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ABSTRACT

Interpretable graph neural networks (XGNNs) are widely adopted in scientific appli-
cations involving graph-structured data. Previous approaches predominantly adopt
the attention-based mechanism to learn edge or node importance for extracting and
making predictions with the interpretable subgraph. However, the representational
properties and limitations of these methods remain inadequately explored. In this
work, we present a theoretical framework that formulates interpretable subgraph
learning with the multilinear extension of the subgraph distribution, which we term
as subgraph multilinear extension (SubMT). Extracting the desired interpretable
subgraph requires an accurate approximation of SubMT, yet we find that the ex-
isting XGNNs can have a huge gap in fitting SubMT. Consequently, the SubMT
approximation failure will lead to the degenerated interpretability of the extracted
subgraphs. To mitigate the issue, we design a new XGNN architecture called Graph
Multilinear neT (GMT), which is provably more powerful in approximating SubMT.
We empirically validate our theoretical findings on a number of graph classification
benchmarks. The results demonstrate that GMT outperforms the state-of-the-art up
to 10% in terms of both interpretability and generalizability measures.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been widely used in scientific applications (Wang et al.,
2023; Zhang et al., 2023) such as Physics (Bapst et al., 2020), Chemistry (Gilmer et al., 2017;
Jumper et al., 2021), Quantum mechanics (Kochkov et al., 2021), Materials (Schütt et al., 2017) and
Cosmology (Villanueva-Domingo et al., 2021). In pursuit of scientific discoveries, it often requires
GNNs to be able to generalize to unseen or Out-of-Distribution (OOD) graphs (Gui et al., 2022; Ji
et al., 2022; Zhang et al., 2023), and also provide interpretations of the predictions that are crucial
for scientists to collect insights (Xie & Grossman, 2017; Cranmer et al., 2020; Dai et al., 2021) and
promote better scientific practice (Murray & Rees, 2009; Wencel-Delord & Glorius, 2013). Recently
there has been a surge of interest in developing intrinsically interpretable and generalizable GNNs
(XGNNs) (Yu et al., 2021; Miao et al., 2022; Wu et al., 2022b; Chen et al., 2022a; Miao et al., 2023).
In contrast to post-hoc explanation approaches (Ying et al., 2019; Yuan et al., 2020a; Vu & Thai,
2020; Luo et al., 2020; Yuan et al., 2021; Lin et al., 2021; 2022a) which is shown to be suboptimal
in interpretation and sensitive to pre-trained GNNs performance (Miao et al., 2022; 2023), XGNNs
are able to provide both reliable explanations and (OOD) generalizable predictions under the proper
guidance such as information bottleneck (Yu et al., 2021) and causality (Chen et al., 2022a).

Indeed, the faithful interpretation and the reliable generalization are the two sides of the same coin
for XGNNs. Grounded in the causal assumptions of data generation processes (Wu et al., 2022a;
Miao et al., 2022; Wu et al., 2022b), XGNNs assume that there exists a causal subgraph which
holds a causal relation with the target label. Predictions made solely based on the causal subgraph
are generalizable under various graph distribution shifts (Chen et al., 2022a). Therefore, XGNNs
typically adopt the two-step paradigm that first extracts a subgraph of the input graphs and then
predicts the labels. To circumvent the inherent discreteness of subgraphs, XGNNs often learn the
sampling probability for each edge or node with the attention mechanism and extract the subgraph
with high attention scores (Miao et al., 2022). Predictions are then made via a weighted message
passing scheme with the attention scores (Wu et al., 2022b; Chen et al., 2022a). Despite the notable
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Figure 1: Illustration of Subgraph Multilinear Extension (SubMT). The task is to classify whether a
graph contains a specific “house” or “cycle” motif. An XGNN f = fc ◦ g predicts the label with the
classifier fc based on the extracted soft subgraph Ĝc = g(G), denoted as the central graph. Different
depths of edge colors refer to the sampling probability of the edge. Ĝc = g(G) corresponds to a
subgraph distribution where the sampling probability for each subgraph Gc (i.e., subgraphs with
solid lines in the figure). SubMT extends GNNs to accept soft subgraph inputs by estimating the
subgraph conditional prediction as the expectation of each possible subgraph E[fc(Gc)]. Interpretable
subgraph learning requires accurate estimation of SubMT. Yet existing XGNNs that directly take the
soft subgraph Ĝc as classifier GNN inputs fail to reliably estimate SubMT. In contrast, GMT aims to
bridge the gap between SubMT and fc(Ĝc) by learning a neural SubMT to align with SubMT.

success of the paradigm in enhancing both interpretability and out-of-distribution (OOD) (Miao
et al., 2022; 2023; Chen et al., 2022a), there is little theoretical understanding of the representational
properties and limitations of XGNNs, and whether they can provide faithful interpretations.

In this work, we present a framework to analyze the expressiveness and evaluate the faithfulness
of XGNNs. Our framework is inspired by the close connection between interpretable subgraph
learning and multilinear extension, a powerful tool for solving classical combinatorial optimization
problems (Călinescu et al., 2007). In fact, the subgraph learning in XGNNs naturally resembles the
multilinear extension of the subgraph predictivity, which we termed as subgraph multilinear extension
(SubMT). Extracting the truth interpretable subgraph requires a precise approximation of SubMT.
However, we show that the prevalent attention-based paradigm can fail to reliably approximate
SubMT (Sec. 3.2). Consequently, the SubMT approximation failure will decrease the interpretability
of the subgraph for predicting the target label. More specifically, we instantiate the issue via a
causal framework and propose a novel interpretability measure called counterfactual fidelity, i.e., the
sensitivity of the prediction with respect to small perturbations to the extracted subgraphs (Sec. 4.2).
Although faithful interpretation should have a high counterfactual fidelity with the prediction, we find
that XGNNs implemented with the prevalent paradigm only have a low counterfactual fidelity.

Aiming to bridge the gap, we propose a simple yet effective XGNN architecture called Graph
Multilinear neT (GMT). The core design of GMT is inspired by the SubMT formulation, which
performs random subgraph sampling to reduce the SubMT approximation error. We prove that GMT
is provably more powerful in approximating SubMT (Sec. 5). We validate our theoretical findings
through extensive experiments on multiple graph classification benchmarks. The results demonstrate
that GMT improves the state-of-the-art up to 10% in both interpretability and generalizability (Sec. 6).

2 PRELIMINARIES AND RELATED WORK

We begin by introducing preliminary concepts of XGNNs and leave more details to Appendix B.1.
For ease of understanding, a table of the notations for key concepts is given in Appendix A.

Interpretable GNNs. Let G = (A,X) be a graph with node set V = {v1, v2, ..., vn} and edge set
E = {e1, e2, ..., em}, where A ∈ {0, 1}n×n is the adjacency matrix and X ∈ Rn×d is the node
feature matrix. In this work, we focus on interpretable GNNs (or XGNNs) for the graph classification
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task, while the results can be generalized to node-level tasks as well (Wu et al., 2020). Given each
sample from training data Dtr = (Gi, Y i), an interpretable GNN f := h ◦ g aims to identify a
(causal) subgraph Gc ⊆ G via a subgraph extractor GNN g : G → Gc, and then predicts the label
via a subgraph classifier GNN fc : Gc → Y , where G,Gc,Y are the spaces of graphs, subgraphs, and
the labels, respectively (Yu et al., 2021). Although post-hoc explanation approaches also aim to find
an interpretable subgraph as the explanation for the model prediction (Ying et al., 2019; Yuan et al.,
2020a; Vu & Thai, 2020; Luo et al., 2020; Yuan et al., 2021; Lin et al., 2021; 2022a), they are shown
to be suboptimal in interpretation performance and sensitive to the performance of the pre-trained
GNNs (Miao et al., 2022). Therefore, this work focuses on intrinsic interpretable GNNs (XGNNs).

A predominant approach to implement XGNNs is to incorporate the idea of information bottle-
neck (Tishby et al., 1999), such that Gc keeps the minimal sufficient information of G about Y (Yu
et al., 2021; 2022; Miao et al., 2022; 2023; Yang et al., 2023), which can be formulated as

maxGc
I(Gc;Y )− λI(Gc;G), Gc ∼ g(G), (1)

where the maximizing I(Gc;Y ) endows the interpretability of Gc while minimizing I(Gc;G) en-
sures Gc captures only the most necessary information, λ is a hyperparamter trade off between
the two objectives. In addition to minimizing I(Gc;G), there are also alternative approaches that
impose different constraints such as causal invariance (Chen et al., 2022a; Li et al., 2022) or dis-
entanglement (Wu et al., 2022b; Sui et al., 2022; Liu et al., 2022a; Fan et al., 2022) to identify
the desired subgraphs. When extracting the subgraph, XGNNs adopts the attention mechanism to
learn the sampling probability of each edge or node, which avoids the complicated Monte Carlo
tree search used in other alternative implementations (Zhang et al., 2022). Specifically, given node
representation learned by message passing Hi ∈ Rh for each node i, XGNNs either learns a node
attention αi ∈ R+ = σ(a(Hi)) via the attention function a : Rh → R+, or the edge attention
αe ∈ R+ = σ(a([Hu, Hv])) for each edge e = (u, v) via the attention function a : R2h → R+,
where σ(·) is a sigmoid function. α = [α1, ..., αm]T essentially elicits a subgraph distribution of the
interpretable subgraph. In this work, we focus on edge-centric subgraph sampling as it is most widely
used in XGNNs while our method can be easily generalized to node-centric approaches.

Faithful interpretation and (OOD) generalization. The faithfulness of interpretation is critical to all
interpretable and explainable methods (Ribeiro et al., 2016; Lipton, 2018; Alvarez-Melis & Jaakkola,
2018; Jain & Wallace, 2019). There are several metrics developed to measure the faithfulness of graph
explanations, such as fidelity (Yuan et al., 2020b; Amara et al., 2022), counterfactual robustness (Bajaj
et al., 2021; Prado-Romero et al., 2022; Ma et al., 2022), and equivalence (Crabbé & van der Schaar,
2023), which are however limited to post-hoc graph explanation methods. In contrast, we develop the
first faithfulness measure for XGNNs in terms of counterfactual invariance.

In fact, the generalization ability and the faithfulness of the interpretation are naturally intertwined
in XGNNs. XGNNs need to extract the underlying ground-truth subgraph in order to make correct
predictions on unseen graphs (Miao et al., 2022). When distribution shifts are present during testing,
the underlying subgraph that has a causal relationship with the target label (or causal subgraphs)
naturally becomes the ground-truth subgraph that needs to be learned by XGNNs (Chen et al., 2022a).

Multilinear extension serves as a powerful tool for maximizing combinatorial functions, especially
for submodular set function maximization (Călinescu et al., 2007; Vondrak, 2008; Bian et al., 2019;
Sahin et al., 2020; Karalias et al., 2022). It is the expected value of a set function under the fully
factorized Bernoulli distribution. In this work, we are the first to identify subgraph multilinear
extension as the factorized subgraph distribution for interpretable subgraph learning.

3 ON THE EXPRESSIVITY OF INTERPRETABLE GNNS

In this section, we present our theoretical framework for characterizing the expressivity of XGNNs.
Since all of the existing approaches need to maximize I(Gc;Y ) regardless of the regularization on
Gc, we focus on the modeling of the subgraph distribution that maximizes I(Gc;Y ).

3.1 SUBGRAPH MULTILINEAR EXTENSION.

The need for maximizing I(Gc;Y ) originates from extracting information in G to predict Y with fc,
argmaxfcI(G;Y ) = argmaxfc [H(Y )−H(Y |G)] = argminfcH(Y |G), (2)
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where the last equality is due to the irrelevance of H(Y ) and fc. For each sample (G, Y ), XGNN
then adopts the subgraph extractor g to extract a subgraph Gc ∼ g(G), and take Gc as the input of fc
to predict Y . Then, Eq. 2 is realized as follows1: let L(·) be the cross-entropy loss, then

argming,fc E(G,Y )∼Dtr
[− logP (Y |E

Gc
g∼G

Gc)] = E(G,Y )∼Dtr
[L(fc(α;G), Y )], (3)

where α ∈ Rm
+ is the attention score elicited from the subgraph extractor g. We leave more details

about the deduction of Eq. 3 in Appendix B.2. Note that fc is a GNN defined only for discrete
graph-structured inputs (i.e., α ∈ {0, 1}m), while Eq. 3 imposes continuous inputs to fc. Considering
fc(Gc) is a set function with respect to node/edge index subsets of G (i.e., subgraphs Gc), and the
parameterization of P (G) in XGNNs (Miao et al., 2022), we resort to the multilinear extension of
fc(Gc). Multilinear extension for set functions has been extensively studied in the domain of solving
classical combinatorial optimization problems (Călinescu et al., 2007; Karalias et al., 2022).
Definition 3.1 (Subgraph multilinear extension (SubMT)). Given the attention score α ∈ [0, 1]m as
sampling probability of Gc, XGNNs factorize P (G) as independent Bernoulli distributions on edges:

P (Gc|G) =
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe),

which elicits the multilinear extension of fc(Gc) in Eq. 3 as:

Fc(α;G) :=
∑

Gc∈G

fc(Gc)
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe) = E
Gc

g∼G
fc(Gc). (4)

The parameterization of P (G) is widely employed in XGNNs (Miao et al., 2022; Chen et al., 2022a),
which implicitly assumes the random graph data model (Erdos & Rényi, 1984). Def. 3.1 can also
be generalized to other graph models with the corresponding parameterization of P (G) (Snijders &
Nowicki, 1997; Lovász & Szegedy, 2006). When a XGNN approximates SubMT well, we have:
Definition 3.2 (ϵ-SubMT approximation). Let d(·, ·) be a distribution distance metric, a XGNN f =
fc ◦ g ϵ-approximates SubMT (Def. 3.1), if there exists ϵ ∈ R+ such that d(Pf (Y |G), P (Y |G)) ≤ ϵ

where P (Y |G) ∈ R|Y| is the ground truth conditional label distribution, and Pf (Y |G) ∈ R|Y| is the
predicted label distribution for G via a XGNN f , i.e., Pf (Y |G) = fc(EGc

g∼G
Gc).

Def. 3.2 is a natural requirement for XGNN that approximates SubMT properly. With the definition
of SubMT, we can write the problem of Eq. 3 as the following:

argming,fc E(G,Y )∼Dtr
[L(E

Gc
g∼G

fc(Gc), Y )] = E(G,Y )∼Dtr
L(Fc(α;G), Y ), (5)

Intuitively, optimizing for g, fc in Eq. 3 requires an accurate estimation of SubMT.

3.2 ISSUES OF EXISTING APPROACHES

In general, evaluating SubMT requires O(2m) calls of Eq. 4. However, existing XGNNs take a
“shortcut” and introduce a soft subgraph Ĝc with the adjacency matrix as the attention matrix Â where
Au,v=αe,∀e=(u,v)∈E, to estimate Eq. 3 via weighted message passing (Miao et al., 2022):

argming,fcE(G,Y )∼Dtr
[L(E

Gc
g∼G

fc(Gc), Y )] = E(G,Y )∼Dtr
[L(fc(Ĝc), Y )]. (6)

From the edge-centric perspective, the introduction of Ĝc seems to be natural at first glance, as:

Ĝc = E
Gc

g∼G
Gc = (X, Â). (7)

However, Eq. 6 holds only when fc is linear. More formally, as X is fixed, for the sake of brevity, let
fc(A) := E

Gc
g∼G

[fc((X,A))], then Eq. 6 requires the following to be hold:

fc(Â) = fc(E[A]) = E[fc(A)], (8)

where the first equality is by the definition of Â, while the last equality adheres to the equality of
Eq. 6. Obviously fc(·) is a non-linear function even with a linearized GNN (Wu et al., 2019) with
linear activations and pooling such as sum pooling, which can be written as:

fc(Gc) = ρ(ÂkXW ), (9)
where ρ is the pooling, k is the number of layers and W ∈ Rh×h are the learnable weights. Therefore,

1With a bit of abuse of notations, we will omit the unnecessary superscript of samples for the sake of clarity.
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ŶÂs
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(b) SubMT on BA-2Motifs.
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(c) SubMT on Mutag.

Figure 2: Illustration of counterfactual faithfulness.

Proposition 3.3. Eq. 8 with linear GNNs (Eq. 9) and k > 1 can not approximate SubMT (Def. 3.1).

The proof is given in Appendix D.2. Empirical verifications are also provided in Appendix F.6..
For example, when k = 2 and |Y| = 1, Eq. 9 is convex, and we have fc(E[A]) ≤ E[fc(A)] due to
Jensen’s inequality, which introduces the Jensen gap as E[fc(A)]− fc(Â) when fitting SubMT.

4 ON THE GENERALIZATION AND INTERPRETABILITY: A CAUSAL VIEW

To further understand the consequences of the SubMT approximation issue, we conduct a causal
analysis of the interpretation faithfulness in XGNNs. Without loss of generality, our discussion
focuses on the edge-centric view of data generation and interpretation.

4.1 CAUSAL MODEL OF INTERPRETABLE GNNS

Data generation. We consider the same data model as previous works (Bevilacqua et al., 2021; Miao
et al., 2022; Chen et al., 2022a), where the underlying causal subgraph Gc and the spurious subgraph
Gs will be assembled via some underlying assembling process. As we focus on the edge-centric view,
our following discussion will focus on the graph structures Ac and As of the subgraphs. Full details
of the structural causal model are deferred to Appendix C.1.

As shown in Fig. 2(a), there are latent causal and spurious variables C and S that have the invariant
and spurious correlations with the label Y across different training and test distributions, respectively.
C and S correspondingly control the generation of the graph structure of the causal subgraph Gc,
and the spurious subgraph Gs. For example, when generating Ac and As, C and S will specify the
number of nodes in Ac and As and also the edge sampling probability for edges in Ac and As.

Interpretation. Correspondingly, XGNNs uses a subgraph extractor to predict the causal and
spurious subgraphs Ĝc and Ĝs, respectively. The extraction aims to reverse the generation and
recover the structure of the underlying causal subgraph Ac. We denote the XGNN architecture and
the hyperparameter settings as H . H takes A as inputs to learn the edge sampling probability via the
attention mechanism and then obtain Âc. Once Âc is determined, Âs=1−Âc is also obtained by
taking the complementary part. Then, the extracted causal and spurious subgraphs are obtained with
Ĝc=(X, Âc) and Ĝs=(X, Âs), respectively. The classifier then uses Ĝc to make the prediction Ŷ .

4.2 CAUSAL FAITHFULNESS OF XGNNS

With the aforementioned causal model, we are able to specify the causal desiderata for faithful
XGNNs. When a XGNN fails to accurately approximate SubMT, the estimated label conditional
probability will have a huge gap from the ground truth. The failure will bias the optimization of
the subgraph extractor g and lead to the degenerated interpretability of Â. More concretely, the
recovery of Â to the underlying A will be worse, which further affects the extraction of Gc and
brings both worse interpretation and (OOD) generalization performance. As a single measure such as
the interpretation or generalization may not fully reflect the consequence or even exhibit conflicted
information2, we consider a direct notion that jointly consider the interpretability and generalizabiliy
to measure the causal faithfulness of XGNNs, inspired by Jain & Wallace (2019).

2For example, in the experiments of Miao et al. (2022), higher interpretation performance does not necessarily
correlate with higher generalization performance.

5



Under review as a conference paper at ICLR 2024

Definition 4.1 ((δ, ϵ)-counterfactual fidelity). Given a meaningful minimal distance δ > 0, let d(·, ·)
be a distribution distance metric , if a XGNN f = fc ◦ g commits to the ϵ−counterfactual fidelity,
then there exist ϵ > 0 such that, ∀G, G̃ that d(P (Y |G), P (Y |G̃)) ≥ δ, the following holds:

d(Pf (Y |G̃), Pf (Y |G)) ≥ ϵδ.

Intuitively, if the extracted interpretable subgraph Ĝc is faithful to the target label, then the predic-
tions made based on Ĝc are sensitive to any perturbations on Ĝc. Different from counterfactual
interpretability (Prado-Romero et al., 2022; Guo et al., 2023) that seeks minimum modifications to
change the predictions, (δ, ϵ)-counterfactual fidelity measures how sensitive are the predictions to the
changes of the interpretable subgraphs. A higher fidelity implies better interpretability and is also a
natural behavior of a XGNN that approximates SubMT well.
Proposition 4.2. If a XGNN f ϵ-approximates SubMT, f satisfies (δ, 1− 2ϵ

δ )-counterfactual fidelity.

The proof is given in Appendix D.3. Intuitively, Proposition 4.2 implies that the counterfactual fidelity
is an effective measure for the approximation ability of SubMT in terms of Def. 3.2.

Practical estimation of counterfactual fidelity. Since it is hard to enumerate every possible G̃, to
verify Def. 4.1, we consider a random attention matrix Ã ∼ σ(N (µĤA

, σĤA
)), where µĤA

and σĤA

are the mean and standard deviation of the pre-attention matrix ĤA (The adjacency matrix with the
unnormalized attention). Each non-symmetric entry in Ã is sampled independently following the
factorization of P (G). We randomly sample Ã by k times and calculate the following:

cĜc
=

1

k

k∑
i=1

d(fc(Y |G̃i
c), fc(Y |Ĝc)), (10)

where G̃i
c = (X, Ãi

c) and d is total variation distance. We compute cĜc
for the state-of-the-art XGNN

GSAT (Miao et al., 2022). Shown as in Fig. 2(b), 2(c), we plot the counterfactual fidelity of GSAT on
BA-2Motifs and Mutag datasets against is 2 to 3 times lower than the simulated SubMT with 10 and
100 sampling rounds. We provide a more detailed discussion in Appendix C.2 and Appendix F.5.

5 BUILDING RELIABLE INTERPRETABLE AND GENERALIZABLE GNNS

The aforementioned gap motivates us to propose a new XGNN architecture, called Graph Multilinear
neT (GMT), to provide both faithful interpretability and reliable (OOD) generalizability. GMT have two
variants, i.e., GMT-lin and GMT-sam, motivated by resolving the failures mentioned in Sec. 3.2.

5.1 LINEARIZED GRAPH MULTILINEAR NETWORK

Note that the main reason for the failure of Eq. 8 is because of the non-linearity of the expectation
to the k weighted message passing with k > 1. If k can be reduced to 1, then the linearity can be
preserved to ensure a better approximation of SubMT. More formally, for a XGNN f with linearized
GNN as the classifier, if ∃T ∈ Rd×d such that T · fc(Gc) = P (Y |Gc) (fc is linear), then, let

(GMT-lin) f l
c(Gc) = ρ(Â⊙Ak−1XW ), (11)

we can incorporate GMT-lin into Eq. 8 and have the following holds:

f l
c(Ĝc) = T · fc(Ĝc) = E[fc(Gc)],

due to the linearity of f l
c(Gc) with respect to Gc (i.e., A). During training, T can be further absorbed

into W , which implies GMT-lin is able to fit to SubMT. Compared to the previous weighted
message passing scheme with linearized GNN (Eq. 9), GMT-lin improves the linearity by reducing
the number of weighted message passing rounds to 1. We show the simple strategy can already achieve
better interpretability than the state-of-the-art methods even with non-linear GNNs in experiments.

5.2 GRAPH MULTILINEAR NETWORK WITH RANDOM SUBGRAPH SAMPLING

Although GMT-lin works for linearized GNNs, the non-linear GNNs are more widely used in
practice (Xu et al., 2019), where GMT-lin may also suffer from the SubMT approximation failure.
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To overcome the issue, inspired by the SubMT formulation, we propose a random subgraph sampling
approach, that performs Markov Chain Monte Carlo (MCMC) sampling to approximate SubMT.
More concretely, given the attention matrix Â, we perform t rounds of random subgraph sampling
from the subgraph distribution elicited by Â (or equivalently Ĝc = (X, Â) as in SubMT (Def. 3.1),
and obtain t i.i.d. random subgraph samples {Gi

c}ti=1 for estimating SubMT as the following

(GMT-sam) fs
c (Ĝc) =

1

t

t∑
i=1

fc(Y |Gi
c), (12)

where fc is the classifier GNN that takes discrete subgraphs as inputs.

Theorem 5.1. Given the attention matrix Â, and the distribution distance metric d as the total
variation distance, let C = |Y|, for a GMT-sam with t i.i.d. samples of Gi

c ∼ P (Gc|G), then, there
exists ϵ ∈ R+ such that, with a probability at least 1− e−tϵ2/4, GMT-sam ϵC

2 -approximates SubMT
and satisfies (δ, 1− ϵC

δ ) counterfactual fidelity.

The proof for Theorem 5.1 is given in Appendix D.4. Intuitively, with more random subgraph samples
drawn from P (Gc|G), GMT-sam obtains a more accurate estimation of SubMT. However, it will
incur more practical challenges such as the a) gradient of discrete sampling and b) computational
overhead. To overcome the challenges a) and b), we incorporate the following two techniques.

Backpropagation of discrete sampling. To enable gradient backpropagation with the sampled
subgraphs, we also incorporate gradient estimation techniques such as Gumbel softmax and straight-
through estimator (Jang et al., 2017; Maddison et al., 2017). Compared to the state-of-the-art XGNN
GSAT (Miao et al., 2022), this scheme brings two additional benefits: (i) reduces the gradient biases
in discrete sampling with Gumbel softmax; (ii) avoids weighted message passing and alleviates the
input distribution gap to the graph encoder when shared in both fc and g as in GSAT.

Learning neural subgraph multilinear extension. Although GMT trained with GMT-sam improve
interpretability, GMT-sam still requires multiple random subgraph sampling to approximate SubMT
and costs much additional overhead. To this end, we propose to learn a neural SubMT that only
requires single sampling, based on the trained subgraph extractor g with GMT-sam.

Learning the neural SubMT is essentially to approximate the MCMC with a neural network, though
it is inherently challenging to approximate MCMC (Johndrow et al., 2020; Papamarkou et al., 2022).
Nevertheless, the feasibility of neural SubMT learning is backed by the inherent causal subgraph
assumption of (Chen et al., 2022a), once the causal subgraph is correctly identified, simply learning
the statistical correlation between the subgraph and the label is sufficient to recover the causal relation.

Therefore, we propose to simply re-train a new classifier GNN with the frozen subgraph extractor,
to distill the knowledge contained in Ĝc about Y . This scheme also brings additional benefits over
the originally trained classifier, which focuses on providing the gradient guidance for finding proper
Gc instead of learning all the available statistical correlations between Gc and Y . More details and
discussions on the implementations can be found in Appendix E.

The number sampling rounds. Although the estimation of SubMT will be more accurate with
the increased sampling rounds, it unnecessarily brings improvements. First, as shown in Fig. 3, the
performance may be saturated with moderately sufficient samplings. Besides, the performance may
degenerate as more sampling rounds can affect the optimization, as discussed in Appendix E.2

6 EXPERIMENTAL EVALUATIONS

We conduct extensive experiments to evaluate GMT with different backbones and on multiple graph
classification benchmarks, and compare both the interpretability and (OOD) generalizability with the
traditional post-hoc interpretation methods and the state-of-the-art XGNNs. We will briefly introduce
the datasets, baselines, and experiment setups, and leave more details in Appendix F.

6.1 EXPERIMENTAL SETTINGS

Datasets. We consider both the regular and geometric graph classification benchmarks following
the XGNN literature (Miao et al., 2022; 2023). For regular graphs, we include BA-2MOTIFS (Luo
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Table 1: Interpretation Performance (AUC) on regular graph datasets.The shadowed entries are the
results with the mean-1*std larger than the mean of the corresponding best baselines.

GNN METHOD BA-2MOTIFS MUTAG MNIST-75SP
SPURIOUS-MOTIF

b = 0.5 b = 0.7 b = 0.9

GIN

GNNEXPLAINER 67.35±3.29 61.98±5.45 59.01±2.04 62.62±1.35 62.25±3.61 58.86±1.93

PGEXPLAINER 84.59±9.09 60.91±17.10 69.34±4.32 69.54±5.64 72.33±9.18 72.34±2.91

GRAPHMASK 92.54±8.07 62.23±9.01 73.10±6.41 72.06±5.58 73.06±4.91 66.68±6.96

IB-SUBGRAPH 86.06±28.37 91.04±6.59 51.20±5.12 57.29±14.35 62.89±15.59 47.29±13.39

DIR 82.78±10.97 64.44±28.81 32.35±9.39 78.15±1.32 77.68±1.22 49.08±3.66

GIN
GSAT 98.85±0.47 99.35±0.95 80.47±1.86 74.49±4.46 72.95±6.40 65.25±4.42

GMT-LIN 98.36±0.56 99.86±0.09 82.98±1.49 76.06±6.39 76.50±5.63 80.57±2.59

GMT-SAM 99.62±0.11 99.87±0.11 86.50±1.80 85.50±2.40 84.67±2.38 73.49±5.33

PNA
GSAT 89.35±5.41 99.00±0.37 85.72±1.10 79.84±3.21 79.76±3.66 80.70±5.45

GMT-LIN 95.79±7.30 99.58±0.17 85.02±1.03 80.19±2.22 84.74±1.82 85.08±3.85

GMT-SAM 99.60±0.48 99.89±0.05 87.34±1.79 88.27±1.71 86.58±1.89 85.26±1.92

Table 2: Prediction Performance (Acc.) on regular graph datasets. The shadowed entries are the
results with the mean-1*std larger than the mean of the corresponding best baselines.

GNN METHOD MOLHIV (AUC) GRAPH-SST2 MNIST-75SP
SPURIOUS-MOTIF

b = 0.5 b = 0.7 b = 0.9

GIN
GIN 76.69±1.25 82.73±0.77 95.74±0.36 39.87±1.30 39.04±1.62 38.57±2.31

IB-SUBGRAPH 76.43±2.65 82.99±0.67 93.10±1.32 54.36±7.09 48.51±5.76 46.19±5.63

DIR 76.34±1.01 82.32±0.85 88.51±2.57 45.49±3.81 41.13±2.62 37.61±2.02

GIN
GSAT 76.12±0.91 83.14±0.96 96.20±1.48 47.45±5.87 43.57±2.43 45.39±5.02

GMT-LIN 76.87±1.12 83.19±1.28 96.01±0.25 47.69±4.93 53.11±4.12 46.22±4.18

GMT-SAM 77.22±0.93 83.62±0.50 96.50±0.19 60.09±2.40 54.34±4.04 55.83±5.68

PNA

PNA (NO SCALARS) 78.91±1.04 79.87±1.02 87.20±5.61 68.15±2.39 66.35±3.34 61.40±3.56

GSAT 79.82±0.67 80.90±0.37 93.69±0.73 68.41±1.76 67.78±3.22 51.51±2.98

GMT-LIN 80.05±0.71 81.18±0.47 94.44±0.49 69.33±1.42 64.49±3.51 58.30±6.61

GMT-SAM 80.58±0.83 82.36±0.96 95.75±0.42 71.98±3.44 69.68±3.99 67.90±3.60

et al., 2020), MUTAG (Debnath et al., 1991), MNIST-75SP (Knyazev et al., 2019), which are widely
evaluated by post-hoc explanation approaches (Yuan et al., 2020b), as well as SPURIOUS-MOTIF (Wu
et al., 2022b), GRAPH-SST2 (Socher et al., 2013; Yuan et al., 2020b) and OGBG-MOLHIV (Hu
et al., 2020) where there exist various graph distribution shifts. For geometric graphs, we consider
ACTSTRACK, TAU3MU, SYNMOL and PLBIND curated by Miao et al. (2023).

Baselines. For post-hoc methods, we mainly adopt the results from the previous works (Miao
et al., 2022; 2023), including GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020),
GraphMask (Schlichtkrull et al., 2021) for regular graph benchmarks, and BernMask, BernMask-P,
that are modified from GNNExplainer and PGExplainer, GradGeo (Shrikumar et al., 2017), and Grad-
Cam (Selvaraju et al., 2017) that are extended for geometric data, as well as PointMask (Taghanaki
et al., 2020) developed specifically for geometric data. For XGNNs, since we focus on the interpre-
tation performance, we mainly compared with XGNNs that have the state-of-the-art interpretation
abilities, i.e., GSAT (Miao et al., 2022) and LRI (Miao et al., 2023), which also have excellent OOD
generalization performance than other XGNNs (Gui et al., 2022). We also include two representative
XGNNs baselines, DIR (Wu et al., 2022b) and IB-subgraph (Yu et al., 2021) for regular graph data.

Training and evaluation. We consider three backbones GIN (Xu et al., 2019) and PNA (Corso
et al., 2020) for regular graph data, EGNN (Satorras et al., 2021) for geometric data. All methods
adopted the identical graph encoder, and optimization protocol for fair comparisons. We tune the
hyperparameters as recommended by previous works. More details are given in Appendix F.2.

6.2 EXPERIMENTAL RESULTS AND ANALYSIS

Interpretation performance. As shown in Table. 1, compared to post-hoc based methods (in the first
row), and GSAT, both GMT-lin and GMT-sam lead to non-trivial improvements for interpretation
performance. Especially, in challenging Spurious-Motif datasets where there contain distribution
shifts, GMT-sam brings improvements than GSAT up to 15% with GIN, and up to 8% with PNA. In
challenging realistic dataset MNIST-75sp, GMT-sam also improves GSAT up to 6%.

Generalization performance. Table 2 illustrates the prediction accuracy on regular graph datasets.
We again observe consistent improvements for diverse datasets spanning from molecule graphs to
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Table 3: Interpretation performance on the geometric learning datasets. The shadowed entries are the
results with the mean-1*std larger than the mean of the corresponding best baselines.

ACTSTRACK TAU3MU SYNMOL PLBIND

ROC AUC PREC@12 ROC AUC PREC@12 ROC AUC PREC@12 ROC AUC PREC@12

RANDOM 50 21 50 35 50 31 50 45
GRADGEO 69.31±0.89 33.54±1.23 78.04±0.57 64.18±1.25 76.38±4.96 64.72±3.75 58.11±2.91 64.78±4.73

BERNMASK 54.23±4.31 20.46±5.46 71.58±0.69 60.51±0.76 76.38±4.96 64.72±3.75 52.23±4.45 41.50±9.77

BERNMASK-P 22.87±3.33 11.29±5.46 70.72±5.10 55.50±6.26 87.06±7.12 77.11±7.58 51.98±4.66 59.20±5.48

POINTMASK 49.20±1.51 20.54±1.71 55.93±4.85 39.65±7.14 66.46±6.86 53.93±1.94 50.00±0.00 45.10±0.00

GRADGAM 75.19±1.91 75.94±2.16 76.18±2.62 62.05±2.16 60.31±4.95 52.35±11.02 48.61±2.34 55.10±10.57

LRI-BERNOULLI 74.38±4.33 81.42±1.52 78.23±1.11 65.64±2.44 89.22±3.58 68.76±7.35 54.87±1.89 72.12±2.60

GMT-LIN 77.45±1.69 81.81±1.57 79.17±0.82 68.94±1.08 96.17±1.44 86.33±6.16 59.70±1.10 70.62±3.59

GMT-SAM 75.61±1.86 81.96±1.35 78.28±1.34 65.69±2.61 93.93±3.59 83.20±4.74 60.03±1.02 72.56±2.27

image-converted datasets. Despite distribution shifts, GMT-sam still brings improvements up to 13%
with GIN, and up to 16% against GSAT in Spurious-Motif.

Results on geometric benchmarks. Tables 3 and 4 shows the interpretation and generalization
performance of various methods. Again, we also observe consistent non-trivial improvements of
GMT-lin and GMT-sam in most cases than GSAT and post-hoc methods. Interestingly, GMT-lin
leads to more improvements than GMT-sam in terms of interpretation performance despite of its
simple modifications, while having a competitive generalization performance as LRI. In terms of
generalization performance, GMT-sam remain the best method. The results on geometric datasets
further demonstrate the strong generality of GMT across different tasks and backbones.

Table 4: Prediction performance (AUC) on the geometric learning datasets. The shadowed entries are
the results with the mean-1*std larger than the mean of the best baselines.

ACTSTRACK TAU3MU SYNMOL PLBIND ACTSTRACK TAU3MU SYNMOL PLBIND

ERM 97.40±0.32 82.75±0.16 99.30±0.20 85.31±2.21 GMT-LIN 93.92±0.98 82.60±0.17 99.26±0.27 86.29±0.80

LRI-BERNOULLI 94.00±0.78 86.36±0.06 99.30±0.15 85.80±0.70 GMT-SAM 98.55±0.11 86.42±0.08 99.89±0.03 87.19±1.86
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Figure 3: Ablation studies.

Ablation studies. In complementary to the interpretability and generalizability study, we conduct
further ablation studies to better understand the results. Fig. 3(a) shows the counterfactual fidelity
of GSAT, GMT-lin and GMT-sam in Spurious-Motif (SPmotif) test sets. As shown in Fig. 3(a)
that GSAT achieves a lower counterfactual fidelity. In contrast, GMT-lin and GMT-sam improve
a higher counterfactual fidelity, which explains the reason for the improved interpretability of GMT.
We also examine the hyperparameter sensitivity of GMT-sam in SPMotif-0.5 dataset. As shown
in Fig. 3(b), 3(c), GMT-sam maintains strong robustness against the hyperparameter choices. The
interpretation performance gets improved along with the sampling rounds, while a too larger GIB
information regularizer weights will affect the optimization of GMT as well as the generalizability.

7 CONCLUSIONS

We developed a theoretical framework to analyze the expressive power of XGNNs by formulating the
subgraph learning with multilinear extension (SubMT). We find that existing attention-based XGNNs
will fail to approximate SubMT, which will lead to unfaithful interpretation as well as poor (OOD)
generalization. To mitigate the issue, we propose a simple yet novel architecture called GMT which is
provably more powerful in approximating SubMT. Extensive experiments on both graph classification
and geometric learning benchmarks verify the superior interpretability and generalizability of GMT.
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A NOTATIONS

In the following, we list notations for key concepts that have appeared in this paper.

Table 5: Notations for key concepts involved in this paper.
G the graph space

Gc the space of subgraphs with respect to the graphs from G
Y the label space

ρ the pooling function of the GNN

d(·, ·) a distribution distance metric

L(·, ·) the loss function

G ∈ G a graph

G = (A,X) a graph with the adjacency matrix A ∈ {0, 1}n×n and node feature matrix X ∈ Rn×d

for brevity, we also use G and Y to denote the random variables as the graphs and labels

f = fc ◦ g a XGNN with a subgraph extractor g and a classifier fc
g a subgraph extractor g : G → Gc

fc a classifier GNN fc : Gc → Y
Gc the invariant subgraph with respect to G

Gs the spurious subgraph with respect to G

Âc, Â the weighted adjacency matrix for causal subgraph with entries Au,v = αe

as the sampling probability predicted by g

Âs the weighted adjacency matrix for spurious subgraph with entries Au,v = 1− αe

as the sampling probability predicted by g

Ĝc the estimated invariant subgraph produced by g

if the subgraph partitioning is conducted in an edge-centric view, then Ĝc = (X, Âc)

Ĝs the estimated spurious subgraph produced by tacking the complementary of Ĝc

if the subgraph partitioning is conducted in an edge-centric view, then Ĝs = (X, Âs)

I(Gc;Y ) mutual information between the extracted subgraph Gc and Y , specialized for maximizing I(G;Y )

P (Gc|G) ∈ R+ the probability for sampling Gc from G with the subgraph extractor g

P (Y |G) ∈ R|Y|
+ the label distribution of Y conditioned on G

Pf (Y |G) ∈ R|Y|
+ the predicted label distribution of Y conditioned on G

fc(Gc) ∈ R|Y|
+ the predicted label distribution of Y with fc by taking the input Gc
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B MORE DETAILS ABOUT THE BACKGROUND

We begin by introducing related works in Appendix B.1 and then more backgrounds about graph
information bottleneck in Appendix B.2, especially for how to obtain the formulas in the main text.

B.1 MORE RELATED WORKS

We give a more detailed background introduction of interpretable and generalizable GNNs (XGNNs)
in this section.

Graph Neural Networks. We use G = (A,X) to denote a graph with n nodes and m edges.
Within G, A ∈ {0, 1}n×n is the adjacency matrix, and X ∈ Rn×d is the node feature matrix with a
node feature dimension of d. This work focuses on the task of graph classification. Specifically, we
are given a set of N graphs {Gi}Ni=1 ⊆ G and their labels {Yi}Ni=1 ⊆ Y = Rc from c classes. Then,
we need to train a GNN ρ◦h with an encoder h : G → Rh that learns a meaningful representation hG

for each graph G to help predict their labels yG = ρ(hG) with a downstream classifier ρ : Rh → Y .
The representation hG is typically obtained by performing pooling with a READOUT function on
the learned node representations:

hG = READOUT({h(K)
u |u ∈ V }), (13)

where the READOUT is a permutation invariant function (e.g., SUM, MEAN) (Xu et al., 2019),
and h

(K)
u stands for the node representation of u ∈ V at K-th layer that is obtained by neighbor

aggregation:
h(K)
u = σ(WK · a({h(K−1)

v }|v ∈ N (u) ∪ {u})), (14)
where N (u) is the set of neighbors of node u, σ(·) is an activation function, e.g., ReLU, and a(·) is
an aggregation function over neighbors, e.g., MEAN.

Interpretable GNNs. Let G = (A,X) be a graph with node set V = {v1, v2, ..., vn} and edge
set E = {e1, e2, ..., em}, where A ∈ {0, 1}n×n is the adjacency matrix and X ∈ Rn×d is the node
feature matrix. In this work, we focus on interpretable GNNs (or XGNNs) for the graph classification
task, while the results can be generalized to node-level tasks as well (Wu et al., 2020). Given each
sample from training data Dtr = (Gi, Y i), an interpretable GNN f := h ◦ g aims to identify a
(causal) subgraph Gc ⊆ G via a subgraph extractor GNN g : G → Gc, and then predicts the label
via a subgraph classifier GNN fc : Gc → Y , where G,Gc,Y are the spaces of graphs, subgraphs, and
the labels, respectively (Yu et al., 2021). Although post-hoc explanation approaches also aim to find
an interpretable subgraph as the explanation for the model prediction (Ying et al., 2019; Yuan et al.,
2020a; Vu & Thai, 2020; Luo et al., 2020; Yuan et al., 2021; Lin et al., 2021; 2022a), they are shown
to be suboptimal in interpretation performance and sensitive to the performance of the pre-trained
GNNs (Miao et al., 2022). Therefore, this work focuses on intrinsic interpretable GNNs (XGNNs).

A predominant approach to implement XGNNs is to incorporate the idea of information bottle-
neck (Tishby et al., 1999), such that Gc keeps the minimal sufficient information of G about Y (Yu
et al., 2021; 2022; Miao et al., 2022; 2023; Yang et al., 2023), which can be formulated as

max
Gc

I(Gc;Y )− λI(Gc;G), Gc ∼ g(G), (15)

where maximizing the mutual information between Gc and Y endows the interpretability of Gc while
minimizing I(Gc;G) ensures Gc captures only the most necessary information, λ is a hyperparamter
trade off between the two objectives. In addition to minimizing I(Gc;G), there are also alternative
approaches that impose different constraints such as causal invariance (Chen et al., 2022a; Li et al.,
2022) or disentanglement (Wu et al., 2022b; Sui et al., 2022; Liu et al., 2022a; Fan et al., 2022)
to identify the desired subgraphs. When extracting the subgraph, XGNNs adopts the attention
mechanism to learn the sampling probability of each edge or node, which avoids the complicated
Monte Carlo tree search used in other alternative implementations (Zhang et al., 2022). Specifically,
given node representation learned by message passing Hi ∈ Rh for each node i, XGNNs either
learns a node attention αi ∈ R+ = σ(a(Hi)) via the attention function a : Rh → R+, or the
edge attention αe ∈ R+ = σ(a([Hu, Hv])) for each edge e = (u, v) via the attention function
a : R2h → R+, where σ(·) is a sigmoid function. α = [α1, ..., αm]T essentially elicits a subgraph
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distribution of the interpretable subgraph. In this work, we focus on edge attention-based subgraph
distribution as it is most widely used in XGNNs while our method can be easily generalized to node
attention-based subgraph approaches as demonstrated in the experiments with geometric learning
datasets.

Besides, Fountoulakis et al. (2023); Lee et al. (2023) find the failures of graph attention networks
in properly propagating messages with the attention mechanism. They differ from our work as they
focus on node classification tasks.

Faithful interpretation and (OOD) generalization. The faithfulness of interpretation is critical
to all interpretable and explainable methods (Ribeiro et al., 2016; Lipton, 2018; Alvarez-Melis &
Jaakkola, 2018; Rudin, 2018; Jain & Wallace, 2019; Karimi et al., 2023). Yet, there are many failure
cases found especially when with attention mechanisms. For example, Jain & Wallace (2019) reveals
that in NLP, randomly shuffling or imposing adversarial noises will not affect the predictions too
much, highlighting a weak correlation between attention and prediction. Karimi et al. (2023) present
a causal analysis showing the hyperparameters and the architecture setup could be a cofounder that
affects the causal analysis. Chang et al. (2020) show interpretations will fail when distribution shifts
are presented. Although the faithfulness of explanation/interpretations has been widely a concern for
Euclidean data, whether and how GNNs and XGNNs suffer from the same issue is under-explored.

Talking about the progress in graph data, there are several metrics developed to measure the faithful-
ness of graph explanations, such as fidelity (Yuan et al., 2020b; Amara et al., 2022), counterfactual
robustness (Bajaj et al., 2021; Prado-Romero et al., 2022; Ma et al., 2022), and equivalence (Crabbé
& van der Schaar, 2023), which are however limited to post-hoc graph explanation methods. In
fact, post-hoc explanation methods are mostly developed to adhere the faithfulness measures such as
fidelity. However, as shown by Miao et al. (2022), the post-hoc methods are suboptimal in finding the
interpretable subgraph and sensitive to the pre-trained model, which highlights a drawback of the
existing faithfulness measure. In contrast, we develop the first faithfulness measure for XGNNs in
terms of counterfactual invariance.

Although Bajaj et al. (2021); Prado-Romero et al. (2022); Ma et al. (2022) also adopt the concept
of counterfactual to develop post-hoc explanation methods, they focus on finding the minimal
perturbations that will change the predictions. Counterfactual is also widely used to improve graph
representation learning (Guo et al., 2023). In contrast, we adopt the concept of counterfactual to
measure the sensitivity of the XGNNs predictions to the predicted attention.
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Figure 4: Full SCMs on Graph Distribution Shifts (Chen et al., 2022a).

On the natural connection of XGNNs and OOD generalization on graphs. In the context of
graph classification, the generalization ability and the faithfulness of the interpretation are naturally
intertwined in XGNNs. In many realistic graph classification practices such as drug property
prediction (Ji et al., 2022; Zhang et al., 2023), the property of a drug molecule can naturally be
represented by a subgraph, termed as causal subgraph. The causal subgraph, in return, holds a causal
relationship with the drug property. Therefore, it is natural to identify the underlying causal subgraph
to provide OOD generalizable predictions and interpretations.

Typically, XGNNs need to extract the underlying ground truth subgraph in order to make correct
predictions on unseen test graphs (Miao et al., 2022). When distribution shifts are presented in the

21



Under review as a conference paper at ICLR 2024

test data, it is critical to find the underlying subgraph that has a causal relationship with the target
label (or causal subgraphs) (Chang et al., 2020; Chen et al., 2022a).

We now briefly introduce the background of causal subgraph and OOD generalization. Specifically,
we are given a set of graph datasets D = {De}e collected from multiple environments Eall. Samples
(Ge

i , Y
e
i ) ∈ De from the same environment are considered as drawn independently from an identical

distribution Pe. We consider the graph generation process proposed by Chen et al. (2022a) that covers
a broad case of graph distribution shifts. Fig. 4 shows the full graph generation process considered
in Chen et al. (2022a). The generation of the observed graph G and labels Y are controlled by a set
of latent causal variable C and spurious variable S, i.e.,

G := fgen(C, S).

C and S control the generation of G by controlling the underlying invariant subgraph Gc and spurious
subgraph Gs, respectively. Since S can be affected by the environment E, the correlation between
Y , S and Gs can change arbitrarily when the environment changes. C and S control the generation
of the underlying invariant subgraph Gc and spurious subgraph Gs, respectively. Since S can be
affected by the environment E, the correlation between Y , S and Gs can change arbitrarily when the
environment changes. Besides, the latent interaction among C, S and Y can be further categorized
into Full Informative Invariant Features (FIIF) when Y ⊥⊥ S|C and Partially Informative Invariant
Features (PIIF) when Y ̸⊥⊥ S|C. Furthermore, PIIF and FIIF shifts can be mixed together and yield
Mixed Informative Invariant Features (MIIF), as shown in Fig. 4. We refer interested readers to Chen
et al. (2022a) for a detailed introduction to the graph generation process.

To tackle the OOD generalization challenge on graphs generated following in Fig. 4, the existing
invariant graph learning approaches generically aim to identify the underlying invariant subgraph
Gc to predict the label Y (Wu et al., 2022a; Chen et al., 2022a). Specifically, the goal of OOD
generalization on graphs is to learn an invariant XGNN f := fc ◦ g, with the following objective:

maxfc, g I(Ĝc;Y ), s.t. Ĝc ⊥⊥ E, Ĝc = g(G). (16)

Since E is not observed, many strategies are proposed to impose the independence of Ĝc and E. A
common approach is to augment the environment information. For example, based on the estimated
invariant subgraphs Ĝc and spurious subgraphs Ĝs, Wu et al. (2022b); Liu et al. (2022a); Wu et al.
(2022a); Yu et al. (2023) propose to generate new environments, while Li et al. (2022) propose
to infer the underlying environment labels via clustering. Yang et al. (2022) propose a variational
framework to infer the environment labels. Gui et al. (2023) propose to learn causal independence
between labels and environments. Yu et al. (2021; 2022); Miao et al. (2022; 2023); Yang et al. (2023)
adopt graph information bottleneck to tackle FIIF graph shifts, and they cannot generalize to PIIF
shifts. Nevertheless, since most of the existing works adopt the backbone of XGNNs, and XGNNs
with information bottleneck is the state-of-the-art method with both high interpretation performance
and OOD generalization performance, the focus in this work will be around tackling FIIF shifts with
the principle of graph information bottleneck. More details are given in the next section.

In addition to the aforementioned approaches, Yehudai et al. (2021); Bevilacqua et al. (2021); Zhou
et al. (2022) study the OOD generalization as an extrapolation from small graphs to larger graphs
in the task of graph classification and link prediction. In contrast, we study OOD generalization
against various graph distribution shifts formulated in Fig. 4. Li et al. (2023) propose an extrapolation
strategy to improve OOD generalization on graphs. In addition to the standard OOD generalization
tasks studied in this paper, Xu et al. (2021); Mahdavi et al. (2022) study the OOD generalization in
tasks of algorithmic reasoning on graphs. Jin et al. (2022) study the test-time adaption in the graph
regime. Kamhoua et al. (2022) study the 3D shape matching under the presence of noises.

Multilinear extension. Multilinear extension serves as a powerful tool for maximizing combinatorial
functions, especially for submodular set function maximization (Owen, 1972; Călinescu et al., 2007;
Vondrak, 2008; Calinescu et al., 2011; Chekuri et al., 2014; 2015; Bian et al., 2019; Sahin et al., 2020;
Bian et al., 2022; Karalias et al., 2022). For example, Vondrak (2008); Calinescu et al. (2011) study
the multilinear extension in the context of social welfare. Bian et al. (2022) study the multilinear
extension for cooperative games. It is the expected value of a set function under the fully factorized
i.i.d. Bernoulli distribution. The closest work to ours is Karalias et al. (2022) that builds neural
set function extensions for multiple discrete functions. Nevertheless, to the best of our knowledge,
the notion of multilinear extensions for XGNNs is yet underexplored. In contrast, in this work, we
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are the first to identify subgraph multilinear extension as the factorized subgraph distribution for
interpretable subgraph learning.

B.2 VARIATIONAL BOUNDS AND REALIZATION OF THE IB PRINCIPLE

We first introduce how to derive Eq. 3 in the main text, and then discuss how to implement the
graph information bottleneck regularization min I(Gc;G) following the state-of-the-art architecture
GSAT (Miao et al., 2022; 2023).

Variational bounds for I(G;Y ). For the term I(G;Y ), notice that

I(G;Y ) = EG,Y

[
log

P (Y |G)

P (Y )

]
(17)

Since the true P (Y |G) is intractable, through XGNN modelling we introduce a variational approxi-
mation Pfc,g(Y |G). Then,

I(G;Y ) = EG,Y

[
log

Pfc,g(Y |G)

P (Y )

]
+ EG,Y

[
log

P (Y |G)

Pfc,g(Y |G)

]
(18)

= EG,Y

[
log

Pfc,g(Y |G)

P (Y )

]
+DKL(P (Y |G)||Pfc,g(Y |G)) (19)

≥ EG,Y [logPfc,g(Y |G)] +H(Y ) (20)

Since the optimization does not involve H(Y ), we continue with EG,Y [logPfc,g(Y |G)],

EG,Y [logPfc,g(Y |G)] = EG,Y

[
log

∑
Gc

Pfc,g(Y,Gc|G)

]
(21)

= EG,Y

[
log

∑
Gc

Pfc,g(Y |G,Gc)Pfc,g(Gc|G)

]
(22)

= EG,Y

[
log

∑
Gc

Pfc(Y |Gc)Pg(Gc|G)

]
(23)

where Eq. 23 is due to the implementation of XGNNs. Eq. 23 can also be written with expectations:

EG,Y

[
log

∑
Gc

Pfc(Y |Gc)Pg(Gc|G)

]
= EG,Y

[
logEGc∼P(Gc|G)Pfc(Y |Gc)

]
.

Maximizing I(G;Y ) is then equivalent to minimizing −I(G;Y ), and further minimizing
EG,Y [− logPfc,g(Y |G)]. This achieves to Eq. 3 in the main text, i.e.,

E(G,Y )∼Dtr
[− logP (Y |E

Gc
g∼G

Gc)] = E(G,Y )∼Dtr
[L(fc(α;G), Y )],

with L as the cross entropy loss, and α as the predicted sampling probability for edges. α factorizes
the sampling probability of the subgraphs as independent Bernoulli distributions on edges e ∼
Bern(αe),∀e ∈ E:

P (Gc|G) =
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe).

Variational bounds for I(Gc;G). For the term I(Gc;G), since we factorize graph distribution as
multiple independent Bernoulli distributions on edges, we are able to calculate the KL divergence to
upper bound I(Gc;G):

I(Gc;G) ≤ DKL(P (Gc|G)||Q(Gc)), (24)

where Q(Gc) is a variational approximation to P (Gc). DKL can be obtained via

DKL(P (Gc|G)||Q(Gc)) =
∑
e∈Gc

DKL(Bern(αe)||Bern(r)) + c(n, r), (25)
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where c(n, r) is a small constant, r is a hyperparameter to specify the prior for subgraph distributions.
To minimize I(Gc;G) is essentially to minimize DKL(Bern(αe)||Bern(r)). The KL divergence can
be directly calculated as

DKL(Bern(αe)||Bern(r)) =
∑
e

αe log
αe

r
+ (1− αe) log

(1− αe)

(1− r)
. (26)

Miao et al. (2022) find the mutual information based regularization can effectively regularize the
information contained in Gc than previous implementations such as vanilla size constraints with the
norm of attention scores or connectivity constraints (Yu et al., 2021).

Besides, we would like to note that GSAT implementation provided by the author does not exactly
equal to the mathematical formulation, i.e., they directly take the unormalized attention to Eq. 26, as
acknowledged by the authors 3. The reason for using another form of information regularization is
because the latter empirically performs better. Nevertheless, LRI adopts the mathematically correct
form and obtains better empirical performance. In our experiments, we adopt the mathematically cor-
rect form for both regular and geometric learning tasks, in order to align with the theory. Empirically,
we find the two forms perform competitively well with the suggested hyperparemters and hence stick
to the mathematically correct form.

C ON THE GENERALIZATION AND INTERPRETABILITY: A CAUSAL VIEW

C.1 STRUCTURAL CAUSAL MODEL FOR XGNNS

We provide a detailed description and the full structural causal model of XGNNs in complementary
to the causal analysis in Sec. 4.

C

S

Y

Ac

As

A

P̂c

H

Ŷ

P̂s

Nc

Nc

Ps

Pc

Âc

Âs

Figure 5: Bernoulli Parameterized SCM for interpretable GNN

Data generation. We consider the same data model as previous works (Bevilacqua et al., 2021;
Miao et al., 2022; Chen et al., 2022a), where the underlying causal subgraph Gc and the spurious
subgraph Gs will be assembled via some underlying assembling process G = fg(Gc, Gs), as
illustrated in Appendix B Fig. 4.

We focus on the FIIF distribution shifts (Fig. 4(b)) that can be resolved by graph information
bottleneck (Miao et al., 2022; Chen et al., 2022a). As shown in the figure, there are latent causal
and spurious variables C and S that have an invariant and spurious correlation with the label Y ,
respectively. C and S further control the generation of the graph structure of the causal subgraph
Gc, and the spurious subgraph Gs. Specifically, C and S will specify the number of nodes in Gc and
Gs as Nc and Ns. Then, C and S further control the underlying Bernoulli distributions on edges, by
specifying the sampling probability as Pc and Ps. With Nc and Pc (or Ns and Ps), Ac (or As) can be
sampled and then assembled into the observed graph structure A. As we focus on the edge-centric
view, our discussion focuses on the graph structures Ac and As of the subgraphs. Nevertheless, a
similar generation model can also be developed for the node-centric view.

3https://github.com/Graph-COM/GSAT/issues/10
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Interpretation. Correspondingly, XGNNs first uses a subgraph extractor to predict the causal
and spurious subgraphs Ĝc and Ĝs, respectively. The extraction aims to reverse the generation and
recover the underlying Pc, by learning the P̂c via the attention α. We denote the architecture and the
hyperparameter settings as H . Once P̂c is determined, P̂s = 1− P̂c is also obtained by finding the
complementary part. Then, the estimated causal and spurious subgraphs are sampled from P̂c and P̂s,
respectively. With the estimated causal subgraph Ĝc = (X, Âc), the classifier GNN c(·) will use it to
make a prediction Ŷ .

C.2 PRACTICAL ESTIMATION OF COUNTERFACTUAL FIDELITY

Since it is prohibitively expensive to enumerate all possible G̃ and the distance δ to examine the coun-
terfactual fidelity. We instead consider an alternative notion that adopts random perturbation onto the
learned attention score. Specifically, we consider a random attention matrix Ã ∼ σ(N (µĤA

, σĤA
)),

where µĤA
and σĤA

are the mean and standard deviation of the pre-attention matrix ĤA (The
adjacency matrix with the unnormalized attention). Since each non-symmetric entry in the attention
is generated independently, each non-symmetric entry in Ã is sampled independently following the
factorization of P (G). We randomly sample Ã by k times and calculate the following:

cĜc
=

1

k

k∑
i=1

d(fc(Y |G̃i
c), fc(Y |Ĝc)), (27)

where G̃i
c = (X, Ãi

c) and d is total variation distance. The detailed computation of the practical
counterfactual fidelity is provided in Algorithm 1.

Algorithm 1 Practical estimation of counterfactual fidelity.
1: Input: Training data Dtr; a trained XGNN f with subgraph extractor g, and classifier fc;

sampling times es; batch size b; total variation distance d(·);
2: // Minibatch sampling.
3: for j = 1 to |Dtr|/b do
4: Sample a batch of data {Gi, Y i}bi=1 from Dtr;
5: Obtain the pre-attention matrix ĤA;
6: Obtain the attention matrix Â = σ(ĤA);
7: Obtain the original prediction with fc based on the attention matrix Â as {ŷi}bi=1;
8: // Random noises injection.
9: for k = 1 to es do

10: Sample a random attention matrix Ã ∼ σ(N (µĤA
, σĤA

));
11: Obtain sampling attention {αi}bi=1;
12: Obtain the perturbed prediction with fc based on the attention matrix Ã as {ŷik}bi=1;
13: end for
14: Calculate {ci

Ĝc
}bi=1 with k groups of {ŷik}bi=1 and {ŷi}bi=1;

15: Obtain the averaged cj
Ĝc

within the batch;
16: end for
17: Obtain the averaged cĜc

within the training data;
18: Return estimated cĜc

;

Shown as in Fig. 6, 7, we plot the counterfactual fidelity of GSAT and the simulated SubMT with
10 and 100 sampling rounds on BA-2Motifs and Mutag datasets. The SubMT is approximated via
GMT-sam with different sampling rounds. It can be found that GSAT achieves a counterfactual
fidelity that is 2 to 3 times lower than the simulated SubMT via GMT-sam with 10 and 100 sampling
rounds. Moreover, in simple tasks such as BA-2Motifs and Mutag, using larger sampling rounds like
100 does not necessarily bring more counterfactual fidelity. One reason can be using small sampling
rounds to touch the upper bounds of counterfactual fidelity measured in our work. We also provide a
discussion on why the counterfactual fidelity grows slowly at the initial epochs in BA-2Motif datasets
in Appendix E.2. More counterfactual fidelty studies can be found in Appendix F.5.
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(a) SubMT on BA-2Motifs trainset.
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(b) SubMT on BA-2Motifs valset.
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(c) SubMT on BA-2Motifs test set.

Figure 6: Counterfactual fidelity on BA-2Motifs.
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(a) SubMT on Mutag trainset.
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(b) SubMT on Mutag validation set.
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(c) SubMT on Mutag test set.

Figure 7: Counterfactual fidelity on Mutag.

D THEORIES AND PROOFS

D.1 USEFUL DEFINITIONS

We give the relevant definitions here for ease of reference when reading our proofs.
Definition D.1 (Subgraph multilinear extension (SubMT)). Given the attention α ∈ Rm

+ as edge
sampling probability of Gc, XGNNs factorize P (G) as independent Bernoulli distributions on edges:

P (Gc|G) =
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe),

which elicits the multilinear extension of fc(Gc) in Eq. 3 as:

Fc(α;G) :=
∑

Gc∈G

fc(Gc)
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe) = E
Gc

g∼G
fc(Gc). (28)

Definition D.2 (ϵ-SubMT approximation). Let d(·, ·) be a distribution distance metric, a XGNN f =
fc ◦ g ϵ-approximates SubMT (Def. 3.1), if there exists ϵ ∈ R+ such that d(Pf (Y |G), P (Y |G)) ≤ ϵ

where P (Y |G) ∈ R|Y| is the ground truth conditional label distribution, and Pf (Y |G) ∈ R|Y| is the
predicted label distribution for G via a XGNN f , i.e., Pf (Y |G) = fc(EGc

g∼G
Gc).

Definition D.3 ((δ, ϵ)-counterfactual fidelity). Given a meaningful minimal distance δ > 0, let d(·, ·)
be a distribution distance metric , if a XGNN f = fc ◦ g commits to the ϵ−counterfactual fidelity,
then there exist ϵ > 0 such that, ∀G, G̃ that d(P (Y |G), P (Y |G̃)) ≥ δ, the following holds:

d(Pf (Y |G̃), Pf (Y |G)) ≥ ϵδ.

D.2 PROOF FOR PROPOSITION 3.3

Obviously fc(·) is a non-linear function even with a linearized GNN (Wu et al., 2019) with linear
activations and pooling such as sum pooling, which can be written as:

where ρ is the pooling, k is the number of layers and W ∈ Rh×h are the learnable weights.
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Proposition D.4. Consider a linearized GNN (Wu et al., 2019) with number of message passing
layers k > 1, linear activations and pooling,

fc(Gc) = ρ(ÂkXW ), (29)

if there exists 1 ≤ i, j ≤ n that 0 < Âi,j < 1, Eq. 8 can not hold, thus Eq. 29 can not approximate
SubMT (Def. 3.1).

Proof. To begin with, given a linear pooling function ρ, one could write the outcomes of fc(A) =
ρ(AkXW ) as a summation in Ak

i,jvi,j , with vi,j is the weight that accounting for the pooling as well
as XW :

fc(A) =
∑
i

∑
jAi,jvi,j . (30)

Given the linearity of expectations, the comparison between E[fc(A)] and fc(E[A]) now turns
into the comparison between E[Ak

i,jvj ] and (E[Ai,j ])
kvj . Since Aij is drawn from the Bernoulli

distribution, with the expectation as Âi,j , it suffices to know that

E[Ak
i,jvj ] = 1kÂi,j + 0k(1− Âi,j) = Âi,j , (31)

while (E[Ai,j ])
k = Âk

i,j . Then, we know that E[fc(A)] ̸= fc(E[A]).

We also conduct empirical verifications with GSAT implemented in GIN and SGC with various layers
in Appendix F.6.

D.3 PROOF FOR PROPOSITION 4.2

Proposition D.5. If a XGNN f ϵ-approximates SubMT (Def. D.2), then f also satisfies (δ, 1− 2ϵ
δ )-

counterfactual fidelity (Def. D.3).

Proof. Considering any two graphs G and G̃ that d(P (Y |G), P (Y |G̃) ≥ δ, since d is a distance
metric, we have the following inequality holds:

d(P (Y |G), Pf (Y |G̃)) ≤ d(Pf (Y |G), P (Y |G)) + d(Pf (Y |G), Pf (Y |G̃)), (32)

by the triangle inequality. Furthermore, we have

d(P (Y |G), Pf (Y |G̃))− d(Pf (Y |G), P (Y |G)) ≤ d(Pf (Y |G), Pf (Y |G̃)) (33)

As XGNN f that ϵ-approximates SubMT, we have the following by definition:

d(Pf (Y |G̃), P (Y |G̃)) ≤ ϵ, d(Pf (Y |G), P (Y |G)) ≤ ϵ.

Then, call the triangle inequality again, we have

d(P (Y |G), P (Y |G̃)) ≤ d(Pf (Y |G̃), P (Y |G)) + d(Pf (Y |G̃), P (Y |G̃))

d(P (Y |G), P (Y |G̃))− d(Pf (Y |G̃), P (Y |G̃)) ≤ d(Pf (Y |G̃), P (Y |G))

δ − d(Pf (Y |G̃), P (Y |G̃)) ≤ d(Pf (Y |G̃), P (Y |G))

δ − ϵ ≤ d(Pf (Y |G̃), P (Y |G)).
(34)

Combining the aforementioned three inequalities, we have

d(Pf (Y |G̃), P (Y |G))− d(Pf (Y |G), P (Y |G)) ≥ δ − 2ϵ,

Then, it suffices to know that

δ − 2ϵ ≤ d(Pf (Y |G), Pf (Y |G̃)). (35)
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D.4 PROOF FOR THEOREM 5.1

Theorem D.6. Given the attention matrix Â, and the distribution distance metric d as the total
variation distance, let C = |Y|, for a GMT-sam with t i.i.d. samples of Gi

c ∼ P (Gc|G), then, there
exists ϵ ∈ R+ such that, with a probability at least 1− e−tϵ2/4, GMT-sam ϵC

2 -approximates SubMT
(Def. D.2) and satisfies (δ, 1− ϵC

δ ) counterfactual fidelity (Def. D.3).

Proof. Recall the SubMT objective:

Fc(α;G) :=
∑

Gc∈G

fc(Gc)
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe),

which is the expanded form of E[fc(Gc)], Gc ∼ P (Gc|Â). Then, denote M = max |fc(Gc)|, fc(Gc)
can be considered as a random variable within the range of [−M,M ]. Considering t random i.i.d.
examples of {Gi

c}ti=1 drawn from P (Gc|Â), and the predicted probability for each class, denoted as
Yi =

1
M fc(G

i
c), we then have Yi ∈ [−1, 1] and

∑t
i=1 E[Yi] =

t
M F (α;G). It allows us to adopt the

Markov’s inequality and obtain the following Chernoff bound:

Pr(|
t∑

i=1

Yi −
t

M
F (α;G) > tϵ|) < e−t2ϵ2/4t = e−tϵ2/4.

Since by definition of GMT-sam, i.e.,

fs
c (Ĝc) =

1

t

t∑
i=1

fc(Y |Gi
c),

we have
t∑

i=1

Yi =
t

M

t∑
i=1

fc(G
i
c) =

t

M
fs
c (Ĝc),

the bound can be written as:

Pr(| t

M
fs
c (Ĝc)−

t

M
F (α;G) > tϵ|) < e−t2ϵ2/4t = e−tϵ2/4

Pr(|fs
c (Ĝc)− F (α;G) > ϵM |) < e−tϵ2/4

Pr(|fs
c (Ĝc)− F (α;G) ≤ ϵM |) ≥ 1− e−tϵ2/4.

(36)

In other words, with a probability at least 1− e−tϵ2/4, we have the following holds:

|fs
c (Ĝc)− Fc(α;G)]| ≤ ϵM. (37)

Since M is defined as the maximal probability for each class,

M = maxE[fcP (Y |Gc)],

it suffices to know that M ≤ 1. Therefore, it follows that

|fs
c (Ĝc)− Fc(α;G)]| ≤ ϵ,

for each class, which further implies that

|fs
c (Ĝc)− Fc(α;G)]| ≤ ϵ|Y| = ϵC,

which commits to the ϵC
2 SubMT approximation under the total variation distance. Then, using the

results of Proposition 4.2, we know GMT-sam also commits to the 1− ϵC
δ counterfactual fidelity.
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E MORE DISCUSSIONS ON PRACTICAL IMPLEMENTATIONS OF GMT

We provide more discussion in complementary to the description of Sec. 5 in the main text.

E.1 ALGORITHMS OF GMT

Training subgraph extractor with random subgraph sampling. We focus on discussing the
implementation details of GMT-sam since GMT-lin differs from GSAT only in the number of
weighted message passing times. GMT-sam contains two stages: i) subgraph extractor training,
and ii) neural subgraph extension learning. The first stage aims to train the subgraph extractor to
extract the desired subgraphs, while the second stage aims to reduce the additional computation
overhead of the random subgraph sampling, and further better learn the correlations between the soft
subgraphs and the labels. The algorithm for stage i) is given in Algorithm 2 and for stage ii) is given
in Algorithm 3, respectively.

Algorithm 2 Subgraph extractor training algorithm of Graph Multilinear neT (GMT).
1: Input: Training data Dtr; a XGNN f with subgraph extractor g, and classifier fc; subgraph

sampling epochs es; length of maximum subgraph learning epochs el; batch size b; loss function
l(·); subgraph regularization o(·); subgraph regularization weight γ;

2: Randomly initialize f ;
3: // Phase of subgraph learning.
4: for j = 1 to el do
5: Sample a batch of data {Gi, Y i}bi=1 from Dtr;
6: Obtain sampling attention {αi}bi=1 via Eq. 38;
7: // MCMC subgraph sampling.
8: for k = 1 to es do
9: Obtain the sampling probability {βi}bi=1 via Eq. 39 using Gumbel-softmax;

10: Randomly sample subgraphs {Gi
c ∼ Ber(βi)}bi=1 via Eq. 40;

11: Obtain predictions as logits {ŷij}bi=1;
12: end for
13: Obtain simulated prediction {ŷi = 1

es

∑es
k=1 ŷ

i
k}bi=1;

14: Obtain prediction loss lp with l(·) and {ŷi}bi=1;
15: Obtain subgraph regularization loss lo with o(·) and {αi}bi=1;
16: Obtain the final loss lf = lp + η · lo;
17: Updated model via backpropagation with lf ;
18: end for
19: Return trained subgraph extraction model fc ◦ g;

For each input graph along with the label (G, Y ), the subgraph extractor g first propagates among
G and obtains the node representations Hi ∈ Rh for each node. Then, the (edge-centric) sampling
attention is obtained as the following

αe = a([Hu, Hv]), (38)

for each edge e = (u, v) ∈ E, where a(·) is the attention function and can be simply implemented as
a MLP. Note that αe is slightly different from that in the main text, since we will discuss in detail the
discrete sampling process in the implementation.

To enable the gradient backpropagation along with the discrete sampling of subgraphs, we will adopt
the Gumbel-softmax trick and straight-through estimator (Jang et al., 2017; Maddison et al., 2017).
With the attention from Eq. 38, the sampling probability β is then obtained as follows

βe = σ((αe +D)/τ), (39)

where τ is the temperature, σ is the sigmoid function, and

D = logU − log(1− U),

with U ∼ Uniform(0, 1). To sample the discrete subgraph, we sample from the Bernoulli distributions
on edges independently

Ae ∼ Bern(βe)
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and obtain the discrete subgraph with each entry as

Ae = StopGrad(Ae − αe) + αe, (40)

which allows computing the gradients along with the subgraph sampling probability. Although the
trick works empirically well, the estimated gradients are approximated ones that have biases from the
ground truth. It might be of independent interest to analyze whether the random subgraph sampling
in GMT-sam can also reduce the gradient estimator biases during discrete sampling.

Algorithm 3 Subgraph classifier training algorithm of Graph Multilinear neT (GMT).
1: Input: Training data Dtr; trained XGNN f with subgraph extractor g, and classifier fc by

Alg. 2; length of maximum subgraph classifier training epochs ec; batch size b; loss function l(·);
subgraph regularization o(·); subgraph regularization weight γ;

2: Randomly initialize f ;
3: // Phase of subgraph classifier learning.
4: for j = 1 to el do
5: Sample a batch of data {Gi, Y i}bi=1 from Dtr;
6: Obtain sampling attention {αi}bi=1 via Eq. 38;
7: // Soft subgraph propagation.
8: Obtain edge sampling probability {βi = StopGrad(αi)}bi=1; // subgraph extractor

frozen
9: Obtain prediction with subgraph {ŷi}bi=1 via weighted message passing with {βi}bi=1;

10: Obtain prediction loss lp with l(·) and {ŷi}bi=1;
11: Obtain subgraph regularization loss lo with o(·) and {αi}bi=1;
12: Obtain final loss lf = lp + η · lo;
13: Updated model via backpropagation with lf ;
14: end for
15: Return final model fc ◦ g;

Learning neural subgraph multilinear extension. When the subgraph extractor is trained, we
then enter into stage two, which focuses on extracting the learned subgraph information for better
predicting the label with a single pass forward. More concretely, although GMT trained with GMT-sam
improves interpretability, GMT-sam still requires multiple random subgraph sampling to approximate
SubMT and costs much additional overhead. To this end, we propose to learn a neural SubMT that
only requires a single sampling, based on the trained subgraph extractor g with GMT-sam.

Learning the neural SubMT is essentially to approximate the MCMC with a neural network, though
it is inherently challenging to approximate MCMC (Johndrow et al., 2020; Papamarkou et al., 2022).
Nevertheless, the feasibility of neural SubMT learning is backed by the inherent causal subgraph
assumption of (Chen et al., 2022a), once the causal subgraph is correctly identified, simply learning
the statistical correlation between the subgraph and the label is sufficient to recover the causal relation.

Therefore, we propose to simply re-train a new classifier GNN with the frozen subgraph extractor, to
distill the knowledge contained in Ĝc about Y . The implementation is simply to stop the gradients
of the subgraph extractor, while only optimizing the classifier GNN with the predicted sampling
probability. Note that it breaks the shared encoder structure of the GSAT, which could avoid potential
representation conflicts for a graph encoder shared by both the subgraph extractor and the classifier.
Under this consideration, we also enable the BatchNorm (Ioffe & Szegedy, 2015) in the subgraph
extractor to keep count of the running stats when training the new classifier.

Empirically, the weighted message passing can effectively capture the desired information from g
and lead to a performance increase. This scheme also brings additional benefits over the originally
trained classifier, which focuses on providing the gradient guidance for finding proper Gc instead of
learning all the available statistical correlations between Gc and Y .

E.2 DISCUSSIONS ON GMT IMPLEMENTATIONS

With the overall algorithm training the subgraph extractor and the classifier, we then discuss in more
detail the specific implementation choices of GMT-sam.
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Transforming node-centric random subgraph sampling In the task of geometric learning, the
input graphs are initially represented as point clouds. The graph structures are built upon the node
features and geometric knowledge. Therefore, LRI adopts the node-centric sampling and learns
sampling probabilities for nodes when implementing the graph information bottleneck. However,
when sampling concrete subgraphs from a node-centric view, it will often lead to a too aggressive
sampling. Otherwise, one has to increase the sampling probability r of the variational distribution
Q(Gc) in Eq. 26. To this end, we can transform the node-centric sampling to edge-centric sampling.
Let αi denote the sampling probability for node i, then the edge sampling probabilities can be
obtained via:

βe = αu · αv, (41)

for each edge e = (u, v) ∈ E. It thus enables the subgraph sampling from the node-centric view.
Empirically, in geometric datasets, we observe a lower variance when transforming the node-centric
sampling to edge-centric sampling.

Warmup of GMT-sam. Although more sampling rounds can improve the approximation precision
of GMT-sam to SubMT, it would also affect the optimization of the interpretable subgraph learning,
in addition to the additional unnecessary computational overhead. For example, at the beginning of
the interpretable subgraph learning, the subgraph extractor will yield random probabilities like 0.5.

• First, a more accurate estimation based on random SubMT is unnecessary.

• Second, at such random probabilities, every subgraph gets a nearly equal chance of being
sampled, and gets gradients backpropagated. Since neural networks are universal approxi-
mators, the whole network can easily be misled by the noises, which will slow down the
learning speed of the meaningful subgraphs.

• Third, when spurious correlations exist between subgraphs and the labels, the learning
process will be more easily misled by the potential spurious correlations at the beginning of
the subgraph learning.

More importantly, sampling multiple times can lead to trivial solutions with degenerated performance
in the GSAT objective. Specifically, the formulation of the mutual information regularizer in GSAT
has a trivial solution where all αe directly collapses to the given r. More formally, let αe = r in the
following objective obviously lead to zero loss that appears to be a Pareto optimal solution (Chen
et al., 2022b) that can be selected as the output:

DKL(Bern(αe)||Bern(r)) =
∑
e

αe log
r

r
+ (1− r) log

(1− αe)

(1− r)
= 0.

The trivial solutions can occur to GMT more easily with more rounds of subgraph sampling, especially
in too simple or too complicated tasks.

To tackle the above problem, we propose two warmup strategies:

• Larger initial prior r of Q(Gc) in Eq. 26: GSAT achieves the objective of graph information
bottleneck with a schedule of r in Q(Gc) as 0.9, which could promote the random sampling
probabilities to meaningful subgraph signals. As the random subgraph sampling will slow
the optimization, we can warm up the initial subgraph learning with a larger initial r. In
experiments, we try with r = 1.0 and r = 0.9, and find r = 0.1 can effectively warm up
and speed up the subgraph learning, which is especially meaningful for too simple tasks
where XGNNs can easily overfit to, or too hard tasks where XGNNs learns the meaningful
subgraph signals in a quite slow speed. We can also use a larger regularization penalty at the
initial stage to speed up meaningful subgraph learning.

• Single subgraph sampling: As sampling too many subgraphs can bring many drawbacks
such as overfitting and slow learning, we propose warm up the initial subgraph learning
with a single sampling during the first stage of r (i.e., when r still equals to the initial r in
the schedule of GSAT). The single subgraph sampling also implicitly promotes meaningful
subgraph learning, as it encourages a higher chance even for a small difference in the
sampling probability.
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In addition to helping with the warmup of the interpretable subgraph, single subgraph sampling also
has some additional benefits and effectively tackles the trivial solution of GSAT objective. It also
brings more variance between meaningful subgraph learning and noisy subgraph learning, and we find
using a single random subgraph learning is extremely helpful for simple tasks such as BA 2motifs in
our experiments. The implicit variance of single random subgraph sampling also brings additional
benefits to maintaining high variance between the signal subgraph and noisy subgraph, which might
be of independent interest. It turns out the variance in single subgraph learning can have an implicit
regularization preventing the trivial solution.

In experiments, we will use all of the warmup strategies together (i.e., a larger initial r, a larger
penalty score, and single subgraph sampling) when we observe a performance degeneration in the
validation set. Otherwise, we will stick to the original receipt. More details are given in Sec. F.2.

Sinlge weighted message passing in GMT-lin. Although it has been shown that propagation with
the attention only once can effectively reduce the SubMT approximation error, it remains unknown
which layer the attention should be applied. Empirically, we examine the following three strategies:

• Weighted message passing on the first layer;

• Weighted message passing on the last layer;

• Single weighted message passing of all layers, and then average the logits;

We find applying weighted message passing to the first layer outperforms the other two strategies in
experiments, and thus we stick to the first layer weighted message passing scheme. Exploring the
reasons behind the intriguing phenomenon will be an interesting future extension.

Subgraph sampling for neural SubMT. Although the weighted message passing with α produced
by the trained subgraph extractor already achieves better performance, it may not maximally extract
the full underlying information of the learned subgraph and the labels, since the original function is a
MCMC that is not easy to be fitted (Johndrow et al., 2020). Besides, the weighted message passing
itself may not be expressive enough due to the expressivity constraints of GNNs (Xu et al., 2019),
and also the limitations of the attention-based GNNs (Fountoulakis et al., 2023; Lee et al., 2023).

Therefore, we propose more subgraph sampling strategies along with alternative architecture of the
new classifier, in order to best fit the underlying MCMC function. Specifically, we consider the
following aspects:

• Initialization: the graph encoder of the new classifier can be initialized from scratch and
avoids overfitting, or initialized from the random subgraph sampling trained models;

• Architecture: weighted message passing, or single weighted message passing as that of
GMT-lin;

• Attention sampling: set the minimum p% attention scores directly to 0; set the maximum
p% attention scores directly to 1; set the maximum p% attention scores directly to 1 while
set the minimum (1− p)% attention scores directly to 0;

We examine the aforementioned strategies and choose the one according to the validation performance
in experiments. We exhibit the detailed hyperparameter setup in Appendix F.2.

F MORE DETAILS ABOUT THE EXPERIMENTS

In this section, we provide more details about the experiments, including the dataset preparation,
baseline implementations, models and hyperparameters selection as well as the evaluation protocols.

F.1 DATASETS

We provide more details about the motivation and construction method of the datasets that are used in
our experiments. Statistics of the regular graph datasets are presented in Table 6, and statistics of the
geometric graph datasets are presented in Table 7.
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Table 6: Information about the datasets used in experiments. The number of nodes and edges are
respectively taking average among all graphs.

DATASETS # TRAINING # VALIDATION # TESTING # CLASSES # NODES # EDGES METRICS

BA-2MOTIFS 800 100 100 2 25 50.96 ACC
MUTAG 2, 360 591 1, 015 2 30.13 60.91 ACC
SUPRIOUS-MOTIF b = 0.5 9, 000 3, 000 6, 000 3 45.05 65.72 ACC
SUPRIOUS-MOTIF b = 0.7 9, 000 3, 000 6, 000 3 46.36 67.10 ACC
SUPRIOUS-MOTIF b = 0.9 9, 000 3, 000 6, 000 3 46.58 67.59 ACC
MNIST-75SP 20, 000 5, 000 10, 000 10 70.57 590.52 ACC
GRAPH-SST2 28, 327 3, 147 12, 305 2 10.20 18.40 ACC
OGBG-MOLHIV 32, 901 4, 113 4, 113 2 25.51 54.94 AUC

Table 7: Statistics of the four geometric datasets from Miao et al. (2023).
# Classes # Features in X # Dimensions in r # Samples Avg. # Points/Sample Avg. # Important Points/Sample Class Ratio Split Scheme Split Ratio

ActsTrack 2 0 3 3241 109.1 22.8 39/61 Random 70/15/15
Tau3Mu 2 1 2 129687 16.9 5.5 24/76 Random 70/15/15
SynMol 2 1 3 8663 21.9 6.6 18/82 Patterns 78/11/11
PLBind 2 3 3 10891 339.8 132.2 29/71 Time 92/6/2

BA-2Motifs (Luo et al., 2020) is a synthetic dataset that adopts the Barabási–Albert (BA) graph data
model to generate subgraphs in specific shapes. Each graph contains a motif subgraph that is either a
five-node cycle or a house. The class labels are determined by the motif, and the motif itself serves as
the interpretation of ground truth. The motif is then attached to a large base graph.

Mutag (Debnath et al., 1991) is a typical molecular property prediction dataset. The nodes represent
atoms and the edges represent chemical bonds. The label of each graph is binary and is determined
based on its mutagenic effect. Following Luo et al. (2020); Miao et al. (2022), -NO2 and -NH2 in
mutagen graphs are labeled as ground-truth explanations.

MNIST-sp (Knyazev et al., 2019) is a graph dataset converted from MNIST dataset via superpixel
transformation. The nodes of MNIST-75sp graphs are the superpixels and the edges are generated
according to the spatial distance of nodes in the original image. The ground truth explanations of
MNIST-75sp are simply the non-zero pixels. As the original digits are hand-written, the interpretation
subgraphs could be in varying sizes.

Suprious-Motif datasets (Wu et al., 2022b) is a 3-class synthetic datasets based on BA-2Motifs (Ying
et al., 2019; Luo et al., 2020) with structural distribution shifts. The model needs to tell which one of
three motifs (House, Cycle, Crane) the graph contains. For each dataset, 3000 graphs are generated
for each class at the training set, 1000 graphs for each class at the validation set and testing set,
respectively. During the construction of the training data, the motif and one of the three base graphs
(Tree, Ladder, Wheel) are artificially (spuriously) correlated with a probability of various biases, and
equally correlated with the other two. Specifically, given a predefined bias b, the probability of a
specific motif (e.g., House) and a specific base graph (Tree) will co-occur is b while for the others is
(1− b)/2 (e.g., House-Ladder, House-Wheel). The test data does not have spurious correlations with
the base graphs, however, test data will use larger base graphs that contain graph size distribution
shifts. Following Miao et al. (2022), we select datasets with a bias of b = 0.5, b = 0.7, and b = 0.9.
The interpretation ground truth is therefore the motif itself.

Graph-SST2 (Socher et al., 2013; Yuan et al., 2020b) is converted from a sentiment analysis dataset
in texts. Each sentence in SST2 will be converted to a graph. In the converted graph, the nodes
are the words and the edges are the relations between different words. Bode features are generated
using BERT (Devlin et al., 2019) and the edges are parsed by a Biaffine parser (Gardner et al., 2018).
Following previous works (Wu et al., 2022b; Miao et al., 2022; Chen et al., 2022a), our splits are
created according to the averaged degrees of each graph. Specifically, we assign the graphs as follows:
Those that have smaller or equal to 50-th percentile averaged degree are assigned to training, those
that have averaged degree larger than 50-th percentile while smaller than 80-th percentile are assigned
to the validation set, and the left are assigned to test set. Since the original dataset does not have the
ground truth interpretations, we report only the classification results.

OGBG-Molhiv (Hu et al., 2020) is also a molecular property prediction dataset. The nodes represent
atoms and the edges represent chemical bonds. The label of each graph is binary and is determined
based on whether a molecule inhibits HIV virus replication or not. The training, validation and test
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splits are constructed according to the scaffolds (Hu et al., 2020) hence there also exist distribution
shifts across different splits. Since the original dataset does not have the ground truth interpretations,
we report only the classification results.

In what follows we continue to introduce the four geometric learning datasets. We refer interested
readers to Miao et al. (2023) for more details.

ActsTrack dataset (Miao et al., 2023):

• Background: ActsTrack involves a fundamental resource in High Energy Physics (HEP), employed
for the purpose of reconstructing various properties, including the kinematics, of charged particles
based on a series of positional measurements obtained from a tracking detector. Within the
realm of HEP experimental data analysis, particle tracking is an essential procedure, and it also
finds application in medical contexts, such as proton therapy (Schulte et al., 2004). ActsTrack is
formulated differently by Miao et al. (2023) from traditional track reconstruction tasks: It requires
predicting the existence of a z → µµ decay and using the set of points from the µ ’s to verify model
interpretation, which can be used to reconstruct µ tracks.

• Construction: In the ActsTrack dataset, each data point corresponds to a detector hit left by a
particle, and it is associated with a 3D coordinate. Notably, the data points in ActsTrack lack
any features in the X dimension, necessitating the use of a placeholder feature with all values set
to one during model training. Additionally, the dataset provides information about the momenta
of particles as measured by the detectors, which has the potential to be employed for assessing
fine-grained geometric patterns in the data; however, it is not utilized as part of the model training
process. Given that, on average, each particle generates approximately 12 hits, and a model can
perform well by capturing the trajectory of any one of the µ (muon) particles resulting from the
decay, we report performance metrics in precision@12 following Miao et al. (2023). The dataset
was randomly split into training, validation, and test sets, maintaining a distribution ratio of 70%
for training, 15% for validation, and 15% for testing.

Tau3Mu dataset (Miao et al., 2023):

• Background: Tau3Mu involves another application in High Energy Physics (HEP) dedicated to
identifying a particularly challenging signature – charged lepton flavor-violating decays, specifi-
cally τ → µµµ decay. This task involves the analysis of simulated muon detector hits resulting
from proton-proton collisions. It’s worth noting that such decays are heavily suppressed within
the framework of the Standard Model (SM) of particle physics (Holstein, 2006), making their
detection a strong indicator of physics phenomena beyond the Standard Model (Collaboration,
2020). Unfortunately, τ → µµµ decay involves particles with extremely low momentum, rendering
them technically impossible to trigger using conventional human-engineered algorithms. Conse-
quently, the online detection of these decays necessitates the utilization of advanced models that
explore the correlations between signal hits and background hits, particularly in the context of the
Large Hadron Collider. Our specific objective is twofold: to predict the occurrence of τ → µµµ
decay and to employ the detector hits generated by the µ (muon) particles to validate the model’s
interpretations.

• Construction: Tau3Mu uses the data simulated via the PYTHIA generator (Bierlich et al., 2022).
The interpretation labels are using the signal sample with the background samples on a per-event
basis (per point cloud) while preserving the ground-truth labels. The hits originating from µ (muon)
particles resulting from the τ → µµµ decay are designated as ground-truth interpretation. The
training data only include hits from the initial layer of detectors, ensuring that each sample in
the dataset contains a minimum of three detector hits. Each data point in the samples comprises
measurements of a local bending angle and a 2D coordinate within the pseudorapidity-azimuth
(η − ϕ) space. Given that, in the most favorable scenario, the model is required to capture hits
from each µ particle, we report precision@3 following Miao et al. (2023). Lastly, the dataset is
randomly split into training, validation, and test sets, maintaining a distribution ratio of 70% for
training, 15% for validation, and 15% for testing.

SynMol dataset (Miao et al., 2023):

• Background: SynMol is a molecular property prediction task. While prior research efforts have
explored model interpretability within this domain (McCloskey et al., 2018), their emphasis has
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been primarily on examining chemical bond graph representations of molecules, often overlooking
the consideration of geometric attributes. In our present study, we shift our attention towards
3D representations of molecules. Our specific objective is to predict a property associated with
two functional groups, namely carbonyl and unbranched alkane (as defined by McCloskey et al.
(2018)), and subsequently employ the atoms within these functional groups to validate our model’s
interpretations.

• Construction: SynMol is constructed based on ZINC (Lin et al., 2022b) following McCloskey et al.
(2018) that creates synthetic properties based on the existence of certain functional groups. The
labeling criteria involve classifying a molecule as a positive sample if it contains both an unbranched
alkane and a carbonyl group. Conversely, molecules lacking this combination are categorized as
negative samples. Consequently, the atoms within branched alkanes and carbonyl groups serve as
the designated ground-truth interpretation. In addition to specifying a 3D coordinate, each data
point within a sample is also associated with a categorical feature signifying the type of atom it
represents. While the combined total of atoms in the two functional groups may be limited to just
five, it is important to note that certain molecules may contain multiple instances of such functional
groups. Consequently, we report precision metric at precision@5 following Miao et al. (2023).
Finally, to mitigate dataset bias, the dataset is split into training, validation, and test sets using a
distribution strategy following McCloskey et al. (2018); Miao et al. (2023). This approach ensures
a uniform distribution of molecules containing or lacking either of these functional groups.

PLBind dataset (Miao et al., 2023):

• Background: PLBind is to predict protein-ligand binding affinities leveraging the 3D structural
information of both proteins and ligands. This task holds paramount significance in the field
of drug discovery, as a high affinity between a protein and a ligand is a critical criterion in the
drug selection process (Wang & Zhang, 2017; Karimi et al., 2019). The accurate prediction of
these affinities using interpretable models serves as a valuable resource for rational drug design
and contributes to a deeper comprehension of the underlying biophysical mechanisms governing
protein-ligand binding (Du et al., 2016). Our specific mission is to forecast whether the affinity
surpasses a predefined threshold, and we achieve this by examining the amino acids situated within
the binding site of the test protein to corroborate our model’s interpretations.

• Construction: PLBind is constructed protein-ligand complexes from PDBind (Liu et al., 2017).
PDBind annotates binding affinities for a subset of complexes in the Protein Data Bank
(PDB) (Berman et al., 2000), therefore, a threshold on the binding affinity between a pair of
protein and ligand can be used to construct a binary classification task. The ground-truth interpre-
tation is then the part of the protein that are within 15A of the ligand to be the binding site (Liu
et al., 2022b). Besides, PLBind also includes all atomic contacts (hydrogen bond and hydrophobic
contact) for every protein-ligand pair from PDBsum (Laskowski, 2001), where the ground-truth
interpretations are the corresponding amino acids in the protein. Every amino acid in a protein
is linked to a 3D coordinate, an amino acid type designation, the solvent-accessible surface area
(SASA), and the B-factor. Likewise, each atom within a ligand is associated with a 3D coordinate,
an atom type classification, and Gasteiger charges. The whole dataset is then partitioned into train-
ing, validation, and test sets, adopting a division based on the year of discovery for the complexes,
following Stárk et al. (2022).

F.2 BASELINES AND EVALUATION SETUP

During the experiments, we do not tune the hyperparameters exhaustively while following the
common recipes for optimizing GNNs, and also the recommendation setups by previous works.
Details are as follows.

GNN encoder. For fair comparison, we use the same GNN architecture as graph encoders for all
methods, following Miao et al. (2022; 2023). For the backbone of GIN, we use 2-layer GIN (Xu
et al., 2019) with Batch Normalization (Ioffe & Szegedy, 2015) between layers, a hidden dimension
of 64 and a dropout ratio of 0.3. For the backbone of PNA, we use 4-layer PNA (Corso et al., 2020)
with Batch Normalization (Ioffe & Szegedy, 2015) between layers, a hidden dimension of 80 and
a dropout ratio of 0.3. The PNA network does not use scalars, while using (mean, min, max, std
aggregators. For the backbone of EGNN (Satorras et al., 2021), we use 4-layer EGNN with Batch

35



Under review as a conference paper at ICLR 2024

Normalization (Ioffe & Szegedy, 2015) between layers, a hidden dimension of 64 and a dropout ratio
of 0.2. The pooling functions are all sum pooling.

Dataste Splits. We follow previous works (Luo et al., 2020; Miao et al., 2022) to split BA-2Motifs
randomly into three sets as (80%/10%/10%), Mutag randomly into 80%/20% as train and validation
sets where the test data are the mutagen molecules with -NO2 or -NH2. We use the default split for
MNIST-75sp given by (Knyazev et al., 2019) with a smaller sampling size following (Miao et al.,
2022). We use the default splits for Graph-SST2 (Yuan et al., 2020b), Spurious-Motifs (Wu et al.,
2022b) and OGBG-Molhiv (Hu et al., 2020) datasets. For geometric datasets, we use the author
provided default splits.

Baseline implementations. We use the author provided codes to implement the baselines
GSAT (Miao et al., 2022)4 and LRI (Miao et al., 2023)5. We re-run GSAT and LRI under the
same environment using the author-recommended hyperparameters for a fair comparison. Specif-
ically, BA-2Motif, Mutag and PLBind use r = 0.5, and all other datasets use r = 0.7. The λ of
information regularizer is set to be 1 for regular graphs, 0.01 for Tau3Mu, and 0.1 for ActsTrack,
SynMol and PLBind as recommended by the authors. r will initially be set to 0.9 and gradually decay
to the tuned value. We adopt a step decay, where r will decay 0.1 for every 10 epochs. As for the
implementation of explanation methods, for regular graphs, we directly adopt the results reported.
For geometric graphs, we re-run the baselines to obtain the results, as previous results are obtained
according to the best validation interpretation performance that may mismatch the practical scenario
where the interpretation labels are usually not available.

Optimization and model selection. Following previous works, by default, we use Adam opti-
mizer (Kingma & Ba, 2015) with a learning rate of 1e− 3 and a batch size of 128 for all models at
all datasets, except for Spurious-Motif with GIN and PNA, Graph-SST2 with PNA that we will use a
learning rate of 3e− 3. When GIN is used as the backbone model, MNIST-75sp is trained for 200
epochs, and all other datasets are trained for 100 epochs, as we observe that 100 epochs are sufficient
for convergence at OGBG-Molhiv. When PNA is used, Mutag and Ba-2Motifs are trained for 50
epochs and all other datasets are trained for 200 epochs. We report the performance of the epoch
that achieves the best validation prediction performance and use the models that achieve such best
validation performance as the pre-trained models. All datasets use a batch size of 128; except for
MNIST-75sp with GIN, we use a batch size of 256 to speed up training due to its large size in the
graph setting.

The final model is selected according to the best validation classification performance. We report the
mean and standard deviation of 10 runs with random seeds from 0 to 9.

Implementations of GMT. For a fair comparison, GMT uses the same GNN architecture for GNN
encoders as the baseline methods. We search for the hyperparameters of r from [r0−0.1, r0, r0+0.1]
according to the default r0 given by Miao et al. (2022; 2023). We search the weights of graph
information regularizers from [0.1, 0.5, 1, 2] for regular graphs and from [0.01, 0.1, 1] for geometric
datasets. To avoid trivial solutions of the subgraph extractor at the early stage, we search for warm-up
strategies mentioned in Appendix E.2. Besides, we also search for the decay epochs of the r scheduler
to avoid trivial solutions. We search for the sampling rounds from [1, 20, 40, 80, 100, 200] when the
memory allows. In experiments, we find GMT already achieves the state-of-the-art results in most of
the set-ups without the warm-up. Only in BA-2Motifs and MNIST-75sp with GIN, and in Tau3Mu
with EGNN, GMT needs the warmups.

4https://github.com/Graph-COM/GSAT
5https://github.com/Graph-COM/LRI
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Table 8: Sensitivity to different subgraph decoding strategies.
Generalization Interpretation

Initialization Architecture Attention spmotif-0.5 spmotif-0.7 spmotif-0.9 spmotif-0.5 spmotif-0.7 spmotif-0.9

GSAT 47.45±5.87 43.57±3.05 45.39±5.02 74.49±4.46 72.95±6.40 65.25±4.42

new mul min0 60.09±5.57 54.34±4.04 55.83±5.68 85.50±2.40 84.67±2.38 73.49±5.33

old mul min0 58.83±7.22 55.04±4.73 55.77±5.97 85.52±2.41 84.65±2.42 73.49±5.33

new mul max1 44.49±2.65 49.77±2.31 50.22±2.79 85.50±2.39 84.66±2.37 73.50±5.31

old mul max1 45.91±2.86 49.11±3.04 50.30±2.07 85.49±2.39 84.64±2.39 73.50±5.35

old mul min0max1 51.21±6.46 50.91±6.50 53.13±4.46 85.52±2.41 84.66±2.43 73.49±5.34

new mul normal 47.69±5.72 44.12±5.44 40.69±4.84 84.69±2.40 80.08±5.37 73.48±5.34

old mul normal 45.36±2.65 44.25±5.41 43.43±5.44 83.52±3.41 80.07±5.35 73.49±5.36

new lin normal 43.54±5.02 47.59±4.78 46.53±3.27 85.47±2.39 80.07±5.37 73.52±5.34

old lin normal 46.18±3.03 46.42±5.63 49.00±3.34 83.51±3.39 80.09±5.34 73.46±5.35

To better extract the subgraph information, we also search for subgraph sampling strategies mentioned
in Appendix E.2. Note that the hyperparameter search and training of the classifier is independent of
the hyperparameter search of the subgraph extractor. Once could select the best subgraph extractor
and train the new classifier onto it. When training the classifier, we search for the following 9
subgraph decoding strategies as shown in Table F.2. Specifically,

• Initialization: ”new” refers to that the classifier is initialized from scratch; ”old” refers to that the
classifier is initialized from the subgraph extractor;

• Architecture: ”mul” refers to the default message passing architecture; ”lin” refers to the GMT-lin
architecture;

• Attention: ”normal” refers to the default weighted message passing scheme; ”min0” refers to
setting the minimum p% attention scores directly to 0; ”max0” refers to setting the maximum p%
attention scores directly to 1; ”min0max1” refers to setting the maximum p% attention scores
directly to 1 while set the minimum (1− p)% attention scores directly to 0;

Table F.2 demonstrates the generalization and interpretation performance of GMT-sam in spurious
motif datasets (Wu et al., 2022b), denoted as ”spmotif” with different levels of spurious correlations.
It can be found that GMT-sam is generically robust to the different choices of the decoding scheme
and leads to improvements in terms of OOD generalizability and interpretability.

F.3 MORE INTERPRETATION RESULTS

We additionally conduct experiments with post-hoc explanation methods based on the PNA backbone.
Specifically, we selected two representative post-hoc methods GNNExplainer and PGExplainer, and
one representative intrinsic interpretable baseline DIR. The results are given in the table below. It can
be found that most of the baselines still significantly underperform GSAT and GMT. One exception is
that DIR obtains highly competitive (though unstable) interpretation results in spurious motif datasets,
nevertheless, the generalization performance of DIR remains highly degenerated (53.03±8.05 on
spmotif 0.9).

Table 9: More interpretation results of baselines using PNA
BA 2Motifs Mutag MNIST-75sp spmotif 0.5 spmotif 0.7 spmotif 0.9

GNNExp 54.14±3.30 73.10±7.44 53.91±2.67 59.40±3.88 56.20±6.30 57.39±5.95

PGE 48.80±14.58 76.02±7.37 56.61±3.38 59.46±1.57 59.65±1.19 60.57±0.85

DIR 72.33±23.87 87.57±27.87 43.12±10.07 85.90±2.24 83.13±4.26 85.10±4.15

GSAT 89.35±5.41 99.00±0.37 85.72±1.10 79.84±3.21 79.76±3.66 80.70±5.45

GMT-lin 95.79±7.30 99.58±0.17 85.02±1.03 80.19±2.22 84.74±1.82 85.08±3.85

GMT-sam 99.60±0.48 99.89±0.05 87.34±1.79 88.27±1.71 86.58±1.89 85.26±1.92

F.4 COMPUTATIONAL ANALYSIS

We provide more discussion and analysis about the computational overhead required by GMT, when
compared to GSAT. As GMT-lin differs only in the number of weighted message passing rounds
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from GSAT, and has the same number of total message passing rounds, hence GMT-lin and GSAT
have the same time complexity as O(E) for each epoch, or for inference. When comparing GMT-sam
to GMT-lin and GSAT, During training, GMT-sam needs to process k rounds of random subgraph
sampling, resulting in O(k|E|) time complexity; During inference, GMT-sam with normal subgraph
decoding methods requires the same complexity as GMT-lin and GSAT, as O(|E|). When with
special decoding strategy such as setting part of the attention entries to 1 or 0, GMT-sam additionally
needs to sort the attention weights, and requires O(|E|+ |E| log |E|) time complexity.

BA 2Motifs MNIST-75sp ActsTrack
Training GIN PNA GIN PNA EGNN

GSAT 0.70±0.12 1.00±0.13 41.28±0.61 80.98±10.55 3.57±1.41

GMT-lin 0.68±0.12 1.02±0.15 41.12±0.69 81.11±10.44 3.69±0.93

GMT-sam 6.25±0.48 17.03±0.91 136.60±1.21 280.77±4.00 5.38±0.59

Inference

GSAT 0.07±0.05 0.11±0.12 18.69±0.35 24.40±2.06 0.84±0.38

GMT-lin 0.08±0.07 0.07±0.01 18.72±0.41 23.81±1.89 0.80±0.21

GMT-sam (normal) 0.05±0.01 0.12±0.01 18.72±0.35 18.01±1.47 0.50±0.13

GMT-sam (sort) 0.07±0.01 0.21±0.06 19.07±0.55 18.69±3.35 0.54±0.10

In the table above, we benchmarked the real training/inference time of GSAT, GMT-lin and
GMT-sam in different datasets, where each entry demonstrates the time in seconds for one epoch.
We benchmark the latency of GSAT, GMT-lin and GMT-sam based on GIN, PNA and EGNN on
different scales of datasets. The sampling rounds of GMT-sam are set to 20 for PNA on MNIST-sp,
10 for EGNN, and 100 to other setups. From the table, it can be found that, although GMT-sam takes
longer time for training, but the absolute values are not high even for the largest dataset MNIST-sp.
As for inference, GMT-sam enjoys a similar latency as others, aligned with our discussion.

F.5 MORE COUNTERFACTUAL FIDELITY STUDIES

To better understand the results, we provide more counterfactual fidelity results in supplementary to
Sec. 3.2 and Fig. 6 and 7. Shown as in Fig. 8, 9, we plot the counterfactual fidelity results of GSAT
and the simulated SubMT via GMT-sam with 10 and 100 on BA-2Motifs and Mutag datasets with
the distance measure as KL divergence. Fig. 10, 11 show the counterfactual fidelity results of GSAT
and the simulated SubMT via GMT-sam with 10 and 100 on BA-2Motifs and Mutag datasets with the
distance measure as JSD divergence. It can be found that, the gap in counterfactual fidelity measured
in KL divergence or JSD divergence can be even larger between GSAT and SubMT, growing up to 10
times. These results can serve as strong evidence for the degenerated interpretability caused by the
failure of SubMT approximation.
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(a) SubMT on BA-2Motifs trainset.
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(b) SubMT on BA-2Motifs valset.
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(c) SubMT on BA-2Motifs test set.

Figure 8: Counterfactual fidelity on BA-2Motifs with the distance measure as KL divergence.
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(a) SubMT on Mutag trainset.
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(b) SubMT on Mutag validation set.
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(c) SubMT on Mutag test set.

Figure 9: Counterfactual fidelity on Mutag with the distance measure as KL divergence.
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(a) SubMT on BA-2Motifs trainset.
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(b) SubMT on BA-2Motifs valset.
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(c) SubMT on BA-2Motifs test set.

Figure 10: Counterfactual fidelity on BA-2Motifs with the distance measure as JSD divergence.
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(a) SubMT on Mutag trainset.
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(b) SubMT on Mutag validation set.
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(c) SubMT on Mutag test set.

Figure 11: Counterfactual fidelity on Mutag with the distance measure as JSD divergence.
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(a) BA-2Motifs trainset.
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(b) BA-2Motifs valset.
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(c) BA-2Motifs test set.

Figure 12: The GMT optimization issue in terms of counterfactual fidelity on BA-2Motifs.

Shown as in Fig. 12, 13, we plot the counterfactual fidelity results of GSAT and the simulated SubMT
via GMT-sam with 10 and 100 on BA-2Motifs and Mutag datasets. Compared to previous results, the
GMT-sam in Fig. 12, 13 does not use any warmup strategies that may suffer from the optimization
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issue as discussed in Sec. E. It can be found that, at the begining of the optimization, GMT-sam
demonstrates increasing counterfactual fidelity. However, as the optimization keeps proceeding,
the counterfactual fidelity of GMT-sam will degenerate, because of fitting to the trivial solution of
the GSAT objective. Consequently, the interpretation results will degenerate too at the end of the
optimization.
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(a) Mutag trainset.
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(b) Mutag validation set.
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Figure 13: The GMT optimization issue in terms of counterfactual fidelity on Mutag.

F.6 SUBMT APPROXIMATION GAP ANALYSIS
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(a) BA-2Motifs trainset.
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(b) BA-2Motifs valset.
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(c) BA-2Motifs test set.

Figure 14: The SubMT approximation gap of GSAT with SGC on BA-2Motifs.
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(a) BA-2Motifs trainset.
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(b) BA-2Motifs valset.
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(c) BA-2Motifs test set.

Figure 15: The SubMT approximation gap of GSAT with GIN on BA-2Motifs.
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(a) Mutag trainset.
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(b) Mutag validation set.
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(c) Mutag test set.

Figure 16: The SubMT approximation gap of GSAT with SGC on Mutag.
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(b) Mutag validation set.
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Figure 17: The SubMT approximation gap of GSAT with GIN on Mutag.

Fig. 14 and 15, Fig. 16 and 17 demonstrate the SubMT approximation gaps of GSAT implemented
in GIN and SGC on BA 2Motifs and Mutag respectively. To fully verify Proposition D.4, we range
the number of layers of GIN and SGC from 1 to 5. It can be found that the results are well aligned
with Proposition D.4. When the number of layers is 1, the SubMT approximation gap is smallest,
because of more “linearity” in the network. While along with the growing number of GNN layers,
the network becomes more “unlinear” such that the SubMT approximation gap will be larger.

F.7 SOFTWARE AND HARDWARE

We implement our methods with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019) 2.0.4. We ran our experiments on Linux Servers installed with V100 graphics cards
and CUDA 11.3.

F.8 INTERPRETATION VISUALIZATION

To better understand the results, we provide visualizations of the learned interpretable subgraphs by
GSAT and GMT-sam in the Spurious-Motif datasets, as well as the learned interpretable subgraphs
by GMT-sam in OGBG-Molhiv dataset.

The results on Spurious-Motif datasets are given in Fig. 18, 19,20 for b = 0.5, b = 0.7 and
b = 0.9, respectively. The red nodes are the ground-truth interpretable subgraphs. It can be found
that GMT-sam indeed learns the interpretable subgraph better than GSAT, which also explains the
excellent OOD generalization ability of GMT-sam on Spurious Motif datasets.
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(a) Spurious-Motif class 0 under bias= 0.5 by GSAT.

(b) Spurious-Motif class 0 under bias= 0.5 by GMT-sam.

(c) Spurious-Motif class 1 under bias= 0.5 by GSAT.

(d) Spurious-Motif class 1 under bias= 0.5 by GMT-sam.

(e) Spurious-Motif class 2 under bias= 0.5 by GSAT.

(f) Spurious-Motif class 2 under bias= 0.5 by GMT-sam.

Figure 18: Learned interpretable subgraphs by GSAT and GMT-sam on Spurious-Motif b = 0.5.
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(a) Spurious-Motif class 0 under bias= 0.5 by GSAT.

(b) Spurious-Motif class 0 under bias= 0.5 by GMT-sam.

(c) Spurious-Motif class 1 under bias= 0.5 by GSAT.

(d) Spurious-Motif class 1 under bias= 0.5 by GMT-sam.

(e) Spurious-Motif class 2 under bias= 0.5 by GSAT.

(f) Spurious-Motif class 2 under bias= 0.5 by GMT-sam.

Figure 19: Learned interpretable subgraphs by GSAT and GMT-sam on Spurious-Motif b = 0.7.
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(a) Spurious-Motif class 0 under bias= 0.5 by GSAT.

(b) Spurious-Motif class 0 under bias= 0.5 by GMT-sam.

(c) Spurious-Motif class 1 under bias= 0.5 by GSAT.

(d) Spurious-Motif class 1 under bias= 0.5 by GMT-sam.

(e) Spurious-Motif class 2 under bias= 0.5 by GSAT.

(f) Spurious-Motif class 2 under bias= 0.5 by GMT-sam.

Figure 20: Learned interpretable subgraphs by GSAT and GMT-sam on Spurious-Motif b = 0.9.

In addition, we also provide the visualization of interpretable subgraphs learned by GMT-sam on
OGBG-Molhiv, given in Fig. 21.

(a) OGBG-Molhiv class 0 by GMT-sam.

(b) OGBG-Molhiv class 1 by GMT-sam.

Figure 21: Learned interpretable subgraphs by GMT-sam on OGBG-Molhiv.
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