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Abstract

While recent large-scale text-to-speech (TTS)
models have achieved significant progress, they
still fall shorts in speech quality, similarity, and
prosody. Considering that speech intricately
encompasses various attributes (e.g., content,
prosody, timbre, and acoustic details) that pose
significant challenges for generation, a natural
idea is to factorize speech into individual sub-
spaces representing different attributes and gener-
ate them individually. Motivated by it, we propose
NaturalSpeech 3, a TTS system with novel factor-
ized diffusion models to generate natural speech
in a zero-shot way. Specifically, 1) we design
a neural codec with factorized vector quantiza-
tion (FVQ) to disentangle speech waveform into
subspaces of content, prosody, timbre, and acous-
tic details; 2) we propose a factorized diffusion
model, which generates attributes in each sub-
space following its corresponding prompt. With
this factorization design, NaturalSpeech 3 can
effectively and efficiently model the intricate
speech with disentangled subspaces in a divide-
and-conquer way. Experimental results show that
NaturalSpeech 3 outperforms the state-of-the-art
TTS systems on quality, similarity, prosody, and
intelligibility.
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Figure 1: The overview of NaturalSpeech 3, with a neural
speech codec for attribute factorization and a factorized
diffusion model.

1. Introduction
In recent years, significant advancements have been
achieved in text-to-speech (TTS) synthesis. Traditional
TTS systems (Wang et al., 2017; Shen et al., 2018; Ren
et al., 2019; Tan et al., 2022) are typically trained on limited
datasets recorded in studios, and thus fail to support high-
quality zero-shot speech synthesis. Recent works (Shen
et al., 2023; Wang et al., 2023a; Jiang et al., 2023c) have
made considerable progress for zero-shot TTS by largely
scaling up both the corpus and the model sizes. However,
the synthesis results of these large-scale TTS systems are
not satisfactory in terms of voice quality, similarity, and
prosody.

The challenges of inferior results stem from the intricate
information embedded in speech, since speech encompasses
numerous attributes, such as content, prosody, timbre, and
acoustic detail. Previous works using raw waveform (Kim
et al., 2021; Lim et al., 2022) and mel-spectrogram (Wang
et al., 2017; Shen et al., 2018; Popov et al., 2021; Jiang
et al., 2023c; Le et al., 2023) as data representations suffer
from these intricate complexities during speech generation.
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A natural idea is to factorize speech into disentangled sub-
spaces representing different attributes and generate them
individually. However, achieving this kind of disentangled
factorization is non-trivial. Previous works (Borsos et al.,
2022; 2023; Wang et al., 2023a) encode speech into multi-
level discrete tokens using a neural audio codec (Zeghidour
et al., 2021; Défossez et al., 2022) based on residual vector
quantization (RVQ). Although this approach decomposes
speech into different hierarchical representations, it does not
effectively disentangle the information of different attributes
of speech across different RVQ levels and still suffers from
modeling complex coupled information.

To effectively generate speech with better quality, similarity
and prosody, we propose NaturalSpeech 3, a TTS system
with novel factorized diffusion models to generate natural
speech in a zero-shot way. Specifically, 1) we introduce a
novel neural speech codec with factorized vector quantiza-
tion (FVQ), named FACodec, to decompose speech wave-
forms into distinct subspaces of content, prosody, timbre,
and acoustic details and reconstruct speech waveforms with
these disentangled representations, leveraging information
bottleneck (Qian et al., 2020; 2019), various supervised
losses, and adversarial training (Kong et al., 2020) to en-
hance disentanglement; 2) we propose a factorized diffu-
sion model, which generates the factorized speech repre-
sentations of duration, content, prosody, and acoustic detail,
based on their corresponding prompts. This design allows
us to use different prompts to control different attributes.
The overview of NaturalSpeech 3 is shown in Figure 1.

We decompose complex speech into subspaces representing
different attributes, thus simplifying the modeling of speech
representation. This approach offers several advantages: 1)
our factorized diffusion model is able to learn these disentan-
gled representations efficiently, resulting in higher quality
speech generation; 2) by disentangling timbre information
in our FACodec, we enable our factorized diffusion model to
avoid directly modeling timbre. This reduces learning com-
plexity and leads to improved zero-shot speech synthesis; 3)
we can use different prompts to control different attributes,
enhancing the controllability of NaturalSpeech 3.

Benefiting from these designs, NaturalSpeech 3 has
achieved significant improvements in speech quality, simi-
larity, prosody, and intelligibility. Specifically, 1) it achieves
comparable or better speech quality than the ground-truth
speech on the LibriSpeech test set in terms of CMOS; 2)
it achieves a new SOTA on the similarity between the
synthesized speech and the prompt speech (0.64 → 0.67
on Sim-O, 3.69 → 4.01 on SMOS); 3) it shows a signifi-
cant improvement in prosody compared to other TTS sys-
tems with −0.16 average MCD (lower is better), +0.21
SMOS; 4) it achieves a SOTA on intelligibility (1.94 →
1.81 on WER).5) it achieves human-level naturalness on

multi-speaker datasets (e.g., LibriSpeech), another break-
through after NaturalSpeech1. Audio samples can be
found in https://speechresearch.github.io/
naturalspeech3.

2. Background
In this section, we discuss the recent progress in TTS in-
cluding: 1) zero-shot TTS; 2) speech representations in
TTS; 3) generation methods in TTS; 4) speech attribute
disentanglement.

Zero-shot TTS. Zero-shot TTS aims to synthesize speech
for unseen speakers with speech prompts. We can system-
atically categorize these systems into four groups based
on data representation and modelling methods: 1) Discrete
Tokens + Autoregressive (Wang et al., 2023a; Kharitonov
et al., 2023; Huang et al., 2023); 2) Discrete Tokens + Non-
autoregressive (Borsos et al., 2023; Yang et al., 2023a;
Du et al., 2023); 3) Continuous Vectors + Autoregres-
sive (Nachmani et al., 2023); 4) Continuous Vectors + Non-
autoregressive (Shen et al., 2023; Le et al., 2023; Li et al.,
2023; Lee et al., 2023). Discrete tokens are typically derived
from a neural codec, while continuous vectors are generally
obtained from mel-spectrogram or latents from an audio
autoencoder or a codec. In addition to the aforementioned
perspectives, we disentangle speech waveforms into sub-
spaces based on attribute disentanglement and propose a
factorized diffusion model to generate attributes within each
subspace, motivated by the principle of divide-and-conquer.
Meanwhile, we can reuse previous methods, employing
discrete tokens along with autoregressive models.

Speech Representations in TTS. Traditional works pro-
pose using prior-based speech representations such as raw
waveforms (Oord et al., 2016; 2018; Sotelo et al., 2017)
or mel-spectrogram (Ping et al., 2018; Li et al., 2019; Ren
et al., 2019; Kim et al., 2020). Recently, large-scale TTS
systems (Wang et al., 2023a; Borsos et al., 2023; Shen et al.,
2023) leverage data-driven representations, i.e., either dis-
crete tokens or continuous vectors form an auto-encoder
(Zeghidour et al., 2021; Défossez et al., 2022; Kumar et al.,
2023). However, these methods ignore that speech contains
various complex attributes and encounter intricate complex-
ities during speech generation. In this paper, we factorize
speech into individual subspaces representing different at-
tributes which can be effectively and efficiently modeled.

Generation Methods in TTS. Previous works have demon-
strated that NAR-based models (Ren et al., 2019; Elias et al.,
2020; Jiang et al., 2023c; Shen et al., 2023; Le et al., 2023)

1While NaturalSpeech 1 (Tan et al., 2024) achieved human-
level quality on the single-speaker LJSpeech dataset, Natural-
Speech 3 achieved human-level quality on the diverse multi-
speaker LibriSpeech dataset for the first time.
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enjoy better robustness and generation speed than AR-based
models, because they explicitly model the duration and
predict all features simultaneously. Instead, AR-based mod-
els (Shen et al., 2018; Li et al., 2019; Wang et al., 2023a;
Nachmani et al., 2023; Yang et al., 2023c) have better di-
versity, prosody, expressiveness, and flexibility than NAR-
based models, due to their implicit duration modeling and
token sampling strategy. In this study, we adopt the NAR
modeling approach and propose a factorized diffusion model
to support our disentangled speech representations and also
extend it to AR modeling approaches. This allows Natural-
Speech 3 to achieve better expressiveness while maintaining
stability and generation speed.

Speech Attribute Disentanglement. Prior works (Choi
et al., 2021; 2022; Polyak et al., 2021) utilize disentangled
representation for speech generation, such as speech con-
tent from self-supervised pre-trained models (Chung et al.,
2021; Baevski et al., 2020; Schneider et al., 2019), funda-
mental frequency, and timbre, but their speech quality is not
satisfying. Recently, some works explore attribute disentan-
glement in neural speech codec. SpeechTokenizer (Zhang
et al., 2023) uses HuBERT (Hsu et al., 2021) for semantic
distillation, aiming to render the first-layer RVQ representa-
tion as semantic information. Disen-TF-Codec (Jiang et al.,
2023a) leverages a global and a local encoder to separate
speaker identity from speech content, and applies the disen-
tangled representations for zero-shot voice conversion. In
this paper, we consider more speech attributes (e.g., content,
prosody, acoustic details and timbre), and employ a series
of robust decoupling techniques (e.g., information bottle-
neck, supervision, gradient reversal, and detail dropout),
thus achieving better disentanglement. We validate such
disentanglement can bring about significant improvements
in zero-shot TTS task.

3. Method
3.1. Overall Architecture

In this section, we present NaturalSpeech 3, a cutting-edge
system for natural and zero-shot text-to-speech synthesis
with better speech quality, similarity and controllability. As
shown in Figure 1, NaturalSpeech 3 consists of 1) a neu-
ral speech codec (FACodec) for attribute disentanglement;
2) a factorized diffusion model which generates factorized
speech attributes. Since the speech waveform is complex
and intricately encompasses various attributes, we factor-
ize speech into five attributes including: duration, prosody,
content, acoustic details, and timbre. Specifically, although
the duration can be regarded as an aspect of prosody, we
choose to model it explicitly due to our non-autoregressive
speech generation design. We use our internal alignment
tool to alignment speech and phoneme and obtain phoneme-
level duration. For other attributes, we implicitly utilize the

factorized neural speech codec to learn disentangled speech
attribute subspaces (i.e., content, prosody, acoustic details,
and timbre). Then, we use the factorized diffusion model to
generate each speech attribute representation. Finally, we
employ the codec decoder to reconstruct the waveform with
the generated speech attributes. We introduce the FACodec
in Section 3.2 and the factorized diffusion model in Section
3.3.

3.2. FACodec for Attribute Factorization

3.2.1. MODEL OVERVIEW

We propose a factorized neural speech codec (i.e., FA-
Codec2) to convert complex speech waveform into disen-
tangled subspaces representing speech attributes of content,
prosody, timbre, and acoustic details and reconstruct high-
quality speech waveform from these attributes.

As shown in Figure 2, FACodec consists of a speech en-
coder, a timbre extractor, three factorized vector quantizers
(FVQ) for content, prosody, acoustic detail, and a speech
decoder. Given a speech x, 1) following Zeghidour et al.
(2021); Shen et al. (2023), we adopt several convolutional
blocks for the speech encoder with a downsample rate of
200 for 16KHz speech data (i.e., each frame correspond-
ing to a 12.5ms speech segment) to obtain pre-quantization
latent h; 2) the timbre extractor is a Transformer encoder
and a temporal pooling layer which converts the output of
the speech encoder h into a global vector ht representing
the timbre attributes; 3) for other attribute i (i = p, c, d for
prosody, content, and acoustic detail, respectively), we use
a factorized vector quantizer (FVQi) to capture fine-grained
speech attribute representation and obtain corresponding dis-
crete tokens zi; 4) the speech decoder mirrors the structure
of speech encoder but with much larger parameter amount
to ensure high-quality speech reconstruction. We first add
the representation of prosody, content, and acoustic details
together and then fuse the timbre information by conditional
layer normalization (Chen et al., 2021) to obtain the input
z for the speech decoder. We discuss how to achieve better
speech attribute disentanglement in the next section.

3.2.2. ATTRIBUTE DISENTANGLEMENT

Directly factorizing speech into different subspaces does not
guarantee the disentanglement of speech. In this section, we
introduce some techniques to achieve better speech attribute
disentanglement: 1) information bottleneck, 2) supervision,
3) gradient reverse, and 4) detail dropout. Please refer to
Appendix B.1 for more training details.

Information Bottleneck. Inspired by Qian et al. (2020;

2We release the code and pre-trained checkpoint of FACodec
at https://huggingface.co/spaces/amphion/
naturalspeech3_facodec.
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Figure 2: The framework of the speech codec for attribute factorization.

2019), to force the model to remove unnecessary informa-
tion (such as prosody in content subspace), we construct
the information bottleneck in prosody, content, and acous-
tic details FVQ by projecting the encoder output h into a
low-dimensional space (i.e., 8-dimension) and subsequently
quantize within this low-dimensional space. This technique
ensures that each code embedding contains less informa-
tion, facilitating information disentanglement (Kumar et al.,
2023; Yu et al., 2021). After quantization, we will project
the quantized vector back to the dimension of latent h (i.e.,
256-dimension).

Supervision. To achieve high-quality speech disentangle-
ment, we introduce supervision as auxiliary task for each
attribute. For prosody, since pitch is an important part of
prosody (Choi et al., 2022), we take the post-quantization
latent zp to predict pitch information. We extract the F0
for each frame and use normalized F0 (z-score) as the tar-
get. For content, we directly use the phoneme labels as
the target (we use our internal alignment tool to get the
frame-level phoneme labels). For timbre, we apply speaker
classification on ht by predicting the speaker ID.

Gradient Reversal. Avoiding the information leak (such
as the prosody leak in content) can enhance disentangle-
ment. Inspired by Yang et al. (2022), we adopt adversarial
classifier with the gradient reversal layer (GRL) (Ganin &
Lempitsky, 2015) to reduce undesired information in latent
space. Specifically, for prosody, we apply phoneme-GRL
(i.e., GRL layer by predicting phoneme labels) to reduce con-
tent information; for content, since the pitch is an important
aspect of prosody, we apply F0-GRL to reduce the prosody
information for simplicity; for acoustic details, we apply
both phoneme-GRL and F0-GRL to reduce both content and
prosody information. In addition, we apply speaker-GRL
on the sum of zp, zc, zd to reduce timbre.

Detail Dropout. We have the following considerations: 1)
empirically, we find that the codec tends to preserve unde-
sired information (e.g., content, prosody) in acoustic details
subspace since there is no supervision; 2) intuitively, with-

out acoustic details, the decoder should reconstruct speech
only with prosody, content and timbre, although in low-
quality. Motivated by them, we design the detail dropout by
randomly masking out zd during the training process with
probability p. With detail dropout, we achieve the trade-off
of disentanglement and reconstruction quality: 1) the codec
can fully utilize the prosody, content and timbre information
to reconstruct the speech to ensure the decouple ability, al-
though in low-quality; 2) we can obtain high-quality speech
when the acoustic details are given.

3.3. Factorized Diffusion Model

3.3.1. MODEL OVERVIEW

We generate speech with discrete diffusion for better gen-
eration quality. We have the following considerations: 1)
we factorize speech into the following attributes: duration,
prosody, content, and acoustic details, and generate them in
sequential with specific conditions. Firstly, as we mentioned
in Section 3.1, due to our non-autoregressive generation de-
sign, we first generate duration. Secondly, intuitively, the
acoustic details should be generated at last; 2) following the
speech factorization design, we only provide the generative
model with the corresponding attribute prompt and apply
discrete diffusion in its subspace; 3) to facilitate in-context
learning in diffusion model, we utilize the codec to factorize
speech prompt into attribute prompts (i.e., content, prosody
and acoustic details prompt) and generate the target speech
attribute with partial noising mechanism following Gong
et al. (2022); Borsos et al. (2023). For example, for prosody
generation, we directly concatenate prosody prompt (with-
out noise) and target sequence (with noise) and gradually
remove noise from target sequence with prosody prompt.

With these thoughts, as shown in Figure 3, we present our
factorized diffusion model, which consists of a phoneme
encoder and speech attribute (i.e., duration, prosody, con-
tent, and acoustic details) diffusion modules with the same
discrete diffusion formulation: 1) we generate the speech du-
ration by applying duration diffusion with duration prompt
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Figure 3: The framework of factorized diffusion model, which consists of 1) phoneme encoder, 2) duration diffusion and
length regulator, 3) prosody diffusion, 4) content diffusion, 5) detail (acoustic detail) diffusion. Note that modules 2-5 shares
the same diffusion formulation.

and phoneme-level textural condition encoded by phoneme
encoder. Then we apply the length regulator to obtain frame-
level phoneme condition cph; 2) we generate prosody zp
with prosody prompt and phoneme condition cph; 3) we
generate content prosody zc with content prompt and use
generated prosody zp and phoneme cph as condition; 4) we
generate acoustic details zd with acoustic details prompt and
use generated prosody ,content and phoneme zp, zc, cph as
conditions. Architecturally, we sum up the target sequence
with the condition. Specifically, we do not explicitly gen-
erate the timbre attribute. Due to the factorization design
in FACodec, we can obtain timbre from the prompt directly
and do not need to generate it. We additionally leverage an
auxiliary phoneme-level prosody diffusion model to gener-
ate phoneme-level prosody condition to facilitate accurate
duration prediction. Please refer to Section 4.1 for more
details. Finally, we synthesize the target speech by combin-
ing attributes zp, zc, zd and ht and decoding it with codec
decoder. We discuss the diffusion formulation in Section
3.3.2.

3.3.2. DIFFUSION FORMULATION

Inspired by the notable achievements in text-to-image gener-
ation (Chang et al., 2022; Gu et al., 2022), discrete diffusion
is being increasingly applied to the generation of speech and
audio (Wu et al., 2024; Yang et al., 2023d). This subsection
describes the forward and reverse process, and then details
the inference method and classifier-free guidance.

Forward Process. Denote X = [xi]
N
i=1 the target discrete

token sequence, where N is the sequence length, Xp is the
prompt discrete token sequence, and C is the condition. The
forward process at time t is defined as masking a subset of
tokens in X with the corresponding binary mask Mt =
[mt,i]

N
i=1, formulated as Xt = X ⊙ Mt, by replacing xi

with [MASK] token if mt,i = 1, and otherwise leaving

xi unmasked if mt,i = 0. mt,i
iid∼ Bernoulli(σ(t)) and

σ(t) ∈ (0, 1] is a monotonically increasing function. In this
paper, σ(t) = sin( πt

2T ), t ∈ (0, T ]. Specially, we denote

X0 = X for the original token sequence and XT for the
fully masked sequence.

Reverse Process. The reverse process gradually restores X0

by sampling from reverse distribution q(Xt−∆t|X0,Xt),
starting from full masked sequence XT . Since X0 is un-
available in inference, we use the diffusion model pθ, param-
eterized by θ, to predict the masked tokens conditioned on
Xp and C, denoted as pθ(X0|Xt,X

p,C). The parameters
θ are optimized to minimize the negative log-likelihood of
the masked tokens:

Lmask = E
X∈D,t∈[0,T ]

−
N∑
i=1

mt,i · log(pθ(xi|Xt,X
p,C)).

Then we can get the reverse transition distribution:

p(Xt−∆t|Xt,X
p,C) = E

X̂0∼pθ(X0|Xt,Xp,C)

q(Xt−∆t|X̂0,Xt).

Inference. During inference, we progressively replace
masked tokens, starting from the fully masked sequence
XT , by iteratively sampling from p(Xt−∆t|Xt,X

p,C). In-
spire by Chung et al. (2022); Gu et al. (2022); Lezama
et al. (2022), we first sample X̂0 from pθ(X0|Xt,X

p,C),
and then sample Xt−∆t from q(Xt−∆t|X̂0,Xt), which in-
volves remask ⌊N ·σ(t−∆t)⌋ tokens in X̂0 with the lowest
confidence score, where we define the confidence score of
x̂i in X̂0 to pθ(x̂i|Xt,X

p,C) if mt,i = 1, otherwise, we
set confidence score of xi to 1, which means that tokens
already unmasked in Xt will not be remasked.

Classifier-free Guidance. Moreover, we adapt the classifier-
free guidance technique (Nichol et al., 2021; Ho & Salimans,
2022). Specifically, in training, we do not use the prompt
with a probability of pcfg = 0.15. In inference, we extrap-
olate the logit output of the model towards the conditional
generation guided by the prompt gcond = g(X|Xp) and
away from the unconditional generation guncond = g(X),
i.e., gcfg = gcond + α · (gcond − guncond), with a guidance
scale α selected based on experimental results. We then
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rescale it through gfinal = std(gcond)× gcfg/std(gcfg), follow-
ing Lin et al. (2024).

4. Experiments and Results
4.1. Experimental Settings

In this subsection, we introduce the training, inference and
evaluation for the Factorized Diffusion Model. Please refer
to Appendix A.1 for model configuration, and Appendix
B.1 for implementation details of the FACodec.

Implementation Details. We use Librilight (Kahn et al.,
2020), which contains 60K hours of 16KHz unlabeled
speech data and around 7000 distinct speakers from Lib-
riVox audiobooks, as the training set. In duration diffusion,
each token represents the duration (the number of frames) of
each corresponding phoneme. We further improve the per-
formance by conditioning phoneme-level prosody codes, as
shown in Figure 4. Specifically, we perform phoneme-level
pooling according to duration on the pre-quantized vectors,
and then feed these phoneme-level representations into the
prosody quantizer in our codec to obtain the phoneme-level
prosody codes. We employ an additional discrete diffu-
sion to generate these in inference. We perform 4 iterations
in each diffusion process. We generate duration without
classifier-free guidance and generate others with a classifier-
free guidance scale of 1.0. This strategy results in 4 × 2
for phoneme-level prosody, 4 for duration, 4 × 2 for each
token sequence of prosody, content, and acoustic details,
totaling 60 forward passes due to the double computation
with classifier-free guidance. As shown in Figure 1, these
generated speech attribute codes, along with the timbre rep-
resentation which is separately derived from the prompt
via timbre extractor in FACodec, are passed to the codec
decoder for speech synthesis. Please refer to Appendix A.2
for more details of our factorization diffusion model.

Evaluation Dataset. We employ two benchmark datasets:
1) LibriSpeech (Panayotov et al., 2015) test-clean, a widely-
used testset for zero-shot TTS task. It contains 40 distinct
speakers and 5.4-hour speech. Following Shen et al. (2023),
we randomly select one sentence for each speaker for Lib-
riSpeech test-clean benchmark. Specifically, we randomly
select 3-second clips as prompts from the same speaker’s
speech. 2) RAVDESS (Livingstone & Russo, 2018), an
emotional TTS dataset featuring 24 professional actors (12
female, 12 male) across 8 emotions (neutral, calm, happy,
sad, angry, fearful, surprise, and disgust) in 2 emotional
intensity (normal and strong). We use strong-intensity sam-
ples for RAVDESS benchmark. We adopt this benchmark
for prosody evaluation, considering 1) for the same speaker,
speech with the same emotion shares similar prosody, while
speech with different emotions displays varied prosodies; 2)
the benchmark provides speech samples with the same text

from the same speaker across eight different emotions.

Evaluation Metrics. Objective Metrics: In the Librispeech
test-clean benchmark, we evaluate both speaker-similarity
(SIM-O and SIM-R) and robustness (WER). In specific, 1)
for SIM-O and SIM-R, we employ the WavLM-TDCNN3

speaker embedding model to assess speaker similarity be-
tween generated samples and the prompt. Results are re-
ported for both similarity to original prompt (SIM-O) and
reconstructed prompt (SIM-R). 2) for speech quality, we em-
ploy UTMOS (Saeki et al., 2022) which is a surrogate objec-
tive metric of MOS; 3) for Word Error Rate (WER), we use
an ASR model4 to transcribe generated speech. The model
is a CTC-based HuBERT pre-trained on Librilight and fine-
tuned on the 960 hours training set of LibriSpeech. We
also use an advanced ASR model based on transducer (He
et al., 2019)5. We additionally present the WER results
on more samples of LibriSpeech test-clean dataset. Fol-
lowing (Wang et al., 2023a), we select utterances with a
length of 4-second to 10-second, which results in 1205 ut-
terances. In the RAVDESS benchmark, we evaluate the
prosody similariy (MCD and MCD-Acc). In specific, 1)
following Al-Radhi et al. (2023), we adopt Mel-Ceptral
Distortion (MCD) for prosody evaluation by measuring the
differences between generated samples and ground truth
samples. We employ dynamic time warping (DTW) to align
the generated speech with the ground truth. We report the
results for eight emotions, along with the average result.
2) for MCD-Acc, we evaluate the top-1 emotion accuracy
of the generated speech on the RAVDESS benchmark for
prosodic similarity measures. Specifically, we adopt a K-
Nearest-Neighbors (KNN) model as emotion classifier. We
compare MCD distances between the generated speech and
the ground-truth speech from the same speaker, across eight
different emotions. Subjective Metrics: We employ com-
parative mean option score (CMOS) and similarity mean
option score (SMOS) in both two benchmarks to evaluate
naturalness and similarity, respectively.

Evaluation Baselines. We compare NaturalSpeech 3 with
baselines: 1) VALL-E (Wang et al., 2023a). 2) Natural-
Speech 2 (Shen et al., 2023). 3) Voicebox (Le et al., 2023).
4) Mega-TTS 2 (Jiang et al., 2023b). 5) UniAudio (Yang
et al., 2023c). 6) StyleTTS 2 (Li et al., 2023). 7) Hier-
Speech++ (Lee et al., 2023). Please refer to Appendix A.3
for details.

3https://github.com/microsoft/UniSpeech/
tree/main/downstreams/speaker_verification

4https://huggingface.co/facebook/
hubert-large-ls960-ft

5https://huggingface.co/nvidia/stt_en_
conformer_transducer_xlarge
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Table 1: The evaluation results for NaturalSpeech 3 and the baseline methods on LibriSpeech test-clean. ♠ means the
results are obtained from the authors. ♥ means the results directly obtained from the paper. ♣ means the results are infered
from offical checkpoints. ♦ means the reproduced results. Abbreviation: LT (LibriTTS), V (VCTK), LJ (LJSpeech), LL⋆

(Librilight Small, Medium), EX (Expresso), MS (MSSS Kor), NI (NIKL Kor).The ‘(WER)’ results shown in parenthesis are
evaluated across 1205 utterances ranging from 4 to 10 seconds in LibriSpeech test-clean dataset. Please refer to Appendix
A.4 for more results on 1) WER inferred by an advanced ASR system, and 2) UTMOS, an automatic metric for MOS.

Model Size Training Data Sim-O ↑ Sim-R ↑ WER↓ CMOS↑ SMOS↑
Ground Truth - - 0.68 - 0.34 (2.14 ) +0.08 3.85

VALL-E ♥ 0.4B Librilight - 0.58 - (5.90 ) - -
VALL-E ♦ 0.4B Librilight 0.47 0.51 6.11 (6.22 ) -0.60 3.46
NaturalSpeech 2♠ 0.4B Librilight 0.55 0.62 1.94 (2.60 ) -0.18 3.65
Voicebox♠ 0.4B Self-Collected (60kh) 0.64 0.67 2.03 ( - ) -0.23 3.69
Voicebox♦ 0.4B Librilight 0.48 0.50 2.14 (2.89 ) -0.32 3.52
Mega-TTS 2♠ 0.4B Librilight 0.53 - 2.32 ( - ) -0.20 3.63
UniAudio♠ 1.0B Mixed (165kh) 0.57 0.68 2.49 ( - ) -0.25 3.71
StyleTTS 2♣ 0.2B LT+V+LJ 0.38 - 2.49 (2.75 ) -0.21 3.07
HierSpeech++♣ 0.1B LT+ LL⋆+EX+MS+NI 0.51 - 6.33 (3.85 ) -0.41 3.50

NaturalSpeech 3 0.5B Librilight 0.67 0.76 1.81 ( 2.41 ) 0.00 4.01

4.2. Experimental Results on Zero-shot TTS

In this subsection, we compare NaturalSpeech 3 with base-
lines in terms of: 1) generation quality in Section 4.2.1;
2) generation similarity in Section 4.2.2; 3) robustness in
Section 4.2.3. Specifically, for generation similarity, we
evaluate in two aspects: 1) speaker similarity; 2) prosody
similarity. Please refer to Appendix A.5 for latency analysis.

4.2.1. GENERATION QUALITY

To evaluate speech quality, we conduct CMOS test, with 12
native as the judges. We randomly select 20 utterances from
both LibriSpeech test-clean and RAVDESS benchmarks. As
shown in Table 1, we find that 1) NaturalSpeech 3 is close
to the ground-truth recording (−0.08 on Librispeech test-
clean, and −0.17 on RAVDESS), which demonstrates Natu-
ralSpeech 3 can generate high-quality and natural speech;
2) NaturalSpeech 3 outperforms baselines by a substantial
margin, verifying the effectiveness of NaturalSpeech 3 with
factorization.

4.2.2. GENERATION SIMILARITY

Speaker Similarity. We evaluate the speech similarity with
both objective metrics (Sim-O and Sim-R) and subjective
metrics (SMOS), with 12 natives as the judges. We ran-
domly select 10 utterances for SMOS test. As shown in
Table 1, we find that 1) NaturalSpeech 3 achieves parity
in Sim-O and a 0.16 increase in SMOS with ground truth,
which indicates great speaker similarity achieved by our pro-
posed method; 2) NaturalSpeech 3 outperforms all baselines
on both objective and subjective metrics, highlighting the
superiority of NaturalSpeech 3 with factorization in terms of

Table 2: The evaluation results for NaturalSpeech 3 and the
baseline methods on RAVDESS. ♠ means the results are
obtained from the authors. ♣ means the results are inferred
from official checkpoints. ♦ means the reproduced results.
Abbreviation: Avg (average MCD), Acc (MCD-Acc).

Avg↓ Acc↑ CMOS↑ SMOS↑
Ground Truth 0.00 1.00 +0.17 4.42

VALL-E ♦ 5.03 0.34 -0.55 3.80
NaturalSpeech 2♠ 4.56 0.25 -0.22 4.04
Voicebox♦ 4.88 0.34 -0.34 3.92
Mega-TTS 2♠ 4.44 0.39 -0.20 4.51
StyleTTS 2♣ 4.50 0.40 -0.25 3.98
HierSpeech++♣ 6.08 0.30 -0.37 3.87

NaturalSpeech 3 4.28 0.52 0.00 4.72

speaker similarity. Additionally, we notice certain discrep-
ancy between Sim-O and SMOS. For instance, the SMOS
is not as competitive as SIM-O for Voicebox model, likely
due to some unnatural prosody.

Prosody Similarity. We evaluate prosody similarity with
both objective metrics (MCD and MCD-Acc) and subjec-
tive metrics (SMOS) on the RAVDESS benchmark. We
randomly select 10 utterances for SMOS test. As shown in
Table 2, NaturalSpeech 3 consistently surpasses baselines by
a remarkable margin in MCD avg, MCD-Acc, and SMOS.
It reveals that NaturalSpeech 3 achieves a significant im-
provement in terms of prosodic similarity. Please refer to
Appendix A.7 for the MCD scores across 8 emotions.
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4.2.3. ROBUSTNESS

We assess the robustness of our zero-shot TTS by measuring
the word error rate (WER) of generated speech on the Lib-
riSpeech test-clean benchmark. In addition, we evaluate the
WER results across 1205 utterances ranging from 4 to 10
seconds in LibriSpeech test-clean dataset. The results in Ta-
ble 1 indicate that 1) NaturalSpeech 3 achieves a comparable
WER with ground truth evaluated across 1205 utterances,
proving the high intelligibility; 2) NaturalSpeech 3 out-
performs other baselines by a considerable margin, which
demonstrates the superior robustness of NaturalSpeech 3.

4.2.4. HUMAN-LEVEL NATURALNESS ON LIBRISPEECH
TESTSET

We compare the speech synthesized by NaturalSpeech 3
with human recordings (Ground Truth) in Table 1 (more
results can be found in Table 7 in Appendix A.4). We have
the following observations: 1) NaturalSpeech 3 achieves
-0.01 Sim-O and +0.16 SMOS compared to human record-
ings, which demonstrates that our method is on par or better
on speaker similarity; 2) NaturalSpeech 3 achieves -0.08
CMOS and +0.16 UTMOS compared with recording, which
demonstrates that our method can generate on-par or bet-
ter voice quality; 3) Our method also achieves close WER
with human recordings, which demonstrates the robustness
of NaturalSpeech 3. Therefore, we can conclude that for
the first time, NaturalSpeech 3 has achieved human-level
quality and naturalness on the multi-speaker LibriSpeech
test set in a zero-shot way. It is another great milestone after
NaturalSpeech 1 (Tan et al., 2024) has achieved human-level
quality on the single-speaker LJSpeech dataset.

4.3. Ablation Study

In this subsection, we conduct ablation studies to verify the
effectiveness of 1) factorization; 2) classifier-free guidance;
3) prosody representation. We also conduct ablation study
to compare our duration diffusion model with traditional
duration predictor in Appendix A.6.

Factorization. To verify the proposed factorization method,
we ablate it by removing factorization in both codec and fac-
torized diffusion model. Specifically, we 1) use the discrete
tokens from SoundStream, a neural codec which does not
consider factorization, and 2) do not consider factorization
in generation. For fair comparison, we use Soundstream
with double bandwidth (i.e., a codebook number of 12) as
the baseline, since it achieves a comparable reconstruction
performance, detailed in Table 11. Specifically, the forward
and reverse processes are similar to those of the factorized
diffusion model. We generate residual codes sequentially
in a coarse-to-fine manner (starting from RVQ level 1 up
to N). During this process, all previously generated coarser
codes act as conditions when generating the finer codes. As

Table 3: The ablation study of factorization and classifier-
free guidance (cfg) on LibriSpeech test-clean.

Sim-O / Sim-R ↑ WER↓ CMOS↑ SMOS↑
NaturalSpeech 3 0.67 / 0.76 1.81 0.00 4.01

- factorization 0.55 / 0.61 2.49 -0.25 3.59
- cfg 0.64 / 0.72 1.81 -0.06 3.80

shown in Table 3, we could find a significant performance
degradation without the factorization, a drop of 0.12 in Sim-
O, 0.15 in Sim-R, 0.68 in WER, 0.25 in CMOS and 0.42 in
SMOS. This indicates the proposed factorized method can
consistently improve the performance in terms of speaker
similarity, robustness, and quality.

Classifier-Free Guidance. We conduct an ablation study by
dropping the classifier-free guidance in inference to validate
its effectiveness. We double the iterations to ensure the same
60 forward passes for fair comparison. Table 3 illustrates a
significant degradation without classifier-free guidance, a
decrease of 0.03 in Sim-O, 0.04 in Sim-R, 0.06 in CMOS
and 0.21 in SMOS, proving that classifier-free guidance can
greatly help the speaker similarity and quality.

Prosody Representation. We compare different prosody
representations on zero-shot TTS task. In specific, we se-
lect handcrafted prosody features (e.g., the first 20 bins of
mel-spectrogram (Jiang et al., 2023c; Oh et al., 2023; Ren
et al., 2022)) as the baseline. We drop the prosody FVQ
module and directly quantize the first 20 bins of the mel-
spectrogram, without the normalized F0 loss. Table 5 shows
that using “Mel 20 Bins” as prosody representation demon-
strates inferiority in terms of prosody similarity compared
to the prosody representations learned from codec (4.34 vs
4.28 in average MCD, 0.46 vs 0.52 in MCD-Acc).

4.4. Method Analyses

In this subsection, we first discuss the extensibility of our
factorization in Section 4.4.1. We then introduce the appli-
cation of speech attributes manipulation in a zero-shot way
in Section 4.4.2.

4.4.1. EXTENSIBILITY

NaturalSpeech 3 utilizes a non-autoregressive model for
discrete token generation with factorization design. To vali-
date the extensibility of our proposed factorization method,
we further explore the autoregressive generative model for
discrete token generation under our factorization framework.
We utilize VALL-E for verification. We first employ an
autoregressive language model to generate prosody codes,
followed by a non-autoregressive model to generate the re-
maining content and acoustic details codes. This approach
maintains a consistent order of attribute generation, allow-
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Table 4: The reconstruction quality evaluation of codecs. ♣ means results are infered from offical checkpoints. ⋆ means the
reproduced checkpoint. ♦ means the reproduced model following the original paper’s implementation and experimental
setup. All models use a codebook size of 1024. Bold for the best result and underline for the second-best result.

Models Sampling Rate Hop Size Codebook Number Bandwidth PESQ ↑ STOI ↑ MSTFT ↓ MCD ↓

EnCodec♣ 24kHz 320 8 6.0 kbps 3.28 0.94 0.99 2.70
HiFi-Codec♣ 16kHz 320 4 2.0 kbps 3.17 0.93 0.98 3.05
DAC♣ 16kHz 320 9 4.5 kbps 3.52 0.95 0.97 2.65
SoundStream♦ 16kHz 200 6 4.8 kbps 3.03 0.90 1.07 3.38

FACodec 16kHz 200 6 4.8 kbps 3.47 0.95 0.93 2.59

Table 5: The ablation study of prosody representation on
RAVDESS. Denote “Mel 20 Bins” using the first 20 bins in
the mel-spectrogram as the prosody representation.

MCD Avg↓ MCD-Acc↑
NaturalSpeech 3 4.28 0.52
Mel 20 Bins 4.34 0.46

ing for a fair comparison. We name it VALL-E + F. As
shown in Table 6, VALL-E + F consistently outperforms
VALL-E by a considerable margin in all objective and sub-
jective metrics, demonstrating the factorization design can
enhance VALL-E in speech similarity, quality and genera-
tion robustness. It further shows our factorization paradigm
is not limited in the proposed factorization diffusion model
and has a large potential in other generative models. We
leave it for future work.

4.4.2. SPEECH ATTRIBUTE MANIPULATION

As discussed in Section 3.3, our factorized diffusion model
enables attribute manipulation by selecting different at-
tributes prompts from different speech. We mainly focus on
manipulating duration, prosody, and timbre, since the con-
tent codes are dictated by the text in TTS, and the acoustic
details do not carry semantic information. Leveraging the
strong in-context capability of NaturalSpeech 3, the gener-
ated speech effectively mirrors the corresponding speech
attributes. For instance, 1) we can utilize the timbre prompt
from a different speech to control the timbre while keep-
ing other attributes unchanged; 2) despite the correlation
between duration and prosody, we can still solely adjust
duration prompt to regulate the speed; 3) moreover, we can
combine different speech attributes from disparate samples
as desired. This allow us to mimic the timbre while using
different prosody and speech speed. Samples are available
on our demo page6.

6https://speechresearch.github.io/
naturalspeech3

Table 6: The comparison between autoregressive approach
with (VALL-E + F) and without (VALL-E) our proposed
factorization on LibriSpeech test-clean. ♦ means the repro-
duced results. Abbreviation: Sim-O/R (Sim-O / Sim-R).

Sim-O / R ↑ WER↓ CMOS↑ SMOS↑
VALL-E + F 0.57 / 0.65 5.60 +0.24 3.61
VALL-E♦ 0.47 / 0.51 6.11 0.00 3.46

4.5. Experimental Results on FACodec

We compare proposed FACodec in terms of the re-
construction quality with strong baselines, such as En-
Codec (Défossez et al., 2022), HiFi-Codec (Yang et al.,
2023b), Descript-Audio-Codec (DAC) (Kumar et al., 2023),
and our reproduced SoundStream (Zeghidour et al., 2021).
Table 4 shows that our codec significantly surpasses Sound-
Stream in the same bandwidth setting (0.44 in PESQ, 0.05
in STOI, 0.14 in MSTFT and 0.79 in MCD, respectively).
Check more details in Appendix B.2. Compared with other
baselines, FACodec also get comparable performance. Ad-
ditionally, since our codec decouples timbre information, it
can enable zero-shot voice conversion easily, we provide the
details and experiment results in Appendix B.3. Appendix
B.4 shows some ablation studies about our FACodec.

5. Conclusion
In this paper, we develop a TTS system which consists of 1)
novel neural speech codec (i.e., FACodec) with factorized
vector quantization to decompose speech waveform into
distinct subspaces of content, prosody, acoustic details and
timbre and 2) novel factorized diffusion model to synthesize
speech by generating attributes in subspaces with discrete
diffusion. NaturalSpeech 3 outperforms the state-of-art TTS
system on speech quality, similarity, prosody, and intelli-
gibility. We also show that NaturalSpeech 3 can enable
speech attribute manipulation, by customizing speech at-
tribute prompts. We include our limitation and future works
in Appendix C.
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Impact Statement
Since our model could synthesize speech with great speaker
similarity, it may carry potential risks in misuse of the model,
such as spoofing voice identification or impersonating a
specific speaker. We conducted the experiments under the
assumption that the user agree to be the target speaker in
speech synthesis. To prevent misuse, it is crucial to develop
a robust synthesized speech detection model and establish a
system for individuals to report any suspected misuse.
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A. Details of Factorization Diffusion Model
A.1. Model Configuration

The phoneme encoder uses a similar architecture as Shen et al. (2023) and comprises a 6-layer Transformer with 8 attention
heads, 512 embedding dimensions, filter size 2048 and kernel size 9 for 1D convolution, and a dropout of 0.1. In prosody,
content and acoustic details diffusion, we adopt a 12-layer Transformer, with 8 attention heads, 1024 embedding dimensions,
filter size 2048 and kernel size 3 for 1D convolution, and a dropout of 0.1. The weights of Transformers in prosody, content
and acoustic details diffusion are shared for training efficiency. We additionally use conditional layer normalization in each
Transformer block to support diffusion time input. In phoneme-level prosody and duration diffusion, we adopt a 6-layer
Transformer with 8 attention heads, 1024 embedding dimensions, filter size 2048 and kernel size 3 for 1D convolution, and
a dropout of 0.1. We also use conditional layer normalization in the model to support diffusion time input.

A.2. Training and Inference Details
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Figure 4: The detailed framework of factorized diffusion model, which consists of 1) phoneme encoder, 2) duration diffusion
and length regulator, 3) prosody diffusion, 4) content diffusion, 5) detail (acoustic detail) diffusion. We additionally integrate
6) a phoneme-level prosody diffusion, thereby providing conditions to facilitate accurate duration prediction. Note that
modules 2-6 shares the same diffusion formulation.

We use Librilight (Kahn et al., 2020), which contains 60K hours of 16KHz unlabeled speech data and around 7000 distinct
speakers from LibriVox audiobooks, as the training set. We transcribe using an internal ASR system, convert transcriptions
to phonemes via grapheme-to-phoneme conversion (Sun et al., 2019), and obtain duration with an internal alignment tool.
We use 8 A100 80GB GPUs with a batch size of 10K frames of latent vectors per GPU for 1M steps. We use the AdamW
optimizer with a learning rate of 1e − 4, β1 = 0.9, and β2 = 0.98, 5K warmup steps following the inverse square root
learning schedule.

During inference, we perform 4 iterations in each diffusion process, including phoneme-level prosody, duration, prosody,
content and acoustic details diffusion, as shown in Figure 4. We generate duration without classifier-free guidance, and
generate others with a classifier-free guidance scale of 1.0. This strategy results a 4× 2 for phoneme-level prosody, 4 for
duration, 4 × 2 for each token sequence of prosody, content and acoustic details, totaling 60 forward passes due to the
double computation with classifier-free guidance. We use a top-k of 20, with sampling temperature annealing from 1.5 to 0.
Following Chang et al. (2022), Gumbel noises are added to token confidences when determining which positions to re-mask
in q(Xt−∆t|X̂0,Xt), mentioned in Section 3.3.2.

A.3. Evaluation Baselines

We compare NaturalSpeech 3 with following strong zero-shot TTS baselines:

• VALL-E (Wang et al., 2023a). It use an autoregressive and an additional non-autoregressive model for discrete token
generation. We report the scores directly obtained from the paper. We additionally reproduce it using discrete tokens
from SoundStream on Librilight.

• NaturalSpeech 2 (Shen et al., 2023). It use a non-autoregressive model for continuous vectors generation. We obtain
samples through communication with the authors.

• Voicebox (Le et al., 2023). It use a non-autoregressive model for continuous vectors generation. We obtain samples
through communication with the authors. We additionally reproduce it using mel-spectrogram on Librilight.
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Table 7: The evaluation results for NaturalSpeech 3 and the baseline methods on LibriSpeech test-clean. ♠ means the results
are obtained from the authors. ♥ means the results directly obtained from the paper. ♣ means the results are inferred from
offical checkpoints. ♦ means the reproduced results. WER⋆ means the word error rate calculated by an advanced ASR
system mentioned in A.4. The ‘(WER)’ results shown in parenthesis are evaluated across 1205 utterances ranging from 4 to
10 seconds in LibriSpeech test-clean dataset.

Sim-O ↑ Sim-R ↑ WER ↓ WER⋆↓ UTMOS ↑ CMOS↑ SMOS↑
Ground Truth 0.68 - 0.34 (2.14 ) 0.68 (1.78 ) 4.14 +0.08 3.85

VALL-E ♥ - 0.58 - (5.90 ) - ( - ) - - -
VALL-E ♦ 0.47 0.51 6.11 (6.22 ) 4.87 (5.46 ) 3.68 -0.60 3.46
NaturalSpeech 2♠ 0.55 0.62 1.94 (2.60 ) 1.24 (2.24 ) 3.88 -0.18 3.65
Voicebox♠ 0.64 0.67 2.03 ( - ) 1.81 ( - ) 3.82 -0.23 3.69
Voicebox♦ 0.48 0.50 2.14 (2.89 ) 1.24 (2.31 ) 3.73 -0.32 3.52
Mega-TTS 2♠ 0.53 - 2.32 ( - ) 2.17 ( - ) 4.02 -0.20 3.63
UniAudio♠ 0.57 0.68 2.49 ( - ) 1.81 ( - ) 3.79 -0.25 3.71
StyleTTS 2♣ 0.38 - 2.49 (2.75 ) 1.58 (2.27 ) 3.94 -0.21 3.07
HierSpeech++♣ 0.51 - 6.33 (3.85 ) 4.97 (2.70 ) 3.80 -0.41 3.50

NaturalSpeech 3 0.67 0.76 1.81 (2.41 ) 1.13 (1.99 ) 4.30 0.00 4.01

• Mega-TTS 2 (Jiang et al., 2023b). It use a non-autoregressive model for continuous vectors generation. We obtain
samples through communication with the authors.

• UniAudio (Yang et al., 2023c). It use an autoregressive model for discrete token generation. We obtain samples through
communication with the authors.

• StyleTTS 2 (Li et al., 2023). It use a non-autoregressive model for continuous vectors generation. We use official code
and checkpoint7.

• HierSpeech++ (Lee et al., 2023). It use a non-autoregressive model for continuous vectors generation. We use official
code and checkpoint8. We do not use its super resolution model for fair comparison.

A.4. More Experimental Results on Zero-shot TTS

In this section, we report more evaluation results for NaturalSpeech 3 and other baselines on: 1) WER, inferred by an
advanced ASR system9; 2) UTMOS (Saeki et al., 2022), which is a surrogate objective metric of MOS. The results are
shown in Table 7.

A.5. Latency Analysis

In this subsection, we compare the inference latency of NaturalSpeech 3 with an autoregressive method (VALL-E) and a
non-autoregressive method (NaturalSpeech 2). We also investigate the effect of reducing the number of iterations in each
diffusion from 4 to 1, resulting in a total of 15 forward passes. We call this variant NaturalSpeech 3 one-step. We evaluate
the performance on Librispeech test-clean in terms of speaker similarity (Sim-O/Sim-R) and quality (UTMOS (Saeki et al.,
2022) 10, a surrogate objective metric of CMOS). The latency tests are conducted on a server with E5-2690 Intel Xeon
CPU, 512GB memory, and one NVIDIA V100 GPU. The results are shown in Table 8. From the results, we have several
observations. 1) NaturalSpeech 3 achieves a 15.27× speedup over VALL-E and 1.24× speedup over NaturalSpeech 2, while
consistently surpasses these baselines on all metrics. This demonstrate NaturalSpeech 3 is both effective and efficient. 2)
when using fewer diffusion steps, NaturalSpeech 3 can still maintain robust performance (−0.01 in Sim-O, −0.01 in Sim-R,
and −0.29 in UTMOS) with a 4.41× faster speed, proving the robustness of diffusion steps.

7https://github.com/yl4579/StyleTTS2
8https://github.com/sh-lee-prml/HierSpeechpp
9https://huggingface.co/nvidia/stt_en_conformer_transducer_xlarge

10https://github.com/tarepan/SpeechMOS
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Table 8: The latency study on LibriSpeech test-clean. NaturalSpeech 3 one-step denotes using only 1 iteration in each
diffusion process instead of original 4. Abbreviation: NFE (number of function evaluation).

Models NFE RTF ↓ Sim-O ↑ Sim-R ↑ UTMOS ↑
NaturalSpeech 2 150 0.366 0.55 0.62 3.87
VALL-E - 4.520 0.47 0.51 3.67

NaturalSpeech 3 60 0.296 0.67 0.76 4.30
NaturalSpeech 3 one-step 15 0.067 0.66 0.75 4.01

Table 9: The ablation results of the design of the duration predictor on LibriSpeech test-clean.

Sim-O ↑ Sim-R ↑ WER↓ UTMOS↑
NaturalSpeech 3 0.67 0.76 1.94 4.30

Generation ablation 0.62 0.73 1.94 4.18
Objective ablation 0.62 0.72 2.38 4.13
Conditioning ablation 0.62 0.72 2.49 4.11
Prompting ablation 0.61 0.71 2.83 4.08

A.6. Ablation Study on Duration Diffusion Model

In this subsection, we conduct an ablation study to compare our duration discrete diffusion model with the traditional
duration predictor, which regresses the duration in logarithmic domain. The ablation study focus on 1) Generation: multi-step
generation vs. one-step generation. 2) Objective: classification-based cross-entropy loss vs. regression-based L2 loss. 3)
Conditioning: with vs. without phoneme-level prosody conditioning. 4) Prompting: with vs. without duration prompting.
We evaluate them on Librispeech test-clean in terms of speaker similarity (Sim-O/Sim-R), robustness (WER) and qualtiy
(UTMOS). As shown in Table 9, we can find that 1) without multi-step generation, there’s a significant drop in performance
(-0.05 in Sim-O, -0.03 in Sim-R, and -0.12 in UTMOS). 2) replacing cross-entropy loss with l2 loss affects the performance,
causing a decrease of -0.05 in Sim-O, -0.04 in Sim-R, 0.44 in WER and -0.17 in UTMOS. 3) dropping phoneme-level
prosody conditioning will affect both speaker similarity (-0.05 in Sim-O and -0.04 in Sim-R), robustness (0.55 in WER) and
quality (-0.19 in UTMOS) 4) the duration prompting mechanism is crucial for speaker similarity, robustness and quality,
with changes of -0.06 in Sim-O, -0.05 in Sim-R, 0.89 in WER and -0.22 in UTMOS. These results confirm that each design
aspect of our duration predictor contributes to performance improvement.

A.7. Details of Prosody Similarity Evaluation

In Table 10, we present MCD on 8 different emotions, comparing NaturalSpeech 3 with the baseline methods on the
RAVDESS benchmark. NaturalSpeech 3 demonstrates robust performance across 8 emotions, verifying the effectiveness
and robustness in terms of prosody similarity.

B. Details of FACodec
B.1. Implementation Details

Model Architecture. The basic architecture of our codec encoder and decoder follows Kumar et al. (2023) and employs
the SnakeBeta activation function (Lee et al., 2022). The timbre extractor consists of several conformer (Gulati et al.,
2020) blocks. We use Nqc = 2, Nqp = 1, Nqd = 3 as the number of quantizers for each of the three FVQ Qc,Qp,Qd, the
codebook size for all the quantizers is 1024.

Loss Functions. We utilize the multi-scale mel-reconstruction loss Lrec as detailed in Kumar et al. (2023). For the adversarial
loss Ladv, we employ both the multi-period discriminator (MPD) and the multi-band multi-scale STFT discriminator, as
proposed by Kumar et al. (2023). Additionally, we incorporate the relative feature matching loss Lfeat. For codebook
learning, we use the codebook loss Lcodebook and the commitment loss Lcommit from VQ-VAE (van den Oord et al., 2017).
The training loss also includes the phone prediction loss Lph, the normalized F0 prediction loss Lf0, and the gradient reverse
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Table 10: The MCD scores on 8 different emotions of NaturalSpeech 3 and the baseline methods on RAVDESS. ♠ means
the results are obtained from the authors. ♣ means the results are inferred from official checkpoints. ♦ means the reproduced
results. We use bold to indicate the best result and underline to indicate the second-best result.

MCD↓
neutral calm happy sad angry fearful disgust surprised

Ground Truth 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VALL-E ♦ 3.97 4.75 4.83 5.51 5.19 5.29 5.45 5.29
Voicebox♦ 3.93 4.90 4.96 4.93 5.01 5.03 5.34 4.89
NaturalSpeech 2♠ 2.77 3.51 4.85 4.88 5.42 5.23 5.31 4.52
Mega-TTS 2♠ 3.28 4.39 4.44 4.67 4.21 5.00 5.42 4.14
StyleTTS 2♣ 3.41 4.38 4.40 4.64 4.80 4.69 5.10 4.57
HierSpeech++♣ 5.54 6.55 5.78 5.84 6.37 6.17 6.74 5.62

NaturalSpeech 3 3.23 4.32 4.26 4.41 4.64 4.25 4.80 4.45

losses of phone prediction Lgr-ph, normalized F0 prediction Lgr-f0, and speaker classification Lgr-spk for disentanglement
learning. The total training loss for the generator can be formulated as: λrecLrec +λadvLadv +λfeatLfeat +λcodebookLcodebook +
λcommitLcommit + λphLph + λf0Lf0 + λgr-phLgr-ph + λgr-f0Lgr-f0 + λgr-spkLgr-spk, where λrec, λadv, λfeat, λcodebook, λcommit,λf0,
λph, λgr-f0, λgr-ph and λgr-spk are coefficients for balancing each loss terms. In our paper, we set these coefficients as follows:
λrec = 10.0, λadv = 2.0, λfeat = 2.0, λcodebook = 1.0, λcommit = 0.25, λf0 = 5.0, λph = 5.0, λgr-f0 = 5.0, λgr-ph = 5.0 and
λgr-spk = 1.0.

Training Details. We use Librilight as the training set. We train the codec using 8 NVIDIA TESLA V100 32GB GPUs with
a batch size of 32 speech clips of 16000 frames each per GPU for 800K steps. We use the Adam optimizer with a learning
rate of 2e− 4, β1 = 0.5, and β2 = 0.9.

B.2. Reconstruction Performance Comparison

We evaluate the reconstruction performance with the following objective metrics: Perceptual Evaluation of Speech Quality
(PESQ), Short-Time Objective Intelligibility (STOI), Multi-Resolution STFT Distance (MSTFT), and Mel-Cepstral Distor-
tion (MCD). These metrics collectively measure the difference between the original and the reconstructed samples. We
select the following open-source codec models as baselines: EnCodec (Défossez et al., 2022)11, HiFi-Codec (Yang et al.,
2023b)12, and Descript-Audio-Codec (DAC) (Kumar et al., 2023)13. We additionally reproduce SoundStream (Zeghidour
et al., 2021) following the original paper’s implementation and experimental setup. Table 11 shows that 1) FACodec
significantly surpasses SoundStream in the same bandwidth setting (0.44 in PESQ, 0.05 in STOI, 0.14 in MSTFT and 0.79
in MCD, respectively). Moreover, FACodec achieves on-par performance with SoundStream even when its bandwidth is
doubled (0.02 in PESQ, 0.01 in STOI, −0.01 in MSTFT and 0.17 in MCD, respectively). 2) For a fair comparison, we
compare FACodec with other baselines in a similar bandwidth. FACodec achieve comparable or better result on most
metrics than these strong baselines, which means that we can still achieve excellent reconstruction speech quality when
disentangling speech attributes.

B.3. Zero-shot Voice Conversion

Voice conversion aims to transform speech from a source speaker into that of a target speaker, preserving content while
altering timbre. Zero-shot voice conversion achieves this by utilizing a prompt speech sample from the target speaker to
convert the source speaker’s speech. FACodec achieves zero-shot voice conversion by extracting the speaker embedding
hprompt
t from the prompt speech to replace the speaker embedding hsource

t from the source speech, and utilizing content
codes zsourcec , prosody codes zsourcep , and detail codes zsourced from the source speaker to reconstruct the target speech
D(zsourcec , zsourcep , zsourced , hprompt

t ). We compare FACodec with some previous SOTA models: YourTTS (Casanova et al.,

11https://github.com/facebookresearch/encodec
12https://github.com/yangdongchao/AcademiCodec
13https://github.com/descriptinc/descript-audio-codec
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Table 11: The reconstruction quality evaluation of codecs. ♣ means results are infered from offical checkpoints. ⋆ means
the reproduced checkpoint. ♦ means the reproduced model following the original paper’s implementation and experimental
setup. All models use a codebook size of 1024. We use bold to indicate the best result and underline to indicate the
second-best result.

Models Sampling Rate Hop Size Codebook Number Bandwidth PESQ ↑ STOI ↑ MSTFT ↓ MCD ↓

EnCodec♣ 24kHz 320 8 6.0 kbps 3.28 0.94 0.99 2.70
EnCodec⋆ 16kHz 320 10 5.0 kbps 3.10 0.92 0.97 3.10
HiFi-Codec♣ 16kHz 320 4 2.0 kbps 3.17 0.93 0.98 3.05
DAC♣ 16kHz 320 9 4.5 kbps 3.52 0.95 0.97 2.65

SoundStream♦ 16kHz 200 6 4.8 kbps 3.03 0.90 1.07 3.38
SoundStream♦ 16kHz 200 12 9.6 kbps 3.45 0.94 0.92 2.76

FACodec 16kHz 200 6 4.8 kbps 3.47 0.95 0.93 2.59

2022), Make-A-Voice (VC) (Huang et al., 2023), LM-VC (Wang et al., 2023b), and UniAudio (Yang et al., 2023c). We
use VCTK dataset for comparison. We use Sim-O14 to compare speaker similarity to baselines and WER to evaluate
speech quality. Table 12 shows the evaluation results. The experimental results demonstrate that FACodec solely achieves
comparable similarity and superior intelligence compared to the state-of-the-art zero-shot VC models, which need additional
training on this task. This implies that FACodec achieves superior disentanglement, especially in timbre.

Table 12: The zero-shot voice conversion evaluation results for FACodec with previous SOTA methods. We use bold to
indicate the best result and underline to indicate the second-best result.

Models Sim-O ↑ WER ↓
Ground Truth - 3.25

YourTTS 0.72 10.1
Make-A-Voice (VC) 0.68 6.20
LM-VC 0.82 4.91
UniAudio 0.87 4.80

FACodec 0.86 3.46

B.4. Ablation Study

In this subsection, we study 1) the impact of the information bottleneck on the disentanglement of FACodec; 2) the effect of
gradient reversal on the disentanglement of FACodec; 3) the role of the acoustic details quantizers; 4) the effects of different
prosody representations for TTS generation.

Information Bottleneck for Disentanglement. We investigate the impact of the information bottleneck on speech
disentanglement through qualitative analysis. We find that without using information bottleneck (quantize in original
dimensional space rather than low dimensional space) can lead to incomplete disentanglement. For example, we conduct
zero-shot voice conversion in the same experimental setting using the FACodec without information bottleneck, as mentioned
in Appendix B.3. We observe that the timbre of the converted speech is the interpolation between the source and target,
indicating its poor timbre disentanglement. Table 13 demonstrates that without the information bottleneck, the speaker
similarity of zero-shot voice conversion decreases by 0.13.

Gradient Reversal for Disentanglement. We investigate the impact of gradient reversal on the disentanglement of the
FACodec through qualitative analysis. We observe that not using gradient reversal diminishes the disentangling ability of
FACodec. For instance, removing the content and prosody gradient reversal from the acoustic detail module results in some
content and prosody information leaking into the detail acoustic. We can confirm this by solely reconstructing the speech
using detail codes and timbre embedding, where partial content and pitch variations can be heard.

Role of Acoustic Details Quantizer. Although content, prosody, and timbre information already encompass the majority of

14https://huggingface.co/microsoft/wavlm-base-plus-sv
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Table 13: Comparison of zero-shot voice conversion evaluation results for FACodec with and without using information
bottleneck.

Sim-O ↑
w. information bottleneck 0.86
w.o. information bottleneck 0.73

speech information, Table 14 demonstrates that employing acoustic details quantizers enhances the speech reconstruction
quality of FACodec. We find 1) without using acoustic details quantizers (only utilizing three codebooks), FACodec
achieves comparable or better results compared to SoundStream with using three codebooks, which means that content
codes, prosody codes, and timbre embedding already contain most of the necessary information for speech reconstruction;
2) adding acoustic details achieves better reconstruction quality, which suggests that acoustic details codes primarily serve
to supplement high-frequency details.

Table 14: The reconstruction quality comparison between our FACodec with and without using acoustic details quantizers.

Codebook Number PESQ ↑ STOI ↑ MSTFT ↓ MCD ↓
FACodec 6 3.47 0.95 0.93 2.59
- acoustic details quantizers 3 3.09 0.92 1.08 3.12

SoundStream 6 3.03 0.90 1.07 3.38

C. Limitation and Future Works
Despite our proposed TTS system has achieved great progress, we still have the following limitations:

Attribute Coverage. In this work, we propose the factorization design for speech representation and generation, and
have achieved significant improvement by factorizing speech into content, prosody, duration, acoustic details and timbre.
However, these attributes can not coverage all speech aspects. For example, we can not extract the background sounds,
which is a common challenge for speech disentanglement. In the future, we will explore more attributes including: 1. energy,
2. background sounds, and etc.

Data Coverage. Although we have achieved remarkable improvement on zero-shot speech synthesis on speech quality,
similarity and robustness, NaturalSpeech 3 is trained on English corpus from LibriVox audiobooks. Thus, it can not coverage
real word people’s diverse voice and can not support multilingual TTS. In the future, we will address this limitation by
collecting more speech data with larger diversity.

Neural Speech Codec. Although our FACodec can factorize speech into attributes and reconstruct with high quality, it still
has the following limitations: 1) we need phoneme transcription for content supervision, which limits the scalability; 2)
we only verified the disentanglement in zero-shot TTS task. In the future, firstly, we will explore more general methods to
achieve better disentanglement, especially without supervision. Secondly, we would like to explore more tasks with the
FACodec, such as zero-shot voice conversion and automatic speech recognition.

19


