
Predictive Linear Online Tracking for Unknown Targets

Anastasios Tsiamis * 1 Aren Karapetyan * 1 Yueshan Li 2 Efe C. Balta 1 3 John Lygeros 1

Abstract

In this paper, we study the problem of online
tracking in linear control systems, where the
objective is to follow a moving target. Un-
like classical tracking control, the target is un-
known, non-stationary, and its state is revealed
sequentially, thus, fitting the framework of on-
line non-stochastic control. We consider the case
of quadratic costs and propose a new algorithm,
called predictive linear online tracking (PLOT).
The algorithm uses recursive least squares with
exponential forgetting to learn a time-varying dy-
namic model of the target. The learned model is
used in the optimal policy under the framework of
receding horizon control. We show the dynamic
regret of PLOT scales with O(

√
TVT), where VT

is the total variation of the target dynamics and T
is the time horizon. Unlike prior work, our theo-
retical results hold for non-stationary targets. We
implement PLOT on a real quadrotor and provide
open-source software, thus, showcasing one of
the first successful applications of online control
methods on real hardware.

1. Introduction
Target tracking is a fundamental control task for autonomous
agents, allowing them to be used in a variety of applications
including environmental monitoring (Aucone et al., 2023),
agriculture (Daponte et al., 2019), and air shows (Schoellig
et al., 2014) to name a few. Typically, an autonomous agent
is given a reference trajectory, which should be tracked with
as little error as possible. In the case of linear systems with
quadratic costs the problem, also known as Linear Quadratic
Tracking (LQT), can be formulated as follows. Let the

*Equal contribution 1Automatic Control Laboratory, ETH
Zürich, Zürich, Switzerland 2Institute for Dynamic Systems and
Control, ETH Zürich, Zürich, Switzerland 3Control and Automa-
tion Group, inspire AG, Zürich, Switzerland. Correspondence to:
Anastasios Tsiamis <atsiamis@ethz.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

autonomous agent be governed by the linear dynamics

xt+1 = Axt +But, (1)

where xt ∈ Rn is the state, and ut ∈ Rm is the control
input, while A ∈ Rn×n and B ∈ Rn×m denote the known
system dynamics. Given a target trajectory rt ∈ Rn×1,
t ≥ 0 the goal is finding the optimal control input of the
finite-horizon problem

min
u0:T−1

T−1∑
t=0

(
∥xt − rt∥2Q + ∥ut∥2R

)
+∥xT − rT ∥2QT

, (2)

subject to the dynamics (1), for some total time (horizon)
T . The state, input, and terminal penalties, Q ∈ Rn×n, R ∈
Rm×m, QT ∈ Rn×n, respectively, are design choices.

In classical target tracking, the target state rt is known a
priori and is precomputed. However, in many cases, the
target might be time-varying and unknown. Such scenarios
arise, for example, in the case of adversarial target tracking,
wild animal tracking, moving obstacle avoidance, pedestrian
tracking, etc. In such cases, the target trajectory is generated
by an external unknown dynamical system, also known as
“exosystem” (Nikiforov & Gerasimov, 2022). In this work,
we assume that the target is generated by time-varying, auto-
regressive (AR) dynamics. Let

zt =
[
r⊤t · · · r⊤t−p+1

]⊤
contain past target states, with p the memory or past horizon
of the dynamics. Then, the target at the next time step is
given by the AR model

rt+1 = St+1zt, (3)

where St ∈ Rn×np is an unkonwn matrix.

Adaptive control has a long history of dealing with dynami-
cal uncertainty (Annaswamy & Fradkov, 2021), where the
goal is to simultaneously control the system and adapt to
the uncertainty. One of the most widely-used algorithms
in the adaptive control literature with ubiquitous applica-
tions has been the celebrated Recursive Least Squares (RLS)
algorithm with forgetting factors (Åström et al., 1977).
While adaptive control has been extensively studied in the
stochastic or time-invariant regime (Guo & Ljung, 1995;

1

Predictive Linear Online Tracking for Unknown Targets

Ljung & Gunnarsson, 1990), results for non-stochastic, time-
varying systems are relatively scarce. By studying the prob-
lem through the modern lens of online learning and non-
stochastic control (Hazan & Singh, 2022), we can provide
guarantees for new classes of time-varying systems.

Most works on adaptive control follow one of the two possi-
ble paradigms: i) direct control and ii) indirect control, mir-
roring model-free and model-based Reinforcement Learn-
ing. In the former case, adaptation occurs directly at the
control policy; in the latter case, a model of the uncertainty
is kept at all times and the control policy is updated indi-
rectly based on the current model. A notable benefit of
indirect architectures is that they decouple control from
learning, making it easier to incorporate changes in the con-
trol objective or robustness specifications. In the case of
non-stochastic control, learning the optimal feedforward
law (Agarwal et al., 2019a; Foster & Simchowitz, 2020) fits
the direct paradigm. Prior works that use predictions (Li
et al., 2019; Zhang et al., 2021b) are closer to the indirect
paradigm but they either do not provide a prediction method
or the regret guarantees are suboptimal in the case of targets
with dynamic structure.

1.1. Contribution

In this work, we propose a tracking control algorithm, called
Predictive Linear Online Tracking (PLOT). It adapts to
unknown targets online using sequentially measured tar-
get data, based on the indirect paradigm. PLOT uses a
modified version of the RLS algorithm with forgetting fac-
tors (Yuan & Lamperski, 2020) to learn the target dynamics
and predict future target states. Then, it computes a receding
horizon control input using the predicted target states in a
certainty equivalent fashion. To characterize closed-loop
performance, we use the notion of dynamic regret (Zinke-
vich, 2003). In our setting, dynamic regret compares the
incurred closed-loop cost of any online algorithm against
the cost incurred by the optimal control actions in hindsight,
that is, the actions generated by the optimal non-causal pol-
icy that has full knowledge about future target states. Our
contributions are the following.

Dynamic regret for online tracking. We prove that the
dynamic regret of PLOT is upper-bounded by O(

√
TVT),

where VT is the total variation of the target dynamics St

(path length). When the target dynamics are static (zero
variation), the regret becomes logarithmic and we recover
prior results (Foster & Simchowitz, 2020). While prior dy-
namic regret bounds exist for linear quadratic control, they
either focus on direct online control (Baby & Wang, 2022),
where we learn over a directly parameterized disturbance
affine feedback policy, or they assume no structure for the
targets (Li et al., 2019; Karapetyan et al., 2023). Instead, we
focus on indirect online control, where we learn an internal

model representation for the unknown target. By setting up
multiple step ahead predictors, we have more flexible and
frequent feedback, thus avoiding extra logarithmic factors
due to delayed learning feedback as in (Baby & Wang, 2022;
Foster & Simchowitz, 2020). Using the total variation of the
target dynamics St to characterize dynamic regret is a new
point of view, improving prior bounds that use the variation
of the target state rt itself (Li et al., 2019).

Prediction of time-varying partially observed systems.
We employ the RLS algorithm to predict target states multi-
ple time steps into the future. Our result is of independent
interest since it applies to time-varying AR systems or sys-
tems with exogenous inputs (ARX), which is a common
model in system identification. We obtain dynamic regret
guarantees for prediction by adapting the analysis of Yuan
& Lamperski (2020) to the setting of learning with delayed
feedback (Joulani et al., 2013). This result can be seen as
a generalization of time-invariant Kalman filtering to the
non-stochastic, time-varying, multi-step ahead case.

Experimental demonstration. While the theory of on-
line non-stochastic control has matured over the past
years (Hazan & Singh, 2022), its practice is still lagging,
with only a few notable experimental demonstrations on
hardware (Suo et al., 2021; Snyder et al., 2023). In this
work, we perform extensive simulations showing how the
regret analysis can be used as a tool to tune the controller
hyperparameters, provide comparisons of several online
control methods in simulations, and implement PLOT on
a hardware setup. To facilitate benchmarking and future
developments, we make our code open-source and imple-
ment it on Crazyflie drones with a reconfigurable software
architecture built on the Robot Operating System (ROS). To
the best of our knowledge, our work is one of the first to
demonstrate the use of online non-stochastic control with
guarantees on a real quadrotor.

1.2. Organization and Notation

The rest of the paper is organized as follows. Section 2 states
the assumptions and defines the control objective. The pro-
posed algorithm, PLOT, is presented in Section 3, and its
dynamic regret is analyzed in Section 4. The experiment
results in simulation and on hardware are presented in Sec-
tion 5. Section 6 provides concluding remarks and future
directions. Additional background material, detailed proofs,
and further implementation and experimental details can be
found in the Appendix.

For a matrixM , ∥M∥ denotes the ℓ2 induced operator norm,
while ∥M∥F denotes the Frobenius norm. For positive
definite P ≻ 0, we define the weighted Frobenius norm as
∥M∥F,P =

√
tr(MPM⊤), where tr(·) denotes the trace.

For a vector x ∈ Rn, ∥x∥ denotes the Euclidean norm

2

Predictive Linear Online Tracking for Unknown Targets

and ∥x∥P =
√
xTPx denotes the weighted P norm for

P ≻ 0. We use x1:t := {x1, ..., xt} as a sequence of
variables spanning from time step 1 to t. Given n ∈ N+, the
identity matrix of dimension n is defined by In.

2. Problem Statement
Consider the LQT problem (2). Let the target state rt be
sequentially revealed. The following events happen in se-
quence at every time step t. i) The current state of the
system xt and the target rt are received and the current
tracking cost is incurred; ii) The controller applies an action
ut; iii) The system and the target evolve according to (1), (3)
respectively. We assume the initial value z−1 to be known.

Many fundamental targets can be captured by dynam-
ics (3). For example, a target moving on a circle or a
straight line with a constant speed can be captured by linear
time-invariant dynamics–see Appendix C.1. By consid-
ering time-varying dynamics, we can model more com-
plex target trajectories, e.g., combinations of lines, cir-
cles, switching patterns, etc. Our results can be gener-
alized directly to targets driven by exogenous variables
(ARX) rt+1 = St+1zt + vt+1–it is sufficient to redefine
z̃t =

[
z⊤t 1

]⊤
and S̃t ≜

[
St vt

]
. We can thus cap-

ture even richer targets, including other control systems. In
fact, any arbitrary bounded adversarial target can be cap-
tured by such a model; it is sufficient to take St+1 = 0 and
vt+1 = rt+1. We note that the above representation is not
unique–see also Appendix C.1.

We remark that the LQT problem is equivalent to the Lin-
ear Quadratic Regulator (LQR) with disturbances–see Ap-
pendix B. Hence, the techniques applied here could also be
applied to noisy system dynamics (1), where we attach a
dynamic structure to the disturbances.

By applying the one step ahead model (3) multiple times,
we obtain k-step ahead recursions of the form

rt+k = St+k|tzt, (4)

where k ∈ N is the number of future steps. The k−step
ahead matrix St+k|t is a nonlinear function (multinomial)
of St+k, . . . , St+1. Expressions for the multi-step ahead
recursions (4) can be found in Appendix C.2. By definition
St+1|t ≡ St+1. The notation St+k|t indicates that given
all information zt at time t, the product St+k|tzt acts as a
k−step ahead prediction of rt+k at time t.

To ensure that the online tracking problem is well-defined,
we consider the following boundedness assumptions on the
target dynamics and trajectory.

Assumption 2.1 (Bounded Signals). The target state is
bounded. For some Dr ≥ 0, we have ∥rt∥ ≤ Dr , for
t = 1, ..., T .

Assumption 2.2 (Stability). Let S ≜ {S ∈ Rn×pn∥S∥ ≤
M}, for some M ≥ 0. The k−step ahead dynamics are
uniformly bounded ∥St+k|t∥ ∈ S , for all t = 0, . . . , T, k ≤
T − t.

Such boundedness conditions reflect typical assumptions
in online learning (Yuan & Lamperski, 2020). The second
condition allows general Sk as long as the multi-step ahead
matrices do not blow up.

2.1. Control Objective

Our goal is to design an online controller that adapts to the
unknown target dynamics. To evaluate the online perfor-
mance, we use dynamic regret, which compares the incurred
cost of the online controller to the optimal controller in hind-
sight that knows all future target states in advance (called
simply the optimal controller). For a target state realization
r := r0:T , we denote the cumulative cost by

JT (u0:T−1; r)≜
T−1∑
t=0

(
∥xt−rt∥2Q+∥ut∥2R

)
+∥xT−rT ∥2QT

.

The optimal controller minimizes the cumulative cost, given
knowledge of the whole target realization

u∗0:T−1 = argminu0:T−1
JT (u0:T−1; r).

On the contrary, for an online policy π, the input ut is a
function of the current state xt and the target states only up
to time step t, so that

uπt = πt(xt; r1:t), ∀t = 0, ..., T − 1,

where the notation uπ denotes the control input under the
policy π. In other words, the optimal controller u∗t is non-
causal while the online controller uπt is causal.

The dynamic regret is given by the cumulative difference
between the cost achieved by the online causal policy and
the cost achieved by the non-causal optimal controller

R(π) = JT (u
π
1:T−1; r)− JT (u

∗
1:T−1; r), (5)

defined for a target state realization r. We can now summa-
rize the main objective of the paper.

Problem 1 (Dynamic Regret). Design an online con-
troller π that adapts to the unknown target states rt,
and characterize the dynamic regret R(π).

To make sure that the control problem is well-defined, we
introduce the following assumption which is standard in the
control literature (Zhang et al., 2021b). It guarantees that
the LQT controller will be (internally) stable.

Assumption 2.3 (Well-posed LQT). The pair (A,B) is
stabilizable and Q, R are symmetric positive definite.

3

Predictive Linear Online Tracking for Unknown Targets

We assume the terminal cost matrix QT is chosen as the
solution X of the Discrete Algebraic Riccati Equation.
Assumption 2.4 (Terminal Cost). We select QT = X ,
where X is the unique solution to Riccati equation

X = Q+A⊤XA−A⊤XB(R+B⊤XB)−1B⊤XA. (6)

Assumption 2.4 is only introduced to streamline the pre-
sentation and it is not restrictive. If we select a different
terminal cost, then the effect on the optimal total cost (2)
will be negligible (will only differ by a constant).

2.2. LQT Optimal Controller

Having full access to future target states, the optimal con-
troller admits the following analytical solution (Foster &
Simchowitz, 2020; Goel & Hassibi, 2022)

u∗t (xt) = −K(xt − rt)−
T−1∑
i=t

Ki−t(Ari − ri+1)︸ ︷︷ ︸
qt(rt:T)

, (7)

where the feedback and feedforward matrices are given by

K = (R+B⊤XB)−1B⊤XA, (8)

Kt = (R+B⊤XB)−1B⊤(A−BK)⊤,tX, t ≥ 0, (9)

with X defined in (6). Since the dynamics (1) are known,
all gain matrices K,Kt, t ≥ 0 are known. The feedback
term −K(xt − rt) can be computed since the error xt − rt
is measured before choosing the action. The only unknown
is the feedforward term qt(rt:T). Note that the functional
form of the feedforward term is known. The missing piece
of information is the future target states. Following the
paradigm of indirect control, we will use this structural
observation to decompose the problem of online tracking
into one of online prediction and control design.

A notable property of LQT is that, under Assumption 2.3,
matrix (A−BK) has all eigenvalues inside the unit circle.
Therefore, there exist c0 > 0 and ρ ∈ (0, 1) such that

∥Kk∥ ≤ c0ρ
k, for all k ≥ 0. (10)

Upper bounds for c0, ρ as well as a relaxed version of As-
sumption 2.3 can be found in Appendix B. Interestingly,
the above property implies that future target states get dis-
counted when considering the current action; we only need
to know accurately the imminent target states.

3. Predictive Linear Online Tracking
Our proposed online tracking algorithm can be decoupled
into two steps at every time step t: i) predicting the future
target states for up to W−steps into the future, for some
prediction horizon W ; ii) computing the current online con-
trol action based on the certainty equivalence principle and
the receding horizon control framework.

Target Prediction. For the prediction step, we employ the
RLS algorithm with forgetting factors. At every time step t,
the RLS algorithm provides predictions rt+1|t, . . . , rt+W |t
of the future target states rt+1, . . . , rt+W , for some horizon
W > 0. For every step ahead prediction, we keep W
separate predictors Ŝt+1|t,..., Ŝt+W |t without exploiting the
shared structure. This parameterization leads to a higher-
dimensional but convex problem. In contrast, learning over
matrices St+W , . . . , St+1 leads to non-convex optimization
problems since the multi-step ahead predictors are products
of entries in St+W , . . . , St+1–see also Remark 3.1.

When predicting the target state rt+k|t for k steps ahead,
the true value rt+k is revealed after k steps into the future.
To deal with this delayed feedback issue we follow the
approach of Joulani et al. (2013). Within each k−step ahead
predictor, we maintain k copies {Ŝt+k−j|t−j}k−1

j=0 --we refer
to them as learners–which are updated independently at
non-overlapping time steps. Hence, the estimate Ŝt+k|t
is updated based only on pairs of (rt−ik, zt−(i+1)k), for
i = 0, 1, 2, At each time step t, only one of the k
independent learners is invoked, which aims to minimize
the following prediction error ∀t > 1:

min
S∈S

⌊(t+1)/k⌋−1∑
i=0

γift−ik,k(S),

fτ,k(S) ≜ ∥rτ − Szτ−k∥2
(11)

where γ ∈ (0, 1] is the forgetting factor that attributes higher
weights to more recent data points. Recall that S is the set in
which the dynamics lie–see Assumption 2.2. Note that each
independent learner is updated based on at most ⌈T/k⌉ data
points. Instead of solving (11), we opt for a recursive imple-
mentation with projections adapted from Yuan & Lamperski
(2020) and can be found in Algorithm 1.

Algorithm 1 RLS for k-step-ahead prediction

Require: Forgetting factor γ ∈ (0, 1), Regularizer ε > 0.
1: Initialize k learners Ŝj+k|j ∈ S, j = −1, ..., k − 2.
2: Initialize Pj|j−k = εI with j = −1, ..., k − 2.
3: for t = k − 1, . . . , T do
4: Predict rt|t−k = Ŝt|t−kzt−k.
5: Receive true target state rt; Incur loss ft,k(Ŝt|t−k)
6: Update Pt|t−k = γPt−k|t−2k + zt−kz

T
t−k;

7: Ŝ∗
t+k|t = Ŝt|t−k + (rt − Ŝt|t−kzt−k)z

⊤
t−kP

−1
t|t−k.

8: Project Ŝt+k|t = Π
Pt|t−k

S (Ŝ∗
t+k|t),

where Π
Pt|t−k

S (Y) ≜ argminS∈S ∥S − Y ∥F,Pt|t−k
.

9: end for

Since we need k learners for every k−step ahead predictor,
we have a total number of W (W + 1)/2 learners. However,
only W of them are actively updated at every time step
(one active learner per predictor). An visualization of the

4

Predictive Linear Online Tracking for Unknown Targets

learning architecture for k = 1, 2, 3 can be found in Figure 7
in Appendix D.2.

Different from direct approaches (Foster & Simchowitz,
2020; Baby & Wang, 2022), where the learning feedback
is delayed by W steps, here the learning feedback delay
adapts to the k−step ahead horizon offering more flexibility.
For example, the feedback for the one-step ahead predictor
is always available without waiting W steps. A downside is
that we update more predictors.
Remark 3.1 (Improper Learning versus Single Learner).
To obtain the multi-step ahead predictions r̂t+k|t, k =

1, . . . ,W , we keepW separate predictors Ŝt+1|t,..., Ŝt+W |t
without exploiting the shared structure, i.e., we follow im-
proper learning. By following this choice, we convexify
the problem, potentially at the expense of higher sample
complexity. An alternative, “naive” approach is to esti-
mate the one-step ahead predictor Ŝt+1|t, using a single
learner. Then, to predict k steps ahead, e.g. r̂t+k|t, we could
propagate the target states through Ŝt+1, for k time steps.
However, propagating through multiple time steps can lead
to instability. For example, if zt = rt (namely the AR mem-
ory length p = 1), we will have r̂t+k|t = Ŝk

t+1rt. Due to
the exponent k, this could lead to a rapid accumulation of
errors. Enforcing the boundedness constraint of Assumption
2.2 directly on Ŝk

t+1 would not work either since it leads
to a non-convex problem. A detailed comparison of PLOT
and this “naive” approach in simulation can be found in
Appendix F.4

Receding Horizon Control. In the receding horizon con-
trol framework, instead of looking over the total time T as
in (2), we only look over a window of length W and solve
the following optimal control problem

min
ut:t+W−1

W−1∑
k=0

(
∥xt+k − rt+k|t∥2Q + ∥ut+k∥2R

)
+ ∥xt+W − rt+W |t∥2P

s.t. xt+k+1 = Axt+k +But+k, k ≤W − 1,

, (12)

where rt+k|t are the predictions of the RLS algorithm. We
replace the true target states of (2) with their prediction
in (12) according to the certainty equivalence principle. The
receding horizon control policy that minimizes (12) can be
computed in closed form as

uπt (xt)=−K(xt−rt)−
t+W−1∑

i=t

Ki−t(Ari|t−ri+1|t). (13)

The functional form of the receding horizon control is sim-
ilar to the one of the optimal controller in (7). The main
difference is that the feedforward term is applied to the
predicted disturbances, instead of the actual ones.

Algorithm 2 PLOT: Predictive Linear Online Tracking

Require: Horizon W , forgetting factor γ ∈ (0, 1)
1: Compute X,K, {K0, ...,KW−1} as in (6), (8), (9).
2: Initialize RLS predictors according to the Algorithm 1,

for k = 1, ...,W , respectively.
3: for t = 0, ..., T − 1 do
4: Observe system state xt, target state rt.
5: for k = 1, ...,W do
6: if t+ k ≤ T then
7: Update the k-step-ahead predictor and predict

rt+k|t according to the Algorithm 1.
8: else
9: Set rt+k−1|t = 0.

10: end if
11: end for
12: Compute uπt as in (13)
13: end for

The main part of our proposed algorithm, Predictive Linear
Online Tracking (PLOT), is described in Algorithm 2. We
initialize W RLS predictors (Algorithm 1) to estimate the k-
step-ahead dynamics St+k|t for k = 1, ...,W independently.
At each time step, the algorithm receives the latest target and
state measurements, updates the RLS predictors, and makes
new predictions. Then, it computes the receding horizon
control input given the predictions and the state information.
The whole procedure is iterated over all time steps up to the
total time T . Note that if the prediction time k + t exceeds
the total time T , then we set the predicted target to zero;
as seen by (7) only the target states up to time T affect the
control problem.

4. Dynamic Regret and Tuning
To characterize the performance of the PLOT algorithm, we
provide dynamic regret bounds in terms of the total variation
of the target dynamics, which is defined as

VT ≜
T∑

t=1

∥St − St−1∥F . (14)

For arbitrary γ ∈ (0, 1), we have the following guarantees.
Theorem 4.1 (Dynamic Regret). Select a prediction horizon
W and a forgetting factor γ ∈ (0, 1). Let ρ be the decay
rate of the LQT gains as in (10) and let W̃ = min{(1 −
ρ)−1,W}. The dynamic regret of the PLOT policy, as given
by Algorithm 2, is upper bounded by

R(π) ≤ α1ρ
2W (1− ρ)−2T + α2W̃

4VT (1− γ)−1

− α3W̃
2(T + 1) log γ − α4W̃

3 log(1− γ) + α5W̃
3,

where α1, α2, α3, α4 (given in (28)) are positive constants
related to system-specific constants, the state dimension n,
and the target memory p.

5

Predictive Linear Online Tracking for Unknown Targets

The first term in the regret bound captures the truncation
effect, i.e., the fact that we only use W -step (instead of
T) ahead predictions in (12). The other terms capture the
effect of prediction errors on the control performance. Note
that there is a tradeoff between large and small prediction
horizons. Smaller prediction horizons lead to better predic-
tion performance but worse truncation error and, conversely,
larger prediction horizons improve the truncation term but
degrade the prediction performance. Nonetheless, if we
increase the prediction horizon W past the threshold of
(1− ρ)−1, then the regret guarantees stop degrading, thus
improving prior work (Foster & Simchowitz, 2020; Baby &
Wang, 2022). Essentially, W̃ can be thought of as the “ef-
fective” prediction horizon; beyond W̃ any prediction errors
have negligible effect. This is a consequence of deploying
multiple step-ahead predictors of varying delays and the
exponentially decaying LQT gains,

Assume that γ is close to 1. Then − log γ ≈ 1 − γ and
the dominant regret terms are the second and third terms,
V (1− γ)−1 and T (1− γ) respectively. By balancing these
two terms, we obtain the following interpretable rate, similar
to Yuan & Lamperski (2020).

Corollary 4.2 (Tuning). Select prediction horizon W =

− log T
2 log ρ and forgetting factor γ = 1−

√
max{VT ,log2 T/T}

4MT ,
where ρ is the decay rate of the LQT gains as in (10). Then,
the dynamic regret of the PLOT policy is upper-bounded by

R(π) = max{O(
√
TVT),O(log T)}.

To deal with the truncation term, it is sufficient to choose
a prediction horizon W , which grows logarithmically with
the total time T , as also noted in Zhang et al. (2021b).
The constant 4M in the denominator guarantees that the
forgetting factor is positive. To tune the forgetting factor
and obtain the rate, we require knowledge of the path length
VT , which is not always available. Following the procedure
of Baby & Wang (2022), we can overcome this limitation
by initiating multiple learners at various time steps and by
running a follow-the-leading-history (FLH) meta-algorithm
on top, which can also improve the dynamic regret bound
to T 1/3V

2/3
T . We do not explore this possibility here, since

we focus on studying the performance of the RLS algorithm
with forgetting factors. When the path length is close to
0, i.e. the target dynamics are almost static, we obtain
logarithmic regret guarantees. In this case, the optimal
policy can be rewritten as a static affine control law, with
respect to the past target states. The regret, in this case, is
the static regret with respect to the best (static) affine policy,
recovering the result of Foster & Simchowitz (2020).
Remark 4.3 (Path Length and Complexity). In certain
works (Li et al., 2019; Karapetyan et al., 2023), the dynamic
regret is given with respect to the total variation of the target
states themselves, that is, LT =

∑T−1
t=2 ∥rt − rt−1∥. In

contrast, here, we capture learning complexity by the total
variation of the target dynamics VT . We argue that the for-
mer notion of complexity can be suboptimal in the case of
targets with dynamic structure, while ours is superior in this
setting. For example, consider a target that is moving on a
circle with constant velocity–see Example C.2. Then, the
former path length is linear LT = O(T) while the latter
is zero VT = 0. In control applications, many targets of
interest have dynamic structures, e.g. tracking other drones,
tracking moving objects, etc. Nonetheless, if the targets are
fully unstructured and arbitrary, PLOT might not perform
as well since it tries to fit a dynamic model to arbitrary
data–see Appendix F.3.2. Still, the regret order cannot be
worse than the one in prior work if we are learning over
ARX models–see discussion in Appendix C.1.

The full proof of Theorem 4.1 and Corollary 4.2 can be
found in Appendix E. In the following, we provide a sketch
of the proof. First, similar to Foster & Simchowitz (2020),
we invoke the “performance difference lemma” (Kakade,
2003) to turn the control problem into a prediction one 1.
Lemma 4.4 (Performance Difference Lemma (Foster &
Simchowitz, 2020)). For any policy π such that uπt =
−K(xt− rt)+ q̂t, where K is given by (8), and the optimal
action defined in (7), the dynamic regret can be written as

R(π) =

T−1∑
t=0

∥q̂t − qt(rt:W)∥2(R+BTXB).

The above fundamental result shows that the control prob-
lem can be cast as a prediction problem, where we try to
predict the affine part of the optimal control law. Second,
we bound the prediction error by analyzing the dynamic
regret of the RLS algorithm following the steps of Yuan &
Lamperski (2020). Define the prediction regret for k−step
ahead prediction as

R(k)
pred ≜

T∑
t=k−1

∥Ŝt|t−kzt−k − rt∥2.

Since the sequence r0:T satisfies (3), there is no subtracted
term in the regret; matrices St|t−k achieve zero error. In
the Appendix, we prove regret bounds for the prediction
problem that hold for non-realizable sequences as well.
Theorem 4.5 (Regret for AR system prediction). Define
the total variation of the k-step ahead dynamics as V k

T ≜∑T−k
t=k ∥St+k|t − St|t−k∥. The dynamic regret of the RLS

algorithm (Algorithm 1) for k-steps ahead prediction is
upper bounded by

R(k)
pred ≤ β1

1− γ
V k
T + β2T log

1

γ
+ kβ3 log

1

1− γ
+ kβ4,

1In our case, the optimal controller is the true minimizer of the
cost, hence, the regret in this case becomes the advantage function
of (Foster & Simchowitz, 2020).

6

Predictive Linear Online Tracking for Unknown Targets

where β1, β2, β3, β4 are given in (23) and are positive con-
stants related to system-specific constants, the state dimen-
sion n, and the target memory p.

Again, we can select the forgetting factor similar to Corol-
lary 4.2, to obtain more specific regret bounds. The domi-
nant dimensional dependence is hidden in the coefficient β2
and is of the order of np2 which is worse by p compared to
the optimal linear regression rate of np. This is not a limi-
tation of the RLS algorithm but an artifact of the norm of
zt scaling with

√
p. We can overcome this limitation by im-

posing “fading memory” constraints on the dynamics. If we
rewrite the dynamics as Stzt−1 = S

[1]
t rt−1+· · ·+S[p]

t rt−p,
then fading memory constraints would force S[i]

t to decay
exponentially with i.

To conclude the proof, we combine the previous steps while
also accounting for the truncation effect. The only remain-
ing step is to upper bound the k-steps ahead path lengths
V k
T in terms of the path length of the one-step-ahead path

length VT as defined in (14). In Lemma C.3, we prove that
V k
T ≤ √

pk2M2VT . This is why the factor W̃ 4 that multi-
plies the path length in the final regret bound in Theorem 4.1
appears with an exponent of 4 instead of just 2.

5. Simulations and Experimental Validation
In this section, we demonstrate the performance of PLOT
both in simulation and in hardware experiments. We study
the setting of tracking adversarial unknown targets with a
quadrotor, which is of particular interest given the number
of potential applications, such as hunting adversarial drones
in airports (Dressel & Kochenderfer, 2019) or artistic chore-
ography (Schoellig et al., 2014), to name a few. The code
for both the simulation and hardware experiments can be ac-
cessed from https://gitlab.nccr-automation.ch/

akarapetyan/plot.

We consider the Crazyflie 2.1 quadrotor (Bitcraze, 2023b),
a versatile, open-source, nano-sized quadrotor developed by
Bitcraze (Bitcraze, 2023b), whose dynamics can be mod-
eled with a linear time-invariant system linearized around
a hovering point (Beuchat, 2019). For such a model, we
define the state x := [p⃗ ; ⃗̇p ; ψ⃗], where p⃗ :=

[
x y z

]⊤
is

the position vector in the inertial frame, ψ⃗ :=
[
γ β α

]⊤
is the attitude vector in the inertial frame with γ, β and α
for the roll, pitch and yaw angle, respectively. The action
u := [f ; ω⃗] includes the total thrust f and the angular rate
ω⃗ :=

[
ωx ωy ωz

]⊤
in the body frame. For the detailed

derivation of the linear dynamic model, see Appendix F.1
and (Beuchat, 2019). For all examples, we take the sampling
time to be Ts = 0.1 seconds and the LQR cost matrices
fixed at Q := diag(80, 80, 80, 10, 10, 10, 0.01, 0.01, 0.1),
and R := diag(0.7, 2.5, 2.5, 2.5).

5.1. Simulation Results

Here, we consider the linearized dynamics of the Crazyflie
quadrotor, derived in Appendix F.1.We show how PLOT suc-
cessfully tracks both a static reference target with VT = 0
path length and a dynamic target with VT = O(

√
T). In

addition, we also demonstrate how the proven regret guar-
antees can be used as a guideline for tuning the algorithm
parameters such as the prediction horizon length W and the
forgetting factor γ. We also provide a performance compar-
ison to other online control algorithms from the literature
for tracking a non-stationary target.

5.1.1. TARGET WITH A VT = 0 PATH LENGTH

Given the dynamic regret analysis and the main result in
Theorem 4.1, the smaller the path length VT the easier the
control task is for PLOT. To show its tracking performance
for such a target, as well as to visualize the effect of the
prediction horizon W on the control performance, we con-
sider the circular target detailed in Example C.2 that has
VT = 0 path length. With this target revealed and measured
online, as described in Section 2, we run PLOT repeatedly
for various horizon lengths. The trajectory plots of the on-
line target and the quadrotor are shown in Figure 1 for the
first T = 2, 3, 5 and T = 7 seconds. The regret plots for the
considered multiple horizon lengths are shown in Figure 2
for a simulation of T = 200 seconds. Firstly, both figures
show that for too small W -s, PLOT exhibits a poorer track-
ing and regret performance due to the horizon truncation
error. As expected from Corollary 4.2, given the nature
of the reference target, PLOT with longer prediction hori-
zons performs better by learning the reference dynamics
online, achieving sublinear regret as verified by Figure 2.
Additionally, the regret is increased for larger W -s only up
to a certain saturated level. This behavior, as discussed in
Section 4, is thanks to the multi-predictor setup of PLOT,
making its regret scale with W̃ , as opposed to linearly with
W . See Appendix F.2.1 for further details.

5.1.2. TARGET WITH A VT = O(
√
T) PATH LENGTH

For more challenging targets, one can make use of Corollary
4.2 to tune for the best forgetting factor γ if the path length
VT is known. Here, we consider the case when only the
order of the path length of a given reference is known, and,
using Corollary 4.2, fix γa = 1− cγT−a, where cγ ∈ R+ is
a constant independent of VT and T , while a ∈ R+ is such
that γa ∈ (0, 1] and is tuned based on VT and T .

We fix a spiraling reference target with VT = O(
√
T), with

exact dynamics detailed in Appendix F.2.2. This order of
VT results in the optimal value of a = 0.25 and a forgetting
factor γ0.25 = 0.78 from Corollary 4.2, with cγ = 1.50
obtained experimentally.

7

https://gitlab.nccr-automation.ch/akarapetyan/plot
https://gitlab.nccr-automation.ch/akarapetyan/plot

Predictive Linear Online Tracking for Unknown Targets

0.0 0.5 1.0
px[m]

0.0

0.5

1.0

p y
[m

]
W = 1

W = 10

W = 5

Target

(a) T = 2 seconds

0.0 0.5 1.0
px[m]

0.0

0.5

1.0

p y
[m

]

W = 1

W = 10

W = 5

Target

(b) T = 3 seconds

0.0 0.5 1.0
px[m]

0.0

0.5

1.0

p y
[m

]

W = 1

W = 10

W = 5

Target

(c) T = 5 seconds

0.0 0.5 1.0
px[m]

0.0

0.5

1.0

p y
[m

]

W = 1

W = 10

W = 5

Target

(d) T = 7 seconds

Figure 1. Trajectory plots of a circular target with a VT = 0 path length and the PLOT Algorithm for varying prediction horizon lengths,
simulated for T = 2, 3, 5 and T = 7 seconds.

0 50 100 150 200
T [s]

0

5

10

15

20

R
(π
)
/
lo
g(
T
)

W = 1

W = 3

W = 5

W = 7

W = 10

W = 15

W = 20

W = 25

W = 30

Figure 2. Log-normalized regret of the PLOT Algorithm with a
range of prediction horizon lengths, simulated over a horizon of
T = 200 seconds.

−0.5 0.0 0.5 1.0
px[m]

0.0

0.5

1.0

1.5

p y
[m

]

γ0.25 = 0.78

γ0.5 = 0.97

γ1.0 = 1.0

Target

Figure 3. Trajectory plot of a spiral with a VT = O(
√
T) tracked

with PLOT with a W = 5 and a range of values for γ.

PLOT’s performance with three difference forgetting factors
is shown in the trajectory plot in Figure 3 for T = 40 sec-

onds, showing a better tracking performance for the regret-
optimal γ0.25 = 0.78. To show that cγ is independent
of T , we fix, cγ to the tuned value of 1.50 and perform
experiments with varying horizon lengths from T = 150
to T = 300 seconds. For each T , PLOT is run with 4
different forgetting factors with a = 0.1, 0.25, 0.5 and
1 (corresponding to γ = 1), and the regret at the end of
each experiment is shown in Figure 4. The results confirm
that γ0.25 = 1− 1.5T−0.25 consistently outperforms other
forgetting factors in terms of regret, as expected from Corol-
lary 4.2. Further details on this example are provided in
Appendix F.2.2.

150 200 250 300
T [s]

1200

1400

1600

1800

2000

2200

R
(π
)

a = 0.1

a = 0.25

a = 0.5

a = 1.0

Figure 4. Regret of PLOT with varying γa = 1− cγT
−a; γ0.25 is

regret-optimal based on Corollary 4.2.

5.1.3. COMPARISON WITH OTHER ONLINE CONTROL
METHODS

Next, we compare the dynamic regret of PLOT to other
controllers. Namely, the disturbance-action policy (DAP)
with memory proposed in (Agarwal et al., 2019a), the Ric-
catitron algorithm from (Foster & Simchowitz, 2020), the
SS-OGD algorithm by (Karapetyan et al., 2023), the Follow

8

Predictive Linear Online Tracking for Unknown Targets

0 50 100 150 200
T [s]

0

500

1000

1500

2000

2500
R
(π
)

PLOT

Riccatitron

DAP

SS-OGD

LQR

FTL

Figure 5. Dynamic Regret of online control algorithms applied to
the online tracking problem.

the Leader (FTL) algorithm (Abbasi-Yadkori et al., 2014),
as well as the Naive LQR controller that applies only an
optimal state error feedback input without any affine term.
The reference target is chosen to follow the dynamics

rt+1 = St+1|t =


1 0 Ts 0
0 1 0 Ts
0 0 st cos θt −st sin θt
0 0 st sin θt st cos θt

 rt,
where s0 = 1, θ0 = 0.06, Ts = 0.1s and sk = −sk−1,
θk = −0.99× θk−1 for every k =

√
T given some T that

we simulate T = 200 seconds.

Figure 5 shows the accumulated regret of all algorithms.
For the given challenging example, PLOT outperforms the
others. This is mainly because, unlike all the others, PLOT
implements a dynamic approach with a forgetting factor
adapting to the fast-changing reference on time. Moreover,
it deploys an indirect approach of learning the dynamics of
the reference and then using it in the control, as opposed
to a direct approach of learning the affine control term,
implemented by all the others apart from Naive LQR. For
the given dynamic target the direct and static approaches
produce a much smaller affine term compared to PLOT,
leading to a performance very close to that of Naive LQR.
The indirect approach of PLOT, however, may perform
worse in cases where the reference targets lack dynamics and
are mutually independent at each time step, as discussed in
Remark 4.3. Further details on this, as well as the considered
algorithms’ implementation are provided in Appendix F.3.

5.2. Experimental Validation on Quadrotors

We validate the proposed algorithm on the Crazyflie 2.1
quadrotor. Due to the non-linear dynamics of the quadrotor
and the noisy state measurements, the hardware experiments
have tight requirements for the stability and robustness of the

control algorithm. In the hardware experiments, we define
the states and actions to be the same as in the simulations.
The control inputs are sent to the quadrotor through a radio
communicator from a centralized computer that receives
state measurements through a local area network connection
to the motion capture system, and runs the online controller.
The virtual reference trajectory is generated online after
the drone has successfully taken off and is at a predefined
hovering position. The controller receives the target at a rate
of 10 Hz during flight.

We implement PLOT for the linearized model of the drones
derived in Appendix F with a fixed prediction horizon of
W = 5 and a forgetting factor of γ = 0.8. Figure 6 shows
the trajectory plots of PLOT and Naive LQR for a horizon of
T = 40 seconds and an “infinity”-shaped reference target..
The Naive LQR controller exhibits a delayed tracking be-
havior as expected, while PLOT achieves a smaller tracking
error. Further details on the practical implementation of the
algorithm are provided in Appendix G.

−0.5 0.0 0.5
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

p y
[m

]

PLOT LQR Target

Figure 6. Trajectory plot of an “infinity”-shaped reference tracked
by the drone with the PLOT and Naive LQR controllers.

6. Conclusion
We studied online tracking of unknown targets for linear
quadratic problems and provided an algorithm with dynamic
regret guarantees. By exploiting dynamic structure, we can
obtain sharper guarantees compared to prior work that as-
sumes no structure. It is open whether our regret analysis
can be extended to non-realizable targets, that is, targets
that do not obey (1) exactly for matrices that satisfy As-
sumption 2.2. While the guarantees for prediction still hold,
it is open whether the guarantees for the controller are re-
tained. A benefit of our implicit control paradigm is that
we can decompose tracking into prediction and certainty
equivalent control. This makes the approach promising for
Model Predictive Control tracking applications. Another
open question is whether the guarantees can be extended to
output tracking or non-quadratic costs.

9

Predictive Linear Online Tracking for Unknown Targets

Acknowledgements
This work has been supported by the Swiss National Sci-
ence Foundation under NCCR Automation (grant agreement
51NF40 180545), and by the European Research Council
under the ERC Advanced grant agreement 787845 (OCAL).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbasi-Yadkori, Y., Bartlett, P., and Kanade, V. Tracking ad-

versarial targets. In International Conference on Machine
Learning, pp. 369–377. PMLR, 2014.

Agarwal, N., Bullins, B., Hazan, E., Kakade, S., and Singh,
K. Online control with adversarial disturbances. In Inter-
national Conference on Machine Learning, pp. 111–119.
PMLR, 2019a.

Agarwal, N., Hazan, E., and Singh, K. Logarithmic re-
gret for online control. Advances in Neural Information
Processing Systems, 32, 2019b.

Anava, O., Hazan, E., Mannor, S., and Shamir, O. Online
learning for time series prediction. In Conference on
learning theory, pp. 172–184. PMLR, 2013.

Anderson, B. and Moore, J. Optimal Filtering. Dover
Publications, 2005.

Annaswamy, A. M. and Fradkov, A. L. A historical perspec-
tive of adaptive control and learning. Annual Reviews in
Control, 52:18–41, 2021.

Åström, K. J., Borisson, U., Ljung, L., and Wittenmark,
B. Theory and applications of self-tuning regulators.
Automatica, 13(5):457–476, 1977.

Aucone, E., Kirchgeorg, S., Valentini, A., Pellissier, L.,
Deiner, K., and Mintchev, S. Drone-assisted collection of
environmental DNA from tree branches for biodiversity
monitoring. Science Robotics, 8(74):eadd5762, 2023.

Azoury, K. S. and Warmuth, M. K. Relative loss bounds for
on-line density estimation with the exponential family of
distributions. Machine learning, 43:211–246, 2001.

Baby, D. and Wang, Y.-X. Optimal dynamic regret in LQR
control. Advances in Neural Information Processing Sys-
tems, 35:24879–24892, 2022.

Balta, E. C., Iannelli, A., Smith, R. S., and Lygeros, J.
Regret analysis of online gradient descent-based iterative
learning control with model mismatch. In 2022 IEEE
61st Conference on Decision and Control (CDC), pp.
1479–1484. IEEE, 2022.

Beuchat, P. N. N-rotor vehicles: modelling, control, and
estimation. 2019.

Bitcraze. Crazyradio, 2023a. URL https://www.
bitcraze.io/products/crazyradio-2-0/.

Bitcraze. Crazyflie 2.1, 2023b. URL https://www.
bitcraze.io/products/crazyflie-2-1/.

Bristow, D. A., Tharayil, M., and Alleyne, A. G. A survey of
iterative learning control. IEEE control systems magazine,
26(3):96–114, 2006.

Cervantes, I. and Alvarez-Ramirez, J. On the PID tracking
control of robot manipulators. Systems & control letters,
42(1):37–46, 2001.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge university press, 2006.

Chen, X. and Hazan, E. Black-box control for linear dy-
namical systems. In Conference on Learning Theory, pp.
1114–1143. PMLR, 2021.

Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza,
D., Picariello, F., and Silano, G. A review on the use of
drones for precision agriculture. 275(1):012022, 2019.

Ding, D., Yuan, J., and Jovanović, M. R. Discounted online
Newton method for time-varying time series prediction.
In 2021 American Control Conference (ACC), pp. 1547–
1552. IEEE, 2021.

Dressel, L. and Kochenderfer, M. J. Hunting drones with
other drones: Tracking a moving radio target. In 2019
International Conference on Robotics and Automation
(ICRA), pp. 1905–1912. IEEE, 2019.

Foster, D. and Simchowitz, M. Logarithmic regret for ad-
versarial online control. In International Conference on
Machine Learning, pp. 3211–3221. PMLR, 2020.

Ghai, U., Lee, H., Singh, K., Zhang, C., and Zhang, Y.
No-regret prediction in marginally stable systems. In
Conference on Learning Theory, pp. 1714–1757. PMLR,
2020.

Goel, G. and Hassibi, B. The power of linear controllers in
LQR control. In 2022 IEEE 61st Conference on Decision
and Control (CDC), pp. 6652–6657. IEEE, 2022.

Goel, G. and Hassibi, B. Regret-optimal estimation and
control. IEEE Transactions on Automatic Control, 68(5):
3041–3053, 2023.

10

https://www.bitcraze.io/products/crazyradio-2-0/
https://www.bitcraze.io/products/crazyradio-2-0/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/

Predictive Linear Online Tracking for Unknown Targets

Gradu, P., Hazan, E., and Minasyan, E. Adaptive regret
for control of time-varying dynamics. In Learning for
Dynamics and Control Conference, pp. 560–572. PMLR,
2023.

Guo, L. and Ljung, L. Performance analysis of general
tracking algorithms. IEEE Transactions on Automatic
Control, 40(8):1388–1402, 1995.

Hazan, E. and Seshadhri, C. Efficient learning algorithms
for changing environments. In Proceedings of the 26th
annual international conference on machine learning, pp.
393–400, 2009.

Hazan, E. and Singh, K. Introduction to online nonstochastic
control. arXiv preprint arXiv:2211.09619, 2022.

Heirung, T. A. N., Ydstie, B. E., and Foss, B. Dual adaptive
model predictive control. Automatica, 80:340–348, 2017.

Joulani, P., Gyorgy, A., and Szepesvári, C. Online learning
under delayed feedback. In International Conference on
Machine Learning, pp. 1453–1461. PMLR, 2013.

Kakade, S. M. On the sample complexity of reinforcement
learning. 2003.

Karapetyan, A., Bolliger, D., Tsiamis, A., Balta, E. C., and
Lygeros, J. Online linear quadratic tracking with regret
guarantees. IEEE Control Systems Letters (L-CSS), 2023.

Köhler, J., Müller, M. A., and Allgöwer, F. A nonlinear
tracking model predictive control scheme for dynamic
target signals. Automatica, 118:109030, 2020.

Kozdoba, M., Marecek, J., Tchrakian, T., and Mannor, S.
On-line learning of linear dynamical systems: Exponen-
tial forgetting in Kalman filters. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 4098–4105, 2019.

Li, Y., Chen, X., and Li, N. Online optimal control with
linear dynamics and predictions: Algorithms and regret
analysis. Advances in Neural Information Processing
Systems, 32, 2019.

Li, Y., Das, S., and Li, N. Online optimal control with affine
constraints. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 8527–8537, 2021.

Ljung, L. and Gunnarsson, S. Adaptation and tracking in
system identification—a survey. Automatica, 26(1):7–21,
1990.

Maeder, U., Borrelli, F., and Morari, M. Linear offset-free
model predictive control. Automatica, 45(10):2214–2222,
2009.

Mania, H., Tu, S., and Recht, B. Certainty equivalence is
efficient for linear quadratic control. Advances in Neural
Information Processing Systems, 32, 2019.

Minasyan, E., Gradu, P., Simchowitz, M., and Hazan, E. On-
line control of unknown time-varying dynamical systems.
Advances in Neural Information Processing Systems, 34:
15934–15945, 2021.

Modares, H. and Lewis, F. L. Linear quadratic tracking con-
trol of partially-unknown continuous-time systems using
reinforcement learning. IEEE Transactions on Automatic
control, 59(11):3051–3056, 2014.

Nikiforov, V. and Gerasimov, D. Adaptive regulation: ref-
erence tracking and disturbance rejection, volume 491.
Springer Nature, 2022.

Niknejad, N., Yaghmaie, F. A., and Modares, H. Online ref-
erence tracking for linear systems with unknown dynam-
ics and unknown disturbances. Transactions on Machine
Learning Research, 2023.

Nonhoff, M., Köhler, J., and Müller, M. A. Online convex
optimization for constrained control of linear systems
using a reference governor. IFAC-PapersOnLine, 56(2):
2570–2575, 2023.

Owens, D. H. and Hätönen, J. Iterative learning control—an
optimization paradigm. Annual reviews in control, 29(1):
57–70, 2005.

Pan, Y., Li, X., and Yu, H. Efficient PID tracking control
of robotic manipulators driven by compliant actuators.
IEEE Transactions on Control Systems Technology, 27
(2):915–922, 2018.

Pannocchia, G. and Bemporad, A. Combined design of
disturbance model and observer for offset-free model pre-
dictive control. IEEE Transactions on Automatic Control,
52(6):1048–1053, 2007.

Parsi, A., Iannelli, A., and Smith, R. S. An explicit dual
control approach for constrained reference tracking of un-
certain linear systems. IEEE Transactions on Automatic
Control, 2022.

Peterson, B. and Narendra, K. Bounded error adaptive
control. IEEE Transactions on Automatic Control, 27(6):
1161–1168, 1982.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A. Y., et al. ROS: an open-
source robot operating system. In ICRA workshop on
open source software, volume 3, pp. 5. Kobe, Japan,
2009.

11

Predictive Linear Online Tracking for Unknown Targets

Schoellig, A., Siegel, H., Augugliaro, F., and D’Andrea, R.
So You Think You Can Dance? Rhythmic Flight Perfor-
mances with Quadrocopters, pp. 73–105. 01 2014. ISBN
978-3-319-03903-9. doi: 10.1007/978-3-319-03904-6 4.

Simchowitz, M. Making non-stochastic control (almost)
as easy as stochastic. Advances in Neural Information
Processing Systems, 33:18318–18329, 2020.

Simchowitz, M. and Foster, D. Naive exploration is optimal
for online LQR. In International Conference on Machine
Learning, pp. 8937–8948. PMLR, 2020.

Snyder, D., Booker, M., Simon, N., Xia, W., Suo, D., Hazan,
E., and Majumdar, A. Online learning for obstacle avoid-
ance. In Conference on Robot Learning, pp. 2926–2954.
PMLR, 2023.

Soloperto, R., Köhler, J., Müller, M. A., and Allgöwer, F.
Dual adaptive MPC for output tracking of linear systems.
In 2019 IEEE 58th Conference on Decision and Control
(CDC), pp. 1377–1382. IEEE, 2019.

Suo, D., Agarwal, N., Xia, W., Chen, X., Ghai, U., Yu, A.,
Gradu, P., Singh, K., Zhang, C., Minasyan, E., et al. Ma-
chine learning for mechanical ventilation control. arXiv
preprint arXiv:2102.06779, 2021.

Tsiamis, A. and Pappas, G. J. Online learning of the Kalman
filter with logarithmic regret. IEEE Transactions on Au-
tomatic Control, 68(5):2774–2789, 2022.

Vamvoudakis, K. G. Optimal trajectory output tracking
control with a Q-learning algorithm. In 2016 American
Control Conference (ACC), pp. 5752–5757. IEEE, 2016.

Yu, C., Shi, G., Chung, S.-J., Yue, Y., and Wierman, A.
The power of predictions in online control. Advances in
Neural Information Processing Systems, 33:1994–2004,
2020.

Yuan, J. and Lamperski, A. Trading-off static and dynamic
regret in online least-squares and beyond. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 6712–6719, 2020.

Zhang, K., Hu, B., and Basar, T. Policy optimization for H2

linear control with H∞ robustness guarantee: Implicit
regularization and global convergence. SIAM Journal on
Control and Optimization, 59(6):4081–4109, 2021a.

Zhang, R., Li, Y., and Li, N. On the regret analysis of online
LQR control with predictions. In 2021 American Control
Conference (ACC), pp. 697–703. IEEE, 2021b.

Zhang, Z., Cutkosky, A., and Paschalidis, I. Adversarial
tracking control via strongly adaptive online learning
with memory. In International Conference on Artificial
Intelligence and Statistics, pp. 8458–8492. PMLR, 2022.

Zhao, P., Wang, Y.-X., and Zhou, Z.-H. Non-stationary
online learning with memory and non-stochastic control.
In International Conference on Artificial Intelligence and
Statistics, pp. 2101–2133. PMLR, 2022.

Zhou, H., Song, Y., and Tzoumas, V. Safe non-stochastic
control of control-affine systems: An online convex op-
timization approach. IEEE Robotics and Automation
Letters, 2023.

Ziemann, I. and Sandberg, H. Regret lower bounds for learn-
ing Linear Quadratic Gaussian systems. arXiv preprint
arXiv:2201.01680, 2022.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
international conference on machine learning (icml-03),
pp. 928–936, 2003.

12

Predictive Linear Online Tracking for Unknown Targets

Organization
In Appendix B we discuss properties of LQT control and the equivalence to the problem of LQR with disturbances. In
Appendix C, we discuss issues regarding the dynamic representation of the targets. We present analytical expressions for
the multi-step ahead predictors. We also discuss how the dynamic structure of the targets can lead to improved learning
performance. Finally, we provide an expression for the total variation norm of multi-step ahead predictors in terms of the
total variation of the system matrices St. The proof of Theorem 4.5 can be found in Appendix D, where we also provide more
details for the prediction problem. The proof of Theorem 4.1 and Corollary 4.2 can be found in Appendix E. Simulations
visualizing the performance of PLOT, its hyperparemeter tuning based on the regret analysis, as well as comparison with
other benchmark algorithms are provided in Appendix F. Appendix G provides the technical details of the implementation
of PLOT on the Crazyflie quadrotors and its tracking performance on those. The code for the simulation and hardware
experiments is provided in https://gitlab.nccr-automation.ch/akarapetyan/plot.

A. Additional Related Work
Online and non-stochastic control. Online and non-stochastic control techniques have been applied to systems with
known (Agarwal et al., 2019a) as well as unknown system dynamics (Simchowitz, 2020). In this paper, we focus on the
case of known system dynamics, where the main purpose of the online controller is to react to (non-stochastic) unknown
disturbances/targets.2 In this setting, Agarwal et al. (2019a) achieved O(

√
T) regret for general convex stage cost functions

under a disturbance affine feedback policy. In the case of quadratic costs, and more generally strongly convex stage costs3,
the guarantees were improved to logarithmic (Foster & Simchowitz, 2020; Simchowitz, 2020; Agarwal et al., 2019b). The
aforementioned works consider static problems in the sense that they compete against the best stationary policy. The
dynamic setting was studied in (Zhao et al., 2022), where dynamic regret guarantees of the order of O(

√
TVT) for general

convex costs were derived for the first time, using gradient-based (first order) base learners. In (Baby & Wang, 2022)
dynamic regret guarantees for the quadratic cost case (LQR) were derived using a variant of the Follow the Leading History
(FLH) algorithm. It was proved that the dynamic regret with respect to any dynamic disturbance affine policy is upper
bounded by T 1/3V

2/3
T , where VT is the total variation of the parameters of the policy. Learning disturbance affine feedback

policies follows the direct online control paradigm since we adapt the policy parameters directly.

In this paper, we study implicit online control architectures, where we decouple online prediction of disturbances/targets
from control design. Several works have studied the effect of predictions on receding horizon control (Yu et al., 2020; Li
et al., 2019; Zhang et al., 2021b). However, either no method of prediction is provided or the dynamic regret guarantees are
suboptimal in our setting. In particular, the regret guarantees scale with the total variation of the disturbance/target itself∑T−1

t=0 ∥rt+1 − rt∥ (Li et al., 2019), which is appropriate for unstructured or slowly-varying targets but is suboptimal in the
case of targets with dynamic structure; there exist targets for which the total variation of their state rt is linear, while the
total variation of the target dynamics St is zero–see Appendix C.1.

Abbasi-Yadkori et al. (2014) introduced the problem of non-stochastic control for target tracking, where the target can
be adversarial. Logarithmic regret guarantees are provided for learning affine control policies with constant affine terms.
However, policies with constant affine terms can only track static points as targets; they are not rich enough to track
trajectories that are not points and, in general, time-varying targets. Recently, Niknejad et al. (2023) studied online learning
for target tracking in the case of unknown system dynamics and unknown time-invariant target dynamics. Our setting is
different since we have known dynamics for the system, time-varying dynamics for the target, and we use dynamic regret.
Their static regret guarantee of T 2/3 is conservative for our setting, where we can obtain logarithmic regret in the static case,
however, it applies to general convex costs and unknown dynamics. In (Karapetyan et al., 2023), dynamic regret guarantees
are provided for target tracking, under a first order method which treats the targets as slowly varying or steady-state. Similar
to (Li et al., 2019), the dynamic regret depends on the total variation of the target state which can be suboptimal in the case
of target with dynamics. Zhang et al. (2022) proved Õ(

√
|I|) (for any interval I) adaptive regret guarantees for tracking in

the case of convex costs. Their setting is different since no dynamic structure is assumed for the targets, the comparator
class is controllers which are constant over the interval of interest, while we focus on square losses and dynamic regret.

2Note that as shown in many works, see (Foster & Simchowitz, 2020; Karapetyan et al., 2023), the problem of tracking is equiv-
alent under certain conditions to the problem of disturbance rejection. Hence, for the purpose of this literature review, we can use
disturbance/target interchangeably.

3Certain additional conditions are required.

13

https://gitlab.nccr-automation.ch/akarapetyan/plot

Predictive Linear Online Tracking for Unknown Targets

Although related, our setting is different from (Gradu et al., 2023) and (Minasyan et al., 2021) where the system itself is
linear time varying, there is no target, and adaptive regret is considered as a performance metric. Instead, here, the system’s
dynamics are time invariant, the target’s dynamics are unknown and time varying, and we consider dynamic regret. Safe
online non-stochastic control subject to constraints has also been studied before (Zhou et al., 2023; Nonhoff et al., 2023; Li
et al., 2021). Dealing with constraints is a more challenging problem in general. In many cases, the analysis is restricted to
the static case (Li et al., 2021), requires relaxing the notion of policy regret (Zhou et al., 2023) or the path length scales with
the target state (Nonhoff et al., 2023), which is not always optimal in our setting as we discuss above.

Finally, we note that when the system dynamics are unknown, it is no longer possible to achieve logarithmic regret in the
general case, even under stochastic disturbances (Simchowitz & Foster, 2020; Ziemann & Sandberg, 2022). It is possible to
achieve Õ(

√
T) regret (Chen & Hazan, 2021; Simchowitz, 2020; Mania et al., 2019) instead.

Prediction and online least squares. Online linear regression and the least squares method, in particular, have been
studied extensively before (Azoury & Warmuth, 2001; Cesa-Bianchi & Lugosi, 2006). Anava et al. (2013) provided
logarithmic regret guarantees for online prediction of auto-regressive (AR) and auto-regressive with moving average
(ARMA) systems using the online Newton step (ONS) method. The result holds for exp-concave prediction loss functions,
which includes the square prediction loss. Similar guarantees were proved for partially observed stochastic linear systems in
the case of Kalman filtering (Ghai et al., 2020; Tsiamis & Pappas, 2022). Under first-order methods, the regret guarantees
become O(

√
T) (Anava et al., 2013; Kozdoba et al., 2019), however, first-order methods are also known to adapt to

changes (Zinkevich, 2003; Hazan & Seshadhri, 2009). On the contrary, the standard versions of second-order methods like
RLS or ONS are not adequate for time-varying settings, where adaptation is needed. Another challenge is that in the case of
multi-step ahead prediction, these methods should be adapted to deal with delayed learning feedback.

To solve the former issue, one way is to employ multiple learners along with a meta-algorithm that chooses the best expert
online, also known as the Follow the Leading History (FLH) algorithm (Hazan & Seshadhri, 2009; Baby & Wang, 2022).
Another option is to employ exponential forgetting (Yuan & Lamperski, 2020; Ding et al., 2021). In this paper, we follow
the second approach since it has been standard practice in the adaptive control literature (Guo & Ljung, 1995; Åström et al.,
1977). Moreover, it has a simple implementation for real-time applications, like drone control.

To solve the latter issue, we employ the standard technique of Joulani et al. (2013) that decomposes the problem of learning
with delays of duration k into k non-overlapping and non-delayed online learning instances.

Control Literature. Common feedback control policies, such as the proportional-integral-derivative (PID) controllers
find extensive use for tracking problems in practice (Pan et al., 2018; Cervantes & Alvarez-Ramirez, 2001). For example,
integral control has been used to track constant unknown offsets. However, they typically require fine-tuning and their
tracking performance for unknown time-varying trajectories is not guaranteed in general. Tracking of known reference
trajectories with uncertain repetitive dynamics is studied in the context of iterative learning control (Bristow et al., 2006;
Owens & Hätönen, 2005) with online extensions studying dynamic regret (Balta et al., 2022). However, the methods do not
extend to non-repetitive setting of LQT with unknown time-varying references.

Predictive controllers such as model predictive control (MPC) have also been used to track constant references, see, for
example, offset-free MPC (Pannocchia & Bemporad, 2007; Maeder et al., 2009). Various tracking MPC methods are
proposed for time-varying references, e.g., (Köhler et al., 2020). However, unless we have an accurate prediction model for
the reference trajectory, the guarantees do not extend to more general sequentially revealed unknown trajectories. Dual
MPC methods with active exploration are proposed for tracking applications and uncertain dynamics (Heirung et al., 2017;
Soloperto et al., 2019; Parsi et al., 2022). However, transient performance, regret guarantees, or the case of unknown
time-varying references are not studied.

The LQT problem with unknown targets has been studied before from the point of view of control theory and adaptive
control (Vamvoudakis, 2016; Modares & Lewis, 2014; Peterson & Narendra, 1982). Typically, the goal is to prove asymptotic
convergence or boundedness of tracking error by appealing to Lyapunov stability theory. Most results assume time-invariant
target dynamics. Tracking time-varying targets is possible using adaptive control techniques, under the assumption that the
parameters of the target evolve like a random walk (Guo & Ljung, 1995). However, this assumption excludes adversarial
targets. By using regret as a metric, we can obtain non-asymptotic guarantees that also capture adversarial, non-stochastic
behaviors.

Finally, an alternative approach is to employ robust control techniques to account for worst-case disturbances/tracking

14

Predictive Linear Online Tracking for Unknown Targets

errors. Notable approaches include the celebrated H∞ control approach or mixed H2 −H∞ control (Zhang et al., 2021a).
Recently, robust controllers inspired by the notion of regret were designed (Goel & Hassibi, 2023).

B. Linear Quadratic Control Properties
In this section, we revisit some properties of the LQT controller, like (internal) stability. We also discuss how to relax
Assumption 2.3. Finally, we discuss that LQT is equivalent to LQR control with disturbances.

B.1. LQT properties

Let us first recall the notions of stabilizability and detectability. A pair of system and input matrices (A,B) is stabilizable if
and only if there exists a linear feedback gain K0 ∈ Rm×n such that (A−BK0) has all eigenvalues strictly inside the unit
circle.

Let us now introduce the following proposition, which shows that the closed loop matrix A−BK under the feedback gain
K defined in (8) is stable, that is, all of its eigenvalues are inside the unit circle. It also shows that the feedforward gains
Kt,∀t ≤ T defined in (9) decay exponentially fast as t increases. Under the optimal control law (7), we do not have stability
in the classical sense; since the target state can be arbitrary the tracking error might not remain close to the origin. However,
we have internal stability since all signals remain bounded as long as rt is bounded. A more general case with time-variant
costs of the proposition is proven in Corollary 1 of (Zhang et al., 2021b).

Proposition B.1 (Stability (Zhang et al., 2021b)). Let Assumption 2.3 be in effect. Recall the definition of the feedback and
feedforward gains in (8), (9). For all t ∈ N, the closed loop matrix (A−BK) satisfies

∥(A−BK)t∥ ≤
√
λmax(X)

λmin(X)
ρt, ρ =

√
1− λmin(Q)

λmax(X)
∈ (0, 1)

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalue respectively, X is defined in (6). As a result, the
coefficient matrices Kt defined in (9) satisfy

∥Kt∥ ≤ c0ρ
t

for c0 = ∥B∥λmax(X)
λmin(R)

√
λmax(X)
λmin(X) .

Assumption 2.3 enables us to quantify the constants c0, ρ. In fact, we can relax Assumption 2.3 and replace it with the
following assumption.

Assumption 2.3′. The pair (A,B) is stabilizable, the pair (Q,A) is detectable, Q is positive semi-definite, and R is
symmetric and positive definite.

Note that a pair (Q,A) is detectable if and only if (A⊤, Q⊤) is stabilizable. Under the above assumption, we still retain
stability of (A−BK) (Anderson & Moore, 2005). The only difference is that we do not have an explicit characterization of
ρ anymore as in Proposition B.1.

B.2. LQT as LQR with disturbances

We can recast the LQT problem into an LQR problem with adversarial disturbances, see, for example, (Karapetyan et al.,
2023). By redefining the tracking error as the system state et = xt − rt and encoding the time-varying target states as the
disturbance wt = Art − rt+1, the resulting LQR problem is given as,

min
u0:T−1

T−1∑
t=0

(
∥et∥2Q + ∥ut∥2R

)
+ ∥eT ∥2X

s.t. et+1=Aet +But + wt, ∀t = 0, ..., T − 1.

(15)

Therefore, we can treat the online LQT problem as an online, non-stochastic LQR problem with adversarial disturbances.
The converse is also true if we set rt = wt−1 −Art−1 and initialize r0 = 0.

15

Predictive Linear Online Tracking for Unknown Targets

C. Autoregressive Systems
In this section, we present certain properties of autoregressive systems

rt+1 = St+1zt,

where zt =
[
r⊤t r⊤t−1 · · · r⊤t−p

]⊤
, for some past horizon p > 0. Note that autoregressive systems can also be described

by state-space equations, viewing zt as a non-minimal state representation. Define the extended matrices

At+1 ≜


St+1

In 0 · · · 0 0
0 In · · · 0 0
...

. . .
...

0 0 · · · In 0

 , B ≜


In

0
0
...
0

 . (16)

Then rt can be though of as the output of the following state-space system

zt+1 = At+1zt

rt = B⊤zt
(17)

Our results extend directly to auto-regressive dynamics with additional exogenous variables (ARX models)

rt+1 = Stzt + vt.

It is sufficient to extend the regressor vector to contain 1 as the last element

z̃t =
[
z⊤t 1

]⊤
.

We can then extend St accordingly
S̃t =

[
St vt

]
.

C.1. Representation and learning complexity

Auto-regressive dynamics can cover many commonly encountered trajectories. Two elementary examples include constant
velocity and circular targets.
Example C.1 (Constant Velocity Target). Let zt, yt denote positions in a 2D horizontal plane with żt, ẏt the respective
velocities and the target state as rt = [zt, yt, żt, ẏt]

T . Let Ts be the sampling time for discretizing the target dynamics. Then,
a target with constant velocity can be represented by

rt+1 = Srt, S =


1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

 .
Note that there might be multiple representations. We could also use the second order representation

rt+1 = S[1]rt + S[2]rt−1, S[1] =


2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 , S[2] =


−1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 ,
using the fact that yt − yt−1 = yt+1 − yt (and similarly for zt) under constant velocity.
Example C.2 (Circular Target with Constant Speed). Let zt, yt denote positions in a 2D horizontal plane with żt, ẏt the
respective velocities and the target state as rt = [zt, yt, żt, ẏt]

T . Let Ts be the sampling time for discretizing the target
dynamics. Then ∀k ∈ N+, t = 1, ..., T − k, the circular target with constant speed can be represented by

rt+1 = Srt, S =


1 0 Ts 0
0 1 0 Ts
0 0 cos θ − sin θ
0 0 sin θ cos θ

 ,
where we used Euler discretization.

16

Predictive Linear Online Tracking for Unknown Targets

By allowing time-varying dynamics, we can also capture switching patterns, e.g. waypoint tracking, switching orientation,
etc. In the case of ARX models rt+1 = Stzt + vt, we can capture targets that behave like control systems themselves, e.g.,
this representation could be used for controlling a drone in order to track another drone.

In many previous works (Karapetyan et al., 2023; Li et al., 2019; Nonhoff et al., 2023), learning complexity is captured by
the total variation (path length) of the target itself

LT =

T−1∑
t=0

∥rt+1 − rt∥.

In contrast, here, we capture learning complexity by the total variation of the target dynamics

VT =

T−1∑
t=0

∥St+1 − St∥F .

In the case of ARX models we just replace St with S̃t. As shown in (Li et al., 2019, Th. 3), in the case of unstructured
targets, e.g. randomly generated rt, the former notion of complexity is optimal. However, we argue that in the case of
dynamic structure, the former notion of complexity might be suboptimal. Consider the circular target or the linear target
example. The total variation of the target state is linear with T since rt is constantly changing: LT = Ω(T). However, the
total variation of the target dynamics is zero VT = 0. Using the PLOT algorithm would give us logarithmic regret in this
case, while previous methods would give us linear regret.

We stress that every target can be represented trivially by ARX models. We can just set St = 0, vt = rt. In this case, the total
variation of S̃t =

[
St vt

]
is equal to LT , as in prior work. However, the representation is non-unique in general. In many

cases, the underlying dynamic structure will imply that a lower complexity representation exists, e.g., see Examples C.1, C.2.
If the targets have no dynamic structure, then, our current setting still captures this case; the regret of PLOT will just be
larger, i.e., of the same order as LT . Hence, our dynamic regret bounds supersede the ones in prior work.

C.2. Multi-step ahead dynamics expressions

Given the state representation (17), we can now represent the multi-step ahead recursions in a compact way. Let

Φt+i|t ≜ At+i · · · At+1, Φt|t = Inp

be the transition matrix of system (17). Then, we obtain k−step ahead recursions of the form

rt+k = St+k|tzt,

where the matrices St+k|t are given by
St+k|t = B⊤Φt+i|t (18)

By definition, if S0,...,T satisfies Assumption 2.2, then ∥B⊤Φt+i|t∥ ≤M .

C.3. Perturbation Analysis

Let S0, . . . , ST be any sequence that satisfies Assumption 2.2. We will now show that we can upper-bound the total variation
norm of the k-step ahead matrices V k

T ≜
∑T−k

t=k ∥St+k|t −St|t−k∥ in terms of the total variation norm of the one-step ahead
matrices VT ≜

∑T
t=1∥St − St−1∥F .

Lemma C.3. Recall that M is the upper bound on matrices St+k|t and p is the past horizon (memory) of the auto-regressive
dynamics. Let M̃ = max{M, 1}. The following inequality is true

V k
T ≤ √

pk2M̃2VT .

Proof. By adding and subtracting terms St+j|t+j−k, j = 1, . . . , k − 1 and the triangle inequality, we obtain

∥St+k|t − St|t−k∥ ≤
t+k−1∑
j=t

∥Sj+1|j+1−k − Sj|j−k∥.

17

Predictive Linear Online Tracking for Unknown Targets

Hence, we get

V k
T ≤ k

T−1∑
j=k−1

∥Sj+1|j+1−k − Sj|j−k∥. (19)

Let us now analyze
∆k,t ≜ St+k+1|t+1 − St+k|t = B⊤(Φt+k+1|t+1 − Φt+k|t).

Adding and subtracting Φt+k|t+j−1Φt+j|t+1, for j = k, k − 1, . . . , 2 we obtain

∆k,t = B⊤(At+k+1 −At+k)Φt+k|t+1 + B⊤Φt+k|t+k−1(At+k −At+k−1)Φt+k−1|t+1 + . . .

+ B⊤Φt+k|t+1(At+2 −At+1).

By the triangle inequality

∥∆k,t∥ ≤ ∥B⊤∥∥At+k+1 −At+k∥∥Φt+k|t+1∥+ ∥B⊤Φt+k|t+k−1∥∥At+k −At+k−1∥∥Φt+k−1|t+1∥+ . . .

+ ∥B⊤Φt+k|t+1∥∥At+2 −At+1∥.

By definition, all terms B⊤Φt+k|t+j−1, j = k, k − 1, . . . , 2 are bounded by max{M, 1}. Meanwhile, the error terms

At+j −At+j−1 =


St+j − St+j−1

0
...
0


can be bounded by ∥St+j − St+j−1∥, for j = k, . . . , 2. Finally, we need to bound the norm of the transition matrices.
Observe that by definition

Φt+j|t =


St+j|t
St+j−1|t

...
St+j−p+1|t

 , if j ≥ p, Φt+j|t =


St+j|t
St+j−1|t

...
St+1|t

In(p−j) 0n(p−j)×nj

 , if j < p,

where 0q1×q2 denotes the zero matrix of dimensions q1 × q2. As a result ∥Φt+j|t∥ ≤ √
pM̃ Putting everything together, we

obtain

∥∆k,t∥ ≤ √
pM̃2

k∑
j=2

∥St+j − St+j−1∥.

The results follow from the above inequality and (19).

D. Proofs for Prediction
In this section, we prove Theorem 4.5. We provide regret upper bounds for prediction in terms of the total variation norm of
the dynamics VT . Note that the prediction guarantees hold for any sequence r0:T that satisfies Assumptions 2.1, 2.2. First,
we show the result for one-step ahead prediction k = 1. Then, we generalize to k > 0.

D.1. Regret guarantees for one-step ahead prediction

Consider the one-step ahead prediction problem. For simplicity, define Ŝt|t−1 = Ŝt and Pt|t−1 = Pt. Then Algorithm 1 is
equivalent to Algorithm 3. Let rt, for t ≤ T be any arbitrary target sequence satisfying Assumption 2.1. The target sequence
may not necessarily satisfy (3). Let S0, . . . , ST be any “comparator” sequence that satisfies Assumption 2.2. Let Ŝt be the
sequence generated by the RLS algorithm. Then the dynamic regret of the one-step ahead predictor versus the sequence
S0, . . . , ST is defined as

R(1)
pred(S0:T) ≜

1

2

T∑
t=0

∥Ŝtzt−1 − rt∥2 −
1

2

T∑
t=0

∥Stzt−1 − rt∥2. (20)

18

Predictive Linear Online Tracking for Unknown Targets

Algorithm 3 Recursive Least Squares, for k = 1

Require: forgetting factor γ ∈ (0, 1), initial regularization ε
Initialize: P−1 = εInp, Ŝ0 ∈ S;
for t = 0, . . . , T do

Predict r̂t = Ŝtzt−1 and incur loss ∥rt − Ŝtzt−1∥2
Update Pt = γPt−1 + zt−1z

⊤
t−1;

Update Ŝt+1 = ΠPt

S (Ŝt + (rt − Ŝtzt−1)z
⊤
t−1P

−1
t),

where ΠPt

S (Y) ≜ argminS∈S ∥S − Y ∥F,Pt
;

end for

Note that if the sequence rt satisfies the autoregressive dynamics (3) and we choose the comparator sequence to coincide
with the true dynamics then the regret reduces to

R(1)
pred(S0:T) ≜

1

2

T∑
t=0

∥Ŝtzt−1 − rt∥2.

Note that we define the projection operator ΠPt

S (Y) as

ΠPt

S (Y) ≜ argmin
S∈S

∥S − Y ∥F,Pt
, (21)

where Pt should be symmetric positive definite. Recall that the weighted Frobenius norm is given by

∥S∥2F,Pt
= tr(SPtS

⊤).

To bound the regret of RLS, we adapt the proof of (Yuan & Lamperski, 2020) while keeping track of all quantities of interest,
e.g. the system dimension, logarithmic terms etc., and while working with matrices instead of vectors.
Theorem D.1. Let rt, for t ≤ T be any target trajectory that satisfies Assumption 2.1. Let S0, . . . , ST be any sequence
that satisfies Assumption 2.2. Define the path length as VT =

∑T−1
t=0 ∥St+1 − St∥F . The regret of the RLS algorithm

(Algorithm 3) for the one-step ahead prediction problem is upper bounded by

R(1)
pred(S0:T) ≤

β1
1− γ

VT + β2T log
1

γ
+ β3 log

1

1− γ
+ β4 (22)

with the constants

β1 = 2
√
nM

(
ε+ pD2

r

1− γ

)
, β2 = np(1 +

√
pM)2D2

r ,

β3 = β2, β4 = 2γεnM2 + β2 log
ε+ pD2

r

ε
.

(23)

Proof. Using the law of cosines identity ∥b− a∥2 − ∥b− c∥2 = −∥a− c∥2 − 2(a− c)⊤(b− a), we obtain

Rpred(S0:T) =

T∑
t=0

−1

2
z⊤t−1(Ŝt − St)

⊤(Ŝt − St)zt−1 − (rt − Ŝtzt−1)
⊤(Ŝt − St)zt−1

=

T∑
t=0

−1

2
tr((Ŝt − St)zt−1z

⊤
t−1(Ŝt − St)

⊤)− tr((Ŝt − St)zt−1(rt − Ŝtzt−1)
⊤),

where we used the identity a⊤b = tr(a⊤b) = tr(ba⊤). Invoking Lemma D.2 and Lemma D.3, we have

Rpred(S0:T) ≤ 2
√
pM(ε+

pD2
r

1− γ
)VT +

1

2
max
t≤T

∥rt − Ŝtzt−1∥2
T∑

t=0

z⊤t−1P
−1
t zt−1 + 2γεnM2.

The result follows from Lemma D.5 and the fact that ∥rt∥ ≤ Dr, ∥Ŝtzt−1∥ ≤M∥zt−1∥ ≤M
√
pDr since zt a concatenation

of p vectors. As a result, we can bound the error ∥rt − Ŝtzt−1∥2 by (1 +
√
pM)2D2

r for all t ≤ T . To simplify the final
bound we use T + 1 ≤ 2T .

19

Predictive Linear Online Tracking for Unknown Targets

The following technical lemmas are auxiliary results towards proving Theorem D.1. Lemmas D.2, D.3 control the growth
of the first order (gradient) term in the regret. Lemma D.4 upper bounds matrix Pt while Lemma D.5 contains a standard
elliptical potential bound, tailored to the forgetting factor case.

Lemma D.2 (Gradient Inner Product). Consider the conditions of Theorem D.1. Let Ŝt be the RLS estimate at time t and
St, St+1 be any arbitrary matrices that satisfy the constraints, i.e., St, St+1 ∈ S. We have

− 2tr(zt−1(rt − Ŝtzt−1)
⊤(Ŝt − St))

≤ ∥Ŝt − St∥2F,Pt
− ∥Ŝt+1 − St+1∥2F,Pt

+ ∥rt − Ŝtzt−1∥2z⊤t−1P
−1
t zt−1 + 4

√
pM(ε+

pD2
r

1− γ
)∥St+1 − St∥F

Proof. By the non-expansiveness of the projection operator, we have

∥Ŝt+1 − St∥2F,Pt
≤ ∥Ŝt + (rt − Ŝtzt−1)z

⊤
t−1P

−1
t − St∥2F,Pt

= ∥Ŝt − St∥2F,Pt
+ ∥(rt − Ŝtzt−1)z

⊤
t−1P

−1
t ∥2F,Pt

+ 2tr(zt−1(rt − Ŝtzt−1)
⊤(Ŝt − St))

= ∥Ŝt − St∥2F,Pt
+ tr

(
(rt − Ŝtzt−1)z

⊤
t−1P

−1
t zt−1(rt − Ŝtzt−1)

⊤
)

+ 2tr(zt−1(rt − Ŝtzt−1)
⊤(Ŝt − St))

= ∥Ŝt − St∥2F,Pt
+ ∥rt − Ŝtzt−1∥2z⊤t−1P

−1
t zt−1 + 2tr(zt−1(rt − Ŝtzt−1)

⊤(Ŝt − St))

Meanwhile, adding and subtracting St+1 in the norm in the left-hand side of the above inequality we obtain

∥Ŝt+1 − St∥2F,Pt
= ∥Ŝt+1 − St+1∥2F,Pt

+ ∥St+1 − St∥2F,Pt
+ 2tr((Ŝt+1 − St+1)Pt(St+1 − St)

⊤)

≥ ∥Ŝt+1 − St+1∥2F,Pt
+ ∥St+1 − St∥2F,Pt

− 2∥Ŝt+1 − St+1∥F,Pt
∥St+1 − St∥F,Pt

≥ ∥Ŝt+1 − St+1∥2F,Pt
− 2∥Ŝt+1 − St+1∥F,Pt∥St+1 − St∥F,Pt

≥ ∥Ŝt+1 − St+1∥2F,Pt
− 4

√
nM(ε+

pD2
r

1− γ
)∥St+1 − St∥F ,

where we used ∥Ŝt+1 −St+1∥F ≤
√
rank(Ŝt+1 − St+1)∥Ŝt+1 −St+1∥, rank(Ŝt+1 −St+1) ≤ n, ∥Ŝt+1 −St+1∥ ≤ 2M

and Lemma D.4. Combining the above two inequalities gives us the result.

Lemma D.3 (Telescoping Series). Consider the conditions of Theorem D.1.

T∑
t=0

∥Ŝt − St∥2F,Pt
− ∥Ŝt+1 − St+1∥2F,Pt

≤
T∑

t=0

tr((Ŝt − St)zt−1z
⊤
t−1(Ŝt − St)

⊤) + γε tr((Ŝ0 − S0)(Ŝ0 − S0)
⊤).

Proof. Notice that

∥Ŝt+1 − St+1∥2F,Pt+1
− ∥Ŝt+1 − St+1∥2F,Pt

= tr((Ŝt+1 − St+1)(Pt+1 − Pt)(Ŝt+1 − St+1)
⊤)

≤ tr((Ŝt+1 − St+1)ztz
⊤
t (Ŝt+1 − St+1)

⊤),

since Pt+1 = γPt + ztz
⊤
t , Pt ≻ 0, and γ ≤ 1. For t = 0, we have

∥Ŝ0 − S0∥2F,P0
= tr((Ŝ0 − S0)(z−1z

⊤
−1 + γεI)(Ŝ0 − S0)

⊤)

The result follows by dropping the last negative term ∥ŜT+1 − ST+1∥2F,PT
.

Lemma D.4 (Design matrix bound). Consider the conditions of Theorem D.1 with Pt = γPt−1 + zt−1z
⊤
t−1 and P−1 = εI .

We have

∥Pt∥ ≤ ε+
pD2

r

1− γ
.

20

Predictive Linear Online Tracking for Unknown Targets

Proof. Since ∥zt∥ ≤ √
pmaxt−p≤r≤t ∥rk∥ ≤ √

pDr, we have recursively that

∥Pt∥ ≤ γ∥Pt−1∥+ pD2
r =

1− γt

1− γ
pD2

r + γt+1ε ≤ 1

1− γ
pD2

r + ε

Lemma D.5 (Forgetting potential lemma). Consider the conditions of Theorem D.1 with Pt = γPt−1 + zt−1z
⊤
t−1 and

P−1 = εI . The following upper bound is true

T∑
t=0

z⊤t−1P
−1
t zt−1 ≤ np log(

ε+ pD2
r

ε(1− γ)
) + np(T + 1) log

1

γ
.

Proof. Note that γPt−1 = Pt − zt−1z
⊤
t−1 = P

1/2
t (Inp − P

−1/2
t zt−1z

⊤
t−1P

−1/2
t)P

1/2
t . Using the identity det(I +DC) =

det(I + CD), we obtain
det(γPt−1) = det(Pt)(1− z⊤t−1P

−1
t zt−1),

which, in turn, implies

z⊤t−1P
−1
t zt−1 = 1− det(γPt−1)

det(Pt)
≤ − log

det(γPt−1)

det(Pt)
.

The inequality follows from the fact that γPt−1 ⪯ Pt and the elementary inequality x− 1 ≥ log x, for 0 < x ≤ 1. By the
properties of the determinant, we also have det(γPt−1) = γnp det(Pt−1). Hence we have

z⊤t−1P
−1
t zt−1 ≤ log det(Pt)− log det(Pt−1) + np log 1/γ.

Summing all inequalities and by telescoping

T∑
t=0

z⊤t P
−1
t zt ≤ log detPT − log det(εInp) + np(T + 1) log 1/γ.

The final bound follows from the upper bound on PT given in Lemma D.4.

D.2. Regret guarantees for multi-step ahead prediction

Consider now the case of k−steps ahead prediction. Recall that for any fixed k = 1, . . . ,W , the k−step ahead predictor
maintains k learners that are updated at non-overlapping intervals. An example for k = 1, 2, 3 can be found in Figure 7.

Figure 7. The updates of the k = 1, 2, 3 steps ahead predictors for t = 2, . . . , 6. Projections are omitted for simplicity. Each predictor
consists of k independent learners that are updated at non-overlapping time steps. For example, for k = 2, there are two learners and the
update for Ŝt+2|t is decoupled from the one of Ŝt+1|t−1.

21

Predictive Linear Online Tracking for Unknown Targets

Let Sk−1|−1, Sk|0, . . . , ST |T−k be any comparator sequence that satisfies Assumption 2.2. In this case, the regret of k−step
ahead prediction is defined as

R(k)
pred ≜

T∑
t=k−1

∥Ŝt|t−kzt−k − rt∥2 −
T∑

t=k−1

∥St|t−kzt−k − rt∥2.

Once again if we choose the sequence to coincide with the true dynamics, we get that

R(k)
pred ≜

T∑
t=k−1

∥Ŝt|t−kzt−k − rt∥2.

Recall that we have k learners updated at non-overlapping time steps. Let i, for i = 0, . . . , k − 1, denote the index for the
learner. We will decompose the problem into k independent one-step ahead prediction problems and invoke Theorem D.1.

Every learner i is invoked to predict rt+k|t when ((t+ 1) mod k) = i. Learner 0 is invoked to predict rk−1|−1, r2k−1|k−1,
. . . , etc. Similarly, learner i is invoked to predict rk+i−1|i−1, r2k+i−1|k+i−1, . . . , etc. We will redefine the time axis to
reduce the problem to one-step ahead prediction. To streamline the presentation define

Ŝi
τ+1 ≜ Ŝ(τ+1)k+i−1|τk+i−1

Si
τ+1 ≜ S(τ+1)k+i−1|τk+i−1

ziτ−1 = zτk+i−1, r
i
τ = r(τ+1)k+i−1

and denote

Nk,i = ⌊T + 1

k
⌋, if i ≤ (T + 1) mod k

= ⌊T + 1

k
⌋ − 1, otherwise.

Note that learner i is invoked starting at τ = 0 up to Ni,k times.

Denote the regret of learner i by

R(k,i)
pred(S

i
0:Nk,i

) ≜
1

2

Nk,i∑
τ=0

∥Ŝi
τ+1z

i
τ − riτ+1∥2 −

1

2

Nk,i∑
t=0

∥Si
τ+1z

i
τ − riτ+1∥2. (24)

We can now prove Theorem 4.5.

D.3. Proof of Theorem 4.5

Based on the above notation, the regret can be decomposed into k terms

R(k)
pred =

k−1∑
i=0

R(k,i)
pred(S

i
0:Nk,i

).

As a consequence of redefining the time axis, the prediction regret of every individual learner i can be bounded using
Theorem D.1. Let V k,i

T =
∑Nk,i−1

τ=0 ∥Si
τ+1 − Si

τ∥. Then we obtain

R(k,i)
pred(S

i
0:Nk,i

) ≤ β1
1− γ

V k,i
T + β2(

T + 1

k
) log

1

γ
+ β3 log

1

1− γ
+ β4. (25)

Notice that V k
T =

∑k−1
i=0 V

k,i
T . Hence, summing up we obtain

R(k)
pred ≤ β1

1− γ
V k
T + β2(T + 1) log

1

γ
+ kβ3 log

1

1− γ
+ kβ4.

22

Predictive Linear Online Tracking for Unknown Targets

E. Regret of the PLOT algorithm
Let Σ = B⊤XB +R. Consider again the optimal non-causal policy

u∗t (xt) = −K(xt − rt)−
T−1∑
i=t

Ki−t(Ari − ri+1)︸ ︷︷ ︸
qt(rt:T)

,

where the optimal feedforward terms are given by

qt(rt:T) =

T−1∑
i=t

Ki−t(Ari − ri+1).

Consider also the causal suboptimal policy of the PLOT algorithm

uπt (xt)=−K(xt − rt)−
min{t+W−1,T}∑

i=t

Ki−t(Ari|t − ri+1|t)︸ ︷︷ ︸
q̂t(rt:t+W |t)

,

where we define the truncated feedforward terms that use the reference predictions

q̂t(rt:t+W |t) =

min{t+W−1,T}∑
i=t

Ki−t(Ari|t − ri+1|t).

Finally, define the residual feedforward terms δt(rt+W :T) ≜ qt(rt:T)− q̂t(rt:t+W). With these definitions in hand, we can
now analyze the regret of PLOT.

By invoking the performance difference lemma (Lemma 4.4), we obtain that the regret is equal to

R(π) =

T−1∑
t=0

∥q̂t(rt:t+W |t)− qt(rt:T)∥2Σ

=

T−1∑
t=0

∥q̂t(rt:t+W |t − rt:t+W)−δt(rt+W :T)∥2Σ.

Invoking Cauchy-Schwartz for the two summands, we can now decompose the regret into two terms

R(π) ≤ 2

T−1∑
t=0

∥q̂t(rt:t+W |t − rt:t+W)∥2Σ︸ ︷︷ ︸
prediction error

+2

T∑
t=0

∥δt(rt+W :T)∥2Σ︸ ︷︷ ︸
truncation error

, (26)

where the first term captures the effect of the prediction error, while the second term captures the effect of truncation. To
bound the latter we invoke the following lemma.

Lemma E.1 (Truncation term). The truncation term of the regret satisfies

2

T∑
t=0

∥δt(rt+W :T)∥2Σ = 2

T−1−W∑
t=0

∥
T−1∑

i=t+W

Ki−t(Ari − ri+1)∥2Σ ≤ α1
ρ2W

(1− ρ)2
T,

where
α1 = 2c20(∥A∥+ 1)2D2

r∥Σ∥. (27)

23

Predictive Linear Online Tracking for Unknown Targets

Proof. The first equality follows by the definition of δt(rt+W :T) and the fact that δt(rt+W :T) = 0, for t+W > T − 1. By
Proposition B.1, we have ∥Kt∥ ≤ c0ρ

t. Hence

2

T−1−W∑
t=0

∥
T−1∑

i=t+W

Ki−t(Ari − ri+1)∥2Σ ≤ 2c20(∥A∥+ 1)2∥Σ∥D2
r

T−1−W∑
t=0

(

T−1∑
i=t+W

ρi−t)2

= α1ρ
2W

T−1−W∑
t=0

(

T−1−W−t∑
i=0

ρi)2 ≤ α1ρ
2W

T−1−W∑
t=0

(1− ρT−W−t)2

(1− ρ)2

≤ α1
ρ2W

(1− ρ)2
T

What remains to show is that the prediction error term is upper bounded in terms of the prediction regret of the RLS
algorithm.
Lemma E.2 (Prediction term). The prediction term of the regret is upper bounded by

2

T−1∑
t=0

∥q̂t(rt:t+W |t − rt:t+W)∥2Σ ≤ c1

W∑
i=1

ρi−1R(i)
pred,

where
c1 = 2c20∥Σ∥W̃ , W̃ = min{(1− ρ)−1,W}.

Proof. Let t ≤ T −W + 1 for simplicity. The case t > T −W + 1 is similar. Then,

q̂t(rt:t+W |t) =

W−1∑
i=0

Ki(Art+i|t − rt+i+1|t).

By regrouping the terms, and since rt = rt|t we obtain

q̂t(rt:t+W |t) = K0Art +

W−1∑
i=1

(KiA−Ki−1)rt+i|t −KW−1rt+W |t.

As a result

q̂t(rt:t+W |t − rt:t+W) =

W−1∑
i=1

Li(rt+i|t − rt+i)−KW−1(rt+W |t − rt+W)

where Li ≜ KiA−Ki−1. Using the properties of the LQT controller and (6)

Li = KiA−Ki−1 = Σ−1B⊤(A−BK)⊤,iXA− Σ−1B⊤(A−BK)⊤,i−1X

= Σ−1B⊤(A−BK)⊤,i−1((A−BK)⊤XA−X)

= Σ−1B⊤(A−BK)⊤,i−1(A⊤XA−K⊤B⊤XA−X)

= Σ−1B⊤(A−BK)⊤,i−1(−Q+K⊤B⊤XA−K⊤B⊤XA)

= −Σ−1B⊤(A−BK)⊤,i−1Q.

Hence, by Proposition B.1 and the fact that Q ⪯ X , we also get

∥Li∥ ≤ c0ρ
i−1.

The difference between the truncated feedforward terms now becomes

∥q̂t(rt:t+W |t − rt:t+W)∥2Σ ≤ c20∥Σ∥
(

W∑
i=1

ρi−1∥rt+i − rt+i|t∥
)2

= c20∥Σ∥
(

W∑
i=1

ρ(i−1)/2ρ(i−1)/2∥rt+i − rt+i|t∥
)2

i)

≤ c20∥Σ∥
W∑
i=1

ρi−1
W∑
i=1

ρi−1∥rt+i − rt+i|t∥2 ≤ c20∥Σ∥W̃
W∑
i=1

ρi−1∥rt+i − rt+i|t∥2,

24

Predictive Linear Online Tracking for Unknown Targets

where i) follows by Cauchy-Schwartz. The result for t > T −W + 1 is similar. To obtain the final bound we just need to
sum over t.

Before we proceed to the proof of Theorem 4.1, let us recall the following standard result.

Lemma E.3 (Geometric Series). Let 0 ≤ ρ < 1. Then the following hold

S1(ρ) ≜
N∑
i=1

iρi−1 =
−(N + 1)ρN (1− ρ) + (1− ρN+1)

(1− ρ)2
≤ max

{
1

(1− ρ)2
, N2

}

S2(ρ) ≜
N∑
i=1

i2ρi−1 =
1 + ρ− (N + 1)2ρN + (2N2 + 2N − 1)ρN+1 −N2ρN+2

(1− ρ)3
≤ max

{
2

(1− ρ)3
, N3

}

Proof. The bounds
∑N

i=1 i
kρi−1 ≤ Nk+1 are immediate since 0 ≤ ρ < 1. The closed-form expressions of the sums are

standard, but we repeat the proof here for completeness. For S1(ρ), the expression follows from

S1(ρ) =
d

dρ
(

N∑
i=0

ρi) =
d

dρ

(
1− ρN+1

1− ρ

)
.

To show the upper bound notice that

−(N + 1)ρN (1− ρ) + (1− ρN+1) = 1−NρN (1− ρ)− ρN ≤ 1.

For S2 we use the identity

S2(ρ) = ρ

N∑
i=1

i(i− 1)ρi−2 + S1(ρ) = ρ
d

dρ
S1(ρ) + S1(ρ).

To show the upper bound notice that

1 + ρ− (N + 1)2ρN + (2N2 + 2N − 1)ρN+1 −N2ρN+2

= 1 + ρ−N2(1− ρ)2 − 2NρN (1− ρ)− ρN − ρN+1 ≤ 1 + ρ ≤ 2.

E.1. Proof of Theorem 4.1

By (26), Lemma E.1, and Lemma E.2, we obtain that

R(π) ≤ α1
ρ2W

(1− ρ)2
T + c1

W∑
i=1

ρi−1R(i)
pred.

Further, by Theorem 4.5

R(π) ≤ α1
ρ2W

(1− ρ)2
T + c1β1

1

1− γ

W∑
i=1

ρi−1V i
T + c1β2(T + 1) log

1

γ

W∑
i=1

ρi−1

+ c1

(
β3 log

1

1− γ
+ β4

) W∑
i=1

iρi−1.

25

Predictive Linear Online Tracking for Unknown Targets

By the perturbation bound in Lemma C.3, we can upper bound V i
T ≤ √

pM2i2VT . Hence, by invoking Lemma E.3 we
finally obtain

R(π) ≤ α1
ρ2W

(1− ρ)2
T + 2c1β1

√
pM2 1

1− γ
W̃ 3VT + c1β2W̃ (T + 1) log

1

γ

+ c1

(
β3W̃

2 log
1

1− γ
+ W̃ 2β4

)
= α1

ρ2W

(1− ρ)2
T + α2W̃

4VT (1− γ)−1 − α3W̃
2(T + 1) log γ

− α4W̃
3 log(1− γ) + α5W̃

3.

The coefficients are given by
α1 = 2c20(∥A∥+ 1)2D2

r∥Σ∥
α2 = 4c20∥Σ∥β1

√
pM2

α3 = 2c20∥Σ∥β2
α4 = 2c20∥Σ∥β3
α5 = 2c20∥Σ∥β4,

(28)

where β1, β2, β3, β4 are given in (23) and ∥Σ∥ = ∥B⊤XB +R∥.

E.2. Proof of Corollary 4.2

The fifth term is constant since W̃ is bounded. Taking W = − logT
2 log ρ implies that ρ2WT = 1, hence the truncation term is

constant. Note that under the given choice for γ, we have (1− γ)−1 = O(T 2), since 1− γ ≥ log T/T 2. Thus, the fourth
term is at most logarithmic with T : log(1− γ)−1 = O(log T).

The second term satisfies

VT
1− γ

=
√
4M

VT
√
T

max{√VT , log T/
√
T}

=
√
4M min{

√
VTT , log T}

Finally, for the third term, we invoke the elementary inequality

log γ ≥ 1− 1

γ
,

which is equivalent to

−(T + 1) log γ ≤ (T + 1)
1− γ

γ
.

Note that the maximum possible value of VT is 2MT since matrices St are bounded. Hence the forgetting factor γ =

1−
√

max{VT ,log2 T/T}
4MT ≥ 1− 1√

2

√
VT

2MT ≥ 1− 1√
2

can be lower bounded. As a result, we obtain

−(T + 1) log γ ≤ (T + 1)
1− γ

γ
≤

√
2√

2− 1
(T + 1)

√
max{VT , log2 T/T}

4MT
= O(max{

√
TVT , log T}).

26

Predictive Linear Online Tracking for Unknown Targets

F. Simulations
F.1. The Quadrotor Model

To demonstrate the performance of PLOT on a practical use-case we consider the linearized dynamics of the Crazyflie
quadrotor (Bitcraze, 2023b), derived in (Beuchat, 2019). The mini quadrotor can be modeled with a continuous-time
nonlinear model g : R9×1 × R4×1 → R9×1

ẋ = g(x, u),

where the state x and the input u are defined as

x :=

pṗ
ψ

 , u :=

[
f
ω

]
,

with p := [px; py; pz]
⊤ defined as the position vector in the inertial frame, ψ := [γ, β, α]⊤ as the attitude vector in the same

frame and γ, β and α denote the attitude angles, roll, pitch and yaw, respectively. The action u := [f ;ω]⊤ comprises of
the total thrust f , as well as the angular rate ω := [ωx, ωy, ωz]

⊤ in the body frame. We provide a brief derivation of the
linearized model for the quadrotor of interest and refer the readers to (Beuchat, 2019) for a detailed derivation.

Given the low speeds of the quadrotor, we neglect the aerodynamic drag forces resulting in the following equations of
motion for translation

p̈ =

p̈xp̈y
p̈z

 =
1

m

RIB

00
f

+

 0
0

−mg

 , (29)

where m is the mass of the quadrotor, g is the gravitational acceleration constant, and RIB is the rotation matrix from the
body frame to the inertial frame. In particular, given the attitude angles, RIB is given by

RIB =

cαcβ (−sαcγ + cαsβsγ) (sαsγ + cαsβcγ)
sαcβ (cαcγ + sαsβsγ) (−cαsγ + sαsβcγ)
−sβ cβsγ cβcγ

 ,
where sθ := sin(θ) and cθ := cos(θ) for a given angle θ. The equations of motion for rotation can similarly be derived as

ψ̇ =

1 sin γ tanβ cos γ tanβ
0 cos γ − sin γ
0 sin γ secβ cos γ secβ

ω. (30)

Using the equations (29) and (30), the linearized dynamic for the quadrotor can then be attained as

˙δx =
∂g

∂x⊤

∣∣∣x=xh
u=uh︸ ︷︷ ︸

Ac

δx +
∂g

∂u⊤

∣∣∣x=xh
u=uh︸ ︷︷ ︸

Bc

δu,

where xh = 0 ∈ R9×1 and u = [mg; 0; 0; 0]⊤ are the hovering position, steady state, and input, and δx := x− xh, δu :=
u− uh. Calculating the respective Jacobians, and discretizing the resulting dynamics with a sampling time Ts, the following
dynamics are derived

xt+1 =



1 0 0 Ts 0 0 0 0 0
0 1 0 0 Ts 0 0 0 0
0 0 1 0 0 Ts 0 0 0

0 0 0 1 0 0 0 gTs 0
0 0 0 0 1 0 −gTs 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

A

xt +



0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
Ts

m 0 0 0

0 Ts 0 0
0 0 Ts 0
0 0 0 Ts


︸ ︷︷ ︸

B

ut, (31)

27

Predictive Linear Online Tracking for Unknown Targets

where xt = δxt, and with a slight abuse of notation we take ut := δut and consider uh as a feedforward input term required
for hovering.

Throughout this section, we will consider the linearised drone dynamics (31) for PLOT and other online con-
trol algorithms. We fix the sampling time to Ts = 0.1 seconds and the quadratic cost matrices to Q :=
diag(80, 80, 80, 10, 10, 10, 0.01, 0.01, 0.1), and R := diag(0.7, 2.5, 2.5, 2.5) to match the ones tuned for the experiments
on the hardware.

For the PLOT policy, we take p = 1 for all experiments, and the projection step 8 in the RLS Algorithm 1 is executed with a
quadratic program solver, solving the following problem

Ŝt+k|t = argmin
S

∥S − Y ∥F,Pt|t−k

s.t. ∥vec(S)∥∞ ≤M,

where vec(S) is a vector formed by vertically stacking the columns of S. Note that, the ∥ · ∥∞ constraint is a conservative
approximation of the original problem, resulting in a safe, and conservative estimate of the original projection Π

Pt|t−k

S .

In this section, we first analyze PLOT, showing the effect of the prediction horizon, W on the tracking performance, and
how this is reflected in the dynamic regret bound. We also show how the regret bound can be used to adjust the forgetting
factor, γ, to achieve better tracking given the order of the reference target path length. Next, we compare the proposed
method with state-of-the-art online control algorithms for the non-stochastic adversarial control setting with both static and
dynamic regret bounds. We show how for certain dynamic references the proposed indirect method of PLOT provides better
tracking and lower dynamic regret, and how for others it can perform worse than direct methods.

F.2. PLOT: Regret for hyperparameter tuning

The dynamic regret guarantees derived in Theorem 4.1 and Corollary 4.2 can be used to tune the hyperparameters of
the proposed method, such as prediction horizon length, W , or the forgetting factor γ. Though the exact bounds are
often over-conservative in practice, the bound order still provides an intuition of the effect of the parameters on tracking
performance.

F.2.1. THE PREDICTION HORIZON W

In this setting, we aim to demonstrate the effect of the prediction horizon length, W , on the tracking performance of
PLOT. We consider a static target with a VT = 0 path length. A simple target respecting this condition is the circular
target, as introduced in Example C.2 with θ = 0.06 radians. With this target revealed and measured online, as described in
Section 2, we run the PLOT algorithm repeatedly for varying numbers of horizon lengths. For all, we set the same initial
state of p = [0.6, 0.0, 0.4]⊤, M = 10, and forgetting factor γ = 0.8. We define the augmented matrix S̃t ≜

[
St vt

]
for

t = 1, . . . , T−1 as in Section 2, and for all k = 1, . . . ,W , the k learners are initialized as follows: Ŝj+k|j = I6, vj+k|j = 06

and Pj|j−k = 10−4 × I7, for all j = −1, . . . , k − 2. Here, 1d denotes the d-dimensional vector of all ones.

The circular target, as well as the trajectory followed by the quadrotor model (31) under the PLOT algorithm is shown in
Figure 8 at T = 2, 3, 5 and T = 7 seconds. Figure 9 shows one complete round of a circle with T = 10.7 seconds. The
corresponding regret plots (including more prediction horizons) are shown in Figure 10 for a longer simulation of T = 200
seconds.

Several observations can be made from these experiments. Firstly, a prediction horizon length not long enough, e.g. W = 1
or W = 3 results in a poor performance, reflected in both Figures in terms of tracking and regret. While higher horizon
lengths achieve efficient tracking by learning the reference dynamics on the go, achieving sublinear regret. This behavior
matches the intuition Corollary 4.2 provides, as a long enough W is required to achieve logarithmic regret in T . Secondly,
an increase in regret of PLOT for larger W -s can be observed in Figure 10, as “predicted” by the second term of the bound
in Theorem 4.1. This increase in regret, however, is saturated at a certain value as can be observed from the figure; in this
example, the increase stops after around W = 15. This behavior also is captured by the bound in Theorem 4.1, as, crucially,
the second term is weighted by increasing powers of ρ, which reduces regret exponentially counteracting the linear increase
with W . This shows that the PLOT does not suffer, at least in terms of regret, due to higher prediction horizons.

28

Predictive Linear Online Tracking for Unknown Targets

0.0 0.5 1.0
px[m]

0.0

0.5

1.0

p y
[m

]
W = 1

W = 10

W = 5

Target

(a) T = 2 seconds

0.0 0.5 1.0
px[m]

0.0

0.5

1.0

p y
[m

]

W = 1

W = 10

W = 5

Target

(b) T = 3 seconds

0.0 0.5 1.0
px[m]

0.0

0.5

1.0

p y
[m

]

W = 1

W = 10

W = 5

Target

(c) T = 5 seconds

0.0 0.5 1.0
px[m]

0.0

0.5

1.0

p y
[m

]

W = 1

W = 10

W = 5

Target

(d) T = 7 seconds

Figure 8. Trajectory plots of a circular target with a VT = 0 path length and the PLOT Algorithm for varying prediction horizon lengths,
simulated for T = 2, 3, 5 and T = 7 seconds.

0.0 0.5 1.0
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p y
[m

]

W = 1

W = 10

W = 5

Target

Figure 9. Trajectory plot of a circular target with a VT = 0 path
length and the PLOT Algorithm for varying prediction horizon
lengths, simulated for T = 10.7 seconds.

0 50 100 150 200
T [s]

0

5

10

15

20

R
(π
)
/
lo
g(
T
)

W = 1

W = 3

W = 5

W = 7

W = 10

W = 15

W = 20

W = 25

W = 30

Figure 10. Log-normalized regret of the PLOT Algorithm with a
range of prediction horizon lengths, simulated over a horizon of
T = 200 seconds.

F.2.2. THE FORGETTING FACTOR γ

As suggested by Corollary 4.2, the desired regret rate can be achieved by tuning the forgetting factor, γ, given the path length
VT , and the control horizon, T . In practice, the exact constants appearing in the expression of optimal γ are not known.
However, one can still tune the gamma based on the order of the path length and the prediction horizon. In particular, we fix
γa = 1− cγT

−a, where cγ ∈ R+ is constant independent of VT and T , while a ∈ R+ is such that γa ∈ (0, 1] and is tuned
based on VT and T .

To show this on an example, we first fix a dynamic reference trajectory with a path length VT = O(
√
T) and perform 5

different runs of PLOT for a range of values for γ = γa, with a = 0.10, 0.20, 0.25, 0.40, 0.50 and 1.0. We fix M = 1 and
W = 5. Note that for this path length the optimal value for a, suggested by Corollary 4.2 is a = 0.25. The dynamics for
the reference are generated by starting with the circle static dynamics in the previous example and increasing the radius
of the circle every

√
T time steps by a factor sampled uniformly from 0.7 and 1.5. In addition, a shift of [−0.1, 0.1]⊤ is

applied to [px, py]
⊤ at the same time step. As in the previous example, we define the augmented matrix S̃t ≜

[
St vt

]
for

t = 1, . . . , T − 1 as in Section 2. To highlight the effect of the forgetting factor, for all k = 1, . . . ,W , the k learners are
initialized as follows: Ŝj+k|j = 06×6, vj+k|j = 06 and Pj|j−k = I7, for all j = −1, . . . , k − 2.

The dynamic target trajectory together with the system trajectory under the PLOT controller with different forgetting factors

29

Predictive Linear Online Tracking for Unknown Targets

0 1
px[m]

0.0

0.5

1.0

1.5

p y
[m

]
γ0.25 = 0.78

γ0.5 = 0.97

γ1.0 = 1.0

Target

(a) T = 2 seconds

0 1
px[m]

0.0

0.5

1.0

1.5

p y
[m

]

γ0.25 = 0.78

γ0.5 = 0.97

γ1.0 = 1.0

Target

(b) T = 4 seconds

0 1
px[m]

0.0

0.5

1.0

1.5

p y
[m

]

γ0.25 = 0.78

γ0.5 = 0.97

γ1.0 = 1.0

Target

(c) T = 9 seconds

0 1
px[m]

0.0

0.5

1.0

1.5

p y
[m

]

γ0.25 = 0.78

γ0.5 = 0.97

γ1.0 = 1.0

Target

(d) T = 15 seconds

Figure 11. Trajectory plot of a spiral with a VT = O(
√
T) tracked with PLOT with W = 5 and a range of values for γ, simulated for

T = 2, 4, 9 and T = 15 seconds.

−0.5 0.0 0.5 1.0
px[m]

0.0

0.5

1.0

1.5

p y
[m

]

γ0.25 = 0.78

γ0.5 = 0.97

γ1.0 = 1.0

Target

Figure 12. Trajectory plot of a spiral with a VT = O(
√
T) tracked

with PLOT with a W = 5 and a range of values for γ.

0 50 100 150 200
T [s]

0

500

1000

1500

2000
R
(π
)

γ0.1 = 0.3

γ0.2 = 0.67

γ0.25 = 0.78

γ0.4 = 0.93

γ0.5 = 0.97

γ1.0 = 1.0

Figure 13. Regret of PLOT for the spiral target with VT =
√
T for

a range of γ-s. γ = 0.78 is chosen as per Corollary 4.2.

is plotted in Figure 11 for T = 2, 4, 9 and T = 15 seconds. A longer trajectory for T = 40 seconds is provided in Figure 12
with the corresponding regret plot in Figure 13 for T = 200 seconds and with more values of γ. It can be observed from the
figures that γ0.25 tuned optimally to scale with 1− T−0.25 achieves the lowest regret at the end of the horizon compared to
other a-s. Intuitively, forgetting helps to adapt quickly to the fast-changing dynamics of the reference and lose the influence
of the random initialization of the predictions exponentially fast. This can be observed on the plot, by noticing that the regret
for γ = 1.0, corresponding to PLOT without any forgetting is the highest, as expected from the theoretical results. The
random initialization of learners, as well as the fast-changing dynamics of the reference, make the no-forgetting tracker
maintain a larger tracking error. At the other extreme, forgetting too much, as in this case with γ = 0.3 hinders the learner
from estimating the dynamics, enough to cause higher regret.

To show that the scaling constant is independent of horizon T , we fix, cγ to a tuned value of 1.5 and perform experiments
with varying horizon lengths from T = 150 to T = 300 seconds. For each T , PLOT is run 4 times, each time with a
different γa. The regret at the end of each horizon is calculated, and the results are visualized in Figure 14. As expected from
Corollary 4.2, PLOT with forgetting factor γ0.25 performs the best for such a reference, across different horizon lengths.

30

Predictive Linear Online Tracking for Unknown Targets

150 200 250 300
T [s]

1200

1400

1600

1800

2000

2200

R
(π
)

a = 0.1

a = 0.25

a = 0.5

a = 1.0

Figure 14. Regret of PLOT with varying γa = 1− cγT
−a.

F.3. Comparison with Benchmarks

In this section, we consider a highly dynamic reference target and compare PLOT to state-of-the-art online learning
algorithms that can also be applied to the online tracking problem in the linear quadratic setting. In particular, we consider
the following dynamics for the target with p = 1

rt+1 = St+1|t =


1 0 Ts 0
0 1 0 Ts
0 0 st cos θt −st sin θt
0 0 st sin θt st cos θt

 rt, (32)

where s0 = 1, θ0 = 0.06, Ts = 0.1s and sk = −sk−1, θk = −0.99× θk−1 for every k =
√
T given some T . We simulate

T = 200 seconds or 2000 time steps.

We compare PLOT to 5 algorithms, namely, the Follow the Leader (FTL) algorithm (Abbasi-Yadkori et al., 2014),
Disturbance Action Policy controller (Agarwal et al., 2019a), Riccatitron (Foster & Simchowitz, 2020), SS-OGD (Karapetyan
et al., 2023), and Naive LQR that only performs a static feedback on the currently observed tracking error. Apart from the
latter, we tune each controller’s hyperparameters to achieve the best performance for the given reference, by performing a
grid search over the hyperparameters. All controllers start from the same initial state and follow the same target revealed at
the same point in time. We provide the details for each below in Appendix F.3.1.

The trajectories of the target and the system under the considered algorithms are plotted in Figure 15 for the first 30 seconds
of the simulation. The corresponding dynamic regret plot for the full T = 200 seconds horizon is shown in Figure 16. Given
the dynamic nature of the reference with a sublinear path length, PLOT outperforms all of the other considered benchmarks.
There are two main possible reasons for this. Firstly, our approach is aimed at dynamic targets, i.e. unlike the others, it
incorporates a forgetting factor that equips it with adaptive capabilities and enjoys dynamic regret guarantees. This allows
it to deal better with such time-varying references to which it is hard or impossible to fit a time-invariant model better
compared to the other static methods. Secondly, for such targets, the indirect approach of PLOT, i.e., learning the target
dynamics and then incorporating these in the control action, is more advantageous than a direct approach deployed by all the
other benchmarks. While the affine term of the optimal control action changes drastically throughout the horizon due to the
sign and direction change of the target, the dynamics of the exosystem do not change as drastically. Thus, PLOT, learning
the dynamics of the exosystem with forgetting is able to provide a better tracking performance, while DAP, Riccatitron, and
SS-OGD learn a much smaller affine term for the controller. This results in their performance being indistinguishable from
that of the naive LQR. The FTL algorithm aiming for an average best performance instead learns a control action that keeps

31

Predictive Linear Online Tracking for Unknown Targets

0.50 0.75 1.00 1.25 1.50
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p y
[m

]

PLOT Target

(a) PLOT (ours)

0.50 0.75 1.00 1.25 1.50
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
p y
[m

]

FTL Target

(b) FTL (Abbasi-Yadkori et al., 2014)

0.50 0.75 1.00 1.25 1.50
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p y
[m

]

LQR Target

(c) Naive LQR

0.50 0.75 1.00 1.25 1.50
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p y
[m

]

DAP Target

(d) DAP (Agarwal et al., 2019a)

0.50 0.75 1.00 1.25 1.50
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p y
[m

]

Riccatitron Target

(e) Riccatitron (Foster & Simchowitz, 2020)

0.50 0.75 1.00 1.25 1.50
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p y
[m

]
SS-OGD Target

(f) SS-OGD (Karapetyan et al., 2023)

Figure 15. Trajectory plots of a reference target with a VT = O(
√
T) following (32) tracked by PLOT and other online control algorithms

for a T = 30 seconds long horizon.

32

Predictive Linear Online Tracking for Unknown Targets

0 50 100 150 200
T [s]

0

500

1000

1500

2000

2500

R
(π
)

PLOT

Riccatitron

DAP

SS-OGD

LQR

FTL

Figure 16. Dynamic Regret of Online Control algorithms applied to the online tracking problem of the unknown target following (32).

it roughly in the center of the evolving spiral target ending up with a dynamic regret of an order higher compared to the
others.

Table 1 compares the average computational time for each iteration of the algorithm in milliseconds, the size of the memory
that needs to be reserved and updated for the online execution of the algorithm, and the accumulated regret at the end of the
given target trajectory. The average computational time is obtained by averaging the time it takes to compute the control
action at each timestep over the entire horizon of 2000 timesteps. The memory for each controller shows the size of the past
state and control variables that need to be stored in the memory. For example for the naive LQR controller, this is 0, while
for SS-OGD it is 4, as at each timestep it requires the past control input.

Naive LQR, performing only a single matrix multiplication at each timestep is unsurprisingly the fastest, requiring no extra
memory. The computational time of FTL and SS-OGD is of the same order, however, for this benchmark, both incur a
higher cost and therefore a higher regret. When PLOT is implemented by approximating step 8 of Algorithm 1 with an
unweighted Frobenious norm projection, it can be implemented by a thresholding operation on singular values, requiring
no quadratic programs to be solved. In this case, PLOT, Riccatitron, and DAP have similar computation times but are all
an order higher compared to the Naive LQR. While compared to it, Riccatitron and DAP attain almost the same regret,
PLOT outperforms both, requires less memory than Riccatitron, and is around a millisecond faster than DAP. When the full
weighted projection is carried out in Algorithm 1, step 8, by approximately solving it with a quadratic program consuming
9.3 milliseconds, PLOT attains the lowest regret.

Table 1. Comparison of Online Control Algorithms for Tracking the Unknown Target with Dynamics (32)

ALGORITHM COMP. TIME [MS] MEMORY REGRET

PLOT (OURS) 10.7∗ 54 1661
PLOT (OURS, W/ UNWEIGHTED PROJECTION) 2.10 54 1685
RICCATITRON (FOSTER & SIMCHOWITZ, 2020) 2.30 90 2414
DAP (AGARWAL ET AL., 2019A) 3.50 45 2454
FTL (ABBASI-YADKORI ET AL., 2014) 0.40 0 40004
SS-OGD (KARAPETYAN ET AL., 2023) 0.33 4 2608
NAIVE LQR 0.25 0 2453

* - 9.3 ms spent on the weighted projection with a QP solver.

F.3.1. BENCHMARK IMPLEMENTATION DETAILS

PLOT: The prediction horizon is set to W = 6, the forgetting factor to γ = 0.9, and M = 10. The the augmented matrix is
defined as S̃t ≜

[
St vt

]
for t = 1, . . . , T − 1 as in Section 2, and for all k = 1, . . . ,W , the k learners are initialized as

33

Predictive Linear Online Tracking for Unknown Targets

0 50 100 150
T [s]

50

100

150

R
(π
)
/
T

PLOT

Riccatitron

DAP

SS-OGD

LQR

FTL

Figure 17. Average Dynamic Regret of Online Control algorithms applied to the online tracking problem of the unknown target following
(33).

follows: Ŝj+k|j = I6, vj+k|j = 06 and Pj|j−k = 10−4 × I7, for all j = −1, . . . , k − 2.

Riccatitron: Following the notation of (Simchowitz, 2020), the horizon of the learners is set to h = 5 and the disturbance
action policy length to m = 5 decided upon by a search over the best parameter. The latter choice increases the memory
requirement of Riccatitron in Table 1 to achieve a good tracking performance. We disable the projection, but note that even
with projection enabled the results are almost identical. The Online Newton Step (ONS) update is chosen, with The learning
rate set to ηons = 0.2 and εons = 1.

DAP: As per the notation of (Agarwal et al., 2019a), and to match the memory allocation for PLOT, we fix the horizon
length for the disturbance action policy to H = 5. The projection is performed as detailed in (Agarwal et al., 2019a), and
the learning rate is set to 0.1√

T
.

FTL: The algorithm is implemented as detailed in (Abbasi-Yadkori et al., 2014) and contains no hyperparameters to be
tuned.

SS-OGD: The affine control term is initialized with a vector of zeros, and the learning rate is set to α = 0.001∗I4, following
the notation of (Karapetyan et al., 2023).

Naive LQR: The naive LQR controller performs state feedback on the observed error

uLQR
t (xt)=−K(xt − rt), ∀t = 0, . . . T − 1,

with K defined in (8).

F.3.2. RANDOM TARGETS

The dependence of the dynamic regret of PLOT on VT implies that for targets having a dynamic structure, including the one
in the preceding example, PLOT’s tracking performance is better compared to targets that lack dynamics. While the latter
case is still covered by the structure imposed on the targets, as discussed in Section C, the regret can scale linearly with T in
the worst case when rt at each time step is independent from the others. In this case, the indirect approach of PLOT may
result in a poorer performance compared to direct approaches like DAP, Riccatitron, or SS-OGD when γ, W , and M are not
optimally tuned for the specific realization.

To showcase this marginal example, we consider random targets sampled from the uniform distribution

rt ∼ U
([

−1
−1

]
,

[
1
1

])
. (33)

34

Predictive Linear Online Tracking for Unknown Targets

We compare PLOT with the same benchmark controllers whose tunable parameters are the same as in Section F.3.1. For
PLOT we take W = 2, γ = 0.02, and M = 0.7, leaving the other parameters unchanged from Section F.3.1.

We perform 10 independent realizations of the random targets over a horizon of length T = 150 seconds and compute the
averaged regret over these runs for each of the six considered algorithms, shown in Figure 17. The random reference updates
combined with the low forgetting factor γ result in Ŝt-s with large singular values, and, consequently, large inputs, while the
optimal action in this case is staying close to the origin. While the performance can be improved significantly by lowering
M and increasing γ, bringing the averaged regret to around 25, this example shows that for a completely random agent with
no dynamics a direct approach may perform better than an indirect one like PLOT.

F.4. A Naive-RLS Controller

The multi-predictor setup of PLOT is crucial for its stability and regret performance. To showcase this we consider also a
simpler controller that we refer to as Naive-RLS in Algorithm 4. In contrast to PLOT, it obtains W -step ahead dynamics
predictions by recursively applying only the one step ahead estimate Ŝt+1|t, resulting in rt+1 = Ŝt+1|trt, rt+2|t =

Ŝ2
t+1|trt, . . . , rt+W |t = ŜW

t+1|trt, for p = 1. As detailed in Section 3, this can result in unstable predictions in particular
when St is time-varying. For p > 1, we define zt|t = zt, rt|t = rt, and, for k = 1, . . . ,W − 1

zt+k|t =


[
r⊤t+k|t · · · rt|t rt−1 · · · r⊤t−p+k+1

]⊤
if p > k,[

r⊤t+k|t · · · r⊤t−p+k+1|t

]⊤
if p ≤ k.

Algorithm 4 Naive-RLS

Require: Horizon W , forgetting factor γ ∈ (0, 1)
1: Compute X,K, {K0, ...,KW−1} as in (6), (8), (9).
2: Initialize 1 RLS learner according to the Algorithm 1, for k = 1.
3: for t = 0, ..., T − 1 do
4: Observe system state xt, target state rt.
5: for k = 1, ...,W do
6: if t+ k ≤ T then
7: Update the 1-step-ahead predictor and obtain Ŝt+1|t according to the Algorithm 1.
8: Predict rt+k|t = Ŝt+1|tzt+k−1|t
9: else

10: Set rt+k−1|t = 0.
11: end if
12: end for
13: Compute uπt as in (13)
14: end for

To demonstrate the failure of Naive-RLS for agents with time-varying dynamics, we consider the static (circular) and
dynamic references of Sections F.2.1 and F.2.2, respectively. Figure 18 depicts the former case, showing the comparable
performance of Naive-RLS to PLOT, since the static S remains stable even when exponentiated. In the latter case with
a dynamic St, shown in Figure 19, Naive-RLS becomes unstable due to exploding matrices Ŝt+k|t. The implementation
details of both controllers are provided below.

PLOT: The prediction horizon is set to W = 10, the forgetting factor to γ = 0.8, and M = 1. The the augmented matrix is
defined as S̃t ≜

[
St vt

]
for t = 1, . . . , T − 1 as in Section 2, and for all k = 1, . . . ,W , the k learners are initialized as

follows: Ŝj+k|j = I6, vj+k|j = 06 and Pj|j−k = 10−4 × I7, for all j = −1, . . . , k − 2.

Naive-RLS: The prediction horizon is set to W = 10, the forgetting factor to γ = 0.8, and M = 1. The the augmented
matrix is defined as S̃t ≜

[
St vt

]
for t = 1, . . . , T − 1 as in Section 2, and for all k = 1, . . . ,W , the k learners are

initialized as follows: Ŝj+k|j = I6, vj+k|j = 06 and Pj|j−k = 10−4 × I7, for all j = −1, . . . , k − 2.

35

Predictive Linear Online Tracking for Unknown Targets

0.0 0.5 1.0
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p y
[m

]

PLOT Naive-RLS Target

Figure 18. Naive-RLS shows comparable performance to PLOT
on the static, circular target from Example C.2.

−0.5 0.0 0.5 1.0 1.5
px[m]

0.0

0.5

1.0

1.5

2.0

p y
[m

]

PLOT Naive-RLS Target

Figure 19. Naive-RLS becomes unstable while PLOT manages
tracks the dynamic target of Section F.2.2.

36

Predictive Linear Online Tracking for Unknown Targets

G. Implementation on Quadrotors
The online tracking setting is of particular interest when applied to the control of quadrotors to track either a virtual target or
another object of interest. We extend the simulation setup of Appendix F to a practical one by applying PLOT to track a
virtual sequentially revealed target using a Crazyflie 2.1 Quadrotor (Bitcraze, 2023b) depicted in Figure 20. The controllers
use the linearised model of the quadrotor and the derived in Appendix F.1. Below, we detail our experimental setup, as well
as the results of the online tracking experiments.

Figure 20. The Crazyflie 2.1
Quadrotor with three visual
markers.

Figure 21. The D-FALL Laboratory of ETH Zürich, consisting of a dedicated Flying
Arena and 5 (3 shown) mounted VICON Cameras for state estimation.

G.1. Experimental Setup

The Crazyflie quadrotors are equipped with a 3-axis accelerometer and gyroscope for onboard angular-rate control and 3
retro-reflective markers, as shown in Figure 20. These markers are detected by 5 VICON cameras mounted around the flying
arena, shown in Figure 21, and the VICON system provides a spatial position estimate of the drone in its precalibrated
reference frame of reference.

We set up the control architecture with the Robotic Operating System (ROS) (Quigley et al., 2009), which allows the
controller to receive the state of the drone from the VICON mocap system in real-time. The control action is computed
on a local computer and communicated with the drone by sending variable-sized packets through a 2.4Ghz USB dongle
(Bitcraze, 2023a). The virtual reference trajectory is generated online after the drone has successfully taken off and is at a
pre-defined random initial hovering position at a height of 0.4 meters. The controller receives the target state through the
ROS network as it flies at a predetermined rate of 10 Hz.

G.2. Online Tracking Experiments

We run PLOT on the described setup to show its tracking performance. The cost matrices are taken to be the same as in
Appendix F.1, the prediction horizon is fixed to W = 5 for the “infinity”-shape and W = 3 for the circle, the forgetting
factor to γ = 0.8 and no projection is performed. The initialization of PLOT is the same as in Appendix F.3.1. Two virtual
reference target shapes, a circle and an “infinity”-shape are generated online and published to the ROS network. The
quadrotors start in the flying arena in Figure 21 and follow the target as soon as state information is received. Figures 22 and
23 below show the trajectory and state plots of PLOT and Naive LQR implemented for a horizon of T = 40 seconds for the
circle and “infinity”-shape reference trajectories, respectively. Naive LQR is implemented as described in Appendix F.3.1.

As in the simulations, without any affine term, the naive LQR controller exhibits a delayed tracking behavior as expected.
The constant offset can be noted clearly for both shapes. In comparison, the PLOT algorithm experiences a smaller tracking
error. As opposed to the linear simulations in Appendix F, the nonlinear hardware implementation has additional errors,
especially for the circular example, due to imperfect mass value or linearization error, among other reasons. The VICON
system is also known to introduce a drift through its localization algorithm when some of the cameras are malfunctioning.

37

Predictive Linear Online Tracking for Unknown Targets

0.4 0.6 0.8 1.0
py[m]

0.4

0.6

0.8

1.0

p z
[m

]

PLOT LQR Target

(a) Trajectory plot.

0 10 20 30

0.5

1.0

y
[m

]

0 10 20 30
time[s]

0.50

0.75

1.00

z[
m
]

PLOT LQR Target

(b) State plot.

Figure 22. Circular reference tracked by Crazyflie Drones with the PLOT and Naive LQR controllers.

−0.5 0.0 0.5
px[m]

0.0

0.2

0.4

0.6

0.8

1.0

p y
[m

]

PLOT LQR Target

(a) Trajectory plot.

0 10 20 30

0

1

x
[m

]

0 10 20 30
time[s]

0.25

0.50

0.75

y
[m

]

PLOT LQR Target

(b) State plot.

Figure 23. “Infinity”-shaped reference tracked by Crazyflie Drones with the PLOT and Naive LQR controllers.

38

