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Abstract

Large language models (LLMs) have ushered001
in a new era for processing complex informa-002
tion in various fields, including science. The003
increasing amount of scientific literature al-004
lows these models to acquire and understand005
scientific knowledge effectively, thus improv-006
ing their performance in a wide range of tasks.007
Due to the power of LLMs, they require ex-008
tremely expensive computational resources, in-009
tense amounts of data, and training time. There-010
fore, in recent years, researchers have proposed011
various methodologies to make scientific LLMs012
more affordable. The most well-known ap-013
proaches align in two directions. It can be either014
focusing on the size of the models or enhancing015
the quality of data. To date, a comprehensive016
review of these two families of methods has017
not yet been undertaken. In this paper, we (I)018
summarize the current advances in the emerg-019
ing abilities of LLMs into more accessible AI020
solutions for science, and (II) investigate the021
challenges and opportunities of developing af-022
fordable solutions for scientific domains using023
LLMs.024

1 Introduction025

Recently, the advancement of large language mod-026

els (LLMs) has equipped us with the capability to027

address complex tasks that demand an understand-028

ing of both structure and language. The key factors029

that make LLMs so rapid are the huge amount of030

generated data and the advancement in computa-031

tional architectures. With regard to scientific data032

itself, this domain has witnessed a constantly and033

rapidly increase in number of publications. For ex-034

ample, there were more than 2.4 million scholarly035

papers on ArXiv1 (up to 2024) and 36 million publi-036

cations on PubMeb2 (up to 2022). The exponential037

1https://arxiv.org/stats/monthly_submissions
2https://www.nlm.nih.gov/bsd/medline_pubmed_

production_stats.html

growth enables us to leverage the success of lan- 038

guage models to effectively learn scientific knowl- 039

edge. Recently, (Ho et al., 2024) reported that there 040

are about 117 language models constructed for the 041

scientific domain. Tasks such as Text Classifica- 042

tion, Summarization, or Named-Entity Recognition 043

are effectively handled by most of these models, 044

which have shown impressive performance on vari- 045

ous benchmarks. 046

In order to perform sophisticated problem- 047

solving tasks, the scientific language models are 048

designed to have complex structures with vast scale. 049

In particular, recent LLMs for science such as 050

Galactica (Taylor et al., 2022) are equipped with 051

groundbreaking architectures. They surpass most 052

of the evaluations on reasoning, problem solving, 053

and knowledge understanding. However, these 054

LLMs face inevitable drawbacks, as they require 055

a substantial amount of resources, for example, a 056

large-scale high-quality dataset and a high training 057

or inference cost (OpenAI et al., 2024). Whereas, 058

these resources are not available in many cases, 059

such as low-resource languages or small organiza- 060

tions with limited computational access. Therefore, 061

limitations related to accessibility, cost, and adapt- 062

ability pose substantial challenges to fully utilize 063

the capabilities of scientific LLMs. In this review, 064

we present two main contributions: 065

• We provide a comprehensive overview of 066

the latest developments of the application of 067

Large Language Models (LLMs) in scientific 068

fields. This includes discussing how LLMs 069

have been tailored to solve complex scientific 070

problems, and their integration into existing 071

studies. 072

• We delve into examining the technical and 073

economic barriers to deploying LLMs for sci- 074

ence, exploring cost-effective strategies and 075

innovations, and identifying opportunities for 076
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reducing expenses without compromising per-077

formance.078

2 Related surveys079

There are few surveys on pre-trained language mod-080

els (PLM) for science (Ho et al., 2024; Kalyan et al.,081

2022; Wang et al., 2023) and to make LLMs more082

accessible (Wan et al., 2024b; Xu et al., 2024).083

Regarding scientific language models, (Ho et al.,084

2024) presented the first comprehensive review085

of scientific language models (SciLM), describ-086

ing more than 110 models, evaluating their per-087

formance across various domains and tasks, and088

addressing future research challenges. The survey089

examined six main aspects: time scope, target lan-090

guage models, domains, scientific texts, languages,091

and modalities, and provided a unique evolutionary092

overview of SciLMs in recent years. Specifically,093

in the biomedical sector, (Wang et al., 2023) re-094

viewed the latest advancements of PLMs in the095

biomedical field and their applications in down-096

stream biomedical tasks. The authors explored097

the motivations for PLMs in the biomedical sector,098

outlined key concepts, and proposed a taxonomy099

that classifies existing biomedical PLMs from mul-100

tiple perspectives. In another related survey by101

(Kalyan et al., 2022), the authors examined the102

fundamental concepts of transformer-based PLMs,103

including pre-training methods, pre-training tasks,104

fine-tuning methods, and embedding types specific105

to the biomedical field. The survey introduced a106

taxonomy for transformer-based BPLMs, reviewed107

all the models, investigated various challenges, and108

suggested potential solutions.109

According to (Wan et al., 2024b), while LLMs110

are at the forefront of the AI revolution, their im-111

pressive abilities require significant resources. As112

model sizes increase, the GPU hours needed for113

training increase exponentially, enhancing perfor-114

mance but also increasing costs. Furthermore, in-115

ference operations significantly add to the financial116

burden of running LLMs. Although enlarging the117

size of the model improves performance, it reduces118

inference throughput (increases inference latency),119

which poses obstacles in extending their adoption120

to a wider range of customers and applications af-121

fordably. The substantial resource requirements122

of LLMs underscore the critical necessity of de-123

vising methods that improve their efficiency. In124

the survey of (Wan et al., 2024b), a fairly detailed125

number of approaches based on three aspects is126

listed: model-centric, data-centric, and frameworks. 127

However, their survey lacks investigation on the ap- 128

plication of listed methods in different domains. 129

Furthermore, in the survey by (Xu et al., 2024), 130

they focused on making use of the power of pro- 131

prietary LLM (such as models from the GPT fam- 132

ily) by using knowledge distillation. Knowledge 133

distillation for LLMs is a technique in which the 134

hidden ’knowledge’ from proprietary models is "in- 135

jected" into open-source language models. These 136

approaches seek to reduce the performance gap 137

between cutting-edge proprietary and open-source 138

LLMs. Knowledge distillation uses the advanced 139

capabilities of leading proprietary models such as 140

GPT-4 (OpenAI et al., 2024), employing them as 141

benchmarks to improve open-source LLMs. This 142

method resembles an experienced instructor trans- 143

ferring expertise to a student, with the student mod- 144

els adopting the performance traits of the teacher 145

LLMs. 146

Despite the existing surveys on making LLMs 147

more accessible, these works presented methods 148

and techniques primarily in a broader domain. 149

Meanwhile, in previous reviews on scientific lan- 150

guage models, the authors encouraged finding ef- 151

ficient and low-cost solutions for scientific adapta- 152

tion and leveraging LLMs for science. Therefore, 153

our review focuses on investigating recent efficient 154

approaches for scientific LLMs and potential re- 155

search directions. 156

3 Advancement in efficient LLMs for 157

Science 158

Ocean science
6.7%
Multi-domain
6.7%

Mathematics
10.0%

Geography
3.3%

Clinical
13.3%

Chemistry
3.3%

Biomedical
40.0%

Biology
16.7%

Figure 1: Distribution of efficient LLMs for Science.

This section discusses the latest developments in 159

the application of Large Language Models (LLMs) 160

within the scientific field. The purpose of this study 161

is to investigate the capabilities of LLMs in sci- 162
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entific research. In this review, we attempt to en-163

compass a broad range of science-related topics,164

including biology, biomedicine, mathematics, geo-165

science, ocean science, and other natural sciences.166

Figure 1 shows the distribution of efficient methods167

leveraging LLMs for each scientific domain in our168

review.169

3.1 Biology170

In the field of biology, there has been a trend to-171

wards studying increasingly large language models.172

Yet, the substantial computational and memory re-173

quirements for fine-tuning these models pose sig-174

nificant challenges for many academic laboratories175

and small biotechnology firms. (Sledzieski et al.,176

2023) implemented parameter-efficient fine-tuning177

(PEFT) on ESM2 model (Lin et al., 2023) to predict178

protein-protein interactions. Employing the PEFT179

technique LoRA, the model surpassed the perfor-180

mance of fully fine-tuned model while consum-181

ing less memory, illustrating that effective deploy-182

ment of large protein language models is feasible183

even for groups with constrained computational re-184

sources. The study further highlighted that the effi-185

cacy of this method could be enhanced by utilizing186

more informative embeddings produced by LLMs.187

Research on the PEFT LoRA method adapted for188

the ESM2 model was also conducted in (Zeng et al.,189

2023b) focusing on signal peptides (SP) prediction.190

Other PEFT techniques such as Adapter Tuning191

and Prompt Tuning were also explored. It was192

noted that Prompt Tuning underperformed com-193

pared to other previous models, likely due to the194

size of the model. While Adapter Tuning improved195

performance, it required a considerably larger num-196

ber of training parameters relative to LoRA. Future197

enhancements were suggested, including combin-198

ing PEFT techniques to improve interpretability199

for identifying SP-related motifs and integrating200

structure-aware language models to include protein201

structural data. Another PEFT approach, adaptive202

LoRA (AdaLoRA), was utilized in the study by203

(Zhan and Zhang, 2023). This study introduced204

AdaLoRa with random sampling (AdaLoRA-RS)205

on OPT-350M to enhance the understanding of ge-206

nomic language complexities. When compared to207

other models, DNABERT and Nucleotide Trans-208

former, AdaLoRA+RS demonstrated performance209

on par with fully fine-tuned models across 13 ge-210

nomic datasets while using less than 2% of the211

training parameters. The experimental findings212

further showed that pre-trained language models213

such as OPT-125M outperformed the specialized 214

DNA model HR-500M, utilizing only 25% of the 215

parameters. 216

3.2 Biomedical domain 217

The advancement of LLMs has also greatly im- 218

pacted biomedical research. Over the past decade, 219

vast unlabelled datasets such as PubMed, PMC, 220

MIMIC, and ScienceDirect have become avail- 221

able in biomedicine. Models like GPT-4 and Med- 222

PaLM 2 have shown exceptional performance in 223

various biomedical NLP tasks. However, these 224

models, with their hundreds of billions of param- 225

eters, are expensive in terms of computational re- 226

sources, require data transmission over the Internet, 227

and are trained on proprietary data sources. 228

In 2022, (Li et al., 2022) leveraged this unla- 229

belled information to introduce BioKnowPrompt, 230

a prompt-tuning PLM framework tailored for ex- 231

tracting relationships from biomedical texts. Addi- 232

tionally, prompting can be challenging for certain 233

phenomena and may struggle with highly imbal- 234

anced training data. Follow up, with the introduc- 235

tion of ChatGPT and GPT-4 (OpenAI et al., 2024), 236

many researches have leveraged its power for data 237

augmentation. (Zhang et al., 2023a) created Hu- 238

atuoGPT based on LlaMa model, employing both 239

refined data from ChatGPT and data from doctors 240

for health consultations. This model is superior 241

at producing patient-friendly and doctor-like re- 242

sponses and outperformed existing medical open- 243

source LLMs. DoctorGLM presented by (Xiong 244

et al., 2023) also used the data generated by Chat- 245

GPT for medical dialogues in Chinese. The train- 246

ing process of DoctorGLM can handle a consider- 247

able number of question-answer pairs per hour per 248

GPU, with a relatively low cost per training session. 249

Furthermore, the inference operations of Doctor- 250

GLM demand minimal GPU memory, enabling 251

execution on standard consumer hardware, thus 252

making it accessible for numerous research facili- 253

ties and healthcare centers. They also mentioned 254

that the model can be deployed on even more af- 255

fordable GPU when applying PEFT method such as 256

LoRA. The superiority of GPT-4 also demonstrated 257

by (Hsueh et al., 2023). The authors succeeded in 258

using prompt engineering for ChatGPT(GPT-4) to 259

generate answers for biomedical questions. Al- 260

though their method outperformed the fine-tuned 261

BioBERT model, they discussed that there were 262

rooms for improvements such as determining key 263

information before prompting. (Bolton et al., 2024) 264
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introduced BioMedLM, a 2.7 billion parameter265

GPT-style autoregressive model trained exclusively266

on PubMed abstracts and full articles. Their result267

highlights that smaller models have the potential268

to serve as transparent, privacy-preserving, cost-269

effective, and environmentally friendly solutions270

for biomedicine. Another approach using GPT-3.5271

for biomedical purposes was presented by (Bao272

et al., 2023). The researchers employed GPT-3.5273

to extract medical knowledge triples from a knowl-274

edge graph through a department-focused method275

based on patient query patterns from real-world276

consultations, producing 50,000 samples. Addi-277

tionally, (Liu et al., 2023) addressed the issue of278

securely managing medical data in the modern dig-279

ital age, where confidentiality is a major concern.280

Utilizing advancements in large language models281

such as ChatGPT and GPT-4, the researchers in-282

troduced DeID-GPT, an innovative framework de-283

signed to automatically identify and mask personal284

information in medical texts. Their method not285

only achieved high accuracy in maintaining text286

integrity but also set a new standard for the appli-287

cation of LLMs in healthcare settings focused on288

privacy protection.289

While proprietary LLMs are usually huge, un-290

trainable and their architecture are unclear, re-291

searchers adapt instruction-tuning technique to292

open-source smaller LLMs for solving biomedi-293

cal problems. (Wu et al., 2023) systematically294

adapted the open-source general LLM, LLaMA,295

for biomedical tasks by injecting domain-specific296

data and instruction-tuning tailored to medical con-297

texts. The PCM-LLaMA model, an open-source298

language model designed for medical purposes,299

demonstrates superior results on various medi-300

cal benchmarks, surpassing both ChatGPT and301

LLaMA-2 while utilizing considerably fewer pa-302

rameters. Additionally, (Luo et al., 2023b) pre-303

sented BioMedGPT, a multi-modal generative pre-304

trained model tailored for biomedical applications.305

The design of BioMedGPT highlights the critical306

importance of knowledge distillation in bridging307

complex biological information with natural lan-308

guage, enabling substantial advancements in the309

discovery of drugs and therapeutic targets. (Peng310

et al., 2024) conducted comparison on GatorTron311

using soft-prompting in various configurations.312

The study revealed that soft prompting surpassed313

hard prompting, unfrozen Large Language Models314

(LLMs) display robust few-shot learning abilities315

and adaptability across different institutions, using316

frozen LLMs reduces computational costs to be- 317

tween 2.5% and 6% relative to earlier methods that 318

utilized unfrozen LLMs, while still attaining opti- 319

mal outcomes with large-scale unfrozen LLMs. To 320

enhance performance and generalizability beyond 321

traditional benchmarks, (Zhang et al., 2024b) intro- 322

duced MedInstruct-52k, a diverse dataset generated 323

with GPT-4 and ChatGPT. Fine-tuning LLaMA- 324

series models on this dataset resulted in AlpaCare, 325

which outperformed previous medical LLMs by 326

up to 38.1% in medical instruction-following tasks 327

and showed consistent improvements in general 328

domain benchmarks based on human evaluations. 329

Parameter-efficient fine-tuning is also an effective 330

approach to reduce the training time and cost when 331

performance domain adaptation. (Han et al., 2023) 332

utilized the LLaMA foundation models with 7 bil- 333

lion and 13 billion parameters, fine-tuning them 334

over five epochs with learning rates specifically ad- 335

justed for each model variant. They applied Low- 336

Rank Adaptation (LoRA) to improve efficiency by 337

lowering GPU memory usage and reducing training 338

time. Additionally, the author incorporated 8-bit 339

matrix multiplication to further decrease compu- 340

tational requirements, making it more feasible to 341

deploy these models in medical applications with 342

strict resource limitations. 343

3.3 Clinical domain 344

The clinical domain has also experienced a transi- 345

tion from traditional pre-trained language models 346

to the effective use of LLMs. (Gema et al., 2024) 347

introduced a two-step PEFT framework based on 348

the LLaMA model, which was evaluated within 349

the clinical domain. This framework integrates a 350

specialized PEFT adapter layer for clinical domain 351

adaptation with another adapter for downstream 352

tasks. It was tested on various datasets for clini- 353

cal outcome prediction and compared to language 354

models trained specifically for clinical purposes. 355

This research is the first to propose a comprehen- 356

sive empirical analysis of the interaction between 357

PEFT techniques and domain adaptation in the 358

crucial real-world setting of clinical applications. 359

(Goswami et al., 2024) examined the effectiveness 360

of prompt engineering and parameter-efficient fine- 361

tuning to summarize hospital discharge summary 362

(HDS) articles. The objective was to ensure that 363

these models accurately interpret medical termi- 364

nology and contexts, generate concise summaries, 365

and extract key themes. The study used LLaMA-2 366

as the base model and fine-tuned it with QLoRA 367
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(Quantized Low-Rank Adapters) to minimize mem-368

ory usage without sacrificing data quality. Chi-369

nese patent medicine (CPM), a vital component of370

traditional Chinese medicine (TCM) that utilizes371

Chinese herbs, was explored by (Liu et al., 2024)372

using LLMs. The researchers introduced the first373

CPM instructions (CPMI) dataset and fine-tuned374

the ChatGLM-6B base model, resulting in CPMI-375

ChatGLM. They employed parameter-efficient fine-376

tuning with consumer-grade graphics cards and in-377

vestigated LoRA, P-Tuning v2, along with various378

data scales and configurations. Comparative ex-379

periments with similar-size LLMs demonstrated380

the leading performance of CPMI-ChatGLM in381

recommending CPM, highlighting its potential for382

clinical support and data analysis in TCM research.383

3.4 Mathematics384

Large language models like GPT-4 have demon-385

strated exceptional performance in complex mathe-386

matical reasoning, yet open-source models are typ-387

ically pre-trained on large-scale internet data with-388

out specific optimization for mathematical tasks.389

Addressing this limitation, (Luo et al., 2023a) intro-390

duced WizardMath, enhancing mathematical rea-391

soning in LLaMa-2 through Reinforcement Learn-392

ing from Evol-Instruct Feedback (RLEIF). Wizard-393

Math outperformed ChatGPT-3.5, Claude Instant-394

1, PaLM-2, and Minerva on GSM8k, as well as395

Text-davinci-002, PaLM-1, and GPT-3 on MATH,396

highlighting RLEIF’s efficacy. Derived from this397

foundation, (Yue et al., 2023) introduced MAm-398

moTH, a series of open-source LLMs specialized399

for mathematics. MAmmoTH-7B achieved a 33%400

accuracy rate on MATH, surpassing WizardMath-401

7B by 23%, underscoring the importance of di-402

verse problem coverage and hybrid rationales in403

developing advanced math models. Additionally,404

(Gou et al., 2024) presented TORA, integrating405

natural language reasoning with external computa-406

tional tools like computation libraries and symbolic407

solvers to tackle challenging mathematical prob-408

lems. TORA models significantly outperformed409

existing open-source models on ten mathemati-410

cal reasoning datasets, achieving average improve-411

ments of 13%-19%. TORA-7B achieved 44.6%412

accuracy on the competition-level MATH dataset,413

outperforming WizardMath-70B by 22% absolute,414

demonstrating the effectiveness of integrating com-415

putational tools with language models for mathe-416

matical problem-solving.417

3.5 Geoscience 418

In the field of geoscience, (Deng et al., 2023) in- 419

troduced K2, the first ever LLM tailored for geo- 420

science applications. The authors developed criti- 421

cal resources to improve LLM research within geo- 422

science, including GeoSignal, the first geoscience 423

instruction tuning dataset, and GeoBench, the inau- 424

gural geoscience benchmark for evaluating LLMs. 425

In their study, they detailed the process of adapting 426

a pre-trained general-domain LLM, specifically the 427

LLaMA-7B model, to the geoscience domain by 428

further training it in a 5.5 billion token corpus of 429

geoscience texts and fine-tuning it with GeoSig- 430

nal’s supervised data. The authors also provided 431

a protocol for efficiently gathering and construct- 432

ing domain-specific supervised data, even with 433

limited manpower. The experimental results on 434

GeoBench confirmed the effectiveness of their ap- 435

proach and datasets in improving understanding 436

and application of geoscience knowledge, mark- 437

ing a significant advancement in the integration of 438

LLMs within geoscientific research and practice. 439

3.6 Chemistry 440

In the quest to enhance crystal property prediction, 441

recent studies have turned their attention to utiliz- 442

ing textual descriptions of crystal structures. Con- 443

ventional techniques mainly employ graph neural 444

networks (GNNs) to model these structures (Huang 445

et al., 2024b; Ruff et al., 2023; Yan et al., 2024), 446

but they often face challenges with the complex in- 447

teractions between atoms and molecules. A novel 448

approach presented by (Rubungo et al., 2024) in- 449

cludes the development of a benchmark dataset 450

called TextEdge, which offers detailed text descrip- 451

tions of crystal structures along with their proper- 452

ties. Moreover, the authors introduce LLM-Prop, 453

an innovative method using large language mod- 454

els (LLMs) to predict the physical and electronic 455

properties of crystals based on their textual descrip- 456

tions. Additionally, it surpasses a domain-specific 457

fine-tuned BERT model, MatBERT, despite having 458

significantly fewer parameters. 459

3.7 Ocean Science 460

Ocean science, crucial for understanding the vast 461

reservoirs of life and biodiversity covering over 462

70% of our planet, has yet to fully benefit from 463

advancements in large language models (LLMs). 464

Despite their success in various fields, LLMs of- 465

ten fall short in meeting the specialized needs of 466
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oceanographers due to the complexity and richness467

of ocean data. To address this gap, (Bi et al., 2024)468

introduced OCEANGPT, the first LLM specifi-469

cally tailored for ocean science. Comprehensive470

experiments demonstrated that OCEANGPT not471

only possessed a high level of knowledge exper-472

tise in ocean science but also showed preliminary473

capabilities in embodied intelligence for ocean474

technology. Furthermore, (Zheng et al., 2023)475

introduced MarineGPT, the first vision-language476

model specifically designed for the marine do-477

main. MarineGPT, developed using the Marine-478

5M dataset of over 5 million marine image-text479

pairs, aimed to make ocean knowledge more ac-480

cessible and improve marine vision and language481

alignment, addressing the inadequacies of exist-482

ing general-purpose MLLMs in understanding and483

responding to domain-specific intents.484

3.8 Multi-scientific domains485

In their respective studies, (Xie et al., 2023) intro-486

duced DARWIN, a series of tailored LLMs opti-487

mized specifically for scientific disciplines such488

as material science, chemistry, and physics. Built489

upon the foundational LLaMA-7B model, DAR-490

WIN achieved significant advances in automating491

the generation of scientific text instruction, thus im-492

proving its performance in various scientific tasks493

and reducing the dependency on closed-source494

LLMs. Similarly, (Zhang et al., 2024a) presented495

SciGLM, a suite of scientific language models de-496

signed for college-level scientific reasoning. Us-497

ing a self-reflective instruction annotation frame-498

work, SciGLM addressed data scarcity challenges499

in the science domain by improving both base mod-500

els like ChatGLM3-6B-Base by 4.87% and larger-501

scale models by 2.67%. This approach enhances502

the model’s ability to conduct diverse scientific503

discovery tasks while preserving its language un-504

derstanding capabilities.505

4 Challenges and future directions506

Current studies on the application of LLMs in sci-507

ence have made significant progress. We summa-508

rize the existing methods and scientific LLMs in509

Table 1. Most of these studies have initially har-510

nessed the power of LLMs to address problems in511

scientific fields such as biology and biomedicine.512

However, many issues remain unresolved. This sec-513

tion will present some research gaps with potential514

for further exploration.515

4.1 Data Collection 516

Challenges The lack of labeled data is a com- 517

mon issue faced by researchers when training lan- 518

guage models in various scientific fields. Despite 519

the abundance of unlabeled scientific data, it is not 520

utilized efficiently to train language models. (Ho 521

et al., 2024) summarized that among 117 language 522

models for scientific fields, most previous work 523

focused on the biomedical domain, with more than 524

87% pre-trained language models in this area. The 525

author also noted that these language models typ- 526

ically have fewer than 1 billion parameters (e.g., 527

BERT-based models) and do not leverage open- 528

source LLMs. This creates a problem where un- 529

labeled data in other scientific domains are un- 530

derutilized. Collecting high-quality labeled data 531

for model training is notoriously time-consuming 532

and labor-intensive. 533

Potential directions Existing solutions such as 534

active learning for small language models (SLMs) 535

and in-context learning for large language mod- 536

els (LLMs) have somewhat mitigated the lack of 537

labeled data, but still rely heavily on human inter- 538

vention. (Xiao et al., 2023) addressed this issue 539

by introducing FreeAL, a collaborative learning 540

framework where an LLM acts as an active annota- 541

tor and an SLM filters high-quality in-context sam- 542

ples for label refinement. Extensive experiments 543

on eight benchmark datasets showed that FreeAL 544

significantly improved zero-shot performance for 545

both SLMs and LLMs without human supervision. 546

(Zhang et al., 2023c) introduced LLMaAA, which 547

uses LLMs as annotators in an active learning loop 548

to efficiently select data for annotation, demonstrat- 549

ing superior performance in named entity recogni- 550

tion and relation extraction tasks with fewer anno- 551

tated examples. (Huang et al., 2024a) tackled the 552

challenge of high quality annotations under limited 553

budgets with SANT, a selective annotation frame- 554

work utilizing error-aware triage and bi-weighting 555

mechanisms, setting a new benchmark for triage- 556

based annotation studies. 557

4.2 Data Selection 558

Challenges Determining the optimal data vol- 559

ume crucial for maximizing the effectiveness of 560

Large Language Models (LLMs) remains a per- 561

sistent challenge, necessitating further research to 562

establish clear guidelines. Additionally, developing 563

robust methodologies to filter out low-quality data 564

continues to be an ongoing concern in leveraging 565
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Methods Models
Efficient Fine-tuning ESM2-LoRA (Sledzieski et al., 2023), PEFT-SP(Zeng et al.,

2023b), AdaLoRA+RS (Zhan and Zhang, 2023), BioMedGPT
(Luo et al., 2023b), MedAlpaca (Han et al., 2023), Clinical
LLaMA-LoRA (Gema et al., 2024), LLaMa-QLoRA (Goswami
et al., 2024), CPMI-ChatGLM (Liu et al., 2024)

Instruction Tuning BioKnowPrompt (Li et al., 2022), NCU-IISR (Hsueh et al.,
2023), Alpacare (Zhang et al., 2024b), GatorTron (Peng et al.,
2024), K2 (Deng et al., 2023), WizardMath (Luo et al., 2023a),
MAmmoTH (Yue et al., 2023), TORA (Gou et al., 2024),
OCEANGPT (Bi et al., 2024), MarineGPT (Zheng et al., 2023),
SciGLM (Zhang et al., 2024a)

Knowledge distillation Black box HuatouGPT (Zhang et al., 2023a), DoctorGLM (Xiong et al.,
2023), DISC-MedLLM (Bao et al., 2023), DeID-GPT (Liu et al.,
2023)

White box BioMedLM (Bolton et al., 2024), PCM-LLaMA (Wu et al.,
2023), LLM-Prop (Rubungo et al., 2024), DARWIN (Xie et al.,
2023)

Table 1: Summary of previous work on efficient LLMs for science.

LLMs effectively.566

Potential Directions In general domain, (Zhou567

et al., 2023) proposed that a minimum of 1000568

well-curated, high-quality data samples could be569

sufficient to align LLMs, as pre-training already570

provides essential knowledge. (Chen et al., 2024b)571

introduced a new data selection method using a ro-572

bust LLM such as ChatGPT to independently filter573

out low-quality data. They developed AlpaGasus, a574

model refined with just 9,000 high-quality samples575

from the initial dataset. More recently, (Li et al.,576

2024) presented Superfiltering, which used smaller577

models such as GPT-2 to extract a high-quality sub-578

set from a dataset. Despite these advancements,579

the challenges of selecting optimal data for refining580

LLMs and determining the necessary data volume581

persist because of the abundance of unlabeled sci-582

entific data.583

4.3 Utilizing multiple LLMs584

Challenges The majority of current models orig-585

inate from a single LLM, yet it is commonly recog-586

nized that models trained with diverse data sources587

possess distinct advantages. Consequently, the588

question arises: Can knowledge from multiple589

LLMs be integrated into a single smaller model?590

Potential directions In an effort to create a591

"BabyLM," (Timiryasov and Tastet, 2023) trained592

an ensemble of GPT-2 and small LLaMA mod-593

els on the 10M-word BabyLM dataset, then dis- 594

tilled this ensemble into a small, 58M-parameter 595

LLaMA model. The distilled model outperformed 596

both its teachers and a similar model trained with- 597

out distillation, suggesting that distillation can re- 598

tain and even exceed the performance of teacher 599

models, particularly on small datasets. (Wan et al., 600

2024a) subsequently developed ’knowledge fusion’ 601

to combine the strengths of multiple LLMs, validat- 602

ing their approach with Llama-2, MPT, and Open- 603

LLaMA across various benchmarks. This method 604

improved the target model’s performance in rea- 605

soning, common sense, and code generation. Addi- 606

tionally, (Chen et al., 2024a) introduced MAGDI 607

to enhance reasoning in small models by distilling 608

interactions between multiple large LLMs using 609

Multi-Agent Interaction Graphs (MAGs). MAGDI 610

outperformed traditional distillation methods and 611

improved reasoning and efficiency in smaller mod- 612

els. Despite these advancements, the scientific com- 613

munity still lacks research on leveraging knowl- 614

edge from multiple LLMs. 615

4.4 Addressing Catastrophic Forgetting 616

Challenges Prior studies have investigated opti- 617

mizing LLMs to enhance their directive-following 618

and knowledge transfer abilities, leveraging ad- 619

vancements in LLM technology. However, per- 620

sistent optimization with specific datasets can 621

lead to catastrophic forgetting. 622
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Potential directions In the scientific domain,623

(Yue et al., 2023) introduced MAmmoTh, an en-624

semble of open-source LLMs designed to tackle625

mathematical challenges using the MathInstruct626

dataset, overcoming catastrophic forgetting seen in627

prior models like WizardMath (Luo et al., 2023a).628

Meanwhile, continual learning (CL) research fo-629

cuses on dynamically enhancing models while630

preserving prior knowledge. Methods such as631

Lifelong-MoE (Chen et al., 2023), CITB (Zhang632

et al., 2023d), and DCL (Zeng et al., 2023a) uti-633

lize strategies like expert addition, regularization,634

task distribution modeling, and knowledge distil-635

lation to address catastrophic forgetting. Despite636

these efforts, maintaining original model capabil-637

ities and transferring knowledge across domains638

remain challenging.639

4.5 Multimodality640

Challenges In the scientific domain, there is a641

growing interest in multi-modal models (Ho et al.,642

2024), developed by further training on mono-643

modal or multi-modal models from general do-644

mains, leveraging their strong performance. How-645

ever, several challenges persist. The scientific do-646

main often lacks sufficient data compared to gen-647

eral domains, making it difficult to adequately train648

or fine-tune multi-modal language models. Incor-649

porating this multi-modal information into sci-650

entific language models is crucial for advancing651

research.652

Potential directions Numerous studies focus on653

developing adapters that convert non-language data654

to be processed within the same embedding space655

as language (Dai et al., 2023; Zhu et al., 2023).656

These architectures aim to handle non-language657

information while preserving the robust problem-658

solving capabilities of LLMs. Although proprietary659

LLMs like GPT-4 can process multiple scientific660

data types, prompting these models requires signif-661

icant resources. Therefore, it is recommended to662

find efficient methods to make LLMs more accessi-663

ble and introduce multimodality in scientific fields,664

enabling the full potential of multi-modal models665

in the scientific domain to be harnessed.666

4.6 Further reduce the cost667

Challenges Despite the impressive capabilities668

of modern LLMs, their substantial resource de-669

mands highlight the critical need for effective670

solutions to address these challenges. Based on671

Table 1, in previous work within the scientific do- 672

main, common ways to reduce costs have included 673

Instruction Tuning and Efficient Fine-Tuning. Con- 674

tinued research and development in other method- 675

ologies are crucial to making LLMs more accessi- 676

ble and sustainable. 677

Potential directions In other domains, various 678

efficient approaches have been studied, such as 679

Quantization (Frantar et al., 2023; Kim et al., 2023; 680

Tao et al., 2022), Parameter Pruning (Ma et al., 681

2023; Zhang et al., 2023b), and Memory Efficient 682

Fine-Tuning (Dettmers et al., 2023; Malladi et al., 683

2023). The question of how to further decrease 684

the cost of LLMs remains unsolved. For instance, 685

Memory Efficient Fine-Tuning techniques, such as 686

QLoRA (Goswami et al., 2024), which optimizes 687

memory usage during fine-tuning, also offer poten- 688

tial solutions. 689

5 Conclusion 690

The rapid advancement of large language models 691

(LLMs) has significantly enhanced our ability to 692

address complex tasks requiring deep linguistic 693

and structural understanding. The growth of sci- 694

entific data has enabled effective learning of sci- 695

entific knowledge through LLMs. However, de- 696

spite their impressive performance in tasks like rea- 697

soning and problem-solving, these models remain 698

resource-intensive and often inaccessible to smaller 699

organizations and low-resource languages. Our re- 700

view highlighted various cost-effective techniques 701

for utilizing LLMs in scientific domains. We ad- 702

dress the challenges in fully harness the potential 703

of LLMs for science and ensure their broader ac- 704

cessibility and applicability in scientific research. 705

6 Limitations 706

Our work is based on results and suggestions of 707

as many papers as possible we can find. We also 708

mostly emphasize text-based scientific information, 709

setting aside other forms such as images, videos, 710

audio, and structured knowledge like knowledge 711

graphs (KGs) and databases for future consider- 712

ation. Our review primarily highlights the most 713

recent advancements in the last three years, specif- 714

ically from 2023 and 2024. However, our review 715

may hold a potential of missed out some the most 716

recent studies. We leave this as future improve- 717

ments. Moreover, due to space limitations, we 718

provide only concise summaries of the reviewed 719

methods. 720
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