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Abstract
Diffusion Model (DM) based Semantic Image
Communication (SIC) systems face significant
challenges, such as slow inference speed and gen-
eration randomness, that limit their reliability and
practicality. To overcome these issues, we pro-
pose a novel SIC framework inspired by Stable
Cascade, where extremely compact latent image
embeddings are used as conditioning to the dif-
fusion process. Our approach drastically reduces
the data transmission overhead, compressing the
transmitted embedding to just 0.29% of the origi-
nal image size. It outperforms three benchmark
approaches — the diffusion SIC model condi-
tioned on segmentation maps (GESCO), the re-
cent Stable Diffusion (SD)-based SIC framework
(Img2Img-SC), and the conventional JPEG2000
+ LDPC coding — by achieving superior re-
construction quality under noisy channel condi-
tions, as validated across multiple metrics. No-
tably, it also delivers significant computational
efficiency, enabling over 3× faster reconstruction
for 512×512 images and more than 16× faster for
1024× 1024 images as compared to the approach
adopted in Img2Img-SC.

1. Introduction
Semantic communication (SemCom) is a transformative ap-
proach that focuses on effectively conveying the meaning of
information rather than transmitting raw bit data (Strinati &
Barbarossa, 2021). The goal is to communicate the essential
information the receiver needs to complete its task success-
fully. This also makes it bandwidth efficient as significantly
less data has to be transmitted across the communication
channel (Luo et al., 2022; Qin et al., 2021).
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Figure 1. 1024 × 1024 Image reconstructions using our model
under different channel SNR conditions. Even at an SNR of 1 dB,
images are faithfully reconstructed and perceptually very similar
to the transmitted images.

The advancement of Deep Learning (DL) and generative AI
has enabled the emergence of SemCom as a viable alterna-
tive to traditional communication. DL and generative AI
models are used for extracting the relevant semantic infor-
mation at the transmitter end as well as for deciphering the
meaning behind this information at the receiver end. Deep
learning-based Joint Source-Channel Coding (DeepJSCC)
(Bourtsoulatze et al., 2019) was one of the first approaches
to incorporate DL in wireless system design. Variational
Autoencoders (VAEs), Generative Adversarial Networks
(GANs), Diffusion Models (DMs) and Flow-based Genera-
tive Models (FGMs) are the major generative AI techniques
now commonly used in SemCom systems (Xia et al., 2025).
Out of these, DMs have shown great potential at Semantic
Image Communication (SIC) tasks because of their excep-
tional ability to synthesize high-quality images (Dhariwal
& Nichol, 2021). However, one drawback of DMs is that
they are inherently slower at inference because of their iter-
ative nature. The introduction of Latent Diffusion Models
(LDMs) (Rombach et al., 2022) has alleviated this problem
by performing the diffusion process in a compressed latent
space instead of the original pixel space, enabling fast and
high-resolution image generation via diffusion.

Several DM-based SIC systems have been implemented in
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Figure 2. Our system model. At the transmitter side, a compact image embedding Z of size [16, 24, 24] is extracted from an image X of
size [3, 1024, 1024]. Z is transmitted across the physical channel. The receiver uses the noisy embedding Ẑ as conditioning for the LDM.
Finally, the VQGAN decoder is used to project the image back into pixel space.

recent years. In (Grassucci et al., 2023), segmentation maps
are used to guide the diffusion process. In (Yilmaz et al.,
2024), the primary image structure is transmitted using the
DeepJSCC technique, whereas fine details are generated
using the diffusion model. (Jiang et al., 2024) also use a
diffusion model to refine the reconstruction obtained after
image decoding. However, inference using these approaches
is time-consuming. Recently, LDMs have been used for SIC
to speed up the inference process. In (Nam et al., 2024;
Cicchetti et al., 2024), text conditioning is used to guide
the generative process of Stable Diffusion’s text-to-image
model (Rombach et al., 2022). In (Cicchetti et al., 2024), the
generation process starts from a noisy version of image em-
bedding instead of pure noise. Although efficient in terms
of bandwidth, these models struggle to faithfully reconstruct
the intended image and suffer from generation randomness.
(Chen & Yang, 2024) denoise a noisy image embedding
using an LDM, and the clean embedding is then used to
reconstruct the image using a semantic decoder. Instead of
predicting the noise in the image, (Yang et al., 2025) use a
diffusion model to predict the source image in a few denois-
ing steps directly. Both of these models reduce inference
time but operate at a lower compression factor as compared
to our proposed method.

In this paper, we propose a novel SIC model inspired by
Stable Cascade (SC) (Pernias et al., 2023), a multistage
text-to-image LDM that operates in a much smaller latent
space than Stable Diffusion (SD). Our approach achieves
the trifecta of high compression efficiency, fast inference,
and perceptually aligned image reconstruction, which is
missing in existing DM-based SIC systems. In our method,
a highly compressed image embedding is extracted using a
semantic encoder and transmitted across the physical chan-
nel. The noisy embedding is then given as a conditioning
signal to the LDM of SC that projects it into a higher di-
mensional latent space where the semantic decoder operates.

Results indicate that we outperform benchmark models and
as shown in Figure 1, generate consistent reconstructions
even under extremely poor channel Signal-to-Noise Ratio
(SNR) conditions.

2. Proposed Framework
In this section, the proposed system model is explained.
The model is built upon the architecture of SC that has three
stages, i.e., stages A, B and C. As discussed below, our
model is based on stage A and a finetuned stage B that is
trained to work with noisy conditioning.

Stage A is a Vector Quantized Generative Adversarial Net-
work (VQGAN) (Esser et al., 2021) with parameters Θ that
compresses the image space by a factor of 4. The relation-
ship between an input image X ∈ R3×1024×1024 and the
output of VQGAN encoder XVG is given as:

XVG = fΘ(X). (1)

If f−1
Θ represents the VQGAN decoder, the image can be

reconstructed from the compressed latent space using

f−1
Θ (XVG) ≈ X. (2)

Stage B is a LDM that learns to generate the latent
space XVG given a highly compressed latent representa-
tion Z of X . This compact embedding is obtained via the
EfficientNet-V2 encoder (Tan & Le, 2019). During the
forward process in training, the latents XVG are noised ac-
cording to the following relation:

XVG,t =
√
ᾱt ·XVG,t +

√
1− ᾱt · ϵ. (3)

Here, ᾱt specifies the noise schedule whereas ϵ is the noise
sampled from a standard normal distribution N(0, 1). At
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any time-step t, with noised latents XVG,t and noisy condi-
tional embedding Ẑ, the LDM is trained to predict the noise
ϵ̄(XVG,t, t, Ẑ). The training objective is to minimize the
loss function L, defined as the Mean-Squared Error (MSE)
between the predicted and actual noise:

L = E(XVG,t,t,Ẑ,ϵ)

[
∥ϵ− ϵ̄(XVG,t, t, Ẑ)∥22

]
. (4)

Text embedding is also used as conditioning for Stage B
in the original SC paper (Pernias et al., 2023). However,
as noted in the paper itself, it has no significant impact on
the reconstruction quality of stage B as the conditioning
provided by the image embedding is much stronger. Thus,
we do not consider text conditioning in our model. The
fine-tuning of Stage B conditioned on Ẑ makes it robust
to channel impairments. Moreover, we do not consider
stage C either as it is primarily responsible for text-to-image
generation.

3. System Model
Figure 2 shows the three phases of our system model i.e.
semantic information extraction at the transmitter, noisy
channel transmission, and image reconstruction at the re-
ceiver.

3.1. Semantic Feature Extraction

As in (Pernias et al., 2023), we utilize the pretrained
EfficientNet-V2 image encoder to extract a compact image
embedding. An input RGB image X ∈ RN×H×W is en-
coded into a compressed embedding Z = E(X)1. Despite
its compact size, this embedding contains well-generalized
feature representations that provide stronger guidance to
the diffusion model as compared to text embeddings. As a
result, the reconstructed image is very similar to the original
one, with differences in fine details only. Although image
generation based solely on text conditioning is highly effi-
cient in terms of bandwidth, it may result in reconstructions
that are semantically quite different from the source image
(Nam et al., 2024). Furthermore, as compared to segmenta-
tion map-based conditioning (Grassucci et al., 2023), image
embeddings offer better reconstruction fidelity. Although
segmentation maps retain spatial structure, they often lose
crucial details such as texture, color, and fine-grained fea-
tures. Additionally, because they provide only class-level
information, the same segmentation map can yield multi-
ple plausible reconstructions, introducing variability. To
achieve reliable, predictable, and efficient SIC, we propose
using rich image embedding as a more effective condition-
ing signal, ensuring reduced generation randomness and
high-fidelity reconstruction of transmitted images.

1The dimensionalities of X; N is the number of channels, i.e.
3 for RGB, and H and W stand for the height and width pixel
resolution respectively.

3.2. Communication Channel

To maintain conformity with most previous works (Gras-
succi et al., 2023; Yilmaz et al., 2024; Chen & Yang, 2024;
Yang et al., 2025), we consider the widely adopted additive
white Gaussian noise (AWGN) channel in our simulations.
The extracted image embedding Z is transmitted across the
AWGN channel where the noise ϵ is sampled from a zero-
mean normal distribution N(0, σ2) with variance σ2. If P
denotes the received signal power, the channel conditions
are characterized by the Signal-to-Noise Ratio (SNR):

SNR = 10 log

(
P

σ2

)
(dB). (5)

Depending upon the SNR level, noise is added to Z and the
distorted embedding Ẑ is obtained as

Ẑ = Z + ϵ. (6)

3.3. Image Reconstruction

The noisy image embedding Ẑ is used as a conditioning
signal to the diffusion model at the receiver side. It should
be noted that in (Cicchetti et al., 2024), a text-conditioned
diffusion model starts sampling from a noisy version of the
image embedding, whereas, in our model, a significantly
more compressed image embedding is used purely as a
conditioning signal. After the conditional denoising process
is complete, the output of the LDM is the predicted latent
space X̂VG where the VQGAN decoder operates. Finally,
in accordance with Equation (2), the generated image X̂ is
obtained using f−1

Θ (X̂VG) = X̂ .

4. Experimental Evaluation
4.1. Model Training

We train our model using the Cityscapes dataset (Cordts
et al., 2016). The dataset contains 3000 training, 500 val-
idation, and 1500 test images. All images are resized to
1024× 1024 resolution. We finetune the pre-trained stage B
checkpoint for 15000 steps using a batch size of 4, learning
rate of 1× 10−4, and AdamW optimizer. To improve gener-
alization and robustness, the SNR is randomly selected to be
between 1−20 dB. At each training step, image embeddings
are extracted and transmitted across the AWGN channel.
The model is trained to use the noisy embeddings as condi-
tioning to reconstruct images with the objective of minimiz-
ing the MSE loss in accordance with Equation (4). In addi-
tion to the Cityscapes dataset, we also evaluate our model’s
performance on the DIV2K dataset (Agustsson & Timofte,
2017), which is composed of highly diverse images. We do
not finetune our model again for this dataset to investigate
how well it generalizes on completely different and unseen
data. All the training and simulations have been performed
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Figure 3. Image reconstructions using our model, GESCO, Img2Img-SC and JPEG2000+LDPC in low SNR conditions. It can be
observed that our model generates the most semantically similar images with the least generation randomness. The red crosses indicate
that the JPEG2000+LDPC system was unable to recover the image at the corresponding SNR.

using a single NVIDIA RTX A6000 (48-GB) GPU. All code
scripts and fine-tuned model weights will be accessible at:
https://github.com/abilalk02/SC-SIC.

4.2. Simulation Settings

We compare the performance of our model with (i) the
diffusion SIC model conditioned on segmentation maps
(GESCO) (Grassucci et al., 2023), (ii) the Stable Diffusion-
based SIC model that transmits text and image embeddings
(Img2Img-SC) (Cicchetti et al., 2024), and (iii) the con-
ventional JPEG2000 compression with Low-Density Parity-
Check (LDPC) error correction approach. For evaluation,
we generate 100 samples using each model with channel
SNR values of 1, 5, 10, 15 and 20 dB respectively. All sam-
ples are of resolution 512× 512, except for GESCO, where
the resolution is 256 × 5122. For sampling with GESCO
and Img2Img-SC, 1000 and 30 denoising steps are used, re-
spectively, as in the original papers. For JPEG2000+LDPC,
Quadrature Amplitude Modulation (QAM) is used and the
LDPC coding rate is set to 1/2 following the method de-
scribed in (Bourtsoulatze et al., 2019).

2It was not possible to generate 512 × 512 images using
GESCO without altering the model architecture.

Performance Metrics: To evaluate the perceptual and se-
mantic similarity between the original and generated images,
we calculate the Learned Perceptual Image Patch Similar-
ity (LPIPS) score (Zhang et al., 2018), Fréchet Inception
Distance (FID) score (Seitzer, 2020) and Structural Simi-
larity Index Measure (SSIM) (Wang et al., 2004). We also
measure the Peak Signal-to-Noise Ratio (PSNR) to evalu-
ate pixel-level similarity between images. Lower values of
LPIPS and FID indicate better performance, whereas higher
values of SSIM and PSNR indicate better performance.

4.3. Results

4.3.1. IMAGE RECONSTRUCTION QUALITY

We first evaluate the reconstruction quality of our model
against existing approaches, including GESCO, Img2Img-
SC, and the JPEG2000+LDPC framework. Figure 3 shows
the reconstruction of a transmitted image at the receiver
end using the four models under low SNR conditions. Our
model consistently achieves the most accurate reconstruc-
tions of the original image. Even at extremely low SNR
levels of 5 dB and 1 dB, it preserves object clarity and
recognizability. In contrast, the reconstruction quality of
GESCO deteriorates rapidly as SNR decreases, leading to
significant visual degradation. Moreover, the output pro-
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Figure 4. Performance comparison between our model, GESCO,
Img2Img-SC and JP2+LDPC at different SNRs.

duced by Img2Img-SC is loosely tied to the original image
because text conditioning introduces significant random-
ness in the generation process. Finally, the conventional
JPEG2000+LDPC produces heavily distorted output, and
error correction completely fails at low SNR, as was ob-
served earlier (Bourtsoulatze et al., 2019; Jiang et al., 2024).
For cases where it fails to reconstruct the images, we set
the PSNR and SSIM scores to 0, whereas LPIPS and FID
scores are assigned an arbitrary maximum value of 1 and
500 respectively.

The comparison across performance metrics on the
Cityscapes test data, shown in Figure 4, also reveals that our
model achieves the best results. In terms of FID and LPIPS,
on average, our model improves on the results of the next-
best approach from Img2Img-SC by 43% and 55%, respec-
tively. Similarly, in terms of SSIM and PSNR, our model
gives the best results, maintaining good performance even at
low SNR. For SNR greater than 10 dB, JPEG2000+LDPC
achieves comparable PSNR and SSIM to our model even
though its reconstructions are heavily distorted, have arti-
facts, and lack details. This can be attributed to the fact that
JPEG2000 compression preserves low-frequency compo-
nents and structural integrity. PSNR and SSIM primarily
assess pixel-level accuracy and structural similarity, respec-
tively. In contrast, LPIPS and FID are more sensitive to
perceptually significant distortions, capturing the loss of
fine details, reduced realism, and unnatural textures. Thus,
high PSNR and SSIM scores can misleadingly overestimate
the performance of JPEG2000+LDPC, failing to reflect the
perceptual degradation. Moreover, as discussed, the conven-
tional method fails to reconstruct the images at low SNR.
Overall, our model improves SSIM by 56% and PSNR by
23% as compared to Img2Img-SC. The results of our model
improve further when generating 1024× 1024 images.
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Figure 5. Inference time comparison of our model with GESCO
and Img2Img-SC.

4.3.2. INFERENCE SPEED AND BANDWIDTH
EFFICIENCY

In terms of computational complexity, we evaluate both in-
ference latency and the dimensionality of the transmitted
data. As shown in Figure 5, the model from (Grassucci
et al., 2023), which does not utilize an LDM, exhibits signif-
icantly higher latency, requiring 5 minutes and 24 seconds
for image reconstruction with T = 1000 denoising steps.
Our method achieves substantially lower inference time,
just 0.78 seconds for 512×512 images, making it 3× faster
than Img2Img-SC. For 1024× 1024 images, our model ac-
celerates reconstruction further, achieving speeds over 16×
faster than that of Img2Img-SC.

Table 1. Dimensionality Comparison

Transmitted Data Dimensionality Compression Ratio % of original

Original Image [3, 512, 512] − −

Our Model [16, 12, 12] 341 0.29%

Img2Img-SC [4, 64, 64] 48 2.08%

DIFFSC [8, 32, 32] 96 1.04%

CASC [8, 32, 32] 96 1.04%

Moreover, in terms of dimensionality, Table 1 shows that
we achieve a higher Compression Ratio (CR) as compared
to other state-of-the-art DM-based SIC systems. Following
the definition in (Jiang et al., 2024), where CR is defined as
the ratio of the input image’s dimensionality to that of its
encoded representation, our approach compresses an RGB
image of size [3, 512, 512] into a compact embedding of
[16, 12, 12], achieving an exceptional CR of 341 – meaning
that the transmitted data is only 0.29% of the original image
size. This highlights the remarkable bandwidth efficiency
of our method.
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Figure 6. Performance of our model on unseen DIV2K data.

4.3.3. RECONSTRUCTION PREDICTABILITY

We assess reconstruction predictability across varying SNR
conditions using the LPIPS metric. For each case, we
simulate image transmission 25 times with fixed param-
eters, computing the mean (µ) and standard deviation (σ)
of LPIPS scores across all pairwise comparisons of gener-
ated images. As shown in Table 2, our model achieves
the lowest average LPIPS score and standard deviation,
(µ ± σ) = (0.173 ± 0.003) at SNR= 20dB, indicating
minimal generation randomness. Thus, the proposed model
is able to reconstruct images reliably and consistently.

Table 2. Predictability Comparison

SNR (dB) LPIPS Score (µ± σ)

Our-1024 Our-512 GESCO Img2Img-SC

20 0.173± 0.003 0.205± 0.005 0.401± 0.014 0.520± 0.011

15 0.195± 0.003 0.223± 0.006 0.433± 0.012 0.541± 0.017

10 0.229± 0.003 0.264± 0.008 0.424± 0.017 0.522± 0.012

5 0.287± 0.004 0.314± 0.009 0.575± 0.021 0.554± 0.019

1 0.351± 0.006 0.371± 0.013 0.613± 0.017 0.578± 0.019

4.3.4. GENERALIZATION ON UNSEEN DATA

We also analyze the performance of our model, trained on
the Cityscapes dataset, on entirely unseen data. For this
purpose, we use the DIV2K dataset that contains diverse
images, including landscapes, people, architecture, and ani-
mals. Figure 6 indicates that there is a significant degrada-
tion in performance on this new data across all four metrics.
For example, at an SNR of 15 dB, LPIPS increases from
0.17 to 0.4, whereas FID increases from 45 to 83, indicating
a substantial loss in perceptual quality. However, a closer
look at the generated images, Figure 7, reveals that much of
this degradation may be attributed to the sharp differences in

Figure 7. Image reconstructions on unseen DIV2K data. It can be
seen that the model does well to mitigate the noise and reconstruct
semantically similar images considering that it was not finetuned
for this dataset.

the colors between the original and generated images. The
model does fairly well to reconstruct these unseen images
and mitigate the effects of noise, but since it is finetuned on
the Cityscapes dataset, the generated images have a color
tone that resembles very closely to that of the images in the
said dataset. These results suggest that fine-tuning a Stable
Cascade model on a single large and highly diverse dataset
may enable it to handle a wide range of image types with
strong performance.

4.3.5. ABLATION STUDIES

Finally, we perform ablation tests to compare the perfor-
mance of our fine-tuned model against the original Stable
Cascade model in the semantic image communication sce-
nario. Figure 8a shows that without fine-tuning, the origi-
nal model’s performance degrades sharply with decreasing
SNR. In particular, at SNR less than 10 dB, the images
generated using the original model are heavily corrupted
by noise. This is also evident from Figure 9, which shows
that the original model is unable to mitigate the channel
effects. These findings validate our training approach and
demonstrate the substantial performance gains achieved by
fine-tuning the model to work with noisy image embedding
as a conditioning signal.

We also analyze the impact of increasing the size of the
extracted image embedding on the generation quality for
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Figure 8. Results of ablation experiments highlighting (a) the performance gains obtained via fine-tuning and (b) the impact of increasing
the embedding size from [16, 24, 24] to [16, 32, 32] on performance metrics.

Figure 9. Images reconstructed by the original Stable Cascade
model. It can be seen that without proper fine-tuning, the original
model fails to deal with the effects of channel noise.

1024 × 1024 images. It can be seen from Figure 8b that
there is a noticeable improvement in performance across
all four performance metrics when the embedding size is
increased from [16, 24, 24] to [16, 32, 32]. Quantitatively, on
average, LPIPS, FID, and SSIM scores improve by greater
than 10%. However, these improvements come at a cost to
the compression ratio that drops from 341 to 192. Hence,
there is an understandable tradeoff between performance
and bandwidth efficiency

5. Conclusion
In this paper, we introduce a novel DM-based SIC frame-
work that leverages the Stable Cascade architecture to

achieve an exceptional balance of speed, compression, and
fidelity under noisy channel conditions. Our method trans-
mits a highly compact image embedding, only 0.29% of
the original size, and reconstructs 512× 512 images in just
0.78 seconds – 3× faster than Img2Img-SC. Extensive eval-
uations using perceptual quality metrics, including LPIPS,
SSIM, and FID, demonstrate the noise robustness of our
approach and its superiority over existing benchmarks. Ad-
ditionally, our framework minimizes generation randomness
by achieving an LPIPS score variance of only 0.003 at SNR
greater than 10dB, ensuring faithful and consistent image
reconstruction. Future work may explore further optimiza-
tions to minimize inference time and extend the framework
to high-fidelity semantic video communication.
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