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Abstract

We revisit existing ensemble diversification approaches
and present two novel diversification methods tailored for
open-set scenarios. The first method uses a new loss, de-
signed to encourage models disagreement on outliers only,
thus alleviating the intrinsic accuracy-diversity trade-off.
The second method achieves diversity via automated fea-
ture engineering, by training each model to disregard in-
put features learned by previously trained ensemble models.
We conduct an extensive evaluation and analysis of the pro-
posed techniques on seven datasets that cover image clas-
stfication, re-identification and recognition domains. We
compare to and demonstrate accuracy improvements over
the existing state-of-the-art ensemble diversification meth-
ods.

1. Introduction

The importance of diversity in ensembles of models has
been recognized since late 90s [40, 28, 7, 34]. The topic
was thoroughly discussed in the Multiple Classifier Sys-
tems (MCSs) community, while investigating (i) metrics for
measuring the diversity [1, 2, 17, 46], (ii) the connection be-
tween diversity and the ensemble accuracy [22, 36], and (iii)
methods for constructing diversified ensembles [42, 4].

The existing body of work primarily deals with the
closed-set problems, where a correct output is expected
for valid input only. For open set problems, on the other
hand, the ensemble should yield a correct response for all
known/learned classes, while rejecting “unknown” inputs.

Open-set problems gain an increasing attention in recent
years [26, 45, 12]. Extreme open-set scenarios emerge nat-
urally in real world tasks (e.g. autonomous driving, face
recognition), where an object of unknown class or an unen-
rolled person needs to be correctly handled by the system.

In closed-set scenarios the ensemble diversity is benefi-
cial to counterbalance biases of individual models to reduce
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the bias of the ensemble on valid input. That is, when en-
semble models are dissimilar, an error of one model can
potentially be compensated by others. Such diversity is
usually imposed by optimizing for predictions diversity on
training data, which comes with the inherent trade-off be-
tween the individual model accuracy and diversity.

In the open-set case, on the other hand, the additional
role of diversity is to cause individual models to disagree
on unknown input (outliers or un-enrolled participants). The
disagreement between models can be leveraged as an out-
lier indicator. In the identification setup, the disagreement
between models can be used as an indication that the par-
ticipant is not enrolled into the system. Interestingly, this
“open-set” diversity does not intrinsically contradict the in-
dividual model accuracy goal.

In this paper we improve the existing, well estab-
lished ensemble-based recognition methods. While these
ensemble-based methods are not necessarily the SOTA for
all open-set tasks, they have their merits. E.g., for many
practical biometric identification tasks, where the FPR must
be very low (e.g. < 1/10e6), ensembles is probably the
only way to go. Today’s public datasets don’t have nearly
enough labeled identities even to measure such accuracy.
That’s where ensembles come to rescue: e.g. voting with
two independent models with FPR< 1/1000 yields the
overall FPR< 1/10e6.

We show that ensemble models generated using our pro-
posed techniques are more diverse and yield better open-set
recognition results compared to other SOTA ensemble di-
versification methods. We design ensemble training meth-
ods that encourage models to disagree on unknown input,
while agreeing on known classes. We thus avoid or soften
the accuracy-diversity trade-off and allow outliers detec-
tion, while maintaining high accuracy on inliers.

Our main contributions are:

1. We develop a new diversification loss for simultaneous
ensemble models training, designed for open-set prob-
lems. The loss encourages diverse response to outliers,
thus resolving, for open-set scenarios, the intrinsic di-
versification dilemma of trading the individual model
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accuracy for ensemble diversity.

2. We propose a novel feature-based diversification
method for sequential training of ensemble models.
The method automatically selects features not yet uti-
lized by the previously trained models, thus making the
“diversification by complimentary features” approach
practical.

3. We evaluate the proposed methods for open-set recog-
nition, re-identification, and classification, using seven
public datasets, the largest of which includes 85k iden-
tities and 5.8M images. We compare to other ensemble
diversification approaches and demonstrate the advan-
tage of our open-set specific techniques. We compare
the two proposed methods and identify use-cases they
are best suited for.

2. Notation

To facilitate the discussion, let us introduce some nota-
tion. For simplicity, we consider a K-class classification
problem. The same setup can be applicable for identifi-
cation/recognition problems, where classes correspond to
identities in the training set.

Let ensemble E=(f, g) be defined by a collection of n
models f=(f1, fo, ..., fn) and a combining function g. For
an input sample x each model produces a class probability
vector f;(z) = (f}(z), f2(x),..., fX(z)). The combining
function g(z) = gof = g(f1(z), f2(x),. .., fn(z)) merges
individual model predictions to produce the final ensemble
output. Among typical examples of combining functions
are averaging gave(z) = 2 37 | fi(2) and voting.

Let g(z) € {1,2,..., K} be the ground-truth class for
the sample z. Let us denote the individual loss, i.e. the
loss used to train a stand-alone ensemble model f;, by
Li(z) = L(f;(x), q(z)). If ensemble and individual model
predictions are of the same form, one can apply the same
loss L to the ensemble output to yield a combined ensemble
loss: Leompined(x) = L(g(z),q(x)). A popular individual
loss for classification problems is the cross-entropy loss:

Leg(fi(x) Zlq(r) _jlog(fl(z)), (1)

where 1,(,)—; is the indicator function, equal to 1 if g(z)=j
and 0 0therw1se. For identification problems the cross en-
tropy loss is often combined with additional loss compo-
nents [38].

3. Related Work

In this section we discuss some of the ensemble diversi-
fication techniques most relevant to our work. For compre-
hensive reviews of ensemble learning we refer the reader

to [47, 22, 32, 25, 10]. As this work focuses on using en-
sembles for open-set problems, other non-ensemble open-
set methods are beyond the scope of this paper. Exten-
sive surveys on open set recognition methods can be found
in [12, 3, 33].

Diversity has been shown to be critical for generating
accurate and robust ensembles [21]. Yet, it is not obvi-
ous whether an explicit encouragement of such diversity
through the objective function is required. As an alterna-
tive, one can train each model in a slightly different way to
gain diversity - e.g. using different training sets, random-
ized training order [5], weights initialization [18], etc.

Another approach is to let the combined ensemble accu-
racy optimization to figure out the benefits of diversification
in a “natural” way. That is, train the ensemble as one piece
and expect the models to come out diverse, assuming the di-
versity indeed contributes to ensemble accuracy. Such joint
training approach was proposed in [11] and further inves-
tigated in [41] where authors experiment with a weighted
combination of individual model losses and the combined
ensemble loss:

JOiTlt( +O‘Lcomb1ned( )7 2

3

1 n
1—0472

smoothly interpolating between independent (o« = 0) and
combined (o = 1) training of predictors.

Measuring the degree of diversity requires a metric. Dif-
ferent diversity metrics have been proposed [1, 2, 17, 46].
Without loss of generality, we use the average pair-wise cor-
relation between model predictions as the diversity metric.

Although the joint loss in Eq. 2 does not include an ex-
plicit correlation reduction term, it can be shown (see Sup-
plementary) that the correlation between models decreases
due to the joint loss (stronger than due to training random-
ization). It was demonstrated in [41] that the joint train-
ing shows promise for resource limited scenarios, but does
not generalize well to the test set and requires putting more
weight on individual models performance. These studies
suggest that optimizing for the combined ensemble loss
is sub-optimal and call for a loss that includes individual
model losses and a term that explicitly encourages diversity.

Ideally, such loss should be derived from a decomposi-
tion of a combined ensemble loss. For the MSE regression
problems and ensembles that use the averaging combining
function g,.., an analytical justification for diversity was
derived by decomposing the combined MSE ensemble loss
using the ambiguity decomposition [20]:

MSE(z) = (q(z) — gave( ) 2=
LS aw) ~ Fi@)? = S )~ e

where, for regression problems, ¢(z) is the ground truth
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value for x. The first term in Eq. 3 is the average MSE of
ensemble models, while the second term encourages the di-
versity between different models. This decomposition was
heuristically derived in [28] as the negative correlation loss
(NCL) for regression tasks:

E:NSE

where the penalty function p;

pl(x) = (fl(x) _gave(x))Z(fj(x) _gave(w))v (5)

J#i

NCL(z) = (1 — )~

1 n
+a- ;pi(x), 4)

decreases the correlation between the error of model f; and
the errors of other ensemble models. Same as in Eq. 2, o
controls the relative weight between the individual model
performance and the diversity. Putting more weight on in-
dividual model accuracy can be viewed as regularization.

The NCL was studied in [7, 34], recently used with deep
models [35], and generalized in [37] for binary classifica-
tion with cross-entropy loss and averaging combining func-
tion. We can extend the binary classification loss proposed
in [37] to multi-class (MC) classification as follows:

7ZL0E (z))—
(6)
77,7]. ZZLCE fz ( ))

i jF£L

NCLyc(z

The first term is the average of individual cross-entropy
losses and the second term encourages negative correlation
between all pairs of class probability vectors ( f;(z), f;(x)).

It can be clearly seen from Egs. (3)-(6) that all ensemble
losses above “suffer” from the intrinsic trade-off between
the individual model accuracy and the diversity. The trade-
off stems from the fundamental contradiction between the
two objectives encoded therein: (a) all f;’s are to be as close
as possible to the ground truth ¢ and, (b) at the same time,
they need to be as different as possible from each other. In
this work we present a diversification method for the open
set scenario that overcomes or softens this trade-off.

The approaches discussed so far encourage diverse pre-
dictions on the training set as a means to get a diverse en-
semble. In [31], the authors suggest an alternative approach
to ensemble diversification through encouraging diverse ex-
trapolation, via extrapolating differently on local patches of
the data manifold. To make f; dissimilar to f;, they add an
approximation of E[(f;(z'7) — fi(x))?] to the loss func-

max

tion, where 2'** = argmaxf;(2’), and 2’ ranges over the
3:/

neighborhood of z. The authors showed promising results,
experimenting with 256-unit single hidden layer fully con-
nected network. The limitations of their approach include

unstable behaviour for activations that are not from the rec-
tifier family, as well as the need to compute second deriva-
tive during the optimization process.

Another alternative to diversifying model predictions is
diversification by feature selection. One example is Ran-
dom Forests [6], where subsets of input features are ran-
domly chosen to compose an ensemble. This and other ran-
dom or ad-hoc feature selection methods typically result in
rather weak individual models, which is less suitable for en-
sembles with only a few computationally heavy deep learn-
ing models.

The method we present in this work performs an implicit
feature selection that does not degrade the individual model
accuracy. Similarly to [31], it encourages diverse extrapola-
tion, but does not suffer from the same limitations, and can
be easily applied to state-of-the-art networks.

4. Methods - Diversification for Open-Set

In this section we develop two ensemble diversifica-
tion methods for open-set problems. In open-set scenarios,
both in- and out-of-distribution (OOD) data are fed into the
model at the test stage. The goal is to correctly classify
the in-distribution data and reject the OOD samples. The
K -class open-set classification can be viewed as a classifi-
cation into K + 1 classes, where an unseen outliers class is
added at test time to the K classes used in training. Using
ensembles, a straightforward approach would be to lever-
age the disagreement between models as an indication for
outliers. For example, using a majority voting combining
function, we can decide to reject an input sample if the size
of the largest consensus group is below a threshold. Oth-
erwise, the class chosen by the majority is returned as the
classification result.

The question is “how to train an ensemble to disagree on
unknown data if this data is unavailable during training?”

4.1. Open-Set Correlation Reduction

Our first solution uses the “wrong class” probabilities
generated by models on valid input as a proxy for model re-
sponse to outliers. That is, we train on known-class data, but
request the inter-model disagreement on wrong class prob-
abilities only. Formally, let = be a valid training sample of
class ¢(x) € [1,2,..., K]. Let us denote by

f\a(@) = (fr@) e 1O @) 15O @), R ()

the vector obtained from f;(x) by omitting the ¢(z)*"* com-
ponent. We then seek to achieve a disagreement between
fi \ q(z) and f; \ g(z) for every pair of models ¢ and j.

In principle, any diversity measure could be used to drive
the inter-model disagreement. For example, we could bor-
row the negative cross-entropy term used in NCL (Eq. 6).
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We decided against the cross-entropy because of its numer-
ical instability: unlike the closed-set case, where we expect
at least one of f;(x) components to be large enough, it is
likely that all f; \ ¢(z) components are close to zero, caus-
ing the cross-entropy to explode. Instead, we chose to use
the correlation Corr(f;\¢(x), f;\¢(x)) as aloss term to en-
courage the disagreement. For the rank-based voting func-
tions g it seems natural to use Spearman’s rank order cor-
relation. Taking a second look, the majority voting g only
cares about the highest rank classes, i.e. to reject an un-
known sample, models have to disagree on the rankl. Low
Spearman correlation does not necessarily imply the dis-
agreement on the rankl. Hence we decided to use Pearson
that gives more weight to the higher probability vector com-
ponents, and define the open-set diversification loss term as

Leor(z) = Y. Corr(fi\g(@). fi \a(z)) (7)

(g) 1<i<j<n

For the accuracy term we took the average cross entropy
loss, as in NCL (Eq. 6). Finally, the open-set correlation
reduction loss (OSCRL) function we propose is given by

11—«

OSCRL(z) =

Z LCE(Q(LE), fz(x)) + aLCorr(x)v
=1

n

where, as before, o controls the relative weight between the
individual model accuracy and the diversity.

The proposed OSCRL method behaves very well for
problems with low number of classes (see Experiments).
For large number of classes, the correlation between the
very long class probability vectors is expected to be always
low and the diversification loss term in Eq. 7 becomes inef-
fective. To address the open-set problems with high number
of classes (millions of classes in identification/recognition
problems) we came up with the following method:

4.2. Feature-Based Diversification

Here we chose to achieve the diversity by implicit fea-
ture selection. An explicit or random feature selection, as
in Random Forest [6], is problematic both because for non-
tabular data the features are not readily available, and be-
cause it usually results in relatively weak individual clas-
sifiers. Instead, following the motivation similar to [31],
we propose an approach for feature-based diversification
that encourages diverse extrapolation. For open-set scenar-
ios the diverse extrapolation is especially important as the
model has to deal with the OOD data. As opposed to [31],
our approach does not suffer from architectural limitations,
and can be applied to a wide range of SOTA models.

We explain the algorithm for building a two-model en-
semble, and it extends naturally for larger ensembles. The

L
(a) (b)

Figure 1. Feature distillation process: Given image (a), we start
from a blank image (b) and iteratively modify it in the direction
which shortens the distance between its embedding vector and that
of (a), resulting in image (c)

first ensemble model f; is trained with no diversity con-
straints. We then train the second model f, to rely on fea-
tures “orthogonal” to those learned by f7. The process con-
sists of two steps:

1. Feature distillation: Distil the features learned by f;.

2. Feature-based diversification training: Train fo
while encouraging it to disregard features learned by

fi

Without loss of generality, we assume that models f;
generate an embedding vector e¢;(z) as internal represen-
tation of the input x (a layer before the softmax), which is
then translated into the model output f;(x). The notion of
embedding is widespread in search, clustering and recogni-
tion problems, and can also be applicable to classification.

4.2.1 Feature Distillation

The distillation process is visualized in Figure 1. For a given
image x, we would like to generate an image s, such that
its embedding vector e; (x, ) is close to the embedding vec-
tor e1 () of the original image. To achieve this we use an it-
erative process inspired by the “deep-dream” [29] approach.
We start with a blank image a:?l0> = const and proceed it-

eratively with the back propagation (€ is the step size):
T =05 =6 le(en) —a@], ®

The process stops once the distance between the embed-
dings is small enough. In practice we performed 100 it-
erations and used { = 0.1. The distilled x, (Fig. 1(c))
includes the features that, from the point of view of f7, cap-
ture the essence of the image x (Fig. 1(a)).

4.2.2 Feature-Based Diversification Training

To train f, we use a loss that consists of two parts: the
individual model accuracy loss (e.g. the cross-entropy loss
L¢cg) and the feature-based diversity term. To encourage
diversity, we penalize the model f5 for learning features that
are useful for f1, forcing f5 to be agnostic to those features.

To achieve the desired diversity we would like the dis-
tilled features encoded in xy, to be non-discriminative for
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f2, that is fy should fail to accurately classify zy, im-
ages. We enforce the non-discriminability for xy, images
by a loss term that minimizes the gap between the correct
class probability and the average probability for the incor-
rect classes:

K
Len(es) = || 3 i) — @), ©
=1

where g(x¢, ) is the correct class of xf, . Alternatively, one
can require a uniform logit distribution, e.g. using the En-
tropic Open-Set Loss proposed in [9]. The final loss func-
tion is a weighed sum of the two terms:

FDL(z,z¢,) = (1 — a)Leg(z) + aLpp(zy ). (10)

Practically, the advantage of the proposed approach is that it
can be easily applied to existing architectures with an addi-
tional loss term based on the distilled input images. As the
diversity loss term operates on the distilled images, which
are OOD w.r.t. the training set, the resulting models are ex-
pected to exhibit diverse response on open sets. The down-
side is the fact that the distilled input images need to be
generated prior to or during the training, which can be time
consuming. The proposed technique can be easily extended
to any number of models, by adding the diversity loss terms
(Eq. 9) for all the models trained before.

To demonstrate the diverse extrapolation property of the
proposed method, let us compare two ensembles trained on
the MNIST dataset. One two-model ensemble is trained
using the proposed FDL method. The two models of the
other ensemble are trained independently, using training
randomization. Given an OOD image (Fig. 2(a)), which
is not a MNIST digit, we show the features distilled from
this image by all four models (Fig. 2(b-e)). As expected,
since the image is OOD, the distilled features do not make
much sense. Notably, features distilled by the indepen-
dently trained models are very similar (Fig. 2(b,c)), while
the features for the FDL models are different (Fig. 2(d,e)).
Moreover, both independently trained models predict the
same class ’7’ for the Fig. 2(a) image, while the two FDL
models predict different classes - *7° and ’2’°, which triggers
the outlier rejection. In supplementary we discuss how the
proposed method affects the embedding space.

5. Experiments

In this section we apply the proposed methods to various
open-set recognition and classification problems, and com-
pare them with other diversification methods: NCL (Eq. 4),
Joint training (Eq. 2), and the baseline - an ensemble of in-
dependently trained models. As the scope of the paper is en-
semble diversification, we do not compare to non-ensemble
open-set recognition or classification methods. Moreover,

(a) (b)

Figure 2. Distilled features: Given an OOD image (a), the dis-
tilled features learned by a pair of independently trained models
are similar (b,c), while the distilled features learned by “orthogo-
nal®“ models differ (d,e).

the explored ensemble diversification methods are invari-
ant to the underlying single model architecture and loss. In
every experiment below, for a fair comparison, we use the
same, not necessarily state-of-the-art, single model type for
all diversification methods we compare to. We also eval-
uate the impact of the proposed techniques on adversarial
robustness (see supplementary).

5.1. Open-Set Recognition

In this section we apply the proposed methods to var-
ious open-set recognition problems and present quantita-
tive results on publicly available benchmarks. In open-set
recognition scenarios, each input probe either has a match
in the gallery (target), or has not (non-target). The targets
are to be recognized (correct match established), whereas
non-targets are to be rejected. We use ensemble consensus
to distinguish between targets and non-targets in the follow-
ing way: a probe is matched if all ensemble models agree
on its identity. Otherwise, the probe is rejected. Following
[49]) we use TTR (true target rate) at different FTRs (false
target rate) as the accuracy metric. Considering recognition
as a target/non-target classification, TTR is equivalent to re-
call and FTR to false positive rate. For evaluation, all test
IDs are enrolled in the gallery. To compute the TTR, we
count the probes correctly matched to their gallery images.
To compute the FTR, for every probe we exclude all its cor-
responding images from the gallery, and count the probes
that are not rejected.

5.1.1 Re-ID

We apply our methods to the open-set person re-
identification (re-ID) problem. A typical scenario is a multi-
camera setup where a person seen by one camera is to be
recognized by another camera based on the whole body ap-
pearance. The problem is further complicated as the images
are taken from different angles and the views are often par-
tially occluded.

Dataset and Architecture: We use Market-1501 bench-
mark [48], which contains 32,668 images of 1,501 identities
(750 train and 751 test). The setup is similar to the multi-
query setting reported in [50]. We use ResNet50 [13] as the
backbone for this task.
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H H Baseline‘ NCL \ Joint \ FDL ‘OSCRL H

FTR=1% 169% | 20.1% | 19.6% | 22.2% | 20.3%
FTR=10% 56.3% | 54.7% | 53.9% | 61.3% | 60.9%
FTR=20% 71.6% | 69.0% | 70.6% | 76.8% | 75.6%
FTR=30% 783% | 76.4% | 18.0% | 83.5% | 80.1%
Table 1. Re-ID on Market-1501: Re-identification accuracy

(TTR) at different FTR targets for the 5 ensemble diversification
approaches. The best results are in green.

[ | Baseline [ NCL | Joint | FDL | OSCRL ||
FTR=1% 98.26 98.42 | 98.27 | 98.57 | 98.50
FTR=.5% 83.33 85.71 | 84.11 | 85.04 | 86.41
Table 2. Face recognition on LFW: Face recognition accuracy
(TTR) at FTR={0.5%, 1%} for 5 ensemble diversification ap-
proaches. Best results in green.

[| DeepID3 [39] | LightCNN29 [44] [ IDL Sngl.[27] [ IDL Ensm.[27] [[ FDL [ OSCRL ||
[ 8140 | 93.62 | %412 95.80 [ 9933 ] 99.16 |

Table 3. Face recognition on LFW - comparison to non-
ensemble SOTA: DIR @FAR=1% following the protocol in [16].

Table 1 shows TTR at different FTRs, for various ensem-
ble diversification methods. It can be seen that FDL yields
the best result, outperforming the baseline by up to 30%.
OSCRL is the 2" best approach. Here we report the accu-
racy for optimal a’s. The results for other o’s are discussed
in supplementary and “Sensitivity to o section below.

5.1.2 Face Recognition

Almost any real-world face recognition system operates in a
open-set environment, where only a fraction of probe iden-
tities are enrolled in the gallery.

Datasets: We conduct the face recognition experiments
by training on MSIMV2 dataset [8] (version of the MS-
Celeb-1M [43]), containing 85k identities and 5.8M images.
For testing we use the Labeled Faces in the Wild (LFW)
dataset [15] with 13,233 images of 5,749 identities.

Architecture: We use the IR-SE50 ArcFace [8] archi-
tecture, with the same training regime as in [8].

Table 2 compares the five ensemble diversification meth-
ods at FTR=1% (the standard evaluation point [24]) and
FTR=0.5%. For FTR=1% the FDL-based ensemble outper-
forms all other methods, reducing the error rate by almost
20% (from 1.74% to 1.43%, when compared to the base-
line). For FTR=0.5% the OSCRL-trained ensemble outper-
forms all other methods (more results in supplementary).

Finally, even though the scope of this paper is ensemble
methods, to provide a comparable reference point, we com-
pare to several non-ensemble SOTA methods in Table 3.
The table shows DIR(Rank-1 Detection and Identification
rate) @FAR=1% (equivalent to TTR@FTR) measured on
LFW using the protocol from [16]. This protocol enrolls
only 1% of the IDs to the gallery, which is less challenging

than ~100% enrollment used for Table 2. This explains the
higher FDL/OSCRL accuracy in Table 3. Both FDL and
OSCRL outperform other methods.

5.2. Open-Set Classification

We use the same data setup as in [26]: The training set
includes the in-distribution data only. The test set is formed
by adding an increasing proportion, from 2% to 100% (de-
noted by ), of OOD data to the in-distribution test set.

Datasets: We use CIFAR-100 and CIFAR-10 [19], con-
sisting of 50K training and 10K test images, drawn from
100 and 10 classes, respectively. For OOD data we use the
TinyIlmageNet(crop) dataset [26] (randomly cropped 32-by-
32 images from ImageNet) of 10K images.

Architectures: We train 3 configurations of ensembles
of DenseNet-BC networks [14]: DN-100-12, DN-82-8 and
DN-64-6 with depths of 100, 82 and 64, and growth rates of
12, 8 and 6, respectively. We follow the configurations and
hyper-parameters used in [41]. Each network is trained 3
times, and results are averaged over the training instances.

In the experiments below, we train two-model ensem-
bles (n = 2) using five methods (OSCRL, FDL, Joint, NCL
and the baseline) and compare their performance. Note that
while using the same data as in [26], we do not compare
to their results since they perform OOD detection instead
of measuring the overall K+1-class classification accuracy
(like we do). In addition, they use OOD data as validation to
tune the model, while we avoid using such data during the
training process. Figure 3 summarizes the results of the ex-
periments, where each sub-figure corresponds to a data set
(CIFAR-10/CIFAR-100) and a network-architecture (DN-
64-6/DN-82-8/DN-100-12). The z-axis represents vy, and
y-axis represents the accuracy of the model on the test set
that includes both in-distribution and OOD data. For each
method we depict the graph for the best performing o (we
chose the one that optimizes the average accuracy over all
possible OOD rates - the area under curve). Table 4 com-
pares ensemble accuracy for different diversification meth-
ods on a test set with 1:1 mix (v = 100%) of in- and out- of
distribution data (the setup used in [45, 26]).

On CIFAR-10, the OSCRL significantly outperforms
other methods by a large margin for most y values, showing
up to 10% accuracy increase when comparing to the base-
line. Joint training is the 2nd best method, while NCL and
FDL are comparable to the baseline (or a bit better). On
CIFAR-100, the FDL outperforms the baseline by a large
margin. A closer look at CIFAR-100 results reveals that the
relative ensemble behaviour is network-dependent: on DN-
64-6, the FDL outperforms the rest of the methods, with
OSCRL being in the 2nd place for mid-large range ~y’s. On
DN-82-8, the FDL outperforms the rest of the methods for
small-mid range y values, while OSCRL wins for mid-large
range v values. For DN-100-12, NCL outperforms the rest
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H CIFAR-100 H [ CIFAR-10 I
[ Architecture | Baseline || Joint [[ NCL [[ FDL [[ OSCRL || Architecture FDL OSCRL
a= 02105 ] 1 | 2 |05 1 | .15 |

DN-64-6 60.9 62.8 || 62.5 || 64.2 e DN-64-6 727 [ 726 [73.0 [ 735 [ 754 | 758 [ 779 [ 775
DN-82-8 65.1 67.3 || 663 || 67.1 69.4 DN-828 || 724 | 723 | 72.3 | 724 | 769 | 77.0 [ 76.6 | 75.8
DN-100-12 65.4 69.6 || 69.9 || 67.7 69.0 DN-100-12 || 71.9 | 71.6 | 71.5 | 722 || 769 | 782 | 782 | 78.4

‘ ‘ CIFAR-10 ‘ ‘ Face Recognition

| Architecture | Baseline || Joint [[ NCL [[ FDL [[ OSCRL || H ArCh“ec‘“re o | FODSL B L | s ‘OS(;RL H
DN-64-6 73.8 75.8 || 73.7 || 73.5 || 779 FTR=1% || 98.57 | 98.48 | 98.49 || 98.50 | 98.47 | 98.46 [ 97.96 \ 9748 |
DN-82-8 72.3 756 || 723 || 724 77.0 H FTR=5% || 85.04 | 84.64 | 84.48 || 83.06 | 85.61 | 84.57 | 83.98 | 86.41 ||
DN-100-12 71.2 75.5 726 || 722 78.4 Table 5. Classification accuracy (top) and recognition TTR (bot-

Table 4. Open-set classification on CIFAR Accuracy of ensem-
bles trained using 5 different diversification approaches: inde-
pendently trained models - baseline, Joint training, NCL, OS-
CRL, and FDL, on a 1:1 in-/outlier mix (v = 100%) test set.
Rows correspond to different network architectures - three types
of DenseNets. Best results in green.

of the methods. To summarize, in 5 out of the 6 experi-
ments (datasets and architectures), our diversification meth-
ods, designed specifically to tackle the open-set problems,
outperform other ensemble diversification methods.

Note that, as stated earlier, the « values used for the dis-
cussion above are those that optimize the average accuracy
over all possible ¥’s (in the range of 2%-100%). If v is ex-
pected to be outside of this range (very small or very large),
« should be adjusted accordingly.

5.2.1 SVHN and MNIST

We repeated the experiments depicted in Table 4 on
SVHN [30] and MNIST [23] datasets using DN-100-12.
Both datsets contain 10 classes representing digits (MNIST
contains handwritten digits, while SVHN consists of street-
view digits). MNIST dataset includes 60K training images
and 10K test images. SVHN dataet includes 73,257 train-
ing images, and we used randomly sampled 10K test im-
ages, out of the standard 26032 test images. In both cases,
for OOD data, we added 10K images from the Tinylma-
geNet(crop) dataset (same as for the CIFAR experiments).

Once again, OSCRL significantly outperformed the
competing methods, yielding 86% and 80% accuracy on
SVHN and MNIST respectively (vs 78% and 77% obtained
by Joint and NCL respectively).

5.3. Sensitivity to o

In the experiments above we present the accuracy of
models for the optimal a. To be practical, a method cannot
be too sensitive to tunable parameters. To test this sensi-
tivity, we evaluated the proposed methods in a range of a’s
around the optimum. Table 5 presents the accuracy of FDL
and OSCRL in a range of «’s for classification (top) and
recognition (bottom), respectively. One can see that both

tom) of FDL and OSCRL ensembles for a range of o’s. Compare
to Tables 4 and 2. The best results are in green.

methods are robust to « variations and keep outperforming
other methods in a wide range around the optimum (com-
pare to accuracy of other methods in Tables 4 and 2).

6. Discussion

FDL vs OSCRL: The experiments above show that
the two proposed methods outperform other diversification
techniques. The question is when FDL is a better fit than
OSCRL? Our experiments suggest that OSCRL may be bet-
ter for classification, usually with a small number of classes,
while FDL for identification, especially with many iden-
tities, e.g. biometric identification. For large number of
classes, OSCRL becomes less effective, as de-correlating a
long tail of irrelevant low probability classes doesn’t neces-
sarily decrease the correlation for the relevant top classes.
Another possible reason is the nature of outliers. In identi-
fication, the outliers are of the same structure as inliers (e.g.
unenrolled vs. enrolled faces), whereas in classification the
outliers can be anything (e.g. cats vs. digits). FDL can
better exploit the diversity of features when the learned fea-
tures are still observable in outliers. See supplementary for
insights into embedding spaces learned by the two methods.

Sequential vs simultaneous training: We said that FDL
ensemble models are trained sequentially, while OSCRL -
jointly. In fact, the OSCRL can be slightly altered to support
sequential training: by freezing the already trained models
and applying the gradients to the model being trained.

Accuracy as a function of v (percentage of outliers):
Figure 3 shows the graphs of ensemble accuracy (acc) for
open-set classification as a function of . Peculiarly, for
CIFAR-10 the acc(~y) functions are decreasing, while for
CIFAR-100 they are increasing. By decomposing the ac-
curacy acc into the accuracy on inliers (acc;, ) and outliers
(accoyt) one can express the derivative of acc w.r.t. ~y as
follows (see the derivation in supplementary):

Y

Eq. 11 explains the above acc(7y) slope differences. Indeed,
acc;y, is expected to be lower for CIFAR-100 (100-class

dacc/dy = (accour — accin) /(1 +7)?
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Figure 3. Results on CIFAR: Accuracy (Y-axis) of ensembles trained using 5 different diversification approaches: independently trained
models - baseline (black), Joint training (blue), NCL(yellow), OSCRL(red) and FDL(green), as a function of outliers proportion vy (X-axis)
in the test set. Top row - CIFAR-10. Bottom row - CIFAR-100. Columns correspond to different network architectures - three types of

DenseNets.

problem is harder than 10-class). On the other hand, accgq+
is expected to be higher for CIFAR-100, as it is less likely
that ensemble models agree on the same class (out of 100)
for an outlier. Hence, for CIFAR-100 it is more likely get-
ting accout > accip, and, thus, an increasing acc(7y).
Optimal o as a function of v: By design, « controls
the tradeoff between the individual model performance and
the diversification. For open-set problems it is equivalent to
controlling the tradeoff between the acc;,, and acc,,¢- Thus,
to achieve the highest overall accuracy, one should increase
« for larger expected «y (proportion of outliers). E.g., for
CIFAR with v < 50%, we use o < 0.2, whereas for face
recognition, with v > 70%, we increased it to 0.9. Simi-
larly, our results on adversarial attacks (supplementary) in-
dicate that harsher attack require higher a’s. See supple-
mentary on the relation of o to ensemble interpretability.

7. Conclusion

We proposed two approaches for training diverse ensem-
ble of models for open-set scenarios.

The first approach performs a simultaneous training of
multiple models using the specially designed open-set cor-
relation reduction loss (OSCRL). OSCRL alleviates the
accuracy-diversity trade-off by requesting diversity on non-
valid (outliers) inputs only. This type of diversity is partic-
ularly beneficial for outliers detection by majority voting.

The second approach achieves diversification by feature
engineering. Ensemble training is done sequentially, when

each new model is trained to “ignore” features already ex-
ploited by the previously trained models. To discover the set
of features learned by a model we use a feature distillation
process inspired by the “deep-dream” [29] approach.

The intrinsic dilemma of ensemble diversification is sac-
rificing individual model accuracy in favor of diversity. OS-
CRL resolves this dilemma for open set problems, which,
we believe, is a significant differentiator from the existing
ensemble diversification approaches. With regard to FDL
- it takes the “diversification by complimentary features”
technique to the next level.

Instead of hand-crafted feature selection, as was done
before, FDL does it in a fully automatic way, thus mak-
ing this powerful method practical (Best accuracy in all 7
identification categories except of FTR=0.5%, which per-
mits only few false positives, resulting in higher noise).
We propose the “anti-teaching” to make the trained model
non-discriminative to previously learned distilled features,
which, to the best of our knowledge, is an original approach.

We demonstrate the effectiveness of both approaches
in several open-set recognition and classification domains.
We show that in open-set scenarios the proposed meth-
ods consistently outperform existing ensemble diversifica-
tion methods (Independent Models Training, Joint Train-
ing, Negative Correlation Loss), leading to an accuracy im-
provement of up to 10% in open-set classification and up to
20%-30% improvement on open-set recognition problems.
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