
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPROVING FEASIBILITY VIA FAST AUTOENCODER-
BASED PROJECTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Enforcing complex (e.g., nonconvex) operational constraints is a critical challenge
in real-world learning and control systems. However, existing methods struggle
to efficiently and reliably enforce general classes of constraints. To address this,
we propose a novel data-driven amortized approach that uses a trained autoen-
coder as an approximate projector to provide fast corrections to infeasible predic-
tions. Specifically, we train an autoencoder using an adversarial objective to learn
a structured, convex latent representation of the feasible set, enabling rapid cor-
rection of neural network outputs by projecting them onto a simple convex shape
before decoding into the original feasible set. We test our approach on a diverse
suite of constrained optimization and reinforcement learning problems with chal-
lenging nonconvex constraints. Results show that our method effectively improves
constraint satisfaction at a low computational cost, offering a practical alternative
to expensive feasibility correction techniques based on traditional solvers.

1 INTRODUCTION

Many learning and control systems, across areas such as robotics, energy systems, and industrial
automation, must produce outputs that respect difficult-to-satisfy (often nonconvex) constraints. En-
forcing these constraints reliably and efficiently is crucial for both safety and real-world usability.
A number of approaches have been proposed to address this challenge within learning-based sys-
tems, such as penalty methods (Fioretto et al. (2021); Stooke et al. (2020)), differentiable projection
and correction methods (Chen et al. (2021); Pan et al. (2022)), and post-hoc repair algorithms (Za-
mzam & Baker (2020); Nocedal & Wright (2006)). However, each of these approaches comes with
distinct trade-offs in terms of reliability, generality, computational cost, and solution quality – for
instance, failing to satisfy constraints in practice, not handling general classes of constraints, being
prohibitively slow to deploy in real-world systems, and/or degrading end-to-end model performance.

To address this challenge, we propose a data-driven amortized alternative to traditional constraint
enforcement algorithms: a trained autoencoder that acts as an approximate projector to provide fast
corrections to infeasible predictions. Specifically, we train an autoencoder to learn a structured, con-
vex latent representation of the feasible set, in a way that enables rapid mapping from infeasible to
feasible points. This autoencoder can then be leveraged as a plug-and-play “attachment” to standard
neural networks. While not aiming to supersede strict projections in regimes demanding hard fea-
sibility, this approach is designed to improve feasibility in low-latency settings or in settings where
moving predictions closer to the feasible set suffices to guarantee downstream system performance.

Our key contributions are as follows:

• Framework for data-driven feasibility improvement. We pose an approach for learning fea-
sibility improvement mappings that can be appended to neural networks, as an alternative to
expensive, albeit exact, constraint enforcement approaches. We propose a particular instantia-
tion of this approach, FAB, which employs an autoencoder as the basis of the learned mapping.

• Structured latent representation learning. We propose a mechanism to learn faithful,
feasibility-preserving latent representations of the feasible set, via adversarial training.

• Empirical validation. We test our method on a range of constrained optimization and rein-
forcement learning (RL) problems. For constrained optimization problems, the method con-
sistently provides an efficient approximate projection, learning to map solutions to the feasible

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

set close to 100% of the time in a fraction of a millisecond (faster than any other method). For
RL settings, the method consistently provides safer actions than methods like proximal policy
optimization (PPO) and trust-region policy optimization (TRPO), as well as their constrained
variants. Overall, this demonstrates the promise of our approach in providing fast, reliable
feasibility improvements across a wide range of settings.

2 RELATED WORK

Amortized optimization with constraints. Also known as learning to optimize, amortized op-
timization is a paradigm designed to accelerate the process of solving optimization problems by
using machine learning models as fast function approximators for optimization and control prob-
lems (Amos, 2023). Models are trained either via supervised learning on a dataset of known so-
lutions (Chen et al., 2022), or through unsupervised/self-supervised methods, where the model’s
loss function incorporates the optimization problem’s objectives and constraints (Van Hentenryck,
2025). A primary challenge in amortized optimization is ensuring that the model’s output satisfies
constraints. Several lines of work have emerged to address this, including penalty methods, differ-
entiable projection and/or correction methods, and post-hoc “repair techniques.” Penalty methods
turn constrained optimization problems into unconstrained ones by incorporating penalty terms for
constraint violations in the objective terms (Fioretto et al., 2021; Stooke et al., 2020; Raissi et al.,
2019); however, while they incentivize feasibility, they do not guarantee it, and may produce highly
infeasible solutions in practice. In contrast, differentiable projection and/or correction methods em-
bed exact solvers directly as layers in neural networks (Pham et al., 2018; Chen et al., 2021; Pan
et al., 2022; Nguyen & Donti, 2025; Donti et al., 2021). While these methods do provide feasi-
bility guarantees, they are often either expensive to run, or highly specialized to certain classes of
constraints (Min & Azizan, 2024; Tordesillas et al., 2023). Likewise, post-hoc “repair” methods
(Boyd et al., 2011; Douglas & Rachford, 1956; Zamzam & Baker, 2020) are often either expensive
or highly specialized, and the inherent train-test mismatch can further degrade overall performance.

In this work, we propose an alternative, data-driven approach that can learn an inexpensive, non-
iterative transformation from a latent convex set to any arbitrary constraint set, thereby speeding up
feasibility improvement in practice (albeit at the expense of provable guarantees). The work closest
in the literature to ours is (Liang et al., 2024; 2023), proposing a homeomorphic projection approach
which learns an invertible mapping from a hypersphere to a topologically-equivalent constraint set,
and then uses a bisection procedure to recover feasibility. However, this procedure is designed for
post-hoc feasibility correction rather than end-to-end training, and is limited to ball-homeomorphic
constraint sets. Our work presents a method that can learn a mapping between a latent hypersphere
and any continuous constraint set, and is compatible with end-to-end training and inference.

Safe reinforcement learning. Safe reinforcement learning (RL) is an extension of standard RL,
where an agent learns to make a sequence of decisions in an environment to maximize a cumulative
reward signal while also aiming to minimize the costs associated with constraint violations (Garcıa
& Fernández, 2015; Gu et al., 2024). While standard RL algorithms, such as Proximal Policy Op-
timization (PPO, Schulman et al., 2017) and Trust Region Policy Optimization (TRPO, Schulman
et al., 2015) excel in unconstrained settings, they are not equipped to handle constraints. Promi-
nent approaches to address this include Lagrangian relaxation (Stooke et al., 2020), safe exploration
(Hans et al., 2008), and differentiable projection (Pham et al., 2018; Chen et al., 2021). However,
mirroring the discussion on constraint enforcement in amortized optimization, these approaches
come with distinct trade-offs in terms of reliability and computational cost.

Adversarial training. Adversarial training, widely known for its application in Generative Ad-
versarial Networks (GANs) (Goodfellow et al., 2014) and adversarially robust deep learning (Bai
et al., 2021), offers a general framework for learning in the face of complex data distributions. In
the canonical GAN setup, a generator network learns to produce realistic data samples from a noise
vector, while a discriminator network is trained to distinguish between real and generated samples.
In particular, minimax training of the generator and the discriminator drives the generator to produce
increasingly plausible outputs. Inspired by this approach, our work leverages an adversarial training
paradigm to learn feasible sets, where the “discriminator” is trained to distinguish between feasi-
ble and infeasible outputs produced by another model, and that output-producing model is thereby
forced to learn more robust decision boundaries between feasible and infeasible points.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: A schematic of FAB approximate projections. (1) Phase 1 of autoencoder training aims
to enable reconstructions of the feasible set. (2) Phase 2 of autoencoder training introduces a dis-
criminator to enable further structuring and refinement of the latent representation. (3) The trained
autoencoder can be utilized as a plug-and-play attachment to another neural network model.

3 FAST AUTOENCODER-BASED (FAB) FEASIBILITY IMPROVEMENT

In this paper, we consider the task of repeatedly solving parametric optimization problems of the
form:

y⋆(x) ∈ argmin
y∈C(x)

f(y;x), (1)

where x ∈ X ⊆ Rm are the problem parameters, y ∈ Y ⊆ Rn are decision variables,
f : Y × X → R is the objective function, C(x) ⊆ Y is a (parameter-dependent) constraint set,
and y⋆(x) ∈ C(x) is a solution. Because the optimal solutions of the problems change as the param-
eters x change, this suggests a mapping between parameters x and optimal solutions. In addition
to offline optimization, this formulation also captures RL settings, where X and Y are the state and
action spaces, respectively (Amos, 2023). Our aim is to use neural networks to approximate a map-
ping from x to y⋆(x) such that the resultant solution has low objective value, satisfies constraints,
and is fast to compute at inference time.

We specifically consider neural networks of the form:
ŷθ := ϕx ◦ Nθ, (2)

where Nθ : X → Rd is a standard feedforward network with parameters θ, and ϕx : Rd → C(x)
is a differentiable feasibility improvement procedure that aims to map to a point in the constraint
set. Prior work has considered the design of mappings ϕx that can ensure exact feasibility, e.g., by
solving a differentiable orthogonal projection or via exact iterative procedures (see §2). While such
approaches are indeed useful for, e.g., safety-critical settings where provable constraint satisfaction
is a must, they tend to be relatively expensive for general classes of constraints. Instead, we propose
to learn a fast, data-driven, approximate mapping for use in settings where (near-)feasibility is im-
portant, but where the benefits of reduced latency outweigh the need for strict constraint satisfaction.

The particular choice of ϕx that we propose in this work is motivated by the observation that while
C(x) may be expensive to enforce directly, we can potentially learn a transformation between this set
and some specially-structured set that is much cheaper to work with. In particular, let Eγ : I → Z
be an encoder with parameters γ, where I := Y × X and Z ⊆ Rk, and let Rψ : Z → Y be
a decoder (“reconstructor”) with parameters ψ, where both Eγ and Rψ are standard feedforward
neural networks.1 In addition, let S ⊆ Z be a set that is by construction simple to map onto (e.g.,
a simplex or a ball), and let ϕS : Z → S be a cheap exact mapping to points in S (e.g., a softmax
operation or closed-form projection). We then define our feasibility improvement procedure as

ϕx := Rψ ◦ ϕS ◦ Eγ . (3)
In other words, given an output from Nθ alongside its corresponding input, we feed these into an
encoder, map the encoded latent point into S, and then decode the resultant point. The idea is that
once Eγ and Rψ are trained, each step of ϕx is cheap to execute, leading to fast overall inference.

1We focus our discussion in the main text on the case of input-varying constraints C(x), but note that the
formulations for input-independent constraints are similar. In the latter case, I := Y; our autoencoder is simply
a standard, rather than conditional, autoencoder; and all mentions of x in §3.1 can be dropped.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Two-Phase Autoencoder Training for FAB Feasibility Improvement

1: input: Dataset of feasible points Tfeas = {(y(i), x(i)) | y(i) ∈ C(x(i))}
2: input: Discriminator dataset Tdisc :=

{(
(y(i), x(i)), c(i)

)
| c(i) = 1 if y(i) ∈ C(x(i)), 0 otherwise

}
3:
4: procedure PHASE1(Tfeas) // Constraint set reconstruction
5: init encoder Eγ , decoder Rψ
6: while not converged do for batch of (y, x) ∈ Tfeas
7: compute Lrecon(y, x) via Eq. 4
8: update γ, ψ using ∇γLrecon,∇ψLrecon
9: end while

10: return Eγ , Rψ
11: end procedure
12:
13: procedure PHASE2(Tdisc, Eγ , Rψ) // Latent set structuring
14: init discriminator Dξ

15: while not converged do for batch of ((y, x), c) ∈ Tdisc
16: // Update discriminator Dξ

17: compute Ldisc(y, x, c) via Eq. 5
18: update ξ using ∇ξLdisc
19: // Update autoencoder (Eγ , Rψ)
20: compute Lrecon(y, x), Lhinge(y, x, c) via Eq. 4, 7
21: sample batch of z ∼ S
22: compute Llatent(z), Lgeom(batch of z) via Eq. 8–9
23: compute Lstruc from Lrecon,Lhinge,Llatent,Lgeom via Eq. 6
24: update γ, ψ using ∇γLstruc,∇ψLstruc
25: end while
26: return Eγ , Rψ
27: end procedure

The key challenge with this approach is that we must now design the autoencoder parameters (γ, ψ)
such that the output of ϕx is actually feasible, i.e., actually lies within C(x). To do this, we propose
a two-stage autoencoder training procedure aimed at structuring the latent space Z such that, to the
extent possible, latent points decode to our feasible set C(x) if and only if they lie within S ⊆ Z . A
schematic of our overall approach is provided in Figure 2. We now provide additional detail on the
two-stage training procedure.

3.1 TWO-PHASE AUTOENCODER TRAINING

We train the encoder-decoder pair (Eγ , Rψ) in two phases: (1) a constraint set reconstruction phase
leveraging standard autoencoder training, and (2) a latent space structuring phase involving ad-
versarial training with a discriminator. Together, these aim to enable the autoencoder to faithfully
reconstruct the feasible set, and encourage latent points from S to decode to feasible points. Pseu-
docode for both training phases is given in Algorithm 1

Phase 1: Constraint set reconstruction. We first train the autoencoder to reconstruct the feasible
set. Specifically, we train on a dataset of exclusively feasible points, Tfeas := {(y(i), x(i)) | y(i) ∈
C(x(i))}. As standard in autoencoder training, the encoderEγ and the decoderRψ are jointly trained
to minimize a standard L2 reconstruction loss to prioritize the fidelity of decoded points:

Lrecon(y, x) = ∥y −Rψ(Eγ(y, x))∥22. (4)

Phase 2: Latent space structuring. The second autoencoder training phase aims to structure the
latent space such that any point sampled from S ⊆ Z , when decoded, results in a feasible point. To
do this, we draw loose inspiration from generative adversarial network (GAN) training, and train our
autoencoder alternatingly with a discriminator Dξ : I → [0, 1] whose role is to distinguish between
feasible and infeasible points. Specifically, the discriminator maps from inputs in I to an estimated
probability that the input is feasible. We let Dξ be a standard feedforward neural network.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We leverage two datasets during this training phase: (a) a labeled dataset of feasible and infeasi-
ble points, Tdisc :=

{(
(y(i), x(i)), c(i)

)
| c(i) = 1 if y(i) ∈ C(x(i)), 0 otherwise

}
, and (b) samples

z(j) ∼ S from our latent subset. Unlike in GANs, where the generator and discriminator are trained
via a minimax loss, here, the autoencoder and discriminator are trained using distinct loss functions.

Specifically, the discriminatorDξ is trained to distinguish between feasible and infeasible points, by
minimizing the negative log likelihood on Tdisc:

Ldisc(y, x, c) = − (c logDξ(y, x) + (1− c) log (1−Dξ(y, x))) . (5)

The autoencoder is trained to minimize a composite loss function leveraging both Tdisc and z(j) ∼ S,
defined as:

Lstruc =
1

N

N∑
i=1

[
λreconLrecon(y

(i), x(i))
]
+

1

N

N∑
i=1

λhinge

[
Lhinge(y

(i), x(i), c(i))
]

+
1

M

M∑
j=1

[
λlatentLlatent(z

(j))
]
+ λgeomLgeom({z(1), . . . , z(M)}),

(6)

where λrecon, λlatent, λhinge, λgeom ∈ R, where Lrecon is defined similarly as above, and where the
remaining loss terms are defined as follows:

• The hinge loss Lhinge structures the latent space by mapping feasible points to the interior of a
hypersphere and infeasible points to its exterior. Here, we write the hinge loss for the specific
choice of S := {z : ∥z∥2 ≤ r} for some radius r:

Lhinge(y, x, c) = cReLU
(
∥Eγ(y, x))∥2 − r

)
+ (1− c)ReLU

(
r − ∥Eγ(y, x)∥2

)
. (7)

• The latent loss Llatent encourages outputs decoded from latent points z ∈ S to be feasible, via
supervision from the discriminator:

Llatent(z) = − logDξ(Rψ(z)) . (8)

• The Jacobian regularization term Lgeom encourages uniform coverage of the feasible set by the
decoder (Nazari et al., 2023), and is computed over a set of latent points Ŝ ⊆ S:

Lgeom(Ŝ) = Variancez∼Ŝ
[
log det(JzJ

⊤
z + εIk)

]
, (9)

where Jz = ∇zRψ(z) is the Jacobian of the decoder with respect to z, Ik is the k × k identity
matrix, and ε is a small scalar value. This loss term measures how the decoder’s output changes
under small changes in the latent code (εIk). Specifically, it calculates the determinant of the
Gram matrix JzJ⊤

z and measures how much the decoder locally stretches or shrinks the space.

3.2 LEVERAGING THE TRAINED FEASIBILITY MAPPING

After autoencoder training, we fix the weights of the encoder and decoder and use them to construct
the feasibility mapping ϕx = Rψ ◦ ϕS ◦ Eγ , as also given by Equation 3. We then append the
feasibility mapping to our base neural network as ŷθ = ϕx ◦ Nθ, as given by Equation 2. The
resultant neural network ŷθ (with learnable parameters θ) can then be trained as usual to address the
amortized optimization problem at hand, i.e., to learn approximate solutions to Problem 1. In other
words, our learned mapping serves as a plug-and-play attachment to standard deep learning models
that be used during both training and inference to improve model feasibility, while also being fast
to run. (While in principle the encoder and decoder parameters could be further adjusted end-to-end
alongside the base neural network parameters θ, rather than being fixed, we do not consider that case
here.) In the following sections, we demonstrate the performance of ŷθ in learning feasible solutions
to amortized optimization problems across both offline optimization and RL settings.

4 EXPERIMENTS ON CONSTRAINED OPTIMIZATION PROBLEMS

Problem classes. We test our approach on 4 nonconvex constraint families (Fig. 2) and 3 objec-
tive types: linear, quadratic, and distance minimization. The nonconvex constraint sets are defined
analytically; we consider input-independent constraint sets C ⊆ Y . The problems are formulated as:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: The nonconvex constraint sets tested in our constrained optimization settings.

Linear:

min
y
a⊤y

s.t. y ∈ C

Quadratic:

min
y
y⊤Qy + a⊤y

s.t. y ∈ C

Distance minimization:

min
y

∥∥y − t
∥∥2

s.t. y ∈ C,

where y ∈ Y := Rn is the decision variable, and the problem parameters a ∈ Rn, Q ∈ Rn×n,
t ∈ Rn vary between instances. Our goal is to learn a neural network approximator ŷθ for each
problem class that minimizes the objective function while satisfying constraints.

Baselines. We compare FAB feasibility improvement against:

• Projected Gradient Descent. This algorithm iteratively takes a gradient descent step and
then projects the current iterate onto the feasible set to enforce constraints.

• Penalty. A popular method that solves constrained problems by adding a penalty term to
the objective that heavily penalizes constraint violations.

• Augmented-Lagrangian. The method combines penalty terms and Lagrange multipliers
to handle constraints more robustly, allowing both primal and dual updates.

• Interior Point (a.k.a. barrier method). Ensures feasibility by adding barrier functions at
the constraint boundaries, guiding iterates through the interior of the feasible set.

• FSNet (Nguyen & Donti, 2025). This method combines NNs with an exact solution of an
iterative constraint violation-minimization optimization problem.

• Homeomorphic Projection (Liang & Chen, 2025). This method learns an invertible map-
ping between a hypersphere and a ball-homeomorphic constraint set, using a bisection
procedure to minimize distortion.

Implementation details. We run experiments over 5 seeds with 300 problems per seed (trained 500
epochs with a batch size of 32, tested on 1,500 problems), totalling 18,000 optimization problems
across the entire testing suite. All methods were run on a workstation equipped with one NVIDIA
RTX 5090 GPU. We choose S to be a 0.5-radius hypersphere. Hyperparameters are given in Ap-
pendix A.1.

Evaluation metrics. We evaluate the methods by their feasibility rates, optimality gaps, and infer-
ence times over the 4 constraint types and 3 objective types.

Results

As presented in tables 1 and 2 (as well as the tables in Appendix B, our methods achieve a substantial
reduction in computation time, with sub-millisecond inference times. In addition, they also do well
at finding feasible solutions even with disjoint or non-ball-homeomorphic sets. As shown in the
2 and 3 decoder ablations, their performance improves for sets with multiple components, as each
decoder ”specializes” in a distinct feasible region.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Quadratic Linear Dist. Min.
Method Feas Time Gap Feas Time Gap Feas Time Gap

(%) (ms) (gap) (%) (ms) (gap) (%) (ms) (gap)

Projected Gradient 100.0 38.73 0.60 100.0 19.80 1.04 100.0 32.34 0.95
Std Dev 0.0 28.68 0.88 0.0 31.73 1.11 0.0 49.68 2.42
Penalty Method 59.7 64.76 0.97 43.7 38.72 1.29 55.1 55.01 5.37
Std Dev 49.0 47.86 1.39 49.6 52.87 1.28 49.7 156.36 6.47
Augmented Lagrangian 58.5 71.64 0.98 44.5 42.68 1.33 56.5 45.49 5.54
Std Dev 49.3 64.04 1.42 49.7 49.49 1.29 49.6 33.47 6.73
Interior Point 95.3 61.82 2.50 92.6 45.66 1.63 94.5 40.50 11.89
Std Dev 21.2 35.51 2.61 26.2 56.51 1.66 22.7 41.82 11.35
FSNet 99.5 2.66 1.15 98.7 2.49 2.09 99.8 2.31 13.63
Std Dev 7.3 11.09 1.67 11.2 1.43 1.98 4.5 1.33 13.30
NN 1 Decoder 100.0 0.69 0.53 100.0 0.50 1.14 100.0 0.39 2.89
Std Dev 0.0 1.44 0.71 0.0 0.48 0.96 0.0 0.17 4.26
NN 2 Decoder 62.0 1.14 0.52 55.9 0.59 1.09 86.0 0.45 2.59
Std Dev 48.5 4.08 0.69 49.7 0.43 0.95 34.7 0.15 4.23
NN 3 Decoder 95.6 1.15 0.53 95.3 0.60 1.11 94.6 0.55 3.59
Std Dev 20.5 3.18 0.70 21.2 0.35 0.92 22.6 0.42 4.49
FAB: Only phase 1 66.7 0.77 0.51 64.1 1.16 1.06 76.7 0.56 1.32
Std Dev 47.1 0.34 0.62 48.0 2.88 0.83 42.3 0.13 1.48
FAB: No hinge 100.0 0.94 0.63 100.0 1.15 1.29 100.0 0.61 6.47
Std Dev 0.0 1.79 0.79 0.0 1.58 1.11 0.0 0.40 5.28
FAB: No Dξ 80.8 0.74 0.52 80.6 0.82 1.11 77.9 0.73 4.79
Std Dev 39.4 0.50 0.69 39.5 0.47 0.92 41.5 0.58 4.34
Homeomorphic Projection 100.0 196.631 4.37 100.0 196.247 2.58 100.0 196.021 13.36
Std Dev 0.0 193.4 4.28 0.0 195.8 2.30 0.0 195.5 12.73

Table 1: Mean and std. dev. for feasibility (%), time (ms), and optimality gap for each method: Blob
with Bite constraint family. 5 seeds, 300 problems each per problem per objective type.

5 EXPERIMENTS ON SAFETY GYM (SAFE RL)

Safe RL problem formulation. Safe RL can be framed within our parametric optimization setup
from Equation 1. We consider a discrete-time dynamical system where the state evolves according
to:

sk+1 = f(sk, uk), (10)

where sk ∈ X ⊆ Rm is the current state and uk ∈ Y ⊆ Rn is the control action at timestep
k. In this context, the actions uk are the decision variables, and the states sk correspond to the
problem parameters. The constraint set C(sk) is state-dependent. An action uk is considered safe,
i.e., uk ∈ C(sk), if executing it from state sk does not lead to an immediate constraint violation (e.g.
collision). The objective is to learn a policy πθ : X → Y , that maximizes the expected cumulative
reward. The goal is, therefore, to solve for a policy πθ such that for any given state sk, the chosen
action uk = πθ(sk) is both optimal long-term and safe.

Environment. We evaluate our approach using the SafetyPointGoal2-v0 environment from the
Safety Gymnasium benchmark suite (Ji et al., 2023). In this task, an agent must navigate to a series
of goal locations while avoiding randomly-placed hazards. The state vector comprises simulated
sensor readings (e.g., accelerometers, gyroscope, and a LiDAR-like sensor for hazard detection),
while the action vector controls the agent’s forward/backward movement, as well as its rotational
velocities.

Baselines. We compare FAB projections against:

• PPO (Schulman et al., 2017). A state-of-the-art unconstrained RL algorithm.

• TRPO (Schulman et al., 2015). Another robust unconstrained RL algorithm.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Quadratic Linear Dist. Min.
Method Feas Time Gap Feas Time Gap Feas Time Gap

(%) (ms) (gap) (%) (ms) (gap) (%) (ms) (gap)

Projected Gradient 80.5 79.07 1.18 76.3 48.23 0.90 79.2 69.79 4.65
Std Dev 39.6 91.65 1.58 42.5 52.86 0.99 40.6 25.09 5.87
Penalty Method 20.4 78.39 1.36 10.4 61.58 1.52 14.6 38.67 6.39
Std Dev 40.3 71.27 1.67 30.5 111.21 1.49 35.3 10.02 7.07
Augmented Lagrangian 20.9 85.71 1.33 10.9 56.98 1.56 15.7 42.58 6.43
Std Dev 40.7 119.17 1.59 31.1 62.66 1.56 36.3 6.69 6.70
Interior Point 78.3 82.80 1.64 77.3 46.37 1.03 79.9 42.00 6.12
Std Dev 41.2 110.99 2.02 41.9 33.68 1.03 40.0 12.03 6.41
FSNet 98.7 4.42 1.13 98.3 3.40 0.96 99.3 4.03 5.30
Std Dev 11.5 2.77 1.45 12.8 2.08 1.01 8.5 1.67 5.51
NN 1 Decoder 96.8 0.55 0.85 83.5 0.43 0.73 88.3 0.41 4.22
Std Dev 17.6 0.40 1.16 37.1 0.27 0.73 32.2 0.20 4.15
NN 2 Decoder 100.0 0.59 1.31 100.0 0.55 0.94 100.0 0.50 5.64
Std Dev 0.0 0.35 1.36 0.0 0.37 0.89 0.0 0.25 5.73
NN 3 Decoder 100.0 0.80 1.02 100.0 0.62 0.90 100.0 0.60 5.44
Std Dev 0.0 1.03 1.15 0.0 0.36 0.84 0.0 0.32 4.84
FAB: Only phase 1 82.5 0.64 0.86 69.9 1.07 0.72 64.1 0.54 3.83
Std Dev 38.0 0.14 1.21 45.9 4.12 0.69 48.0 0.09 4.07
FAB: No hinge 28.4 0.63 1.13 18.8 0.76 0.85 28.1 0.56 5.14
Std Dev 45.1 0.16 1.23 39.1 0.84 0.80 44.9 0.16 4.96
FAB: No Dξ 75.1 0.64 0.86 54.4 0.67 0.70 13.6 0.55 3.61
Std Dev 43.2 0.22 1.21 49.8 0.31 0.69 34.3 0.19 4.00

Table 2: Mean and std. dev. for feasibility (%), time (ms), and optimality gap for each method: Two
Moons constraint family. 5 seeds, 300 problems each per problem per objective type.

Table 3: SafetyGym Results
Algorithm Reward Mean ↑ Reward Std ↓ Cost Mean ↓ Cost Std ↓ Time Mean (s) ↓
PPO FAB -1.12 1.11 24.32 37.84 2.75
PPO 13.26 14.05 167.46 87.06 2.47
PPO LAG 2.24 5.10 54.10 64.50 2.40
TRPO 15.58 10.31 164.14 88.43 2.59
TRPO LAG 2.37 8.46 89.04 187.67 2.78

• Lagrangian PPO, Lagrangian TRPO (Stooke et al., 2020; Ray et al., 2019). Constrained
versions of PPO and TRPO that use Lagrangian relaxation to penalize constraint violations
during training.

Implementation details. The autoencoder was trained on a dataset of 100,000 state-action pairs,
approximately evenly balanced between safe and unsafe examples, which were collected by running
a random policy in the environment. The performance of these algorithms was evaluated over 50
independent seeds. All methods were run on a workstation equipped with one NVIDIA RTX 5090
GPU. We choose S to be a 0.5-radius hypersphere. Hyperparameters are given in Appendix A.2.

Evaluation metrics. We assess performance based on several metrics, averaged over the evaluation
episodes: episode rewards, episode costs, and mean inference time. Episode reward is the cumula-
tive rewards obtained by the agent in one episode (which is 1000 steps). Episode cost is the total
number of constraint violations (i.e., entering hazard zones).

Results

As presented in 3, PPO FAB achieves the lowest cost among the evaluated methods, substantially
outperforming standard baselines like PPO (167.46) and TRPO (164.14). Furthermore, it also ex-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

hibits the highest level of reliability with the lowest standard deviation in both cost (37.84) and re-
ward (1.11). However, this focus on safety also corresponds to a more conservative reward-seeking
policy, resulting in a lower reward mean (-1.12) compared to the other algorithms.

6 CONCLUSION

In this work, we introduced a novel-data driven method, Fast Autoencoder-Based (FAB) projections
for feasibility improvement, to address the critical challenge of enforcing nonconvex constraints in
learning-based systems. Our method leverages a specially trained autoencoder to learn an approxi-
mate projection from a convex latent set to a general (e.g., potentially nonconvex or disjoint) feasible
set. By structuring the autoencoder’s latent space to correspond to a simple convex shape that is easy
to map into, we can perform a fast projection in this latent space at inference and decode the result
back into a point that is highly likely to be feasible.

On constrained optimization benchmarks, FAB consistently achieved near-perfect feasibility rates
(often approaching 100%) across a diverse set of challenging, nonconvex feasible sets. In the Safe-
tyGym benchmark, it consistently achieved low costs, with the median cost being 0.0. Crucially, it
achieved both of these with inference times that were significantly faster than those of other meth-
ods. While methods with formal guarantees can ensure exact feasibility, their computational over-
head can be prohibitive for real-time applications. Therefore, FAB presents a compelling alternative
for latency-sensitive domains where rapid, high-fidelity approximate projections may be sufficient.

Limitations of FAB include lack of hard guarantees, as well as its reliance on having a representative
dataset of feasible and infeasible points in order for autoencoder training to perform well. Future
work includes identifying ways to improve sample efficiency, distributional performance, and inter-
pretability of the data-driven mapping – e.g., through the use of specialized neural network structures
such as input-convex neural networks (Amos et al., 2017) or operator learning-based networks (Ko-
vachki et al., 2024), or even simpler parameterized functions – as well as exploring toolkits such as
formal verification to better understand and assess the behavior of the learned data-driven mapping
after it is trained. Another future direction includes exploring adaptive co-training of the data-driven
feasibility improvement mapping with the neural network to which it will be attached (rather than
training the mapping fully separately), motivated by prior results on the benefits of end-to-end learn-
ing (Cameron et al., 2022). Overall, we believe that the paradigm of data-driven feasibility mapping
offers a compelling yet underexplored middle ground between penalty methods and exact feasibility
enforcement, and we look forward to future work that investigates alternative approaches within this
space beyond the one presented here.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Brandon Amos. Tutorial on amortized optimization. Foundations and Trends® in Machine Learn-
ing, 16(5):592–732, 2023.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International confer-
ence on machine learning, pp. 146–155. PMLR, 2017.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial training
for adversarial robustness. arXiv preprint arXiv:2102.01356, 2021.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011. URL https://web.stanford.edu/
˜boyd/papers/admm_distr_stats.pdf.

Chris Cameron, Jason Hartford, Taylor Lundy, and Kevin Leyton-Brown. The perils of learning
before optimizing. In Proceedings of the AAAI conference on artificial intelligence, volume 36,
pp. 3708–3715, 2022.

Bingqing Chen, Priya L. Donti, Kyri Baker, J. Zico Kolter, and Mario Bergés. Enforcing policy
feasibility constraints through differentiable projection for energy optimization. In Proceedings
of the Twelfth ACM International Conference on Future Energy Systems (e-Energy ’21), pp. 199–
210. ACM, 2021. ISBN 978-1-4503-8333-2. doi: 10.1145/3447555.3464874.

Wenbo Chen, Seonho Park, Mathieu Tanneau, and Pascal Van Hentenryck. Learning optimization
proxies for large-scale security-constrained economic dispatch. Electric Power Systems Research,
213:108566, 2022.

Priya L. Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with
hard constraints. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=V1ZHVxJ6dSS.

Jim Douglas, Jr. and H. H. Rachford. On the numerical solution of heat conduction problems in two
and three space variables. Transactions of the American Mathematical Society, 82(2):421–439,
1956.

Ferdinando Fioretto, Pascal Van Hentenryck, Terrence WK Mak, Cuong Tran, Federico Baldo, and
Michele Lombardi. Lagrangian duality for constrained deep learning. In Machine learning and
knowledge discovery in databases. applied data science and demo track: European conference,
ECML pKDD 2020, Ghent, Belgium, September 14–18, 2020, proceedings, part v, pp. 118–135.
Springer, 2021.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theories and applications. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, and Steffen Udluft. Safe explo-
ration for reinforcement learning. In ESANN, pp. 143–148, 2008.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yi-
fan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learn-
ing benchmark. Advances in Neural Information Processing Systems, 36:18964–18993, 2023.

10

https://web.stanford.edu/~boyd/papers/admm_distr_stats.pdf
https://web.stanford.edu/~boyd/papers/admm_distr_stats.pdf
https://openreview.net/forum?id=V1ZHVxJ6dSS
https://openreview.net/forum?id=V1ZHVxJ6dSS


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikola B Kovachki, Samuel Lanthaler, and Andrew M Stuart. Operator learning: Algorithms and
analysis. In Siddhartha Mishra and Alex Townsend (eds.), Numerical Analysis Meets Machine
Learning, volume 25 of Handbook of Numerical Analysis, pp. 419–467. Elsevier, 2024. doi:
https://doi.org/10.1016/bs.hna.2024.05.009. URL https://www.sciencedirect.com/
science/article/pii/S1570865924000097.

Enming Liang and Minghua Chen. Efficient bisection projection to ensure NN solution feasibility
for optimization over general set. 2025. URL https://openreview.net/forum?id=
7TXdglI1g0.

Enming Liang, Minghua Chen, and Steven H Low. Low complexity homeomorphic projection
to ensure neural-network solution feasibility for optimization over (non-) convex set. In 40th
International Conference on Machine Learning (ICML 2023), pp. 20623–20649, 2023.

Enming Liang, Minghua Chen, and Steven H Low. Homeomorphic projection to ensure neural-
network solution feasibility for constrained optimization. Journal of Machine Learning Research,
25(329):1–55, 2024.

Youngjae Min and Navid Azizan. Hardnet: Hard-constrained neural networks with universal ap-
proximation guarantees. arXiv preprint arXiv:2410.10807, 2024.

Philipp Nazari, Sebastian Damrich, and Fred A Hamprecht. Geometric autoencoders–what you see
is what you decode. arXiv preprint arXiv:2306.17638, 2023.

Hoang T Nguyen and Priya L Donti. FSNet: Feasibility-seeking neural network for constrained
optimization with guarantees. arXiv preprint arXiv:2506.00362, 2025.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.

Xiang Pan, Minghua Chen, Tianyu Zhao, and Steven H Low. DeepOPF: A feasibility-optimized
deep neural network approach for AC optimal power flow problems. IEEE Systems Journal, 17
(1):673–683, 2022.

Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. Optlayer-practical constrained opti-
mization for deep reinforcement learning in the real world. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 6236–6243. IEEE, 2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. In International Conference on Machine Learning (ICML), 2020.

Jesus Tordesillas, Jonathan P How, and Marco Hutter. Rayen: Imposition of hard convex constraints
on neural networks. arXiv preprint arXiv:2307.08336, 2023.

Pascal Van Hentenryck. Optimization learning. arXiv preprint arXiv:2501.03443, 2025.

Ahmed S Zamzam and Kyri Baker. Learning optimal solutions for extremely fast AC optimal power
flow. In 2020 IEEE International Conference on Communications, Control, and Computing Tech-
nologies for Smart Grids (SmartGridComm), pp. 1–6. IEEE, 2020.

11

https://www.sciencedirect.com/science/article/pii/S1570865924000097
https://www.sciencedirect.com/science/article/pii/S1570865924000097
https://openreview.net/forum?id=7TXdglI1g0
https://openreview.net/forum?id=7TXdglI1g0


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 CONSTRAINED OPTIMIZATION HYPERPARAMETERS

Phase 1 Training (phase1 training.py)

Batch size 256

Epochs 500

Learning rate 0.001

Optimizer Adam

Validation split 0.2

Hidden dimension 64

Number of decoders 1

Number of samples 60000

Phase 2 Training (phase2 training.py)

Batch size 256

Epochs 150

Learning rates AE=0.0005, Discriminator=0.001

Loss weights λrecon = 1.0, λfeasibility = 1.0, λlatent = 1.0, λhinge = 0.1, λgeometric = 0.1

Optimizer Adam

Discriminator type ”absolute”

Critic steps 3

Validation split 0.2 (implicit from train test split)

Normalization enabled

Hidden dimension 64

Number of decoders 1

A.2 SAFETY GYM HYPERPARAMETERS

Phase 1 Training (safety-gym/phase1 training.py
Batch size: 256

Epochs: 500

Learning rate: 0.001

Optimizer: Adam

Validation split: 0.2

Reconstruction weight: 1.0

Hidden dimension: 64

Number of decoders: 1

Number of samples: 100000

State dimension: 60 (safety gym)

Action dimension: 2 (safety gym)

Latent dimension: equal to action dimension

Phase 2 Training (safety-gym/phase2 training.py
Batch size: 256

Epochs: 100

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Quadratic Linear Dist. Min.
Method Feas Time Gap Feas Time Gap Feas Time Gap

(%) (ms) (gap) (%) (ms) (gap) (%) (ms) (gap)

Projected Gradient 100.0 38.41 0.34 100.0 18.99 0.78 100.0 31.18 1.01
Std Dev 0.0 39.50 0.41 0.0 10.97 0.69 0.0 27.47 1.86
Penalty Method 75.8 61.37 0.87 38.0 40.03 1.17 57.3 39.41 4.84
Std Dev 42.8 33.75 1.32 48.5 33.05 1.15 49.5 13.16 5.99
Augmented Lagrangian 75.0 70.70 0.89 40.4 39.49 1.19 58.1 48.25 4.99
Std Dev 43.3 74.02 1.38 49.1 20.97 1.10 49.3 32.70 6.17
Interior Point 96.6 70.65 1.77 92.9 40.25 1.45 95.0 53.22 9.43
Std Dev 18.1 75.77 1.99 25.7 21.66 1.46 21.8 62.60 8.70
FSNet 99.9 3.13 1.03 99.7 3.76 1.05 99.7 5.41 7.24
Std Dev 3.6 3.00 1.91 5.2 2.06 1.04 5.2 11.90 7.61
FAB: NN 1 Decoder 99.9 0.56 0.34 99.9 0.60 0.77 95.4 0.64 2.01
Std Dev 2.6 0.45 0.40 2.6 1.61 0.65 20.9 0.93 1.96
FAB: NN 2 Decoder 100.0 0.60 0.37 99.5 0.49 0.73 94.7 0.71 2.30
Std Dev 0.0 0.32 0.43 7.3 0.26 0.59 22.3 0.83 2.28
FAB: NN 3 Decoder 99.9 0.65 0.34 99.9 0.55 0.75 94.5 0.93 2.02
Std Dev 2.6 0.29 0.39 3.6 0.24 0.62 22.9 2.39 2.00
FAB: Only phase 1 100.0 0.61 0.34 100.0 0.54 0.76 100.0 0.53 3.05
Std Dev 0.0 0.08 0.41 0.0 0.08 0.65 0.0 0.08 3.04
FAB: No hinge 100.0 0.60 0.38 100.0 0.54 0.83 100.0 0.52 5.00
Std Dev 0.0 0.07 0.49 0.0 0.07 0.75 0.0 0.04 4.27
FAB: No Dξ 100.0 0.86 0.35 100.0 0.54 0.78 96.8 0.52 1.62
Std Dev 0.0 2.05 0.40 0.0 0.07 0.65 17.6 0.04 1.64
Homeomorphic Projection 100.0 128.653 3.70 100.0 126.350 2.35 100.0 126.455 12.49
Std Dev 0.0 48.4 3.35 0.0 48.9 2.07 0.0 48.9 11.84

Table 4: Mean and std. dev. for feasibility (%), time (ms), and optimality gap for each method: Star
Shaped constraint family. 5 seeds, 300 problems each per problem per objective type.

Learning rates: AE=0.0001, Discriminator=0.0002
Loss weights: λ recon = 1.0, λ feasibility = 0.5, λ latent = 0.5, λ hinge = 0.5,

λ geometric = 0.1

Optimizer: Adam
Discriminator type: ”absolute”
Critic steps: 1
Validation split: 0.2
Hidden dimension: 64
Number of decoders: 1

B EXPERIMENTAL TABLES

C STATEMENT ON USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in research ideation and/or writing for this paper. Perplexity was
used to facilitate literature discovery as part of research process, alongside other (non-LLM-based)
tools. LLMs were also used to aid in sentence-level rewording for a small number of sentences
during the preparation of this manuscript.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Quadratic Linear Dist. Min.
Method Feas Time Gap Feas Time Gap Feas Time Gap

(%) (ms) (gap) (%) (ms) (gap) (%) (ms) (gap)

Projected Gradient 100.0 31.24 0.96 100.0 14.83 1.16 100.0 24.36 0.40
Std Dev 0.0 13.55 1.27 0.0 14.92 1.16 0.0 17.34 0.88
Penalty Method 35.5 56.68 1.12 42.5 39.15 1.35 49.0 40.05 5.55
Std Dev 47.8 44.47 1.41 49.4 63.11 1.30 50.0 31.26 6.60
Augmented Lagrangian 37.2 57.59 1.16 42.1 52.09 1.39 49.3 43.93 5.70
Std Dev 48.3 43.84 1.43 49.4 85.00 1.30 50.0 46.15 6.91
Interior Point 93.4 54.53 2.67 89.9 39.76 1.78 92.6 44.17 11.89
Std Dev 24.8 34.56 2.71 30.2 29.55 1.79 26.2 38.55 11.28
FSNet 99.9 1.75 1.29 98.5 3.04 1.72 99.1 2.03 9.72
Std Dev 2.6 1.01 1.72 12.0 6.11 2.01 9.3 0.97 14.52
NN 1 Decoder 100.0 0.45 1.75 100.0 0.38 1.48 99.9 0.48 5.72
Std Dev 0.0 0.21 1.67 0.0 0.13 1.36 2.6 0.36 7.72
NN 2 Decoder 0.2 0.50 1.49 8.3 0.49 1.52 81.4 0.52 1.54
Std Dev 4.5 0.17 1.44 27.5 0.30 1.33 38.9 0.30 1.53
NN 3 Decoder 0.7 0.86 1.50 3.1 0.61 1.60 82.5 0.71 1.25
Std Dev 8.1 1.94 1.43 17.4 0.44 1.47 38.0 1.21 1.25
FAB: Only phase 1 0.1 0.77 0.89 2.0 0.54 1.12 25.9 0.51 4.61
Std Dev 3.6 2.51 0.82 14.0 0.11 0.81 43.8 0.04 3.63
FAB: No hinge 1.0 0.74 1.30 1.9 0.58 1.48 68.7 0.51 7.08
Std Dev 9.9 0.57 1.29 13.5 0.21 1.29 46.4 0.03 7.85
FAB: No Dξ 1.7 0.74 1.02 1.5 0.72 1.23 82.7 0.51 1.58
Std Dev 12.8 0.67 0.92 12.3 2.67 0.96 37.9 0.03 2.15

Table 5: Mean and std. dev. for feasibility (%), time (ms), and optimality gap for each method:
Concentric Circles constraint family. 5 seeds, 300 problems each per problem per objective type.

14


	Introduction
	Related Work
	Fast Autoencoder-Based (FAB) Feasibility Improvement
	Two-phase autoencoder training
	Leveraging the trained feasibility mapping

	Experiments on Constrained Optimization Problems
	Experiments on Safety Gym (Safe RL)
	Conclusion
	Additional Experimental Details
	Constrained optimization hyperparameters
	Safety Gym hyperparameters

	Experimental Tables
	Statement on use of Large Language Models (LLMs)

