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Abstract

Unlike the Open Domain Question Answer-
ing (ODQA) setting, the conversational (OD-
ConvQA) domain has received limited atten-
tion when it comes to reevaluating baselines
for both efficiency and effectiveness. In this
paper, we study the State-of-the-Art (SotA)
Dense Passage Retrieval (DPR) retriever and
Fusion-in-Decoder (FiD) reader pipeline, and
show that it significantly underperforms when
applied to ODConvQA tasks due to various lim-
itations. We then propose and evaluate strong
yet simple and efficient baselines, by introduc-
ing a fast reranking component between the
retriever and the reader, and by performing tar-
geted finetuning steps. Experiments on two
ODConvQA tasks, namely TOPIOCQA and
OR-QuAC, show that our method improves the
SotA results, while reducing reader’s latency
by 60%. Finally, we provide new and valuable
insights into the development of challenging
baselines that serve as a reference for future,
more intricate approaches, including those that
leverage Large Language Models (LLMs).

1 Introduction

In an automated information-seeking conversation
scenario between two parties, the human ques-
tioner asks a series of questions and expects to
receive a relevant response from the answering
system (Oddy, 1977). Current State-of-the-Art
(SotA) shapes the answerer via two neural mod-
els, the Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020) and the Fusion-in-Decoder (FiD) (Izac-
ard and Grave, 2021b), which act as retriever and
reader, respectively. Their success stems from
the ability to overcome certain limitations of their
sparse and extractive counterparts, such as not re-
lying on lexical retrieval heuristics or extracting
spans as a response (Chen et al., 2017; Yang et al.,
2019; Lee et al., 2019; McCallum et al., 2019; Guu
et al., 2020; Lewis et al., 2020; Shen et al., 2023).
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Among the most promising approaches are those
concerning the improvement of training strategies
(Guu et al., 2020; Balachandran et al., 2021; Qu
et al., 2021), use of rerankers (Hu et al., 2019; Mao
et al., 2021; Barlacchi et al., 2022; Iyer et al., 2021;
Glass et al., 2022), question rewriting (Vakulenko
et al., 2021; Del Tredici et al., 2021), reader to re-
triever knowledge distillation (Izacard and Grave,
2021a), memory-efficient pipeline (Izacard et al.,
2020; Del Tredici et al., 2022), and leveraging struc-
tured information (Min et al., 2019; Yu et al., 2022).

Unlike the Open Domain Question Answering
(ODQA) setting, a reassessment of the baselines in
terms of both efficiency and effectiveness appears
to be under-explored in the conversational (OD-
ConvQA) domain. In this paper, we focus on the
typical DPR retriever and FiD reader (DPR+FiD)
pipeline, and show its limitations when applied
to the ODConvQA setting. Despite its popularity,
we find that this baseline significantly underper-
forms when finetuned on downstream tasks. We
show that simple improvements in the training, ar-
chitecture, and inference setups of the DPR+FiD
pipeline, provide a strong and efficient baseline that
exceeds the performance of SotA models on two
common ODConvQA datasets: TopiOCQA (Ad-
lakha et al., 2022) and ORConvQA (OR-QuAC)
(Qu et al., 2020).

We point out several limitations of the pipeline,
such as: 1) reader’s susceptibility to noisy input,
2) retriever’s reduced coverage, 3) retriever’s lack
of cross semantic encoding between the conversa-
tion and the retrieved passages, and 4) reader’s
latency is heavily impacted by the number of input
passages. To mitigate these, we propose and evalu-
ate a simple and effective approach by including a
fast reranking component between the retriever and
the reader, and by performing targeted finetuning
steps. The proposed Retriever-Reranker-Reader
finetuning (R3FINE) strategy leads to baseline
models with a better latency/performance trade-off.
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Figure 1: The Retriever-Reranker-Reader (R3) pipeline

These baselines, which are simple and easy to repli-
cate, serve as a reference point for comparing new
and more complex models, and determining their
effectiveness. Our contributions are the following:

• We identify and address several limitations of
the typical pipeline used in ODConvQA.

• We propose the R3FINE strategy, which im-
proves SotA results on two common datasets
and reduces pipeline’s latency by 60%.

• We provide new and valuable insights for cre-
ating simple and efficient baselines, which
serve as a reference point for future compari-
son of new more complex approaches.

2 End-to-End Baselines for ODConvQA

This section provides a brief introduction to the
pipeline on which this work focuses. Figure 1
shows the typical pipeline used within the OD-
ConvQA setting, featuring an additional reranker
component. A conversation history is input to
the DPR retriever. This module exploits a dual-
encoder based on the BERT (Devlin et al., 2019)
model. First, it encodes the conversation his-
tory via the ConversationEncoder component,
which takes as input the text of the conversation
history c1, c2, . . . , ci, and then it outputs a dense
representation hc. Next, this representation is used
to perform a dense search to retrieve the most rele-
vant passages, i.e., text blocks that serve as basic
retrieval units, from an external knowledge source
(e.g., Wikipedia). The latter contains dense repre-
sentations of the passages that have been encoded
via the PassageEncoder component, which takes
as input a j-th passage with a given text length N ,
i.e., pj1 , pj2 , . . . , pjN , and outputs a dense represen-
tation hpj . The dense search is performed via the
Maximum Inner-Product Search (MIPS) function
which outputs the value corresponding to h⊺c · hpj .

Once the top-k relevant passages have been re-
trieved, their text is appended to the conversa-

tion history and subsequently passed to the FiD
reader, which is based on the T5 (Raffel et al.,
2020) model. The newly created textual sequences
of length S are then encoded in parallel via the
Encoder component that outputs a dense represen-
tation h̄ = {h1, . . . , hS}. As a final step, the dense
representations of the entire list of k input passages
are concatenated to form a single h̄1⊕h̄2, . . . ,⊕h̄k
sequence that forms the input to the Decoder com-
ponent responsible for generating the answer a.

3 Strong Baseline Models

This work focuses on two main datasets.
TOPIOCQA (Adlakha et al., 2022) is a large-scale
open-domain information-seeking conversational
dataset that contains a challenging phenomenon
in the form of topic switching. OR-QuAC (Qu
et al., 2020) leverages CANARD’s (Elgohary et al.,
2019) context-independent question rewrites of the
QuAC (Choi et al., 2018) dataset, and adapts it to
the open-domain setting. Further details regarding
the datasets are provided in Appendix A.

We outline a number of limitations of the typical
DPR+FiD pipeline, along with suggestions on how
to mitigate them. While some of those intercon-
nect at different levels the various efforts made in
the ODQA domain (Balachandran et al., 2021; Yu
et al., 2022), our goal is to offer a perspective on
the ODConvQA setting.

3.1 Current Limitations and Bottlenecks
Reader’s susceptibility to noisy input. Previous
findings have shown that the FiD reader perfor-
mance significantly improves when increasing the
number of retrieved passages (Izacard and Grave,
2021b). While confirming this finding, in Table 1
we also present a different perspective to it. We
show that when the same reader model is provided
with the relevant (i.e., gold) passage in input, the
performance decreases as the number of retrieved
passages increases. This suggests that there is a
balance in presenting input to the reader: if the gold



TOPIOCQA
w/o gold w/ gold

top-k EM F1 EM F1
1 19.3 37.6 38.3 65.5

10 29.8 52.4 35.8 61.5
50 33.0 55.1 35.9 59.5

Table 1: FiD reader performance (Exact Match and F1
scores) on the TOPIOCQA dev split, with/without the
gold passage (w/o gold) in the top-k limit.

passage is present, i.e., the retriever could retrieve
it, a small relevant list is best, but otherwise a larger
list is better.

Retriever’s reduced coverage. Current solutions
impose a hard top-k limit on the number of pas-
sages returned by the DPR retriever and assume
that the relevant ones are present within this limit.
Table 1 shows that coverage is key during the re-
trieval phase for the reader to perform well. To
improve it, we suggest introducing a simple and
efficient Transformer-based (Vaswani et al., 2017)
reranker component after the retriever. This com-
ponent, shown in Figure 1 and described in the next
paragraph, is designed to reconsider a larger pool
of passages returned by the DPR and to provide the
FiD with a reduced and improved list of passages.
Since this module operates at the semantic level,
we refer to it as the SemanticReranker. Table
2 shows the potential coverage margins and the
retrieval results obtained after the introduction of
such a module, when a larger number of passages
(50 vs 1000) is considered.

Retriever’s lack of cross semantic encod-
ing between the conversation and the re-
trieved passages. The DPR retriever performs
independent encoding of the passages via the
PassageEncoder function. This means that it is
not able to exploit the semantic relationship among
them. This can be mitigated via the introduction
of the previously mentioned SemanticReranker
component. This new module is based on the Trans-
formerEncoder and applies the following function:

h̃c, h̃p1 , . . . , h̃pk = Reranker(hc, hp1 , . . . , hpk)

where each element of the input attends to both the
conversation dense representation hc and passages
dense representations hpi . Reranking is performed
over the new output sequence h̃c, h̃p1 , . . . , h̃pk via
the previously mentioned MIPS function.

TOPIOCQA OR-QuAC
top-k w/o SR w/ SR w/o SR w/ SR

1 24.66 42.64 29.27 56.64
10 62.45 75.62 57.14 72.27
50 77.41 84.69 65.22 73.53

1000 91.49 91.49 74.55 74.55

Table 2: Dev split retrieval coverage before/after the in-
troduction of the SemanticReranker (w/o SR) when
a larger number of passages is considered (50 vs 1000).

Reader’s latency is heavily impacted by the
number of input passages. Figure 2 shows that
the latency of the reader can be significantly re-
duced by decreasing the number of input pas-
sages. However, a trivial limitation to top-k con-
siderably degrades the performance of the module,
thus leading to an inevitable trade-off. The task
of the SemanticReranker involves pushing rele-
vant passages into the top-k list, and allowing for a
low k value to be set.

1 3 5 10 20 30 50

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

TopiOCQA F1 score OR-QuAC F1 score

TopiOCQA latency OR-QuAC latency

top-k

F
1

la
t
e
n
c
y

Figure 2: FiD reader performance (F1 score and latency)
on the TOPIOCQA dev split and OR-QuAC test split,
with varying top-k input passages. Latency is relative
to the top-50 (top-k vs top-50).

3.2 A Strong and Efficient Baseline

Based on the findings above, we introduce the
Retriever-Reranker-Reader finetuning (R3FINE)
strategy, which can be used to design strong and
efficient baselines for ODConvQA. First, we in-
crease the number of passages returned by the
DPR from the initial 50 to 1000. Then, we add
the SemanticReranker component, which corre-
sponds to a single TransformerEncoder layer.
We train/finetune the SemanticReranker along
with the ConversationEncoder while keeping
the PassageEncoder frozen. Guided by the intu-



TOPIOCQA OR-QuAC
w/o SR w/ SR w/ SR + FT w/o SR w/ SR w/ SR + FT

top-k EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
1 19.3 37.6 28.1 50.4 30.7 52.4 14.7 23.0 13.9 25.7 16.6 28.9
10 29.8 52.4 33.2 57.3 35.8 59.0 19.0 28.2 19.4 30.0 21.6 32.9
50 33.0 55.1 33.9 56.2 35.2 56.1 22.0 29.9 22.1 30.2 23.5 32.2

Table 3: FiD reader performance (Exact Match and F1 scores) on the TOPIOCQA dev split and OR-QuAC test split
before/after the introduction of the SemanticReranker (w/o SR), together with the results obtained after a further
reader finetuning step with top-10 output by the SR (w/ SR + FT). Underlined values indicate the results obtained
by the DPR+FiD pipeline. Bold values indicate the results obtained after the introduction of the SR together with
targeted finetuning steps.

TOPIOCQA
Model EM F1
BM25 + DPR Reader 13.6 25.0
BM25 + FiD 24.1 37.2
DPR Retriever + DPR Reader 21.0 43.4
DPR Retriever + FiD 33.0 55.3
(Ours) DPR Retriever + FiD 33.0 55.1
+ R3FINE (top-10) 35.8 59.0

Table 4: TOPIOCQA dev split baselines performance
(Exact Match and F1 scores) comparison between
sparse/dense retrievers (BM25/DPR Retriever) and ex-
tractive/generative readers (DPR Reader/FiD).

ition that less but more relevant passages are ben-
eficial to FiD as reported in Table 1, we finally
perform an additional finetuning step by leverag-
ing the new top-10 list of passages returned by the
SemanticReranker.

4 Experiments and Results

This section shows the impact that the introduc-
tion of the SemanticReranker module has on
the pipeline, as well as the finetuning steps we fol-
lowed to make the pipeline more efficient without
compromising its performance.

Experimental Setup. As the starting point of
our experiments, we used the DPR and FiD models
provided with the TOPIOCQA dataset. Currently,
only the train and dev splits are made available for
this dataset. We followed the same experimental
setup and exploited TOPIOCQA’s DPR module
for both datasets. Unlike TOPIOCQA, OR-QuAC
is of extractive type, and for this reason we trained
the FiD module from scratch by following the same
training configuration of TOPIOCQA.

End-to-End Results. Table 4 and Table 5 com-
pare our R3FINE strategy with previous baselines.

OR-QuAC
Model EM F1
DrQA (Chen et al., 2017) - 6.3
BERTserini (Yang et al., 2019) - 26.0
ORConvQA (Qu et al., 2020) - 29.4
(Ours) DPR Retriever + FiD 22.0 29.9
+ R3FINE (top-10) 21.6 32.9

Table 5: OR-QuAC test split baselines performance
(Exact Match and F1 scores) comparison.

R3FINE achieves an F1 score of 59 points on
TOPIOCQA, and 32.9 on OR-QuAC, which are
3.9 and 3 points higher than the best models pro-
posed in the original papers. It is worth noting that
these large improvements are achieved with sim-
ple adjustments in the training, architecture, and
inference setups of the well-established DPR+FiD
baseline, and not via the introduction of new heav-
ier and complex models.

To further support our R3FINE strategy, in Table
3 we present an ablation study which quantifies its
impact on the DPR+FiD pipeline. We note that
introducing the SemanticReranker (w/ SR) al-
ways outperforms the DPR+FiD baseline (w/o SR),
and at the same time it allows for a 5-fold input
size reduction (top-10) while obtaining on-par or
better results. In addition, a further finetuning step
of the FiD (w/ SR + FT) outperforms the results ob-
tained by the SemanticReranker (w/ SR) by 1.7
and 2.9 F1 points on TOPIOCQA and OR-QuAC,
respectively. Further experiments and ablation stud-
ies are provided in Appendix A.

Finally, in Figure 2 it can also be observed
that using top-10 instead of top-50 can reduce
FiD’s latency by 60% on average across the two
datasets. We conducted a latency measurement to
evaluate the impact of the SemanticReranker



and its associated parameters, with detailed in-
formation available in Appendix A. Given that
the SemanticReranker consists of a single
TransformerEncoder layer, its parameters are
negligible when compared to both the DPR and
FiD. Moreover, the SemanticReranker accounts
only for 0.34% of the overall latency of the FiD
reader, adding an additional 2.4ms per example
on top of the 710ms taken by FiD. It is im-
portant to note that this impact is only consid-
ered in relation to FiD, as the retrieval phase re-
mains constant regardless of the inclusion of the
SemanticReranker.

5 Conclusions

In this paper, we identified several limitations of the
typical Depnse Passage Retrieval (DPR) retriever
and Fusion-in-Decoder (FiD) reader pipeline when
applied in an ODConvQA setting. We proposed
and evaluated an improved approach by including a
fast reranking component between these two mod-
ules and by performing targeted finetuning steps.
The proposed R3FINE strategy lead to a better la-
tency/performance trade-off. The new baseline has
proven to be both strong and efficient when com-
pared to previous baselines, thus making it suitable
for future comparisons of new approaches.

Limitations

The study presented in this work aimed to identify
and address various limitations of the commonly
used ODConvQA pipeline. While our approach
may not be technically groundbreaking, the work’s
novelty lies in the presented findings to design
strong and efficient baselines for ODConvQA. It
should be noted that further research is needed to
compare the performance of the proposed R3FINE
strategy with other rerankers on non-conversational
QA datasets, which would provide valuable in-
sights into how effective the R3FINE approach
is in different contexts.
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A Appendix

This section provides additional information in sup-
port of the work done within the paper.

A.1 OR-QuAC conversion to TOPIOCQA’s
format and models

To make the OR-QuAC dataset compatible with
TOPIOCQA’s models, we applied the following
steps:

• all answers of type CANNOTANSWER and
NOTRECOVERED have been mapped to
UNANSWERABLE

• for the DPR’s ConversationEncoder com-
ponent, we followed the TOPIOCQA’s ALL-
HISTORY conversation representation

• for the DPR’s PassageEncoder com-
ponent, each passage title has been
reduced from "passage_page_title
[SEP] passage_page_subtitle" to
"passage_page_title". This is due to
the fact that, compared to TOPIOCQA,
OR-QuAC does not provide the information
about the section where a particular passage
is located within the page.

• for the FiD component, each passage in-
formation has been reduced from "title:
sub-title: context:" to "title:
context:". This is done for the same reason
mentioned in the previous point.

Each passage text in OR-QuAC’s Wikipedia
knowledge source has been mapped to its cor-
responding embedding via the TOPIOCQA’s
PassageEncoder component. We then per-
formed the same retrieval step as the one done for
TOPIOCQA. We exploited TOPIOCQA’s DPR
module for both datasets as the retrieval phase
is very similar between the two. However, given
that, unlike TOPIOCQA, OR-QuAC is of extrac-
tive type, we had to train the FiD module from
scratch. We followed the same training configura-
tion as the one used for TOPIOCQA.

A.2 Reranker training and ablation study
We tried different configurations of the
SemanticReranker to find the most efficient and
effective one. In addition to the decision of whether
to finetune the DPR’s ConversationEncoder
together with the SemanticReranker, we also
tried varying the number of layers L of the
SemanticReranker from 1 to 4 and changing its
input, by choosing a combination from:

• hc1 : use of conversation’s history dense repre-
sentation

• hc1 , . . . , hci : use of conversation’s history to-
kens dense representation

• p1, . . . , pk: use of passages dense representa-
tion

Table 6 shows the average top-k results ob-
tained on the TOPIOCQA and OR-QuAC dev split,
where k varies between 1, 3, 5, 10, 15, 20, 30, 50,
100, 250, 500, 750, and 1000. For TOPIOCQA,
we report the presence of the gold passage within
the top-k limit. For OR-QuAC we report the pres-
ence of the gold answer within the top-k limit.

Given that the MIPS function cannot be applied
when p1, . . . , pk representations are used alone, i.e,
without the conversation history, we applied a lin-
ear projection on top of the SemanticReranker
to obtain a score for each passage in input.

As far as training the SemanticReranker is
concerned, we trained it for 10 epochs when fine-
tuned together with the ConversationEncoder.
We instead trained it for 20 epochs when the
ConversationEncoder was kept frozen and
when p1, . . . , pk representations were used alone.
We leveraged the same objective function used for
training the initial DPR. We used early stopping to
chose the best performing model on the dev set. We
also used a linear learning rate decay throughout
the training process, and AdamW with a learning
rate of 5e-5 and weight decay of 1e-2.

Among the different combinations shown in Ta-
ble 6, we considered the first entry as the best
choice, i.e., the model with L = 1, hc1 , p1, . . . , pk,
and CrossEncoder finetuning.

A.3 Retriever results
Table 7 shows the train split retrieval cov-
erage before/after the introduction of the
SemanticReranker (w/o SR) when a larger
number of passages is considered (50 vs 1000).
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L hc1 hc1 , . . . , hci p1, . . . , pk CrossEncoder TOPIOCQA OR-QuAC
1 ✓ ✓ ✓ 78.85 71.51
1 ✓ ✓ ✓ 78.88 71.48
4 ✓ ✓ ✓ 78.84 71.32
1 ✓ ✓ 77.17 69.83
1 ✓ ✓ 77.35 70.18
4 ✓ ✓ 77.30 70.45
1 ✓ 67.07 64.18

Table 6: Average top-k results obtained on the TOPIOCQA and OR-QuAC dev split, with different configurations.

For both datasets, we report the presence of the
gold passage within the top-k limit.

TOPIOCQA OR-QuAC
top-k w/o SR w/ SR w/o SR w/ SR

1 31.54 98.25 31.69 77.31
5 66.99 99.71 59.08 89.10
10 78.29 99.72 66.31 89.36
20 86.78 99.72 71.77 89.40
50 93.55 99.72 77.35 89.40

500 99.36 99.72 87.15 89.41
1000 99.72 99.72 89.41 89.41

Table 7: Train split retrieval coverage before/after the in-
troduction of the SemanticReranker (w/o SR) when
a larger number of passages is considered (50 vs 1000).
For both datasets, we report the presence of the gold
passage within the top-k limit.

Table 8 shows the dev split retrieval cov-
erage before/after the introduction of the
SemanticReranker (w/o SR) when a larger
number of passages is considered (50 vs 1000). For
TOPIOCQA, we report the presence of the gold
passage within the top-k limit. For OR-QuAC we
report the presence of the gold answer within the
top-k limit. Table 9 shows the OR-QuAC test split
retrieval coverage before/after the introduction of
the SemanticReranker (w/o SR) when a larger
number of passages is considered (50 vs 1000).
We report the presence of the gold answer within
the top-k limit.

A.4 Reader results

Table 10, Table 11, and Table 12 show the impact
the introduction of the SemanticReranker has
on the FiD reader. The input to the FiD reader
are either passages returned by the initial DPR
retriever (w/o SR) or passages returned by the
SemanticReranker (w/ SR).

TOPIOCQA OR-QuAC
top-k w/o SR w/ SR w/o SR w/ SR

1 24.66 42.64 29.27 56.64
5 51.87 68.62 51.63 70.82

10 62.45 75.62 57.14 72.27
20 70.21 80.75 61.37 72.80
50 77.41 84.69 65.22 73.53
500 89.58 90.73 72.97 74.34
1000 91.49 91.49 74.55 74.55

Table 8: Dev split retrieval coverage before/after the in-
troduction of the SemanticReranker (w/o SR) when
a larger number of passages is considered (50 vs 1000).
For TOPIOCQA, we report the presence of the gold
passage within the top-k limit. For OR-QuAC we re-
port the presence of the gold answer within the top-k
limit.

OR-QuAC
top-k w/o SR w/ SR

1 26.82 48.75
5 46.29 64.71
10 51.50 66.47
20 55.63 67.31
50 59.85 68.10
500 67.87 69.48

1000 69.86 69.86

Table 9: OR-QuAC test split retrieval coverage be-
fore/after the introduction of the SemanticReranker
(w/o SR) when a larger number of passages is consid-
ered (50 vs 1000). We report the presence of the gold
answer within the top-k limit.

A.5 Reader is susceptible to noisy input

Table 13 shows the FiD reader performance on
the TOPIOCQA dev split, with/without the gold
passage (w/o gold) in the top-k limit. This analysis
is limited to the TOPIOCQA dataset as it is the
only one to provide information about the gold
passage for the dev split.



TOPIOCQA
w/o SR w/ SR

top-k EM F1 EM F1
1 19.3 37.6 28.1 50.4
5 27.0 49.6 32.2 56.5

10 29.8 52.4 33.2 57.3
20 31.3 54.0 33.4 56.5
50 33.0 55.1 33.9 56.2

Table 10: FiD reader performance (Exact Match and
F1 scores) on the TOPIOCQA dev split before/after the
introduction of the SemanticReranker (w/o SR).

OR-QuAC
w/o SR w/ SR

top-k EM F1 EM F1
1 13.2 22.2 12.2 25.9
5 16.4 26.3 16.4 28.7

10 18.0 27.6 18.0 29.4
20 19.2 28.2 18.9 29.2
50 19.6 27.7 19.3 27.7

Table 11: FiD reader performance (Exact Match and
F1 scores) on the OR-QuAC dev split before/after the
introduction of the SemanticReranker (w/o SR).

OR-QuAC
w/o SR w/ SR

top-k EM F1 EM F1
1 14.7 23.0 13.9 25.7
5 17.8 27.1 17.9 29.5

10 19.0 28.2 19.4 30.0
20 20.3 29.1 20.8 30.5
50 22.0 29.9 22.1 30.2

Table 12: FiD reader performance (Exact Match and
F1 scores) on the OR-QuAC test split before/after the
introduction of the SemanticReranker (w/o SR).

TOPIOCQA
w/o gold w/ gold

top-k EM F1 EM F1
1 19.3 37.6 38.3 65.5
5 27.0 49.6 36.3 62.5

10 29.8 52.4 35.8 61.5
20 31.3 54.0 36.2 60.8
50 33.0 55.1 35.9 59.5

Table 13: FiD reader performance (Exact Match and F1
scores) on the TOPIOCQA dev split, with/without the
gold passage (w/o gold) in the top-k limit.

A.6 Further reader study
To better understand the impact that the introduc-
tion of the SemanticReranker has on the FiD
reader, Table 14, Table 15, and Table 16 show the
results obtained after taking a non-finetuned FiD
and training it on the top-10 passages returned by
the initial DPR retriever and on the top-10 pas-
sages returned by the SemanticReranker. On
both datasets, we followed the same training con-
figuration as the one used for TOPIOCQA.

TOPIOCQA
w/o SR w/ SR

top-k EM F1 EM F1
1 19.2 37.8 29.5 50.9
5 27.8 49.9 34.0 56.9
10 30.4 52.0 34.3 57.0

Table 14: FiD reader performance (Exact Match and
F1 scores) on the TOPIOCQA dev split after taking a
non-finetuned FiD and training it on the top-10 passages
returned by the initial DPR retriever (w/o SR) and on the
top-10 passages returned by the SemanticReranker
(w/ SR).

OR-QuAC
w/o SR w/ SR

top-k EM F1 EM F1
1 14.2 23.1 13.9 27.6
5 18.0 27.7 18.1 30.8
10 19.2 28.9 19.3 31.2

Table 15: FiD reader performance (Exact Match and F1
scores) on the OR-QuAC dev split after taking a non-
finetuned FiD and training it on the top-10 returned by
the initial DPR retriever (w/o SR) and on the top-10
returned by the SemanticReranker (w/ SR).

OR-QuAC
w/o SR w/ SR

top-k EM F1 EM F1
1 15.5 23.9 15.8 28.3
5 19.6 29.1 19.4 31.7
10 20.9 29.7 20.6 31.9

Table 16: FiD reader performance (Exact Match and F1
scores) on the OR-QuAC test split after taking a non-
finetuned FiD and training it on the top-10 passages
returned by the initial DPR retriever (w/o SR) and on the
top-10 passages returned by the SemanticReranker
(w/ SR).

Table 17, Table 18, and Table 19 show instead



the results obtained after taking an already fine-
tuned FiD reader and further finetuning it on the
top-10 passages returned by the initial DPR re-
triever and on the top-10 passages returned by
the SemanticReranker. On both datasets, the
amount of finetuning steps is equal to the one used
for training the already finetuned FiD reader.

TOPIOCQA
w/o SR w/ SR

top-k EM F1 EM F1
1 21.5 39.3 30.7 52.4
5 30.4 52.3 36.1 59.4

10 32.8 54.6 35.8 59.0

Table 17: FiD reader performance (Exact Match and
F1 scores) on the TOPIOCQA dev split after taking an
already finetuned FiD and further finetuning it on the
top-10 returned by the initial DPR retriever (w/o SR)
and on the top-10 returned by the SemanticReranker
(w/ SR).

OR-QuAC
w/o SR w/ SR

top-k EM F1 EM F1
1 15.2 23.8 15.4 29.0
5 18.9 28.4 18.4 31.2

10 19.9 29.4 20.1 32.0

Table 18: FiD reader performance (Exact Match and
F1 scores) on the OR-QuAC dev split after taking an
already finetuned FiD and further finetuning it on the
top-10 passages returned by the initial DPR retriever
(w/o SR) and on the top-10 passages returned by the
SemanticReranker (w/ SR).

OR-QuAC
w/o SR w/ SR

top-k EM F1 EM F1
1 16.7 24.9 16.6 28.9
5 20.0 29.2 20.1 32.2

10 21.4 30.0 21.6 32.9

Table 19: FiD reader performance (Exact Match and
F1 scores) on the OR-QuAC test split after taking an
already finetuned FiD and further finetuning it on the
top-10 passages returned by the initial DPR retriever
(w/o SR) and on the top-10 passages returned by the
SemanticReranker (w/ SR).

A.7 Latency measurement
Latency measurement (see Figure 2) has been per-
formed on the same NVIDIA V100 16GB GPU, by

following the FiD’s test_reader.py script pro-
vided with the TOPIOCQA dataset. We set the
per_gpu_batch_size paramenter to 4 in all runs
and chose the value of the n_context parameter
from 1, 3, 5, 10, 20, 30, and 50, based on the num-
ber of input passages. For each value, we report the
latency relative to the maximum n_context param-
eter value, i.e., 50. We used CUDA events synchro-
nization markers to measure the elapsed time for
the preprocessing and evaluation of TOPIOCQA’s
dev split and OR-QuAC’s test split.


