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Abstract
Value functions are an essential component in
deep reinforcement learning (RL), that are typi-
cally trained via mean squared error regression to
match bootstrapped target values. However, scal-
ing value-based RL methods to large networks has
proven challenging. This difficulty is in stark con-
trast to supervised learning: by leveraging a cross-
entropy classification loss, supervised methods
have scaled reliably to massive networks. Observ-
ing this discrepancy, in this paper, we investigate
whether the scalability of deep RL can also be
improved simply by using classification in place
of regression for training value functions. We
show that training value functions with categorical
cross-entropy significantly enhances performance
and scalability across various domains, including
single-task RL on Atari 2600 games, multi-task
RL on Atari with large-scale ResNets, robotic
manipulation with Q-transformers, playing Chess
without search, and a language-agent Wordle task
with high-capacity Transformers, achieving state-
of-the-art results on these domains. Through
careful analysis, we show that categorical cross-
entropy mitigates issues inherent to value-based
RL, such as noisy targets and non-stationarity. We
argue that shifting to categorical cross-entropy for
training value functions can substantially improve
the scalability of deep RL at little-to-no cost.

1. Introduction
A clear pattern emerges in deep learning breakthroughs
– from AlexNet (Krizhevsky et al., 2012) to Transform-
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ers (Vaswani et al., 2017) – classification problems seem
to be particularly amenable to effective training with large
neural networks. Even when regression appears natural, re-
framing the problem as one of classification often improves
performance (Torgo & Gama, 1996; Rothe et al., 2018;
Rogez et al., 2019). This involves converting real-valued
targets into categorical labels and minimizing categorical
cross-entropy rather than the mean-squared error. Several
hypotheses have been proposed to explain the superiority of
this approach, including stable gradients (Imani & White,
2018; Imani et al., 2024), better representations (Zhang et al.,
2023), implicit bias (Stewart et al., 2023), and handling im-
balanced data (Pintea et al., 2023) – suggesting potential
utility beyond supervised regression.

Unlike trends in supervised learning, value-based rein-
forcement learning (RL) methods primarily rely on regres-
sion. For example, deep RL methods such as deep Q-
learning (Mnih et al., 2015) and actor-critic (Mnih et al.,
2016) use a regression loss, such as mean-squared error, to
train a value function from continuous scalar targets. While
these value-based deep RL methods, powered by regres-
sion losses, have led to high-profile results (Silver et al.,
2017), it has been challenging to scale them up to large
networks, such as high-capacity transformers. This lack
of scalability has been attributed to several issues (Kumar
et al., 2021; 2022; Agarwal et al., 2021; Lyle et al., 2022;
Le Lan et al., 2023), but what if simply reframing the re-
gression problem as classification can enable the same
level of scalability achieved in supervised learning?

In this paper, we extensively study the efficacy of vari-
ous methods for deriving classification labels for training
a value-function with a categorical cross-entropy loss. Our
findings reveal that training value-functions with cross-
entropy substantially improves the performance, robust-
ness, and scalability of deep RL methods compared to
traditional regression-based approaches. The most no-
table method (HL-Gauss; Imani & White, 2018) leads to
consist performance improvements in single-task RL on
Atari; 1.8 − 2.1× performance in multi-task setups on
Atari (Kumar et al., 2023; Ali Taïga et al., 2023); 40% bet-
ter performance in the language-agent task of Wordle (Snell
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et al., 2023); 70% improvement for playing chess without
search (Ruoss et al., 2024); and 67% better performance on
large-scale robotic manipulation with transformers (Chebo-
tar et al., 2023). The consistent trend across diverse domains,
network architectures, and algorithms highlights the sub-
stantial benefits of treating regression as classification in
deep RL, underscoring its potential as a pivotal component
as we move towards scaling up value-based RL.

With strong empirical results to support the use of
cross-entropy as a “drop-in” replacement for the mean
squared error (MSE) regression loss in deep RL, we also
attempt to understand the source of these empirical gains.
Based on careful diagnostic experiments, we show that the
categorical cross-entropy loss offers a number of benefits
over mean-squared regression. Our analysis suggests that
the categorical cross-entropy loss mitigates several issues
inherent to deep RL, including robustness to noisy targets
and allowing the network to better use its capacity to fit
non-stationary targets. These findings not only help explain
the strong empirical advantages of categorical cross-entropy
in deep RL but also provide insight into developing more
effective learning algorithms for the field.

2. Preliminaries and Background
Regression as classification. We take a probabilistic view
on regression where given input x ∈ Rd we seek to model
the target as a conditional distribution Y |x ∼ N (µ =
ŷ(x; θ), σ2) for some fixed variance σ2 and predictor func-
tion ŷ : Rd × Rk → R parameterized by θ ∈ Rk. The
maximum likelihood estimator for data {xi, yi}Ni=1 is char-
acterized by the mean-squared error (MSE) objective,

min
θ

N∑
i=1

(ŷ(xi; θ)− yi)2 ,

with the optimal predictor being ŷ(x; θ∗) = E [Y |x].

Instead of directly learning the mean of the conditional dis-
tribution, an alternate approach is to learn a distribution over
the target value and recover the prediction ŷ as a statistic of
this distribution. To this end, we will construct the target
distribution Y |x with probability density function p(y |x)
such that the scalar target y is the mean of this distribution,
y = Ep [Y |x]. We can now frame the regression prob-
lem as learning a parameterized distribution p̂(y |x; θ) that
minimizes the KL divergence to the target p(y |x),

min
θ

N∑
i=1

∫
Y
p(y |xi) log (p̂(y |xi; θ)) dy (2.1)

which is the cross-entropy objective. Finally, our prediction
can be recovered as ŷ(x; θ) = Ep̂ [Y |x; θ ].

Given this new problem formulation, in order to transform
the distribution learning problem into a tractable loss we

restrict p̂ to the set of categorical distributions supported
on [vmin, vmax] with m evenly spaced locations or “classes”,
vmin ≤ z1 < · · · < zm ≤ vmax defined as,

Z =

{
m∑
i=1

pi δzi : pi ≥ 0,
m∑
i=1

pi = 1

}
, (2.2)

where pi is the probability associated with location zi and
δzi is the Dirac delta function at location zi. The final
hurdle is to construct the target distribution Y |x and its
associated projection onto the set of categorical distributions
Z . We defer this discussion to §3 where we discuss various
methods for performing these steps in the context of RL.

Reinforcement Learning (RL). We consider the reinforce-
ment learning (RL) problem where an agent interacts with
an environment by taking an action At ∈ A in the cur-
rent state St ∈ S and subsequently prescribed a reward
Rt+1 ∈ R before transitioning to the next state St+1 ∈ S
according to the environment transition probabilities. The
return numerically describes the quality of a sequence
of actions as the cumulative discounted sum of rewards
Gt =

∑∞
k=0 γ

kRt+k+1 where γ ∈ [0, 1) is the discount fac-
tor. The agent’s goal is to learn the policy π : S →P(A)
that maximizes the expected return. The action-value
function allows us to query the expected return from tak-
ing action a in state s and following policy π thereafter:
qπ(s, a) = Eπ [Gt |St = s, At = a].

Deep Q-Networks (DQN; Mnih et al., 2015) proposes to
learn the approximately optimal state-action value function
Q(s, a; θ) ≈ qπ∗(s, a) with a neural network parameterized
by θ. Specifically, DQN minimizes the mean-squared tem-
poral difference (TD) error from transitions (S,A,R, S′)
sampled from dataset D,

TDMSE(θ) = ED
[(

(T̂ Q)(S,A; θ̃)− Q(S,A; θ)
)2]

(2.3)

where θ̃ is a slow moving copy of the parameters θ that
parameterize the “target network” and

(T̂ Q)(s, a; θ̃) = R+ γmax
a′

Q(S′, a′; θ̃)
∣∣S = s,A = a ,

is the sample version of the Bellman optimality operator
which defines our scalar regression target. Most deep RL al-
gorithms leveraging value functions follow this basic recipe,
notably regressing to predictions from a target network.

We also explore the offline RL setting where an agent
is trained using a fixed dataset of environment interac-
tions (Agarwal et al., 2020; Levine et al., 2020). One widely-
used offline RL method is conservative Q-learning (CQL;
Kumar et al., 2020) that jointly optimizes TDMSE with the
following behavior regularization loss scaled by α ∈ R,

αED

[
log
(∑
a′

exp(Q(S′, a′; θ))
)
−Q(S,A; θ)

]
. (2.4)
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3. Value-Based RL with Classification
In this section, we describe our approach to cast the regres-
sion problem appearing in TD-learning as a classification
problem. Concretely, instead of minimizing the squared
distance between the scalar Q-value and its TD target (2.3)
we will instead minimize the distance between categorical
distributions representing these quantities. To employ this
approach, we will first define the categorical representation
for the action-value function Q(s, a).

Categorical Representation. We choose to represent Q as
the expected value of a categorical distribution Z ∈ Z . This
distribution is parameterized by probabilities p̂i(s, a; θ) for
each location or “class” zi which are derived from the logits
li(s, a; θ) through the softmax function:

Q(s, a; θ) = E [Z(s, a; θ) ] , Z(s, a; θ) =
m∑
i=1

p̂i(s, a; θ) · δzi ,

p̂i(s, a; θ) =
exp (li(s, a; θ))∑m
j=1 exp (lj(s, a; θ))

.

To employ the cross-entropy loss (2.1) for TD learning, we
must define a target categorical distribution supported on the
same locations zi, . . . , zm such that

∑m
i=1 pi(S,A; θ̃) zi ≈

(T̂ Q)(S,A; θ̃) with pi being the target probabilities. This
enables the direct computation of the cross-entropy loss as,

TDCE(θ) = ED

[
m∑
i=1

pi(S,A; θ̃) log p̂i(S,A; θ)

]
(3.1)

In the subsequent sections, we explore two strategies for
obtaining the target probabilities pi(S,A; θ̃).

3.1. Categorical Distributions from Scalars
The first set of methods we outline will project the scalar
target (T̂ Q)(S,A; θ̃) onto the categorical distribution sup-
ported on {zi}mi=1. A prevalent but naïve approach for the
projection step involves discretizing the scalar into one ofm
bins where zi represents the center of the bin. The resulting
one-hot distribution is “lossy” and induces errors in the Q-
function. These errors would compound as more Bellman
backups are performed, resulting in more biased estimates,
and likely worse performance. To combat this, we first con-
sider the “two-hot” approach (Schrittwieser et al., 2020) that
represents a scalar target exactly via a unique categorical
distribution that puts non-zero densities on two locations
that the target lies between (see Figure 1; Left).

A Two-Hot Categorical Distribution. Let zi and zi+1 be
the locations which lower and upper-bound the TD target
y = (T̂ Q)(S,A; θ̃), i.e., zi ≤ y ≤ zi+1. Then, the proba-
bility, pi and pi+1, put on these locations is:

pi(S,A; θ̃) =
y − zi
zi+1 − zi

, pi+1(S,A; θ̃) =
zi+1 − y
zi+1 − zi

. (3.2)

For all other locations, the probability prescribed by the
categorical distribution is zero. In principle, this Two-Hot
transformation provides a uniquely identifiable and a non-
lossy representation of the scalar TD target to a categorical
distribution. However, Two-Hot does not fully harness the
ordinal structure of discrete regression. Specifically, the
classes are not independent and instead have a natural order-
ing, where each class intrinsically relates to its neighbors.

The class of Histogram Losses introduced by Imani & White
(2018) seeks to exploit the ordinal structure of the regres-
sion task by distributing probability mass to neighboring
bins – akin to label smoothing in supervised classification
(Szegedy et al., 2016). This is done by transforming a noisy
version of the target into a categorical distribution, allowing
probability mass to span multiple bins near the target (See
Figure 1; Center), rather than being limited to two locations.

Histograms as Categorical Distributions. Formally, de-
fine the random variable Y |S,A with probability den-
sity fY |S,A and cumulative distribution function FY |S,A

whose expectation is (T̂ Q)(S,A; θ̃). We can project the
distribution Y |S,A onto the histogram with bins of width
ς = (vmax − vmin)/m centered at zi by integrating over the
interval [zi − ς/2, zi + ς/2] to obtain the probabilities,

pi(S,A; θ̃)=

∫ zi+ς/2

zi−ς/2

fY |S,A(y|S,A)dy (3.3)

= FY |S,A(zi + ς/2|S,A)− FY |S,A(zi − ς/2|S,A).

We now have a choice for the distribution Y |S,A.
We follow the suggestion of Imani & White (2018) in
using the Gaussian distribution Y |S,A ∼ N (µ =

(T̂ Q)(S,A; θ̃), σ2) where the variance σ2 controls the
amount of label smoothing applied to the resulting cate-
gorical distribution. We refer to this method as HL-Gauss.

How should we tune σ in practice? HL-Gauss requires
tuning the standard deviation σ, in addition to the bin width
ς and distribution range [vmin, vmax]. 99.7% of the samples
obtained by sampling from a standard Normal distribution
should lie within three standard deviations of the mean with
high confidence, which corresponds to approximately 6·σ/ς
bins. Thus, a more interpretable hyper-parameter that we
recommend tuning is σ/ς: setting it to K/6 distributes most
of the probability mass to dKe+ 1 neighbouring locations
for a mean value centered at one of the bins. Unless specified
otherwise, we set σ/ς = 0.75 for our experiments, which
distributes mass to approximately 6 locations.

3.2. Modelling the Categorical Return Distribution
In the previous section, we constructed a target distribution
from the usual scalar regression target representing the ex-
pected return. Another approach is to model the distribution
over future returns directly using our categorical model Z,
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Figure 1. Visualizing categorical distributions in cross-entropy based TD learning. Two-Hot (left, §3.1) puts probability mass on
exactly two locations. HL-Gauss (middle, §3.1) distributes the probability mass to neighbouring locations (akin to smoothing the target
value). CDRL (right, §3.2) models the categorical return distribution, distributing probability mass proportionally to neighboring locations.

as done in distributional RL (Bellemare et al., 2023). No-
tably, C51 (Bellemare et al., 2017), an early distributional
RL method, uses the categorical representation and mini-
mizes the cross-entropy between the predicted distribution
Z and the distributional TD target. We also investigate C51
as an alternative to Two-Hot and HL-Gauss for constructing
the target distribution for the cross-entropy objective (3.1).

Categorical Distributional RL. The first step to modelling
the categorical return distribution is to define the analogous
stochastic distributional Bellman operator on Z,

(T̂ Z)(s, a; θ̃) D=
m∑
i=1

p̂i(S
′, A′; θ̃) · δR+γzi

∣∣ S = s, A = a ,

where A′ = argmaxa′ Q(S′, a′; θ̃). As we can see, the
stochastic distributional Bellman operator has the effect
of shifting and scaling the locations zi necessitating the
categorical projection, first introduced by Bellemare et al.
(2017). At a high level, this projection distributes probabili-
ties proportionally to the immediate neighboring locations
zj−1 ≤ Rt+1 + γzi ≤ zj (See Figure 1; Right). To help
us identify these neighboring locations we define bxc =
argmax{zi : zi ≤ x} and dxe = argmin{zi : zi ≥ x}.
Now the probabilities for location zi can be written as,

pi(S,A; θ̃) =

m∑
j=1

p̂j(S
′, A′; θ̃) · ξj(R+ γzi) (3.4)

ξj(x) =
x− zj

zj+1 − zj
1{bxc = zj}+

zj+1 − x
zj+1 − zj

1{dxe = zj} .

For a complete exposition of the categorical projection, see
Bellemare et al. (2023, Chapter 5).

4. Evaluating Classification Losses in RL
4.1. Single-Task RL on Atari Games
The goal of this section is to evaluate the efficacy of the
various target distributions discussed in Section 3 combined
with the categorical cross-entropy loss (3.1) in improving
performance and scalability of value-based deep RL on a

variety of problems. This includes several single-task and
multi-task RL problems on Atari 2600 games as well as
domains beyond Atari including language agents, chess,
and robotic manipulation. These tasks consist of both online
and offline RL problems. For each task, we instantiate
our cross-entropy losses in conjunction with a strong value-
based RL approach previously evaluated on that task. Full
experimental methodologies including hyperparameters for
each domain we consider can be found in Appendix C.

We first evaluate the efficacy of HL-Gauss, Two-Hot, and
C51 (Bellemare et al., 2017), on the Arcade Learning Envi-
ronment (Bellemare et al., 2013). For our regression base-
line we train DQN (Mnih et al., 2015) on the mean-squared
error TD objective which has been shown to outperform
other regression based losses (Obando-Ceron & Castro,
2021). Each method is trained with the Adam optimizer
(Kingma & Ba, 2015), which has been shown to reduce the
performance discrepancy between regression-based meth-
ods and distributional RL approaches (Agarwal et al., 2021).

Evaluation. Following the recommendations by Agarwal
et al. (2021), we report the interquartile mean (IQM) nor-
malized scores with 95% stratified bootstrap confidence in-
tervals (CIs), aggregated across games with multiple seeds
each. We report human-normalized aggregated scores across
60 Atari games for online RL. For offline RL, we report
behavior-policy normalized scores aggregated across 17
games, following the protocol in Kumar et al. (2021).

Online RL results. Following Mnih et al. (2015), we train
DQN for 200M frames with the aforementioned losses. We
report aggregated human-normalized IQM performance and
optimality gap across 60 Atari games in Figure 2. Observe
that HL-Gauss substantially outperforms the Two-Hot and
MSE losses. Interestingly, HL-Gauss also improves upon
categorical distributional RL (C51), despite not modelling
the return distribution. This finding suggests that the loss
(categorical cross-entropy) is perhaps the more crucial factor
for C51, as compared to modelling the return distribution.
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Figure 2. Regression vs Classification for (Left) Online and (Right) Offline RL. HL-Gauss and CDRL outperform MSE, with HL-
Gauss performing best. Moreover, Two-Hot loss underperforms MSE but remains stable with prolonged training in offline RL, akin to
other cross-entropy losses. We report aggregated scores with 95% CIs across 60 games for online RL and 17 games for offline RL.

Offline RL results. The strong performance of HL-
Gauss with online DQN, which involves learning from self-
collected interactions, raises the question of its effectiveness
when learning from offline datasets. To explore this, we
train agents with different losses on the 10% Atari DQN
replay dataset (Agarwal et al., 2020) using CQL (2.4) for
6.25M gradient steps. As shown in Figure 2, HL-Gauss and
C51 consistently outperform MSE, while Two-Hot shows
improved stability over MSE but underperforms other clas-
sification methods. Notably, HL-Gauss again surpasses
C51 in this setting. Additionally, as found by Kumar et al.
(2021), using the mean squared regression loss leads to per-
formance degradation with prolonged training. However,
cross-entropy losses (both HL-Gauss and C51) do not show
such degradation and generally, remain stable.

4.2. Scaling Value-Based RL to Large Networks
In supervised classification, especially language model-
ing (Kaplan et al., 2020), increasing the network’s parameter
count usually improves performance. However, such scal-
ing remains elusive for value-based deep RL, where naive
parameter scaling can hurt performance (Ali Taïga et al.,
2023; Kumar et al., 2023; Obando-Ceron et al., 2024b;a).
Noticing this discrepancy we now explore if our classifica-
tion methods for learning value-functions in deep RL can
achieve similar performance gains when scaling parameters.

Multi-task Online RL. Following Ali Taïga et al. (2023),
we train a multi-task policy capable of playing Atari game
variants with different environment dynamics and rewards
(Farebrother et al., 2018). We evaluate two Atari games:
63 variants of ASTEROIDS and 29 variants of SPACE IN-
VADERS. We employ the distributed actor-critic method
IMPALA (Espeholt et al., 2018), and compare the standard
MSE critic loss with the cross-entropy based HL-Gauss loss.
Our experiments investigate the scaling properties of these
losses from the Impala-CNN (≤ 2M parameters) to larger
ResNets (He et al., 2016) up to ResNet-101 (44M parame-
ters). We evaluate multi-task performance after training for
15 billion frames, repeating each experiment with 5 seeds.

Results for ASTEROIDS are presented in Figure 3, with addi-
tional results on SPACE INVADERS presented in Figure D.4.
We observe that in both environments HL-Gauss consis-
tently outperforms MSE. Notably, HL-Gauss scales better,
especially on ASTEROIDS where it even slightly improves
performance with larger networks beyond ResNet-18, while
MSE performance significantly degrades.

Multi-game Offline RL. We adapt the setup from Kumar
et al. (2023), by replacing the distributional RL based C51
loss with the non-distributional HL-Gauss loss. Specifically,
we train a single generalist policy to play 40 different Atari
games simultaneously, when learning from a “near-optimal”
training dataset, composed of replay buffers obtained from
online RL agents trained independently on each game. This
multi-game RL setup was initially proposed by Lee et al.
(2022). All other design choices, such as feature normaliza-
tion and network size, remain unchanged.

As shown in Figure 3, HL-Gauss scales even better than
the C51 results from Kumar et al. (2023), resulting in an
improvement of about 45% over the best prior multi-game
result available with ResNet-101 (80M parameters) as mea-
sured by the IQM human normalized score (Agarwal et al.,
2021). Furthermore, while the performance of MSE re-
gression losses typically plateaus upon increasing model
capacity beyond ResNet-34, HL-Gauss is able to leverage
this capacity to improve performance, indicating the efficacy
of classification-based cross-entropy losses. Additionally,
when normalizing against scores obtained by a DQN agent,
we show in Figure D.5 that in addition to performance, the
rate of improvement as the model scale increases tends to
also be larger for the HL-Gauss loss compared to C51.

4.3. Value-Based RL with Transformers
Next, we evaluate the applicability of the HL-Gauss cross-
entropy loss beyond Atari. To do so, we consider several
tasks that utilize high-capacity Transformers, namely, a
language-agent task of playing Wordle, playing Chess with-
out inference-time search, and robotic manipulation.
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Figure 3. Scaling Curves on Multi-task RL. (Left) Results for IMPALA with ResNets on ASTEROIDS. Lacking human scores we report
the IMPALA normalized IQM. HL-Gauss outperforms MSE and scales better with larger networks. (Right) IQM human normalized
score for ResNet-{34, 50, 101}, playing 40 Atari games simultaneously (Kumar et al., 2023). HL-Gauss significantly imporves scaling,
outperforming categorical distributional RL (C51), regression (MSE), and the multi-game Decision Transformer (Lee et al., 2022).
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Figure 4. Language Agent. Comparing HL-Gauss with MSE for a
Transformer trained with offline RL on Wordle games (Snell et al.,
2023). HL-Gauss achieves higher success rates in guessing the
word in one turn, across varying behavior regularization strengths.

Wordle. To evaluate whether classification losses improve
value-based RL performance on language agent benchmarks,
we compare HL-Gauss with MSE on the task of playing the
game of Wordle. Wordle is a word guessing game in which
the agent gets 6 attempts to guess a word. Each turn the
agent receives environment feedback about whether guessed
letters are in the true word. The dynamics of this task are
non-deterministic. More generally, the task follows a turn-
based structure, reminiscent of dialogue tasks in natural
language processing. This experiment is situated in the
offline RL setting, where we utilize the dataset of suboptimal
game-plays provided by Snell et al. (2023). Our goal is to
train a GPT-like, decoder-only Transformer, with 125M
parameters, representing the Q-network.

On this task, we train the language-based transformer for
20K gradient steps with an offline RL approach combining
Q-learning updates from DQN with a CQL-style behavior
regularizer (2.4), which corresponds to standard next-token
prediction loss (in this particular problem). As shown in Fig-
ure 4, HL-Gauss outperforms MSE, for multiple coefficients
controlling the strength of CQL regularization.

Grandmaster-level Chess. Transformers have demon-
strated their effectiveness as general-purpose algorithm ap-
proximators, effectively amortizing expensive inference-
time computation through distillation (Ruoss et al., 2024;
Lehnert et al., 2024). In this context, we explore the
potential benefits of using HL-Gauss to convert scalar
action-values into classification targets for distilling a value-
function. Using the setup of Ruoss et al. (2024), we evaluate
HL-Gauss for distilling the action-value function of Stock-
fish 16 — the strongest available Chess engine that uses
a combination of complex heuristics and explicit search —
into a causal transformer. The distillation dataset comprises
10 million chess games annotated by the Stockfish engine,
yielding 15 billion data points. Appendix C.3 provides addi-
tional details on the dataset curation in Ruoss et al. (2024).

We train 3 transformer models of varying capacity (9M,
137M, and 270M parameters) on this dataset, using either
HL-Gauss or 1-Hot classification targets. We omit MSE as
Ruoss et al. (2024) demonstrate that 1-Hot targets outper-
form MSE on this task. The effectiveness of each model is
evaluated based on its ability to solve 10,000 chess puzzles
from Lichess, with success measured by the accuracy of
the generated action sequences compared to known solu-
tions. Both the setup and results are presented in Figure 5.
While the one-hot target with the 270M Transformer from
Ruoss et al. (2024) outperformed an AlphaZero baseline
without search, HL-Gauss closes the performance gap with
the substantially stronger AlphaZero with 400 MCTS simu-
lations (Schrittwieser et al., 2020).

Generalist Robotic Manipulation. Finally, we evaluate
whether cross-entropy losses can improve performance on a
set of large-scale vision-based robotic manipulation control
tasks from Chebotar et al. (2023). These tasks present a
simulated 7-DoF mobile manipulator, placed in front of a
countertop surface. The goal is to control this manipulator
to successfully grasp and lift 17 different kitchen objects in
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models to play chess via supervised learning on Stockfish 16 Q-
values and then follow greedy policy for evaluation. HL-Gauss
outperforms one-hot targets used by Ruoss et al. (2024) and nearly
matches the performance of AlphaZero with tree search.
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Figure 6. Generalist robotic manipulation with offline data:
HL-Gauss vs MSE on simulated vision-based manipulation.
Robotic manipulation using a 7 degree of freedom mobile manip-
ulator robot from Chebotar et al. (2023). In the plots, error bars
show 95% CIs. Note that utilizing a HL-Gauss enables signifi-
cantly faster learning to a better point.

the presence of distractor objects, clutter, and randomized
initial poses. We generate a dataset of 500, 000 (success-
ful and failed) episodes starting from a small amount of
human-teleoperated demonstrations (40, 000 episodes) by
replaying expert demonstrations with added sampled action
noise, reminiscent of failed autonomously-collected rollouts
obtained during deployment or evaluations of a behavioral
cloning policy trained on the human demonstration data.

We train a Q-Transformer model with 60M parameters, fol-
lowing the recipe in Chebotar et al. (2023), but replace the
MSE regression loss with the HL-Gauss classification loss.
As shown in Figure 6, HL-Gauss results in 67% higher peak
performance over the regression baseline, while being much
more sample-efficient, addressing a key limitation of the
prior regression-based approach.

5. Why Does Classification Benefit RL?
Our experiments demonstrate that classification losses can
significantly improve the performance and scalability of
value-based deep RL. In this section, we perform controlled
experiments to understand why classification benefits value-
based RL. Specifically, we attempt to understand how the
categorical cross-entropy loss can address several challenges
specific to value-based RL including representation learning,
stability, and robustness. We will also perform ablation
experiments to uncover the reasons behind the superiority
of HL-Gauss over other categorical targets.

5.1. What are the Mechanisms of Classification Losses?
Classification losses presented in this paper differ from tra-
ditional regression losses used in value-based RL in two
ways: (1) parameterizing the output of the value-network
to be a categorical distribution in place of a scalar, and (2)
strategies for converting scalar targets into a categorical tar-
get. We will now understand the relative contribution of
these steps towards the performance of cross-entropy losses.

Are Categorical Representations More Performant? As
discussed in §3.1, we parameterize the Q-network to output
logits that are converted to probabilities using the “softmax”
operator. Softmax leads to bounded Q-values and output
gradients, which can possibly improve RL training stabil-
ity (Hansen et al., 2024). To investigate whether our Q-value
parameterization alone results in improved performance
without needing a cross-entropy loss, we train Q-functions
with the same parameterization as (3.1) but with MSE. We
find no gains from using softmax with MSE in both on-
line (Figure 9) and offline RL (Figure D.6). This shows that
cross-entropy is key to the performance improvements.

Why Are Certain Cross-Entropy Losses Better? Our
results show that HL-Gauss outperforms Two-Hot, even
though both use a cross-entropy loss. We hypothesize that
HL-Gauss benefits from: 1) reduced overfitting by spreading
probability mass to neighboring locations; and 2) general-
ization across a specific range of target values, exploiting
ordinal structure in the regression problem. Notably, the
first hypothesis aligns with how label smoothing addresses
overfitting in classification problems (Szegedy et al., 2016).

We test these hypotheses in the online RL setting across
a subset of 13 Atari games. To do so, we fix the value
range [vmin, vmax] while varying the number of bins in
{21, 51, 101, 201} and the ratio of standard deviation σ to
bin width ς in {0.25, 0.5, 0.75, 1.0, 2.0}. Figure 11 shows
that HL-Gauss outperform Two-Hot across a wide range of
σ values, suggesting reduced overfitting due to the spread
of probability mass to neighboring locations. Interestingly,
we notice that the second hypothesis is also at play, as the
optimal value of σ seems to be independent of the number of
bins, indicating that HL-Gauss generalizes best across a spe-
cific range of target values leveraging the ordinal nature of
the regression problem. Thus, we conclude the gains from
HL-Gauss are not solely due to overfitting, as is believed to
be the case for label smoothing in supervised learning.

7



Stop Regressing: Training Value Functions via Classification for Scalable Deep RL

HL-Gauss MSE
0.0

0.5

1.0

1.5

IQ
M

 N
o
rm

a
liz

e
d
 S

co
re

η = 0.1

HL-Gauss MSE

η = 0.3

HL-Gauss MSE

Loss function

η = 1.0

Reward Noise ε∼U(0, η)

Figure 7. Comparing HL-Gauss and MSE
when trained using noisy rewards in offline RL
on Atari, across 17 games.

MSE C51 HL-Gauss
1.0

1.2

1.4

1.6

1.8

IQ
M

 N
o
rm

a
liz

e
d
 S

co
re

Online RL: Env Stochasticity

Deterministic

Sticky Actions

Figure 8. Impact of stochastic dynam-
ics on cross-entropy and regression
losses in online RL across 60 games.

0.00 0.50 1.00 1.50

IQM Normalized Score

MSE+Softmax

MSE

Cross-Entropy
(C51)

Cross-Entropy
(HL Gauss)

Online RL: Cross-Entropy Ablation

Figure 9. Categorical representation of Q-
values (§3.1) does not benefit MSE loss,
implying that the cross-entropy loss is critical.

0.2 0.3

HL-Gauss

C51

MSE

IQM

0.6 0.7 0.8

Optimality Gap

Online RL: Linear RL from Fixed Features

Human Normalized Score

Figure 10. Evaluating representations using linear probing on
Atari. Optimality gap refers to the distance from human-level
performance and lower is better. In both plots, the representations
learned by HL-Gauss are more conducive to policy optimization.

Two-Hot

10 1 100

0.0
0.5

1.0

1.5

Bins

21

51

101

201

IQ
M

 N
o
rm

a
liz

e
d
 S

co
re

Online RL: HL-Gauss Label Smoothing
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in Online RL on Atari.. HL-Gauss benefits from label smoothing
with the optimal amount of label smoothing as prescribed by σ
being independent of bin width ς .

5.2. What Challenges Does Classification Tackle in RL?
Having seen that the performance gains of cross-entropy
losses stem from both the use of a categorical representation
of values and distributed targets, we now attempt to under-
stand which challenges in value-based RL are addressed, or
at least partially alleviated, by cross-entropy losses.

Is Classification More Robust to Noisy Targets? Clas-
sification is less prone to overfitting to noisy targets than
regression, as it focuses on categorical rather than numeri-
cal relationships between the input and target. To explore
this further, we investigate whether classification can better
handle noise induced by stochasticity in RL.

(a) Noisy Rewards. To test robustness of classification to
stochasticity in rewards, we consider an offline RL setup
where we add random noise εt, sampled uniformly from
(0, η), to each dataset reward rt. We vary the noise scale
η ∈ {0.1, 0.3, 1.0} and compare the performance of cross-
entropy based HL-Gauss with the MSE loss. As shown
in Figure 7, the performance of HL-Gauss degrades more
gracefully than MSE as the noise scale increases.

(b) Stochasticity in Dynamics. Following Machado et al.
(2018), our Atari experiments use sticky actions — with
25% probability, the environment will execute the previous
action again, instead of the agent’s intended action — re-
sulting in non-deterministic dynamics. Here, we turn off
sticky actions to compare different losses on deterministic

Atari (60 games). As shown in Figure 8, while cross-entropy
based HL-Gauss outperforms MSE with stochastic dynam-
ics, they perform comparably under deterministic dynamics
while outperforming categorical distributional RL (C51).

Overall, the benefits of cross-entropy losses can be partly
attributed to less overfitting to noisy targets, an issue in-
herent to RL environments with stochastic dynamics or
rewards. Such stochasticity issues may also arise as a result
of dynamics mis-specification or action delays in real-world
embodied RL problems, implying that a cross-entropy loss
is a superior choice in those problems.

Does Classification Learn More Expressive Representa-
tions? It is well known that just using the mean-squared
regression error alone does not produce useful represen-
tations in value-based RL, often resulting in low capacity
representations (Kumar et al., 2021) that are incapable of fit-
ting target values observed during subsequent training (Lyle
et al., 2022). Predicting a categorical distribution rather
than a scalar target can lead to better representations (Zhang
et al., 2023), that retain the representational power to model
value functions of arbitrary policies that might be encoun-
tered over the course of value learning (Dabney et al., 2021).
Lyle et al. (2019) showed that gains from C51 can be par-
tially attributed to improved representations but it remains
unknown whether they stem from backing up distributions
of returns or the use of cross-entropy loss.
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from addressing policy non-stationarity.

To investigate this question, following the protocol in Fare-
brother et al. (2023), we study whether a learned repre-
sentation, corresponding to the penultimate feature vector,
obtained from value-functions trained online on Atari for
200M frames, still retains the necessary information to re-
learn a policy from scratch. To do so, we train a Q-function
with a single linear layer on top of this frozen representa-
tion, akin to how self-supervised representations are eval-
uated in vision (He et al., 2020). As shown in Figure 10,
cross-entropy losses result in better performance with linear
probing. This indicates that their learned representations are
indeed better in terms of supporting the value-improvement
path of a policy trained from scratch (Dabney et al., 2021).

Is Classification More Robust to Non-Stationarity?
Non-stationarity is inherent to value-based RL as the target
computation involves a constantly evolving argmax policy
and value function. Bellemare et al. (2017) hypothesized
that classification might mitigate difficulty of learning from
a non-stationary policy, but did not empirically validate
it. Here, we investigate whether classification can indeed
handle target non-stationarity better than regression.

We first consider a synthetic regression task on CIFAR10
from Lyle et al. (2024), where the regression target maps an
image xi through a randomly initialized convolutional net-
work fθ− producing high-frequency targets yi = sin(105 ·
fθ−(xi)) + b, where b is bias controlling for the magni-
tude of the targets. In TD learning, prediction targets are
non-stationary and often increase in magnitude as the pol-
icy improves. We simulate this setting by fitting a network
with different losses on the increasing sequence of biases
b ∈ {0, 8, 16, 24, 32}. See details in Appendix C.5. As
shown in Figure 12, classification losses retain higher plas-
ticity under non-stationary targets compared to regression.

In the context of RL, we can control for policy non-
stationarity by performing offline SARSA following the
protocol in Kumar et al. (2022). That is, when computing the
Bellman target (T̂ Q)(S,A), SARSA uses an in-distribution
sample of the observed action at the next timestep (S′, A′).

In contrast, Q-learning uses the action that maximizes the
Q-value at S′ which introduces additional non-stationarity.
Figure 13 shows that most of the benefit from HL-Gauss
compared to the MSE vanishes in the offline SARSA setting,
adding evidence that some of the benefits from classification
stem from dealing with non-stationarity of the target policy.

In summary, we find that the use of cross-entropy loss itself
is central to obtain good performance in value-based RL, and
while these methods do not address any specific challenge,
they enable value-based RL methods to deal better with
non-stationarity, induce highly-expressive representations,
and provide robustness against noisy target values.

6. Conclusion
In this paper, we showed that framing regression as classi-
fication and minimizing categorical cross-entropy instead
of the mean squared error significantly improves the perfor-
mance and scalability of value-based RL methods across
a wide variety of tasks and neural network architectures.
We analyzed the source of these improvements and found
that they stem from the ability of the cross-entropy loss
in enabling more expressive representations and better han-
dling of noise and non-stationarity in value-based RL. While
cross-entropy alone does not completely solve these issues,
our results highlight the substantial benefits of this change.

We believe that strong results with the use categorical cross-
entropy has implications for future algorithm design in deep
RL, both in theory and practice. Practically, value-based
RL approaches have been harder to scale and tune when the
value function is represented by a transformer architecture
and our results hint that classification might provide for
a smooth approach to translate innovation in value-based
RL to transformers. Theoretically, analyzing the optimiza-
tion dynamics of cross-entropy might help devise improved
losses or target distribution representations. Finally, while
we did explore a number of settings, further work is required
to evaluate the efficacy of classification losses in other RL
problems such as pre-training, fine-tuning, or continual RL.
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A. Related Work
Prior works in tabular regression (Weiss & Indurkhya, 1995; Torgo & Gama, 1996; Khakhar & Buckman, 2023) and
computer vision (Van Den Oord et al., 2016; Kendall et al., 2017; Rothe et al., 2018; Rogez et al., 2019) have replaced
regression with classification to improve performance. Most notably, Imani & White (2018) proposed the HL-Gauss
cross-entropy loss for regression and show its efficacy on small-scale supervised regression tasks, outside of RL. Within the
body of work on RL, Ayoub et al. (2024) provides theoretical insights showing that replacing MSE with a cross-entropy
based loss results in lower sample complexity when performing fitted-value iteration (Gordon, 1999). Our work complements
these prior works by illustrating for the first time that a classification objective trained with cross-entropy, particularly
HL-Gauss, can enable effectively scaling for value-based RL on a variety of domains, including Atari, robotic manipulation,
chess, and Wordle.

Several state-of-the-art methods in RL have used the Two-Hot cross-entropy loss without any analysis, either as an “ad-
hoc” trick (Schrittwieser et al., 2020), citing benefits for sparse rewards (Hafner et al., 2023), or simply relying on folk
wisdom (Hessel et al., 2021; Carvalho et al., 2023; Hansen et al., 2024). However, in our experiments, Two-Hot performs
worse than other cross-entropy losses and MSE. We believe this is because Two-Hot does not effectively distribute probability
to neighboring classes, unlike C51 and HL-Gauss (see §5.1 for an empirical investigation).

Closely related is the line of work on categorical distributional RL. Notably, Achab et al. (2023) offer an analysis of
categorical one-step distributional RL, which corresponds precisely to the Two-Hot algorithm discussed herein with the
similarity of these two approaches not being previously recognized. Additionally, the work of Bellemare et al. (2017)
pioneered the C51 algorithm, and while their primary focus was not on framing RL as classification, our findings suggest
that the specific loss function employed may play a more significant role in the algorithm’s success than modeling the return
distribution itself. Several methods find that categorical distributional RL losses are important for scaling offline value-based
RL (Kumar et al., 2023; Springenberg et al., 2024), but these works do not attempt to isolate which components of this
paradigm are crucial for attaining positive scaling trends. We also note that these findings do not contradict recent theoretical
work (Wang et al., 2023; Rowland et al., 2023) which argues that distributional RL brings statistical benefits over standard
RL orthogonal to use of a cross entropy objective or the categorical representation.

Prior works have characterized the representations learned by TD-learning (Bellemare et al., 2019; Lyle et al., 2021; Le Lan
et al., 2022; 2023; Kumar et al., 2021; 2022) but these prior works focus entirely on MSE losses with little to no work
analyzing representations learned by cross-entropy based losses in RL. Our linear probing experiments in §5.2 try to fill
this void, demonstrating that value-functions trained with cross-entropy losses learn better representations than regression.
This finding is especially important since Imani & White (2018) did not find any representational benefits of HL-Gauss
over MSE on supervised regression, indicating that the use of cross-entropy might have substantial benefits for TD-based
learning methods in particular.
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B. Reference Implementations
Both of the implementations listed below use the error function to evaluate the Gaussian CDF. This can be numerically
unstable outside of the support hence we clip the values between the valid range. Both Two-Hot and Categorical Distributional
RL performs a similar type of clipping but do allow for querying values outside of the support.

Listing 1 An implementation of HL-Gauss (Imani & White, 2018) in Jax (Bradbury et al., 2018).
import jax
import jax.scipy.special
import jax.numpy as jnp

def hl_gauss_transform(
min_value: float,
max_value: float,
num_bins: int,
sigma: float,

):
support = jnp.linspace(min_value, max_value, num_bins + 1, dtype=jnp.float32)

def transform_to_probs(target: jax.Array) -> jax.Array:
target = jnp.clip(target, min_value, max_value)
cdf_evals = jax.scipy.special.erf((support - target) / (jnp.sqrt(2) * sigma))
z = cdf_evals[-1] - cdf_evals[0]
bin_probs = cdf_evals[1:] - cdf_evals[:-1]
return bin_probs / z

def transform_from_probs(probs: jax.Array) -> jax.Array:
centers = (support[:-1] + support[1:]) / 2
return jnp.sum(probs * centers)

return transform_to_probs, transform_from_probs

Listing 2 An implementation of HL-Gauss (Imani & White, 2018) in PyTorch (Paszke et al., 2019).
import torch
import torch.special
import torch.nn as nn
import torch.nn.functional as F

class HLGaussLoss(nn.Module):
def __init__(self, min_value: float, max_value: float, num_bins: int, sigma: float):

super().__init__()
self.min_value = min_value
self.max_value = max_value
self.num_bins = num_bins
self.sigma = sigma
self.support = torch.linspace(

min_value, max_value, num_bins + 1, dtype=torch.float32
)

def forward(self, logits: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
return F.cross_entropy(logits, self.transform_to_probs(target))

def transform_to_probs(self, target: torch.Tensor) -> torch.Tensor:
target = torch.clip(target, self.min_value, self.max_value)
cdf_evals = torch.special.erf(

(self.support - target.unsqueeze(-1))
/ (torch.sqrt(torch.tensor(2.0)) * self.sigma)

)
z = cdf_evals[..., -1] - cdf_evals[..., 0]
bin_probs = cdf_evals[..., 1:] - cdf_evals[..., :-1]
return bin_probs / z.unsqueeze(-1)

def transform_from_probs(self, probs: torch.Tensor) -> torch.Tensor:
centers = (self.support[:-1] + self.support[1:]) / 2
return torch.sum(probs * centers, dim=-1)
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C. Experimental Methodology
In the subsequent sections we outline the experimental methodology for each domain herein.

C.1. Atari

Both our online and offline RL regression baselines are built upon the Jax (Bradbury et al., 2018) implementation of
DQN+Adam in Dopamine (Castro et al., 2018). Similarly, each of the classification methods (i.e., HL-Gauss and Two-Hot)
were built upon the Jax (Bradbury et al., 2018) implementation of C51 in Dopamine (Castro et al., 2018). Hyperparameters
for DQN+Adam are provided in Table C.1 along with any hyperparameter differences for C51 (Table C.2), Two-Hot
(Table C.2), and HL-Gauss (Table C.3). Unless otherwise stated the online RL results in the paper were ran for 200M
frames on 60 Atari games with five seeds per game. The offline RL results were ran on the 17 games in Kumar et al. (2021)
with three seeds per game. The network architecture for both the online and offline results is the standard DQN Nature
architecture that employs three convolutional layers followed by a single non-linear fully-connected layer before outputting
the action-values.

Table C.1. DQN+Adam Hyperparameters.

Discount Factor γ 0.99
n-step 1
Minimum Replay History 20, 000 agent steps
Agent Update Frequency 4 environment steps
Target Network Update Frequency 8, 000 agent steps
Exploration ε 0.01
Exploration ε decay 250, 000 agent steps
Optimizer Adam
Learning Rate 6.25× 10−5

Adam ε 1.5× 10−4

Sticky Action Probability 0.25
Maximum Steps per Episode 27, 000 agent steps
Replay Buffer Size 1, 000, 000
Batch Size 32

Table C.2. C51 & Two-Hot Hyperparameters.
Difference in hyperparameters from DQN+Adam
Table C.1.

Number of Locations 51
[vmin, vmax] [−10, 10]
Learning Rate 0.00025
Adam ε 0.0003125

Table C.3. HL-Gauss Hyperparameters. Differ-
ence in hyperparameters from C51 Table C.2.

Smoothing Ratio σ/ς 0.75

C.1.1. MIXTURES OF EXPERTS

All experiments ran with SoftMoE reused the experimental methodology of Obando-Ceron et al. (2024b). Specifically, we
replace the penultimate layer of the DQN+Adam in Dopamine (Castro et al., 2018) with a SoftMoE (Puigcerver et al., 2024)
module. The MoE results were ran with the Impala ResNet architecture (Espeholt et al., 2018). We reuse the same set of 20
games from Obando-Ceron et al. (2024b) and run each configuration for five seeds per game. All classification methods
reused the parameters from Table C.2 for C51 and Two-Hot or Table C.3 for HL-Gauss.

C.1.2. MULTI-TASK & MULTI-GAME

The multi-task and multi-game results follow exactly the methodology outlined in Ali Taïga et al. (2023) and Kumar et al.
(2023) respectively. We reuse the hyperparameters for HL-Gauss outlined in Table C.3. For multi-task results each agent is
run for five seeds per game. Due to the prohibitive compute of the multi-game setup we run each configuration for one seed.

C.2. Wordle

Our Wordle experiments follow the methodology in Snell et al. (2023) by using a GPTlike decoder-only Transformer model
trained using a standard autoregressive objective. We make use of the entire dataset of Wordle games compiled by Snell et al.
(2023). In Figure 4 we report the success rate of guessing the word in one turn of play. See Figure C.1 for an illustration of
the input and output of the Transformer model when playing a game of Wordle.
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Figure C.1. Illustration of a Transformer playing Wordle. At
a given timestep the Transformer model takes as input the board
state along with the presence of letters in the hidden word. The
model then predicts the next character to be played.

Figure C.2. Dataset generation for Q-value distillation on
Chess. The Stockfish chess engine is used to annotate a collection
of board states in the PGN format.

C.3. Chess

We follow exactly the setup in Ruoss et al. (2024) with the only difference being the use of HL-Gauss with a smoothing
ratio σ/ς = 0.75. Specifically, we take the action-values produced by Stockfish and project them a categorical distribution
using HL-Gauss. As Ruoss et al. (2024) was already performing classification we reuse the parameters of their categorical
distribution, those being, m = 128 bins evenly divided between the range [0, 1]. For each parameter configuration we train a
single agent and report the evaluation puzzle accuracy. Puzzle accuracy numbers for one-hot and AlphaZero w/ MCTS were
taken directly from Ruoss et al. (2024, Table 6).

C.4. Robotic Manipulation

We study a large-scale vision-based robotic manipulation setting on a mobile manipulator robot with 7 degrees of freedom,
which is visualized in Figure 6 (left). The tabletop robot manipulation domain consists of a tabletop with various randomized
objects spawned on top of the countertop. A RetinaGAN is applied to transform the simulation images closer to real-world
image distributions, following the method in (Ho et al., 2021). We implement a Q-Transformer policy following the
procedures in (Chebotar et al., 2023). Specifically, we incorporate autoregressive Q-learning by learning Q-values per
action dimension, incorporate conservative regularization to effectively learn from suboptimal data, and utilize Monte-Carlo
returns.

Figure C.3. Robot manipulation domain. The simulated robot manipulation (§4.3) consists of a tabletop with randomized objects. A
learned RetinaGAN transformation is applied to make the visual observation inputs more realistic.

C.5. Regression Target Magnitude & Loss of Plasticity

To assess whether classification losses are more robust when learning non-stationary targets of increasing magnitude we
leverage the synthetic setup from Lyle et al. (2024). Specifically, we train a convolutional neural network that takes CIFAR
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10 images xi as input and outputs a scalar prediction: fθ : R32×32×3 → R. The goal is to fit the regression target,

yi = sin(mfθ−(xi)) + b

where m = 105, θ− are a set of randomly sampled target parameters for the same convolutional architecture, and b is a
bias that changes the magnitude of the prediction targets. It is clear that increasing b shouldn’t result in a more challenging
regression task.

When learning a value function with TD methods the regression targets are non-stationary and hopefully increasing in
magnitude (corresponding to an improving policy). To simulate this setting we consider fitting the network fθ on the
increasing sequence b ∈ {0, 8, 16, 24, 32}. For each value b we sample a new set of target parameters θ− and regress
towards yi for 5, 000 gradient steps with a batch size of 512 with the Adam optimizer using a learning rate of 10−3. We
evaluate the Mean-Squared Error (MSE) throughout training for three methods: Two-Hot, HL-Gauss, and L2 regression.
For both Two-Hot and HL-Gauss we use a support of [−40, 40] with 101 bins.

D. Additional Results
D.1. Scaling with Mixtures of Experts

Recently, Obando-Ceron et al. (2024b) demonstrate that while parameter scaling with convolutional networks hurts single-
task RL performance on Atari, incorporating Mixture-of-Expert (MoE) modules in such networks improves performance.
Following their setup, we replace the penultimate layer in the architecture employed by Impala (Espeholt et al., 2018) with
a SoftMoE (Puigcerver et al., 2024) module and vary the number of experts in {1, 2, 4, 8}. Since each expert is a copy
of the original penultimate layer, this layer’s parameter count increases by a factor equal to the number of experts. The
only change we make is to replace the MSE loss in SoftMoE DQN, as employed by Obando-Ceron et al. (2024b), with the
HL-Gauss cross-entropy loss. We train on the same subset of 20 Atari games used by Obando-Ceron et al. (2024b) and
report aggregate results over five seeds in Figure D.1.

As shown in Figure D.1, we find that HL-Gauss consistently improves performance over MSE by a constant factor
independent of the number of experts. One can also observe that SoftMoE + MSE seems to mitigate some of the negative
scaling effects observed with MSE alone. As SoftMoE + MSE uses a softmax in the penultimate layer this could be
providing similar benefits to using a classification loss but as we will later see these benefits alone cannot be explained by
the addition of the softmax.

D.2. Replay Ratio Scaling

In supervised learning label smoothing is thought to reduce overfitting. To assess whether HL-Gauss achieves a similar
effect, we utilize a common deep RL paradigm of increasing the number of updates per environment step, known as the
replay ratio (D’Oro et al., 2023). A high replay ratio makes the agent more susceptible to overfitting on early experiences,
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et al. (2023). HL-Gauss shows positive scaling with replay ratio
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upon resets (Nikishin et al., 2022; D’Oro et al., 2023) in Atari.
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Online RL: Per-Game Improvement of HNS for HL-Gauss vs. MSE
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Figure D.3. HL-Gauss vs MSE per game in single-task online RL (§4.2). (Left) Each column displays the relative final performance
of HL-Gauss with respect to MSE in the single-task online RL training curves. This is a summary of the curves displayed in Figure D.7.
Note that HL-Gauss outperforms MSE in ≈ 3/4 of all games, and that HL-Gauss scores at least 10% higher on 1/2 of all games. (Right)
IQM normalized training curves throughout training.
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Figure D.4. Multi-task Online RL. Online RL scaling results with
actor-critic IMPALA with ResNets on SPACE INVADERS. HL-
Gauss outperforms MSE for all models. Since human scores are not
available for variants, we report normalized scores using a baseline
IMPALA agent with MSE loss. See §4.2 for more details.
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Figure D.5. Multi-task Offline RL results presented in terms of
DQN normalized scores. Note that when aggregate results are
computed with DQN normalization, HL-Gauss exhibits a faster rate
of improvement than C51 as the number of parameters scales up.

leading to an effect known as the primacy bias (Nikishin et al., 2022). To test this hypothesis, we follow the setup from
Sokar et al. (2023) and train DQN (Adam+MSE) (Obando-Ceron & Castro, 2021; Mnih et al., 2015) and HL-Gauss (Imani
& White, 2018) for 10M frames on 17 Atari 2600 games in Sokar et al. (2023). We increase the replay ratio from the default
value of 0.25 in DQN to 2 (8x higher), specifically testing replay ratios 0.25, 0.5, 1, 2.

Figure D.2 presents these results averaged over 3 seeds. The results show that DQN with MSE degrades substantially as we
increase the update ratio. However, HL-Gauss seems to reduce overfitting and better maintain plasticity, as evidenced by
positive scaling with replay ratio. Notably, HL-Gauss performs equivalently to ReDo (Sokar et al., 2023), which claims to
improve upon methods like hard network resets (Nikishin et al., 2022).

D.3. Per-Game Atari Results

Figure D.7 presents per-game training curves for DQN (Adam+MSE) (Obando-Ceron & Castro, 2021; Mnih et al., 2015),
Two-Hot (Schrittwieser et al., 2020), C51 (Bellemare et al., 2017), and HL-Gauss (Imani & White, 2018; Imani et al., 2024).
Each agent is trained for 200M frames with one iteration corresponding to 1M frames. Results are reported over 5 seeds
with 95% confidence intervals are represented as the shaded region. The left subplot of Figure D.3 provides per-game
improvements of HL-Gauss over MSE and the right subplot shows IQM results throughout training.
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Figure D.6. Evaluating learning stability from softmax in offline
RL. We do not observe any gains from using a softmax operator
with the MSE loss.

D.4. Multi-Task Atari Results

Figure D.4 shows aggregate results for 29 variants of Space Invaders across different network architectures. Notably,
HL-Gauss only provides a constant performance improvement over MSE across all architectures. This result is consistent
with Ali Taïga et al. (2023) and we hypothesize this is primarily due to the amount and diversity of pre-training data. Notably,
in Asteroids there are twice as many pre-training variants as compared to Space Invaders, which may result in substantially
reduced diversity in the case of Space Invaders. Additionally, Figure D.5 presents results for multi-game setup (§4.2) with
DQN-normalized scores. Notably, we see HL-Gauss outpace C51 when scaling parameters with HL-Gauss also substantially
outperforming the multi-Game decision transformers (Lee et al., 2022) at 79M parameters.
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Figure D.7. Training curves on single-task online RL (§4.1) for all 60 Atari games. All games ran for 200M frames and ran for:
DQN(Adam), C51, Two-Hot, and HL-Gauss.
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