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Abstract
Electric vehicles (EVs) are generally considered more envi-
ronmental sustainable than internal combustion engine vehi-
cles (ICEVs). Government and policy makers may want to
incentivize multi-vehicle households that, if purchsed a new
EV, would use their EV to replace a large portion of their
ICEV mileage. It is hence important to analyze how EV pro-
curement affects annual EV mileage for different households.
Given that many relevant data, especially experimental data
are often unavailable in the real-world, we need causal anal-
ysis tools to answer this question. Additionally, we aim to
compare the expected EV mileage of different combination
of vehicles a household owns. It is impossible to observe both
combinations since only one might happen, which makes
causal inference challenging. In this paper, we construct a
causal AI framework utilizing counterfactual reasoning meth-
ods to solve this problem.

Introduction
The transportation industry contributes to over a quarter of
total greenhouse gas (GHG) emissions in the United States,
and light-duty vehicles alone are responsible for more than
half of these emissions. There is a widespread consensus
that the adoption of electrified vehicles will be a signifi-
cant factor in future initiatives to achieve carbon neutral-
ity (Jenn 2020; Burnham et al. 2021). When targeting in-
dividual choices and when the interventions have a corre-
sponding cost associated with them it is important to take
into account the possibility for heterogeneous treatment ef-
fects. The benefits from intervening on some groups, or on
some individuals, might be smaller or larger than the benefits
of intervening on other groups or individuals. Understand-
ing the heterogeneity of driving patterns across individuals,
households and groups is important when trying to maxi-
mize the desired outputs. A recent paper (Nunes, Woodley,
and Rossetti 2022) compares the benefits from from target-
ing different types of households. The main difference be-
tween households the authors considered in their model was
in the number of current vehicles in a household. The re-
sults indicated that the advantages of acquiring an EV could
drastically vary depending on the current vehicle mix.

Nowadays many households own more than one vehicle.
In particular, many people choose to purchase an EV as a
complementary vehicle, not driving it much while primar-
ily relying on their ICEV (Burlig et al. 2021). This could

be due to various reasons including their personal prefer-
ence towards their ICEVs, insufficient EV mileage ranges,
and charging inconvenience. As a result, the carbon emis-
sion benefit is not as large as households who drive their
EVs as primary vehicles. In the interest of budget, policy
makers may want to target EV purchase incentives on those
who, upon purchasing new EVs, would use their EVs to re-
place a large portion of their ICEV driving mileage. To solve
this optimization problem, we need to answer the ques-
tion, “what is the expected difference in EV mileage among
households convinced to purchase a new EV versus not con-
vinced?” This gives policy makers a useful criterion for pri-
oritizing incentives.

Note that this question, at the individual household level,
is counterfactual. We can never observe or test both actions,
one of them cannot occur. There are significant caveats with
not treating this at the individual level (Mueller and Pearl
2022). Li and Pearl detail the sometimes severely subopti-
mal decision making that results from a traditional analysis
(Li and Pearl 2019).

In this paper, we focus on multi-vehicle households, and
develop a causal AI framework to estimate the counterfac-
tual effects of adding an additional EV to a household on the
increment of their EV driving mileage.

Preliminaries
Causal Inference
A causal model is composed of a causal directed acyclic
graph (DAG) G(V,E) and a set of structural equations. V
are nodes representing model variables and E are edges
representing causal relations between two nodes. Directed
edges encode the direction of causality, i.e., if a variable A
is in the structural equation that determines another variable
B, an edge is drawn from A to B.

In this paper, we follow the notation in (Pearl 2009), and
use uppercase letters to denote variables, and lowercase let-
ters (combined with symbols and numbers) to denote the
values a variable can take on. For example, the values of a
binary variable A can be denoted as a and a′, and the values
of a non-binary variable B can be denoted as b1, b2, . . . . A
variable C with the value d of another variable D as a sub-
script represents the event of C with the intervention D = d.
This is denoted as either Cd or CD=d, and they are inter-



changeable.

Causal AI Framework for EV Driving
Analysis

Causal Model
We are interested in learning about what happens to a house-
hold’s total miles on EV if they purchase an additional EV.
We first build a graphical representation of the causal rela-
tionships using a causal directed acyclic graph.
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Figure 1: Causal DAG

Since our analysis are not based on real-world data and
for illustration purposes, we limit our focus by assuming the
variables are categorical and can only take on specific val-
ues. Our approach can be easily generalized for larger sets
of values. For the same reason, we model one observed con-
founder and one unobserved confounder while this frame-
work applies to more confounders of either type, too.

In this model, variable X represents the numbers and
types of cars a household owns. We focus our discussion
on cases where a household has 1) one EV and one ICEV
or 2) two EVs and one ICEV. Cases 1 and 2 are represented
by X = x and X = x′, respectively. Variable Y repre-
sents the annual miles driven on all the EVs for a household,
which lies in one of the five ranges, y1 = [0, 5000), y2 =
[5000, 10000), y3 = [10000, 15000), y4 = [15000, 20000),
y5 = [20000,∞). Variables C and U are two confounders
causing both X and Y . C is observed (assumed available in
the data), which represents the annual total travel needs for
a household using all available vehicles. C = c or C = c′

denotes a household needs to travel more or less than 15000
miles per year. U is unobserved (assumed not available in
the data), which represents whether the typical trip types of
a household favors EVs. U = u indicates that the household
mainly drives trips that favors EVs (e.g., shorter trips, trips
with easy charging options, etc.), and U = u′ indicates that
the household mainly drives trips that favors ICEVs (e.g.,
longer trips, trips to cold places, etc.). Note that, although U
is unobserved for single households, we might have an es-
timate of what percentage of the population has U = u or
U = u′. Hence, we assume that the prior P (U) is given.

Problem Setting
We are interested in assessing for a household where we ob-
serve they drove one EV and one ICEV that drove certain
EV miles for the past year, what the benefit is on annual EV
miles if an additional EV is added. This is a counterfactual
query because when we observe a household with certain

combination of vehicles (e.g., one EV and one ICEV), we
do not simutaneously observe them with a different com-
bination of vehicles (e.g., two EVs and one ICEV). In ad-
dition, we are given observational data from the past, and
we are specifically interested what happens in the current
timestamp if they buy a new EV vs. not buying a new EV.
To put this into a counterfactual expression (Pearl 2009; Li
and Pearl 2022b), we have

P (YX=x = ya, YX=x′ = yb | XP = x′, Y P = yp), (1)

where XP and Y P are the variables X and Y at the pre-
vious timestamp where the observational data are given. ya,
yb, yp are values of Y (or Y P ) and 1 < a, b, p < 5. Y and
Y P are different variables but takes on the same set of val-
ues. Note that this expression is the non-binary probability
of necessity and sufficiency (PNS(2)) (Li and Pearl 2022b)
of X on Y . Here, our goal is to estimate, for a household
with one EV and one ICEV that drove yp EV miles last year,
what the probability is that they would drive yb this year if
not added a new EV, and would drive ya if added a new EV.
We want to estimate this probability for all a, b, and p.

Estimation
Without additional assumptions no counterfactual query can
be point estimated, even with both observational and ex-
perimental data (Tian and Pearl 2000). However, it may be
possible to bound the query using observational and/or ex-
perimental data (Tian and Pearl 2000; Li and Pearl 2022b;
Mueller, Li, and Pearl 2022; Zhang, Tian, and Bareinboim
2022; Dawid, Musio, and Murtas 2017; Li and Pearl 2022c).
The listed bounding methods in existing work that are ap-
plied to different settings, such as binary, continuous, mono-
tonic, etc. We will adapt methods from (Li and Pearl 2022b)
to bound the (1) since the equation is the non-binary proba-
bility of causation. We will apply Theorem 8 in (Li and Pearl
2022b) to obtain the query (1) (referred to as Li-Pearl’s PNS
bounds).

In addition, experimental data are usually unavailable for
this problem, since it is costly to conduct an experiment
to provide households with EVs. Fortunately, we can use
observational data to deduce bounds on experimental data,
which are based on the Theorem 4 in (Li and Pearl 2022a)
(referred to as Li-Pearl’s causal effect bounds.)

Another challenge of counterfactual estimation in this
case is that the observational data are from the past, while we
are trying to infer the behaviors for the future. To make use
of the available observational data, there need to be assump-
tions on how the past observational data predicts the future
observational state. Causal inference frameworks, when ap-
plied to real-world problems, usually implicitly assume that
what we observe in the past continues to apply for the fu-
ture. To this end, we will discuss two assumptions of similar
purposes, and is up to the practitioner to choose which as-
sumption is more plausible for their setting.

Scenario 1: Constant A simple assumption is to assume
the observations from the past has not changed as of the time
the study is being conducted. Formally, this means for each



household, X = XP , Y = Y P . Hence, (1) can be simpli-
fied as follows.

P (YX=x = ya, YX=x′ = yb | XP = x′, Y P = yp)

=P (YX=x = ya, YX=x′ = yb | X = x′, Y = yp)

=P (YX=x = ya | X = x′, Y = yp) (2)

This becomes the non-binary probability of necessity (Li
and Pearl 2022b) of X on Y . Under this assumption, (2) can
be bounded using the Theorem 7 in (Li and Pearl 2022b)
(referred to as Li-Pearl’s probability of necessity bounds.)

Scenario 2: Variant A relaxed assumption is to permit
change in observations each year, but assume the changes
follow the same pattern. Under this assumption, in ad-
dition to the observational data from the previous year
P (XP, Y P ), we additionally need the observational data
P (XPP, Y PP ) from the year before the previous year. For-
mally, this assumption translates to

P (XP = x, Y P = yp | XPP = x′, Y PP = ypp)

=P (X = x, Y = yp | XP = x′, Y P = ypp)

Hence, we have the observational data P (X,Y | XP, Y P )
for (1). We can then use the observational data to bound the
experimental data to obtain P (YX | XP, Y P ). Given both
observational and experimental data, we can use Li-Pearl’s
PNS bounds to bound (1).

Computing the Benefit
Once we have the bounds of (1) (if assumption 2 holds) or
(2) (if assumption 1 holds), there are multiple ways where
the results can be used. For example, for each household,
we can compute the bound of the expected EV mileage if
added an additional EV and the bound of the expected EV
mileage if not added an additional EV. So for each house-
hold, the difference in the two expectations is the expected
EV mileage increment. We can identify which households
are expected to have large mileage increments, and which
are not. Another way is to find what most likely to happen
for each household, which means finding the PNS or PN
bound with the highest probability. The researcher can de-
cide which way best fits their needs.

Experiment and Results
Scenario 1: Constant
In this section, we simulated the following example to illus-
trate our proposed framework under the first assumption.

We generated P (X,Y,C) and P (U) uniformly, as shown
in Tables 1 and 2. We then applied Li-Pearl’s causal effect
bounds to derive the experimental (RCT) data P (Yx) using
the data from Tables 1 and 2. The results are presented in Ta-
ble 3. Subsequently, we used Li-Pearl’s PN bounds to calcu-
late the non-binary Probability of Necessity, with the results
displayed in Table 4. Note that we are only presenting the
upper bounds because the lower bounds for this randomly
generated example are all zero, which provides no additional
information.

Table 1: Scenario 1: Simulated observational distribution of
the whole population.

2 EV & 1 ICEV 1 EV & 1 ICEV
≥ 15, 000 < 15, 000 ≥ 15, 000 < 15, 000

y1 0.019 0.008 0.043 0.038
y2 0.014 0.061 0.178 0.045
y3 0.016 0.007 0.051 0.043
y4 0.089 0.018 0.017 0.142
y5 0.021 0.086 0.033 0.071

Table 2: Scenario 1: Prior knowledge about the trip type.

Typical trip type (U ) Percentage
More long trips (u) 6.7%

More short trips (u′ ) 93.3%

From Table 3, we have obtained narrow bounds on causal
effects. However, according to our reasoning, the causal ef-
fects are not the correct queries we need. In Table 4, al-
though there are only 10 entries that are not 1, we still gather
useful information for decision-making. For instance, we
can determine that the probability of the population having
1 EV and 1 ICEV, with an EV drive level of y2, and increas-
ing their EV drive to level y3 with one more EV, is at most
34.5%.

Scenario 2: Variant
In this section, we simulated another example to illus-
trate our proposed framework under the second assump-
tion. We generated P (X,Y,C|XP = x′, Y P = y1) and
P (U |XP = x′, Y P = y1) = P (U) (since U is the con-
founder) uniformly, as shown in Tables 5 and 6. We then
applied Li-Pearl’s causal effect bounds to derive the experi-
mental (RCT) data P (YX=x|XP = x′, Y P = y1) using the
data from Tables 5 and 6. The results are presented in Table
7. Subsequently, we used Li-Pearl’s PNS bounds to calcu-
late the non-binary Probability of Necessity and Sufficiency,
with the results displayed in Table 8. Note that we are only
presenting the upper bounds because the lower bounds for
this randomly generated example are all zero, which pro-
vides no additional information.

From Table 7, we have obtained narrow bounds on causal
effects. However, according to our reasoning, the causal ef-
fects are not the correct queries we need and should not be
directly used to answer our question. In Table 8, for instance,
we can determine that the probability of an individual who
have 1 EV and 1 ICEV that would have EV drive level y5 if
having 2 EV and 1 ICEV and would have EV drive level y2
if still have 1 EV and 1 ICEV, is at most 32.6%.

Conclusion
In this paper, we focus on the problem of optimizing elec-
tric vehicle procurement for maximizing environmental sus-
tainability. We showed that the question of how much each
household benefits from an additional EV is a counterfac-
tual question, which is hard to solve using available obser-



Table 3: Scenario 1: Bounds of the experimental distribution.

Lower bound Upper bound
P (y1x) 0.027 0.117
P (y2x) 0.075 0.283
P (y3x) 0.023 0.100
P (y4x) 0.184 0.472
P (y5x) 0.164 0.438

Table 4: Scenario 1: Upper bounds of non-binary Probability
of Necessity.

P (yax|x′, xp) p = 1 p = 2 p = 3 p = 4 p = 5
a = 1 1 0.404 0.957 0.566 0.865
a = 2 1 0.933 1 1 1
a = 3 0.951 0.345 0.819 0.484 0.740
a = 4 1 1 1 1 1
a = 5 1 1 1 1 1

vational or experimental data. To approach this problem, we
developed a causal AI framework based on counterfactual
reasoning. We showed how to apply this framework using
simulated experiment. For both scenarios discussed, we ob-
tained bounds on the query of interest.

Table 5: Scenario 2: Simulated observational distribution of
the population XP = x′, Y P = y1.

2 EV & 1 ICEV 1 EV & 1 ICEV
≥ 15, 000 < 15, 000 ≥ 15, 000 < 15, 000

y1 0.110 0.062 0.066 0.035
y2 0.066 0.009 0.030 0.072
y3 0.142 0.047 0.006 0.063
y4 0.010 0.098 0.029 0.098
y5 0.004 0.013 0.012 0.028

Table 6: Scenario 2: Prior knowledge about the trip type.

Typical trip type (U ) Percentage
More long trips (u) 10.8%

More short trips (u′ ) 89.2%

Table 7: Scenario 2: Bounds of the experimental distribution
of the population XP = x′, Y P = y1.

Lower bound Upper bound
P (y1x) 0.173 0.393
P (y2x) 0.075 0.139
P (y3x) 0.211 0.395
P (y4x) 0.108 0.303
P (y5x) 0.017 0.051
P (y1x′) 0.101 0.476
P (y2x′) 0.102 0.394
P (y3x′) 0.069 0.260
P (y4x′) 0.127 0.521
P (y5x′) 0.040 0.188

Table 8: Scenario 2: Upper bounds of non-binary Probabil-
ity of Necessity and Sufficiency of the population XP =
x′, Y P = y1.

P (yax, y
b
x′) b = 1 b = 2 b = 3 b = 4 b = 5

a = 1 0.596 0.513 0.412 0.615 0.369
a = 2 0.439 0.356 0.255 0.458 0.212
a = 3 0.581 0.498 0.397 0.590 0.354
a = 4 0.570 0.487 0.386 0.589 0.343
a = 5 0.409 0.326 0.225 0.428 0.182
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