRec Fl1 0.00 0.00 0.00 3.33 0.00 1.67
ROP YPred Accuracy - 4333 20.00 25.00 78.33 31.67
RMA IMPred Score 67.67 71.33 76.67 62.33 35.00 71.67

Qwen-VL Max: Qwen-VL-Max is the most capable large visual language model in the Qwen-
VL series, offering optimal performance on a broad range of complex tasks. It has significantly
enhanced visual reasoning and instruction-following abilities, and can handle high-definition
images with resolutions above one million pixels.

Phi-Vision-3.5: Phi-3.5-vision is a lightweight, state-of-the-art open multimodal model developed
by Microsoft, with 4.2B parameters and a 128K context length. It excels in handling both text and
visual inputs, offering capabilities in general image understanding, optical character recognition,
chart interpretation, and video summarization.

ChemDFM: ChemDFM is a pioneering large language model (LLM) specifically designed for
chemistry, trained on 34 billion tokens from chemical literature and textbooks and fine-tuned
using 2.7 million instructions. It demonstrates superior performance in various chemical tasks
such as molecule recognition, molecular property prediction, and reaction analysis, significantly
outperforming most representative open-source LLMs.

LlaSMol: LlaSMol is a series of large language models fine-tuned on a large-scale, comprehensive,
and high-quality instruction tuning dataset named SMolInstruct for chemistry tasks. These models,
based on open-source LLMs like Galactica, Llama 2, Code Llama, and Mistral, demonstrate
strong performance on various chemistry tasks, significantly outperforming previous LLMs and
approaching the performance of state-of-the-art task-specific models. We select the Mistral-based
version for experiments due to its superior performance.
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Table 8: Complete Multi-Level 3-Shot Performance Overview on ChemEval part 1. Claude3.7T
represents Claude 3.7-Sonnet-Thinking, while Claude3.7N represents Claude 3.7-Sonnet.

Dimension Task Metric OpenAl-03-mini  OpenAl-ol GPT-40 Claude3.7T  Claude3.7N  Deepseek-R1 Deepseek-V3  Qwen2.5-72B Qwen2.5-32B
Advanced Knowledge Question Answering
ObjQA MCTask Accuracy 72.00 82.00 69.20 65.20 65.20 82.40 72.00 68.00 71.20
ObjQA FBTask Score 51.46 62.65 45.59 42.56 4228 59.96 57.89 53.53 45.99
ObjQA TFTask Accuracy 76.00 86.00 66.00 57.60 62.40 80.80 72.80 48.40 59.60
SubjQA SATask Score 67.00 68.50 61.00 54.10 53.90 71.40 70.40 60.80 55.90
SubjQA CalcTask Score 75.00 78.50 59.10 53.73 55.40 75.10 77.40 61.61 52.61
Literature Understanding
InfoE CNER Fl1 66.33 70.59 71.14 64.62 62.18 70.85 63.28 65.92 59.45
InfoE CERC Fl 29.30 32.69 25.72 23.11 25.39 29.11 25.65 25.63 26.18
InfoE SubE Accuracy 73.17 78.01 65.93 62.66 61.55 76.88 75.78 70.10 60.62
InfoE AddE Fl1 88.33 95.67 90.94 90.57 92.63 89.57 90.87 88.80 81.84
InfoE SolvE F1 84.00 85.00 80.00 81.50 84.63 85.00 81.60 75.00 84.00
InfoE TempE F1 70.00 75.00 73.00 80.00 80.00 83.00 80.00 80.00 75.00
InfoE TimeE F1 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00
InfoE ProdE Accuracy 88.06 91.48 86.88 82.35 87.34 92.33 91.75 84.05 71.38
InfoE CharME F1 76.02 79.60 78.97 77.88 75.02 77.86 77.34 73.63 72.18
InfoE CatTE F1 95.00 95.00 98.00 91.00 94.00 100.00 100.00 97.00 98.00
InfoE YieldE Fl1 60.00 60.00 62.00 57.00 56.00 60.00 60.00 56.00 79.00
InducGen TopC Accuracy 40.00 50.00 48.00 47.00 43.00 54.00 49.00 56.00 30.00
InducGen ReactTR F1 60.00 60.00 71.00 44.00 40.00 69.00 46.00 61.00 67.00
Molecular Understanding
MNGen MOoING Tanimoto (valid)  51.04 (78%) 54.56 (80%)  41.57(90%) 3143 (77%)  38.25(80%)  53.15(90%)  48.84 (96%)  25.18 (77%)  18.34 (75%)
MNTrans TUPAC2MF L2 0.6632 0.7636 0.4944 0.3563 0.3847 0.6303 0.5908 0.2795 0.1652
MNTrans SMILES2MF L2 0.5833 0.5942 0.2858 0.3233 0.3359 0.4569 0.3651 0.1953 0.2238
MNTrans [UPAC2SMILES Tanimoto (valid) 31.51 (52%) 33.63 (52%) 31.71 (83%) 29.33(65%)  40.07 (75%) 3349 (67%)  49.60 (88%) 16.73 (65%) 10.88 (60%)
MNTrans SMILES2IUPAC  Exact Match 0.00 0.0 0.0( 0.40 0.40 1.20 0.00 0.00 0.00
MNTrans  SMILES2IUPAC BLEU 3.44 4.49 1.37 4.19 4.49 4.33 2.53 1.00 0.11
MNTrans  SMILES2IUPAC Tanimoto 0.00 0.00 12.69 17.03 21.01 24.25 17.86 13.05 7.42
MNTrans s28 Tanimoto (valid)  15.17 (44%) 22.62(80%) 1824 (74%) 1216 (72%) 1570 (68%)  21.25(85%)  21.76 (62%)  18.80 (72%)  14.37 (79%)
MPP MolPC Accuracy 73.08 71.60 8.55 63.23 58.49 66.72 55.79 56.87 58.71
MPP MolPR NRMSE (valid) ~ 0.2574 (100%)  0.2536 (100%) 0.4128 (85%) 3.3664 (98%) 5.2053 (98%) 0.2697 (100%) 0.2934 (99%)  0.3779 (98%) 0.3860 (100%)
MolDesc Mol2PC Score 18.50 24.50 .3 21.60 21.30 8.70 14.10 0.40 0.20
Scientific Knowledge Deduction
ReSyn SubRec Fl1 2.67 3.00 0.43 1.09 2.05 2.03 1.36 0.00 0.00
ReSyn PathRec Score .5 40.63 25.00 29.25 28.75 33.13 24.00 33.38 41.13
ReSyn SynDE NRMSE (valid) ~ 0.3806 (100%)  0.5517 (100%) 0.4856 (100%) 0.7561 (100%) 0.6454 (100%) 0.5380 (100%) 0.6527 (96%) 0.3208 (100%) 0.3251 (100%)
RCRec LRec Fl1 . X . . X 11.60 6.00
RCRec RRec F1 45.00 41.67 21.31 32.33 33.65 30.54 12.39 37.26 3527
RCRec SolvRec F1 46.00 26.00 26.40 34.40 22.40 48.00 41.60 46.80 51.20
RCRec CatRec F1 32.50 25.83 5.00 5.08 333 X . 17.04 0
RCRec TempRec NRMSE (valid) ~ 0.4951 (100%)  0.4137 (100%) 0.4841 (100%) 0.3745 (100%) 0.4625 (100%) 0.4141 (100%) 0.3170 (100%) 0.4143 (100%) 0.2561 (100%)
RCRec TimeRec NRMSE 0.2071 (100%) ~ 0.1970 (100%) 0.2164 (100%) 0.1918 (100%) 0.2614 (100%) 0.1980 (100%) 0.2085 (100%) 0.1870 (100%) 0.2080 (100%)
ROP PPred Fl1 12.00 20.00 1.07 11.87 16.19 14.10 0.63 0.40 0.96
ROP YPred Accuracy 54.00 34.00 48.50 75.00 32.50 40.50 40.50 61.00 88.00
ROP RatePred Overlap 16.74 14.41 20.27 17.17 15.82 19.24 13.45 15.82 15.40
RMA IMDer Score 81.25 71.50 83.50 79.75 81.50 79.25 84.75 7125 68.25

e ChemLLM: ChemLLM is the first specialized large language model dedicated to chemistry,
trained on a unique dataset ChemData, and evaluated on a comprehensive benchmark ChemBench.
This model shows remarkable capabilities in handling various chemistry tasks and exhibits strong
general language skills.

* ChemSpark: ChemSpark is a chemistry-specialized large language model developed by the
iFLYTEK team through fine-tuning the Spark-13B model on chemical task datasets. It demonstrates
exceptional proficiency in solving complex chemical tasks while maintaining strong general
capabilities, outperforming previous chemistry-domain models across most evaluation metrics.

B.2 metrics

In this study, we employ a variety of evaluation metrics to comprehensively assess model performance
across different tasks. The main metrics include:

* F1 Score and Accuracy: These are the primary metrics used for most tasks. The F1 score combines
precision and recall to evaluate classification performance, while accuracy measures the proportion
of correct predictions.

* BLEU: Calculated by comparing the n-gram overlap between the model-generated text and the
reference answer, incorporating a brevity penalty to penalize overly short outputs. This metric is
mainly used to assess the similarity between generated results and reference answers.

» Exact Match: This metric checks whether the model output exactly matches the ground truth.

* Normalized Root Mean Square Error (NRMSE): Used to evaluate the prediction error in
numerical or regression tasks, and lower values indicate better model performance.

* Valid Output Ratio: The proportion of valid outputs provided by the model.

* LLMs Score (Score): Subjective evaluation by other large language models, focusing on the
reasonableness and completeness of the answers.

* L2 Score (L2): An indicator for evaluating the similarity between molecular formulas. Specifically,
L2 Score is calculated as 1/(1 + L2 distance), where the L2 distance refers to the L2 norm between
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Table 9: Complete Multi-Level 3-Shot Performance Overview on ChemEval part 2.

Dimension Task Metric Qwen2.5-14B  Qwen2.5-7B  Llama3.3-8B Grok3 Gemini-2.5-Pro  ChemDFM ChemLLM LlaSMol ChemSpark
Ady d Kr Question An.
ObjQA MCTask Accuracy 64.80 55.60 38.40 70.40 90.80 44.80 13.60 4.00 32.00
ObjQA FBTask Score 41.00 34.35 29.68 49.19 56.66 20.98 55.40 29.28 26.20
ObjQA TFTask Accuracy 61.60 63.60 46.80 74.40 72.00 65.20 0.80 38.00 57.20
SubjQA SATask Score 52.20 48.70 29.00 73.00 70.00 30.50 11.50 23.50 31.60
SubjQA CalcTask Score 51.10 40.80 19.70 79.30 81.60 16.40 35.46 68.37 15.80
Literature Understanding
InfoE CNER F1 57.42 64.84 51.35 61.47 73.62 36.98 0.09 9.04 72.30
InfoE CERC Fl1 26.59 2542 15.34 28.66 29.69 0.37 0.28 0.00 37.18
InfoE SubE Accuracy 62.69 68.17 57.71 79.42 76.29 20.04 0.00 0.00 72.86
InfoE AddE F1 9233 53.24 41.71 92.66 95.00 47.13 0.29 0.00 67.00
InfoE SolvE F1 83.50 74.00 69.00 81.00 84.67 71.25 0.43 0.05 85.23
InfoE TempE F1 70.00 79.00 69.00 79.00 77.00 41.00 1.53 0.00 80.00
InfoE TimeE F1 95.00 89.00 89.00 95.00 95.00 78.00 0.98 0.00 95.00
InfoE ProdE Accuracy 84.55 83.14 73.26 90.62 93.75 8.83 0.00 0.00 98.40
InfoE CharME F1 70.25 62.96 32.72 79.36 80.09 17.83 0.00 0.00 39.12
InfoE CatTE Fl1 82.00 78.00 71.00 100.00 99.00 44.00 0.00 0.00 26.00
InfoE YieldE F1 69.00 60.00 61.00 55.00 59.50 41.00 0.00 0.00 69.00
InducGen TopC Accuracy 49.00 47.00 28.00 46.00 73.00 27.00 0.00 0.00 25.00
InducGen ReactTR Fl1 48.00 40.00 39.00 79.00 59.00 26.00 0.00 0.00 32.00
Molecular Understanding
MNGen MoING Tanimoto (valid)  10.27 (55%) 4.71 (36%) 7.51 (34%) 49.26 (92%) 72.33 (92%) 34.29 (69%) 0.00 (0%) 0.00 (0%) 61.38 (95%)
MNTrans TUPAC2MF L2 0.1864 0.1719 0.2619 0.3393 0.8294 0.3225 0.0102 0.0000 0.8176
MNTrans SMILES2MF L2 0.1333 0.1360 0.1674 0.3781 0.6422 0.4025 0.0072 0.0054 0.7224
MNTrans TUPAC2SMILES Tanimoto (valid) ~ 7.67 (48%) 3.51 (30%) 2.37 (14%) 65.15 (94%) 59.44 (87%) 38.66 (88%) 0.00 (0%) 0.00 (0%) 83.98 (99%)
MNTrans SMILES2IUPAC  Exact Match 0.00 0.00 0.00 .00 .40 0.00 0.00 0.00 10.80
MNTrans  SMILES2IUPAC BLEU 0.62 0.15 0.13 3.44 13.61 0.26 0.08 0.00 45.96
MNTrans  SMILES2IUPAC Tanimoto 7.80 3.39 1.91 28.61 54.63 1.82 0.00 0.00 61.08
MNTrans S28 Tanimoto (valid) ~ 12.19 (71%) 6.28 (56%) 3.51 (47%) 27.58 (87%) 20.11 (74%) 0.94 (25%) 0.00 (0%) 0.00 (2%) 79.68 (89%)
MPP MolPC Accuracy 66.84 59.77 53.20 61.71 67.62 56.65 0.00 . 82.88
MPP MolPR NRMSE (valid)  1.6757 (100%) 0.5915 (100%) 50.9659 (81%) 0.2886 (100%) 0.2213 (100%) 1.6438 (87%) 8.2422 (98%) 10.0340 (89%) 1.1634 (100%)
MolDesc Mol2PC Score 2.40 1.90 0.40 24.40 2.30 0.00 0. 9.50 66.20
Scientific Knowledge Deduction
ReSyn SubRec Fl1 0.20 0.20 0.00 0.80 0.00 2.74 0.00 0.00 10.45
ReSyn PathRec Score 28.75 23.50 17.88 25.25 43.00 28.75 6.75 17.50 27.00
ReSyn SynDE NRMSE (valid)  0.3223 (100%) 0.4794 (100%) 0.7969 (100%) 0.2716 (100%) 0.4284 (100%) 0.6243 (51%) 0.6246 (100%) 0.4367 (95%) 0.5968 (66%)
RCRec LRec Fl1 9.20 6.40 2.40 29.60 0.00 12.49 0.00 0.00 16.80
RCRec RRec Fl1 41.69 30.28 30.00 35.14 1.87 14.21 5.60 0.00 5745
RCRec SolvRec F1 26.00 48.00 33.80 30.40 0.00 24.59 0.00 0.00 32.00
RCRec CatRec F1 18.67 8.13 0.25 2.89 1.80 3.90 343 0.00 1.97
RCRec TempRec NRMSE (valid) 0.5359 (100%) 0.4211 (100%) 0.7066 (89%) 0.1687 (100%) 0.1479 (100%)  0.6583 (99%) 1.0526 (100%) 0.9240 (90%) 0.2682 (100%)
RCRec TimeRec NRMSE 0.2053 (100%) 0.2053 (100%) 0.9478 (100%) 0.1944 (100%) 0.2090 (100%) 0.1970 (100%) 0.4404 (100%) 0.3085 (100%) 0.4021 (100%)
ROP PPred F1 0.00 0.40 0.00 10.87 30.00 11.93 0.00 0.00 53.60
ROP YPred Accuracy 92.00 92.00 22.00 9.50 33.00 36.80 0.00 0.00 88.50
ROP RatePred Overlap 16.71 12.29 14.29 2283 29.08 17.46 0.00 0.00 11.03
RMA IMDer Score 74.25 25.25 67.50 80.50 83.00 42.25 4.75 3.75 73.25

Table 10: The standard deviation results of five-time tests across distinct models on ChemEval.

Task SATask CalcTask CNER CERC ProdE S28 MolPC LRec PPred
Metric Score Score Fl1 Fl1 Accuracy Tanimoto Accuracy Fl1 Fl1

GPT-40 61204225 61.804+1.21 6576+ 1.58 25.66 +1.48 86.09 = 1.45 1341 +1.39 6457 +1.23 1320+£299 1.67+1.52
claude3.7T  56.70 & 1.81 55.74 +2.82 60.21 +2.02 25.19 £ 1.91 8239 £2.53 937+£0.78 5890 £1.96 2.00+1.26 1227 £4.71
claude3.7N  55.10 £ 2.18 53.60 £=2.15 54.55+£4.02 2477 £1.18 85.04 £1.88 1058 £1.14 54.37+324 4404150 16.16+ 1.89

Deepseek-R1 ~ 68.50 +2.21 76.10 +2.40 64.14 £1.72 27.18 £0.44 91.20+0.35 16.04 +1.12 53.55+0.63 6.804+2.04 11.97+1.73
Deepseek-V3  71.70 £ 1.91 79.20 £2.94 60.85 £ 1.13 2494 £ 1.12 87.52£2.56 1627 £ 144 4873 +£143 7.60+233 093+1.14
Qwen2.5-72B  58.50 +2.24 61.90 £2.08 61.61 £0.81 26.05+0.84 8486+ 1.15 1147+ 1.17 48.13+£0.65 440+ 1.50 1.73+1.50
LLama3.3-8B  38.40 4 1.93 28.00£0.95 5534 £3.85 17.31£231 7454 £156 1.74+£0.65 4726+186 2134129 0.00%0.00
Grok3 7359+ 1.16 81.20+ 1.60 60.75 4+ 0.34 26.04 = 0.61 91.04 £0.28 17.56 £1.75 56.62 £0.76 36.00 £1.26 11.33 £1.54
Gemini-2.5-Pro  72.00 + 1.41 82.40+£0.97 68.304+0.99 2543 +1.63 92.82+1.92 13.13£1.01 63.63 £1.10 0.00+0.00 29.20 £6.01
ChemDFM 3220+ 1.57 1470 £1.17 41.17+£225 874+252 34734+294 212+0.31 61.35+0.80 26.00=+3.79 18.80 £ 2.29
ChemLLM 1320+ 1.03 15.904+291 0.16+£0.32 024+£0.12 0.00£0.00 0.00+0.00 0.0040.00 0.0040.00 0.0040.00
ChemSpark  33.60 £0.97 18.50 £2.02 71.44 £1.13 3927 £2.59 9440+ 023 8736+ 1.46 8557 +2.19 37.60+0.80 56.40 +3.44

the predicted and reference molecular formulas. A higher value indicates greater similarity between
formulas.

* Overlap: Used to assess the proximity between the predicted range and the reference range. It is
calculated as the length of the intersection divided by the length of the union of the predicted and
reference ranges.

C Full Performance Results

C.1 Performance result of 0-shot settings

The table[5]and the table[6] show the complete experiment results of all models under the zero-shot
setting. We tested all the aforementioned models under zero-shot settings on ChemEval, as analyzed
in Section #.2.1] The results demonstrate that general-purpose models perform relatively well on
knowledge question answering and literature comprehension tasks, while specialized models excel in
more complex chemical tasks such as molecular property prediction. For certain tasks like CatRec,
most models struggled to generate valid outputs, resulting in scores of zero.
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Table 11: Analysis experiment result of CoT and format constraints.

Dimension Task Metric ChemDFM-NoFormat ChemDFM-CoT ChemLLm-NoFormat Llasmol-NoFormat Qwen2.5-7B-CoT
Advanced Knowledge Question Answering
ObjQA MCTask Accuracy 36.00 [5.20 32.00 19.20 28.00 13.60 24.00 50.00 19.60
ObjQA FBTask Score 24.00 10.16 2538 11.22 31.58 13.39 20.88 16.96 27.64 |11.88
ObjQA TFTask Accuracy 46.00 32.00 [14.00 16.00 13.20 56.00 |2.00 70.00 114.80
SubjQA SATask Score 44.80 112.60 44.40 112.20 32.40 119.20 30.00 115.50 57.60 16.80
SubjQA CalcTask Score 32.00 117.30 32.40 117.70 32.40 116.50 22.00 114.50 51.60 18.00
Literature Understanding
InfoE CNER F1 43.4412.27 37.98 13.19 47.61 147.45 1.00 110.62 67.02 15.75
InfoE CERC F1 11.5312.79 9.69 10.95 16.81 116.57 4.1312.89 22.89 13.21
InfoE SubE Accuracy 0.00 /20.07 0.00 /20.07 0.00 0.00 0.00 58.43
InfoE AddE Fl1 33.33 |11.67 46.67 11.67 66.67 166.67 36.67 136.67 65.33 13.66
InfoE SolvE Fl1 65.00 [15.50 60.00 /20.50 76.50 174.83 0.00 78.33 |4.17
InfoE TempE F1 60.00 [14.33 70.00 [4.33 70.00 166.77 40.00 140.00 65.00
InfoE TimeE F1 80.00 12.00 90.00 112.00 95.00 192.69 50.00 125.00 95.00
InfoE ProdE Accuracy 0.00 [34.73 0.61 [34.12 0.00 4.1314.13 26.51 150.49
InfoE CharME F1 74.96 147.70 64.52 137.26 65.00 165.00 44.96 144.96 65.38 122.38
InfoE CatTE F1 35.00 |14.00 40.00 19.00 45.00 145.00 0.00 5.00 55.00 19.00
InfoE YieldE F1 60.00 115.00 60.00 115.00 55.00 155.00 55.00 150.00 50.00 |17.00
InducGen AbsGen Score 20.00 120.00 20.00 120.00 20.00 114.50 11.00 |15.25 73.00 118.25
InducGen OLGen Score 19.00 119.00 18.00 118.00 40.00 136.25 25.00 16.25 58.00 130.25
InducGen TopC Accuracy 30.00 [21.00 45.00 16.00 35.00 135.00 20.00 120.00 45.00 14.00
InducGen ReactTR F1 25.00 112.00 15.00 12.00 30.00 130.00 0.00 |5.00 20.00 [11.00
Molecular Understanding
MNGen MoING Tanimoto (valid) ~ 71.94 (94%) 124.88 61.03 (92%) 113.97 0.62 (2%) 10.62 0.0 (0%) 13.71 3.44 (26%) 10.48
MNTrans TUPAC2MF L2 68.15 16.96 21.15 140.04 6.99 12.45 1.00 11.00 9.93 |8.63
MNTrans SMILES2MF L2 61.27 [2.72 17.14 |46.85 4.2310.48 0.00 3.96 [5.84
MNTrans IUPAC2SMILES Tanimoto (valid)  50.37 (96%) 13.66  44.77 (84%) |1.94 0.0 (0%) 0.0 (0%) 14.70 3.23 (28%) 10.23
MNTrans S28 Tanimoto (valid) 0.14 (50%) 11.98 3.53 (46%) 11.41 2 (4%) 12.00 0.0 (0%) 10.60 2 (2%) 10.28
MPP MolPC Accuracy 63.68 12.33 57.12 14.23 45.36 145.36 54.92 18.42 45.60 118.45
MPP MolPR NRMSE 11.88 1383.07 240.91 1154.03 0.56 1178.80 12.19 117.78 46.98 38.39
MolDesc Mol2PC Score 28.40 125.30 28.00 124.90 20.40 120.10 25.60 125.60 30.40 115.90
Scientific Ki ledee Ded:
ReSyn SubRec F1 0.00 /3.99 0.00 /3.99 0.00 1.3371.33 0.00 [1.42
ReSyn PathRec Score 48.00 123.88 40.50 116.38 24.00 113.13 30.50 120.50 47.00 119.88
RCRec LRec F1 4.00 /22.00 4.80 ]21.20 0.00 0.00 6.00 13.20
RCRec RRec F1 8.00 /5.13 9.33/3.80 22.00 122.00 0.00 44.00 127.07
RCRec SolvRec Fl1 6.00 [4.53 14.00 13.47 8.00 18.00 2.00 11.50 20.00 /5.60
RCRec TempRec NRMSE (valid)  0.421 (85%) 10.04  0.2681 (85%) 10.11  0.9821 (45%) 10.14  7.9004 (15%) 17.03 0.3174 (55%)
RCRec TimeRec NRMSE (valid) 0.5337 (70%) 10.06  0.6024 (55%) 10.13 1.306 (25%) 10.49 - (0%) 0.4396 (100%) 10.12
ROP PPred F1 4.00 [14.80 14.00 |4.80 0.00 8.00 /8.00 .
ROP YPred Accuracy 52.00 (50%) 144.80  72.00 (50%) 164.80  70.00 (50%) 170.00  10.00 (50%) [18.00  80.00 (50%) 113.00
ROP RatePred Overlap 3.20 10.59 9.86 16.07 . 0.00 |3.68 2.70 110.65
RMA IMDer Score 57.00 119.00 55.00 121.00 37.00 132.25 32.00 130.50 56.00 |22.75

C.2 Performance result of multimodal tasks

The table[7] shows the performance of mainstream multimodal large language models on ChemEval’s
multimodal tasks, with ’-” indicating meaningless responses. While most models handle basic tasks
like molecular formula identification adequately, they struggle significantly with more complex
challenges involving chemical reaction pathways and molecular properties. This performance gap
widens further in Molecular Understanding and Scientific Reasoning tasks, which require both
accurate molecular structure recognition from visual inputs and comprehensive chemical knowl-
edge application. Our evaluation focused solely on general-purpose multimodal models, excluding
chemistry-specific ones. As multimodal capabilities become increasingly essential in chemical
research, this represents a critical area requiring urgent development.

C.3 Performance result of 3-shot setting

As shown in the table [§] and the table [0 we evaluated all the aforementioned models under 3-
shot settings on ChemEval. The results indicate that, similar to the zero-shot scenario, general-
purpose models perform relatively well on advanced knowledge question answering and literature
understanding tasks, while struggling with more complex molecular understanding and scientific
knowledge deduction tasks. Specialized models such as ChemLLLM and LlaSMol, due to their poor
instruction-following capabilities, failed to return meaningful responses for most tasks, resulting in
anomalous scores. These findings corroborate our previous analysis.

D Results of Analysis Experiments

We conducted experimental analyses in two key areas. First, to establish the reliability of ChemEval
metrics and demonstrate our evaluation framework’s robustness, we conducted three repeated trials
across identical task categories and calculated the standard deviation of results. Due to computational
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resource limitations, we were unable to conduct comprehensive experiments on all models and tasks.
Therefore, we selected representative models and tasks for evaluation. Second, we investigated the
differential impact of reasoning-oriented and format-constraint instructions in prompts, examining
how reasoning capabilities and instruction-following ability influence model performance on complex
chemical tasks.

D.1 Benchmark Stability Assessment

The table [0 shows the result of our repeated experiments. The results reveal that standard deviations
across most metrics remain below 5.0, demonstrating consistent performance across multiple evalua-
tions. This statistical stability confirms the robustness of our evaluation framework, ensuring reliable
and reproducible assessments of system performance.

D.2 Analysis of CoT and Format Constraints

As illustrated in the table we evaluate four models—ChemDFM, ChemLLM, LlasMol, and
Qwen?2.5-7B—using varied prompt configurations. When format restrictions were removed from
prompts, ChemDFM and LlasMol exhibited improved performance on simpler chemical tasks
but degraded results on more complex ones. Conversely, ChemLLM demonstrated significant
performance gains across most tasks following format restriction removal. This indicates that the
loss of instruction-following ability can severely affect the practical usability of domain-specific
models. Regarding reasoning-oriented instructions, CoT prompting yielded inconsistent results for
ChemDFM, enhancing performance in some tasks while diminishing it in others. Notably, Qwen2.5-
7B consistently demonstrated performance deterioration across most tasks under CoT conditions,
suggesting that explicit reasoning mechanisms do not substantially contribute to performance on
chemical tasks.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly reflect the main contributions and scope
of this paper, presenting the chemical large language model benchmark we established and
relevant experimental results, and systematically evaluating the performance of different
models on various chemical tasks.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a separate "Limitations and Future Work" section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper establishes a benchmark for chemical tasks and provides analysis
based on experimental results. It does not contain any theoretical results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have released the code and data for the chemical task benchmark we
established, and the evaluation of the models was primarily conducted through the official
APIs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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964 5. Open access to data and code

965 Question: Does the paper provide open access to the data and code, with sufficient instruc-
966 tions to faithfully reproduce the main experimental results, as described in supplemental
967 material?

968 Answer: [Yes]

969 Justification: We have released the code and data for the chemical task benchmark we
970 established, and the evaluation of the models was primarily conducted through the official
971 APIs.

972 Guidelines:

973 * The answer NA means that paper does not include experiments requiring code.

974 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
975 public/guides/CodeSubmissionPolicy) for more details.

976 * While we encourage the release of code and data, we understand that this might not be
977 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
978 including code, unless this is central to the contribution (e.g., for a new open-source
979 benchmark).

980 * The instructions should contain the exact command and environment needed to run to
981 reproduce the results. See the NeurIPS code and data submission guidelines (https !
982 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

983  The authors should provide instructions on data access and preparation, including how
984 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
985 * The authors should provide scripts to reproduce all experimental results for the new
986 proposed method and baselines. If only a subset of experiments are reproducible, they
987 should state which ones are omitted from the script and why.

988 * At submission time, to preserve anonymity, the authors should release anonymized
989 versions (if applicable).

990  Providing as much information as possible in supplemental material (appended to the
991 paper) is recommended, but including URLSs to data and code is permitted.

992 6. Experimental setting/details

993 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
994 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
995 results?

996 Answer: [Yes]

997 Justification: We have released the code and data for the chemical task benchmark we
998 established, and the evaluation of the models was primarily conducted through the official
999 APIs.

1000 Guidelines:

1001 » The answer NA means that the paper does not include experiments.

1002 * The experimental setting should be presented in the core of the paper to a level of detail
1003 that is necessary to appreciate the results and make sense of them.

1004 ¢ The full details can be provided either with the code, in appendix, or as supplemental
1005 material.

1006 7. Experiment statistical significance

1007 Question: Does the paper report error bars suitably and correctly defined or other appropriate
1008 information about the statistical significance of the experiments?

1009 Answer: [Yes]

1010 Justification: Due to computational resource limitations, we were unable to conduct extensive
1011 repeated evaluations. Instead, we performed tests on representative models and tasks and
1012 reported the standard deviation.

1013 Guidelines:

1014 » The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The paper provides detailed information about compute resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research adheres to the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed both potential positive and negative societal impacts in the
"Limitations and Future Work" sections of the paper.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our datasets are manually constructed and do not pose any risk of misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All codes, datasets, and models used in the paper have been properly cited
with their original sources.

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in this paper are accompanied by documenta-
tion, which is provided alongside the assets and includes detailed instructions for dataset
evaluation and usage.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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171 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1172 may be required for any human subjects research. If you obtained IRB approval, you
1173 should clearly state this in the paper.

1174 * We recognize that the procedures for this may vary significantly between institutions
1175 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1176 guidelines for their institution.

1177 * For initial submissions, do not include any information that would break anonymity (if
1178 applicable), such as the institution conducting the review.

1179 16. Declaration of LLM usage

1180 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1181 non-standard component of the core methods in this research? Note that if the LLM is used
1182 only for writing, editing, or formatting purposes and does not impact the core methodology,
1183 scientific rigorousness, or originality of the research, declaration is not required.

1184 Answer: [NA]

1185 Justification: The development of the core methods in this research does not involve LLMs
1186 as any important, original, or non-standard components.

1187 Guidelines:

1188 * The answer NA means that the core method development in this research does not
1189 involve LLMs as any important, original, or non-standard components.

1190 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1191 for what should or should not be described.
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