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Abstract

Mobility impairment caused by limb loss, aging, stroke, and other movement
deficiencies is a significant challenge faced by millions of individuals worldwide.
Advanced assistive technologies, such as prostheses and orthoses, have the potential
to greatly improve the quality of life for such individuals. A critical component
in the design of these technologies is the accurate forecasting of reference joint
motion for impaired limbs, which is hindered by the scarcity of joint locomotion
data available for these patients. To address this, we propose ReMAP, a novel
model repurposing strategy that leverages deep learning’s reprogramming property,
incorporating network inversion principles and retrieval-augmented mapping. Our
approach adapts models originally designed for able-bodied individuals to forecast
joint motion in limb-impaired patients without altering model parameters. We
demonstrate the efficacy of ReMAP through extensive empirical studies on data
from below-knee-challenged patients, showcasing significant improvements over
traditional transfer learning and fine-tuning methods. These findings have signifi-
cant implications for advancing assistive technology and mobility for patients with
amputations, stroke, or aging.

1 Introduction

Physical impairment is a life-altering event that affects millions of individuals worldwide, imposing
substantial challenges on their mobility and daily activities. The disability of a limb can lead to
significant physical and psychological limitations, impacting the individual’s overall well-being and
independence. In recent years, considerable efforts have been made to develop advanced assistive
technologies to address these challenges and enhance the quality of life for impaired patients.

A crucial aspect of designing effective assistive technologies is the accurate prediction of reference
joint motion for the impaired limb. Understanding the natural motion of the joints is essential for
the development of prosthetic devices that can restore the function of the impaired limb seamlessly.
However, obtaining reliable data for impaired patients is a complex task, as their numbers and ability
to perform diverse motion conditions are relatively limited compared to able-bodied individuals. This
scarcity of data hinders the training of robust models specifically tailored to the unique conditions of
each individual. Moreover, each impairment is a unique and individualized event, leading to a wide
range of motion patterns and functional variations among such patients. Consequently, creating a
single generic model for those patients is not practical, as it would not capture the individual variations
and diverse motion conditions that arise from different types of impairments. In contrast, subject-
specific modeling attempts to cater to each patient’s specific needs and characteristics. However, this
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Figure 1: Simplified architecture of the proposed ReMAP. The corrupt inputs Xamp from the
individuals with mobility challenges are mapped to clean inputs Xcorr computed from able-bodied
individuals, and the corrected inputs are used to produce the desired motion variables for the
individuals with mobility challenges ŷamp using a frozen foundation module pretrained for able-
bodied subjects.

approach faces significant challenges as well. The limited data availability for individual patients
poses a hurdle in developing accurate models, leading to suboptimal performance and generalization
issues.

Figure 2: Illustration of computation of the correction input Xcorr corresponding to the k-th input
sample Xk

amp of the mobility-impaired individual. The able-bodied input Xi
ab that produces the most

similar output as that of the desired mobility-impaired individual output ykamp is searched in the
input-output space of the trained able-bodied foundation module. Instead of searching based on a
single desired motion variable ykamp, a sequence of values {yk−m

amp , ..., ykamp, ..., y
k+m
amp } (marked by

the red region in the lower left curve) is used and the able-bodied input Xi
ab corresponding to the

midpoint of the sequence is considered. Further, a neighborhood of radius ϵ is considered around
Xi

ab and the correction input Xcorr is computed as a weighted sum of samples in this neighborhood
with weights decreasing (linearly or exponentially) with increasing distance from the center Xi

ab.

In this research, we introduce ReMAP, a novel approach for motion generation in impaired individuals
using neural model reprogramming. Our strategy addresses the challenges of predicting joint motion
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with limited data by repurposing well-trained gait prediction models developed on able-bodied data.
ReMAP utilizes network inversion principles and retrieval-augmented mapping to adapt models for
impaired individuals without requiring retraining or fine-tuning of the pretrained models. ReMAP
comprises three key components: (1) a diverse foundation module derived from able-bodied data, (2)
a retrieval-augmented template mapping module to identify the most relevant inputs for learning the
mapping, and (3) a refurbish module that learns the mapping once the desired inputs are identified.
Specifically, we leverage network inversion techniques [1, 2, 3] to generate correction templates for
mapping impaired inputs to able-bodied patterns and retrieval-based methods [4, 5, 6, 7] to identify
the most relevant inputs for learning this mapping.

Furthermore, the adoption of neural model reprogramming provides an additional advantage in
terms of cost and resource efficiency. Fine-tuning subject-specific models can be computationally
expensive, requiring modifications to a considerable number of parameters in the model. In contrast,
model reprogramming optimizes a smaller set of parameters, reducing the computational overhead
significantly. Additionally, this technique preserves the model’s original functionality, making it
adaptable to various tasks without compromising its initial training.

We evaluate our method against baselines using transfer learning and conduct extensive ablations
on various reprogramming techniques and architectures. Our quantitative results demonstrate the
effectiveness of our approach, particularly in very low-data regimes, where it outperforms all tested
transfer learning and fine-tuning methods. To the best of our knowledge, this is the first work in
the domain of motion regression using neural model reprogramming. Our findings have significant
implications for the advancement of assistive technologies, offering the potential to improve mobility
and quality of life for limb-impaired patients.

2 Related Work

Reprogramming of models. The concept of model reprogramming involves repurposing proficiently
trained models for novel tasks through data-level manipulation alone [8]. This underscores the
capability of deep models to handle diverse tasks without the need to alter any of their model
parameters. The efficiency of this reprogramming approach has been validated in the context of
image classification [8, 9], time-series classification [10, 11], spoken command recognition [12],
GAN conditioning [13], out-of-distribution detection [14], antibody sequence filling [15] and fraud
detection [16]. This research explores the potential of model reprogramming to address the challenges
of predicting joint motion in lower-limb-impaired individuals, aiming to enhance the development of
assistive technologies. By repurposing well-established gait prediction models trained on able-bodied
data, we seek to provide limb-impaired individuals with improved mobility solutions. This approach
has the potential to transform the landscape of prosthetic development, offering a higher quality of
life for individuals facing mobility challenges.

Network inversion. Network inversion techniques have been instrumental in optimizing neural
network inputs to achieve specified outputs. Initially proposed by Linden and Kindermann [1], this
method utilizes gradient-based optimization to iteratively refine inputs until the network outputs the
desired result [1, 2, 3]. This approach has been studied and applied in interpretability research, such
as visualizing deep convolutional networks to find the input image that maximizes the activation of a
particular neuron or layer [17], understanding deep image representations [18, 19, 20], and image
synthesis [21]. In our work, we leverage this concept to generate a correction template for mapping
inputs, given the characteristics of the desired output motion.

Retrieval-based methods. Retrieval-based methods rely on retrieving relevant information from a
large corpus in response to a query [4, 5, 6, 7]. These methods involve identifying and retrieving
relevant documents or passages using techniques like dense retrieval [22] and using this information
to inform subsequent processes such as text generation or model training. A notable application of
retrieval-based methods is Retrieval-Augmented Generation (RAG), where retrieval provides context
that enhances generative processes [23, 24]. We apply retrieval-based methods to identify segments
of impaired-limb motion dynamics, to learn a neural reprogramming module.

Gait motion models. Gait prediction is a challenging problem due to the complex nature of
human gait. In recent years, there has been a growing interest in developing gait prediction models
using machine learning techniques. Most works focused on developing such models by training
explicit models to learn the input-output synergy, especially, for able-bodied subjects [25, 26, 27,
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28, 29, 30, 31], with only a few works on lower-limb-impaired individuals [32, 33, 34]. Directly
applying a gait prediction model trained for able-bodied subjects for motion prediction in impaired
individuals suffered in performance due to the inherent differences between gait patterns of able-
bodied individuals and limb-impaired individuals [34]. This study presents an efficient strategy to
adapt a generic gait prediction model for predicting limb joint motion during various locomotion tasks
for below-knee impaired individuals, including walking and stair ascent/descent, without requiring
model fine-tuning or retraining. Our method integrates retrieval with network inversion techniques
[2, 3], mapping impaired inputs to able-bodied patterns to facilitate accurate motion prediction.

3 Datasets

Able-bodied dataset. To train the able-bodied motion model, we utilize a comprehensive public
dataset [35] that includes kinematic data collected from wearable sensors. These sensors comprise
IMUs that measure 3D angular velocities and linear accelerations, as well as goniometers that capture
sagittal knee and ankle positions under various motion conditions. The dataset includes recordings
from ten individuals performing a range of locomotion activities, such as level ground walking, stair
ascent, stair descent, and walking on inclined walkways. The dataset comprises approximately 6.56
million samples across ten individuals, averaging about 656,039 samples per individual.

Lower-limb impairment motion datasets. Motion data were collected from individuals with
below-knee lower-limb impairments/amputations [36] using a 200 Hz camera-based motion capture
system (Vicon Motion Systems Ltd., UK) equipped with 12 cameras. Retro-reflective markers
were placed on their bony landmarks in the torso, pelvis, thigh, shank, and residual foot, with
additional markers on the thigh and shank for 3D tracking. Various locomotion tasks were performed,
including different walking speeds, stair ascent, and stair descent. Gait event detection software
(Vicon Nexus) marked gait cycle boundaries based on marker positions and force thresholds. We
processed the marker trajectories and computed joint angles and kinematic data using OpenSim
[37], an open-source musculoskeletal modeling platform. The user studies were approved by the
Institutional Review Board (IRB) of the University Medical Center Göttingen, Germany. Participants
were informed beforehand about the experimental procedure, potential risks, precaution measures,
and data protection. Experiments were conducted after obtaining written consent from participants.
All ethical protocols regarding information, instructions, and compensation were followed. Details
are provided in the appendix A.5.

Inputs and outputs. We utilized the temporal history of angular velocities from the shank and thigh
segments and the angular position of the knee joint on both sides as model inputs.

Xt = {θ(thigh,r)t−K:t , θ
(thigh,l)
t−K:t , θ

(shank,r)
t−K:t , θ

(shank,l)
t−K:t , θ

(knee,r)
t−K:t , θ

(knee,l)
t−K:t } ∈ RK×D (1)

where K = 20 is the length of history and D = 6 is the number of input features. The model
predicted the angular position of the ankle joint on the impaired side. Given that direct measurement
of ground truth outputs from lower-limb impaired individuals is not feasible due to limb disabilities
or loss, we computed the desired ankle motion trajectories for each such individual’s gait cycle based
on similar-speed gait cycles of a subset of able-bodied subjects with comparable anthropometric
features (mass, age, height).

ỹamp =

∑
s∈Santhropometric

∑
n∈Nspeed

ys,nk

|Santhropometric||Nspeed|
(2)

where Santhropometric is the set of subjects with similar anthropometry as the impaired individual
(height: ±5cm, weight: ±5kg) and Napeed is the set of gait cycles where the able-bodied subjects in
walked at similar speeds (±0.1m/s) as that of the impaired individual. The reference timepoint k for
computing a matching output for the impaired individual was based on the phase of the gait cycle.

4 Method

Our objective is to utilize a well-trained foundation model that has learned a variety of motion
scenarios from physically capable individuals to predict the walking patterns of a lower-limb impaired
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individual’s disabled limbs, all without fine-tuning or altering the model parameters. This involves
reprogramming/correcting the inputs acquired from the impaired individuals by refurbishing them so
that the foundation model is able to produce the desired motion variables from the limb-impaired
individuals’ inputs. Our method integrates retrieval with network inversion techniques, efficiently
mapping impaired-individual inputs to able-bodied patterns and facilitating accurate motion prediction.
It comprises three components: a foundation module, a versatile multi-task model developed from
data sourced from numerous able-bodied subjects; a retrieval-augmented template mapping module,
which computes the correction template for the queried impaired individual input; and a refurbish
module, designed to map the queried impaired individual input to the computed correction template.
The foundation module then predicts the desired motion of the disabled limb from the refurbished
impaired individuals’ inputs. Figure 1 summarizes this architecture. Below, we elaborate on each of
the components.

4.1 Foundation module

We train a foundation multi-task module using data from able-bodied individuals (Xab,Yab), encom-
passing the different motion conditions. A fundamental difficulty in the realm of multi-task learning is
finding a balance between utilizing the common patterns among multiple tasks while still preserving
the adaptability needed to address the unique characteristics of each individual task. Our strategy
involves constructing a predictive model, denoted as g(.), which comprises two distinct components:
a shared core gs with parameters θs that are shared across all tasks, and subsequently, task-specific
layers gt with parameters θt. The holistic forecast for a given input instance Xt,k, pertaining to the
task t at the time point k, is represented as g(Xt,k, t; θg = {θs,

⋃
t θt}) = gt(gs(Xt,k; θs); θt). For

the shared core gs, we employ time convolutions [38]. We deploy lightweight task-specific layers, gt,
on top of the shared core, characterized by a two-layer multi-layer perceptron (MLP) with rectified
linear unit (ReLU) nonlinearities. We compare architectures with task-specific final layers to a model
without such task-specific parameters. In this alternate architecture, the output features gs(X; θs)
of the shared core for any task are passed through a single prediction head gc to produce the output
motion variable. This comparison helps evaluate the efficacy of task-specific adaptations versus a
unified approach in predicting motion variables across different tasks.

4.2 Retrieval-augmented template mapping

Once the able-bodied model is trained, we use it to predict the motion variables for the lower-limb
mobility-impaired subjects without retraining the model with the affected individual’s data. To
achieve this, we map the mobility-impaired individual’s inputs Xamp corresponding to a desired
output yamp to a corrected input Xcorr such that the model gives a similar output as the mobility-
impaired individual’s desired output for this corrected input (Fig. 1). We identify two methods for
computing such a correction input Xcorr, namely nearest neighbor search and network inversion.

Nearest neighbor search. A naive way of mapping the impaired individual’s input to an able-
bodied template is to use the able-bodied input Xab for which the model gives the desired impaired
individual’s output ỹkamp as the corrected input, that is,

Xk
corr = argmin

Xab∈Xab

∥f(Xab)− ỹkamp∥ (3)

, where the desired impaired individual’s output ỹkamp is computed from those able-bodied individuals
sharing similar anthropometry (such as height, mass, and age) as that of the impaired individual.

However, an inherent problem of this approach is the ambiguity in the corrected input when similar
values of desired output yamp occur separated in time. This can lead to entirely different input values
being mapped as correction inputs for similar input values of the limb-impaired individuals. For
example, in the illustration in Fig. 2, consider we were searching for a Xcorr for ykamp = 0.6 at
t = 0.6. However, ykamp = 0.6 also occurs around t = 0.2 for which the correction input might be
completely different from the one at t = 0.6.

One way to disentangle this problem would be to consider not a single ykamp value for computing
the correction input, but a sequence of co-occurring values in a time of which the desired output
ykamp is the midpoint (red region in Fig. 2). The algorithm now searches for a sequence of 2m+ 1
able-bodied inputs that would produce the desired sequence of mobility-impaired individual outputs
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{yk−m
amp , ..., ykamp, ..., y

k+m
amp }. This way, it becomes less probable that different able-bodied input

sequences correspond to the same mobility-impaired individual output sequences. For example, the
desired output ykamp at t = 0.6 in Fig. 2 falls in the region of decreasing values of yamp, whereas
the other similar value at around t = 0.2 lies in the region of increasing yamp values. These two
output values, although similar, would thus have different able-bodied inputs associated with them
for correction. The correction input Xk

corr in this case can be computed as

Xk
corr = argmin

Xi
ab

m∑
j=−m

∥f(Xi−j
ab )− ỹk−j

amp∥ (4)

In the previous approaches, we used a single value of able-bodied input as a correction template
for the mobility-impaired individual. However, this approach may be prone to noise and overfitting.
To deal with this, we propose an extension of our approach which integrates multiple able-bodied
input values to form a correction template for the mobility-impaired individual. This is achieved by
defining a ϵ-neighborhood (black ellipse in Fig. 1) around the able-bodied input for which the model
prediction is closest to the desired mobility-impaired individual output (such an able-bodied input is
obtained using either Eqn. 3 or Eqn. 4). The correction template is computed as a weighted sum of
the able-bodied inputs within the ϵ-neighborhood. If Xi

ab be the closest able-bodied input around
which the ϵ-neighborhood is defined, the correction template is given by

Xk
corr =

∑
j∈arg(∥Xab−Xi

ab∥≤ϵ)

wj ∗Xj
ab. (5)

where wj is the weight associated with each of the able-bodied input Xj
ab in the ϵ-neighborhood.

We define two types of weighting – linear and exponential – with the weight wj of an able-bodied
input sample Xj

ab decreasing linearly or exponentially as it moves away from the center Xi
ab of the

ϵ-neighborhood. The weighting factor wj is thus given by

wj =

{
1− Xj

ab−Xi
ab

ϵ if weighting = linear

exp(s ∗ Xi
ab−Xj

ab

ϵ ) if weighting = exponential
(6)

where s is a scaling factor that determines how fast the weight decreases as the sample Xj
ab moves

away from the center of the ϵ-neighborhood. Other types of weighting (for example, uniform
weighting of samples in the neighborhood) are also possible, but are out of scope of this work.

For simplicity, we consider only n closest neighbors within the ϵ-neighborhood for computing the
correction template Xcorr. Since the inputs are normalized in [0, 1], ϵ is set to 0.01.

Network inversion. One limitation of the nearest neighbor search method detailed above is the
requirement to store the complete training data used for training the foundation module, which
increases the memory requirements. Although one can devise clever ways to store less data without
affecting the accuracy, we propose directly retrieving the correction input Xcorr corresponding to
the mobility-impaired individual’s desired output, ỹamp from the pretrained foundation module. For
the desired mobility-impaired individual output, ykamp at each time point k, we generate a correction
template Xk

corr such that,

Xk
corr = argmin

X

∥∥g(X)− ỹkamp

∥∥
2
+ λ

∥∥Xk
corr

∥∥
2

(7)

where the λ is the regularization strength.

This approach draws inspiration from network-inversion techniques introduced by Linden and
Kindermann [1] which involves finding a relevant input that produces a specific output from a neural
network. This technique, leverages gradient-based optimization to iteratively adjust the input until
the desired output is achieved.

4.3 Refurbish module

We perform a data-level adaptation of the mobility-impaired individual inputs by learning a mapping
from the corrupted mobility-impaired individual data Xamp (due to compensatory motion, asymmetric
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gait) to the correction template Xcorr computed from the able-bodied data using the techniques
mentioned in the previous section. To achieve this, we train a lightweight refurbish module h(.)
characterized by a multi-layer perceptron with three hidden layers of 100 units each. Following three
strategies are employed for training the refurbish module.

Correction-based mapping. The refurbish module h(.) is trained to map the mobility-impaired
individual input Xamp to the corresponding computed correction Xcorr by minimizing the MSE
loss between the computed correction Xcorr and refurbish module predicted correction X̂corr =
h(Xamp; Θh). The loss function is

Linput =
∑

Xamp,Xcorr∈X train
amp

∥h(Xamp; Θh)−Xcorr∥ (8)

where X train
amp is the training dataset consisting of mobility-impaired individual inputs and corre-

sponding correction templates. The correction template Xcorr may be computed using either nearest
neighbor search or network inversion, detailed in the previous section.

Target-based mapping. In this case, the input to map to is not explicitly determined, instead the
refurbish module optimizes its parameters to produce the target directly, given the frozen foundation
module. The refurbish module h(.) is trained to minimize the MSE loss between the predictions
of the pretrained foundation module g(.) when it is fed with the refurbish module’s outputs and
the desired target values of the mobility-impaired individual yamp. In this strategy, the computed
correction templates are completely ignored, and the model is trained solely to reproduce the final
desired target. The loss function becomes

Ltarget =
∑

Xamp,yamp∈X train
amp ,Ỹtrain

amp

∥g(h(Xamp; Θh); Θ
∗
g)− ỹamp∥ (9)

where Ỹtrain
amp is the training dataset consisting of desired outputs for mobility-impaired individuals.

The foundation module g(.) is pretrained using the data from multiple able-bodied subjects, and its
parameters Θ∗

g are kept fixed. Only the parameters Θh of the refurbish module h(.) are varied using
this loss function.

Hybrid. This is a combination of the correction-based and target-based training strategies. The
loss function used to train the mapping model h is a weighted combination of the error between
the predicted correction X̂corr = h(Xamp) for the mobility-impaired individual input Xamp and its
computed correction Xcorr and the error between foundation module predictions on mapping model
outputs, ŷamp = g(h(Xamp)) and the desired output values of the mobility-impaired individual
ỹamp. Thus, the hybrid loss function is,

Ltotal = α ∗ Linput + β ∗ Ltarget (10)

where α and β are the factors that influence the effect of input-based loss and target-based loss
respectively on the final loss. Based on which correction strategy is used, the hybrid strategy can take
two forms – hybrid (neighbor) and hybrid (inversion).

5 Experiments

5.1 Baselines

We assess our proposed method’s effectiveness against three baseline approaches:

Cross-mapping (zero-shot transfer). Here, we directly apply the foundation model g(.) to predict
motion variables for mobility-impaired individual subjects, without retraining the foundation module
or utilizing the refurbish module to transform mobility-impaired individual inputs into clean data.
This is akin to zero-shot transfer, where the pretrained model is used to predict output trajectories
from impaired inputs without any training. Since no training was involved, it was not possible to
report scores for cross-mapping with different training ratios.

Direct-mapping. In direct mapping, we used a refurbish module h(.) in front of the pretrained model
g(.). The model learns to directly map the impaired individual’s inputs Xamp to the desired motion
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Figure 3: Effect of foundation model architecture on the performance for different training strategies.
(task-shared: model with shared backbone and a common prediction head for all tasks, task-specific:
model with shared backbone and task-specific heads)

Figure 4: (Left) Effect of weightage β of the target-based loss on the performance of models with
task-specific prediction heads trained with hybrid strategy for refurbishing. The weightage α of input-
based loss is set to be 1. The blue curve on the left (α = 1, β = 0) represents purely neighbor-based
refurbishing. (Right) Effect of sequence length 2m+ 1 and number of nearest neighbors n on the
performance of models with shared and task-specific prediction heads trained using input-based and
hybrid strategies. For hybrid strategy, α = 1 and β = 20 was selected. The combination which gave
the best prediction performance in each case is marked with a red square (Please note that there exists
multiple combinations which gave similar accuracies).

variables ỹamp. During learning, the pretrained model is frozen, whereas the refurbish module is
tunable.

Fine-tuning (transfer learning). In finetuning, no refurbish module is used, and the foundation
module g(.) pre trained on able-bodied data is finetuned to learn a mapping from impaired individual
inputs Xamp to the desired motion variables ỹamp.

5.2 Ablation results

Foundation module architectures. Our initial analysis focused on how the architecture of the
foundation module impacts prediction performance across various training strategies. As depicted
in Fig. 3, we examined the foundation modules equipped with task-specific and task-shared predic-
tion heads in predicting desired motion variables for mobility-impaired individuals across different
tasks. For direct mapping and refurbished inputs with target-based and hybrid correction, models
featuring task-specific heads outperformed those with shared prediction heads when the training
data was limited. However, as the training dataset size increased, the performance of both models
converged to similar levels. Interestingly, a reverse trend emerged when mobility-impaired individual
inputs were refurbished with a target-based trained refurbish module. Models with shared prediction
heads performed better for the smallest training data sizes, while those with task-specific layers per-
formed better with larger training datasets. In summary, task-specific foundation models consistently
demonstrated superior prediction performance when compared to their task-shared counterparts.

Effect of weightage β of target-based loss . In the hybrid training strategy of the refurbish module,
we adopted a loss function that is a weighted sum of the correction-based and target-based loss.
We next analyzed how the weights assigned to the loss functions affect the performance of the
task-specific foundation modules. We set the weightage for correction-based loss to be 1 and varied
the weightage β of the target-based loss. We found that the model performance increases for higher
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Figure 5: (Left) Performance of models trained with different strategies. For hybrid strategies,
α = 1 and β = 20 was selected. For neighbor-based strategies, m and n were selected based on the
best-performing values computed in the previous section. (Right) The correction template Xcorr

computed using different strategies and the corresponding predictions from the refurbish module. For
target-based strategy, no correction template was computed, and the visualization shows the output of
the refurbish module in this case.

Table 1: Coefficient of determination (R2) obtained with different training strategies for a train
sample ratio of 0.1

cross
mapping

direct
mapping

fine
tuning

neighbor
search

network
inversion

target
based

hybrid
(neighbor)

hybrid
(inversion)

task-shared -0.35 ± 0.16 0.77 ± 0.2 0.73 ± 0.22 0.33 ± 0.11 0.23 ± 0.07 0.39 ± 0.25 0.84 ± 0.07 0.83 ± 0.09
task-specific -0.32 ± 0.48 0.71 ± 0.14 0.74 ± 0.22 0.19 ± 0.22 0.39 ± 0.25 0.61 ± 0.22 0.86 ± 0.07 0.87 ± 0.09

weightage of target-based loss for refurbish model training. However, as the weightage β increases,
the prediction performance shows a converging trend (Fig. 4 left).

Effect of sequence length 2m + 1 and number of neighbors n. In the nearest neighbor search
method for computing the correction template Xcorr, we proposed a strategy for using a sequence of
desired motion variables for the mobility-impaired individual {yk−m

amp , ..., ykamp, ..., y
k+m
amp } to compute

the correction template Xk
corr for the k-th mobility-impaired individual input Xk

amp. Another strategy
that we propose is to use a ϵ-neighborhood around the able-bodied input sample Xi

ab that is closest
to the input required to produce the desired mobility-impaired individual motion variable ykamp at
time point k. The correction template should be computed as a weighted sum of n nearest neighbors
of Xi

ab within the ϵ-neighborhood (where weights decrease linearly or exponentially as the distance
from Xi

ab increases). We investigated the effect of the sequence length 2m+1 and number of nearest
neighbors n used for computing the correction template on the performance of models in predicting
the desired motion variables for mobility-impaired individuals across locomotion tasks (Fig. 4 right).
Most of the cases evaluated worked better than the basic case of single sample matching and single
neighbor (2m+ 1 = 1, n = 1). For models with task-shared prediction heads, better performances
were obtained with lower sequence length 2m + 1 and higher number of neighbors n for both
correction-based and hybrid methods. For models with task-specific prediction heads, correction-
based correction performed better with larger sequence length and larger number of neighbors lead to
better performance for whereas hybrid strategy worked better with a smaller sequence length and
larger number of neighbors. Interestingly, hybrid (neighbor) strategy did not require matching a larger
sequence of outputs, possibly because it also makes use of target-based correction. Nevertheless,
sampling multiple neighbors from the ϵ-neighborhood of Xi

ab was still necessary to improve the
prediction performance. A exponentially decreasing weighting performed better for neighbor-based
correction strategy, whereas a linearly decreasing weighting worked better for hybrid strategy. For
further analyses and comparisons, we use the sequence length, number of neighbors’ and weighting
values that gave the best prediction scores with neighbor-based and hybrid (neighbor) computed
correction templates.

Training strategies. Finally, we examined the impact of various training strategies on model
performance (Fig. 5 left and Tab. 1). Across all these strategies, we observed a general improvement
in prediction scores as the training sample size increased. There was a slight drop in accuracy when
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using very large training sample sizes, likely due to overfitting. Both the hybrid strategies – hybrid
(neighbor) and hybrid (inversion) — which combined correction-based and target-based mapping,
consistently delivered accurate predictions across different training sample sizes. Notably, for the
smallest amount of training data tested, the hybrid strategy outperformed the direct mapping and
fine-tuning approaches. With task-shared prediction heads, hybrid reprogramming showed a slight
improvement (∼ 7%) over direct mapping, while for task-specific prediction heads, it exhibited a
more pronounced improvement (∼ 16%). These results suggest that our proposed input refurbishing
strategy offers an efficient means to adapt a pretrained model for new scenarios, especially when
dealing with limited training data.

While direct mapping performs well in predicting motion variables for the specific mobility-impaired
individual it was trained on, it requires a larger dataset to achieve the same performance level
as the model reprogramming approach. Additionally, direct mapping relies on limited data from
mobility-impaired individuals, reducing exposure to diverse motion conditions and leading to lim-
ited generalization capabilities. This limitation is critical for mobility-impaired individual motion
prediction models, as gait patterns may change as mobility-impaired individuals adapt to generated
motion. This adaptation could result in improved compensatory motions and gait normalization. In
contrast, an able-bodied model trained on a wide array of motion scenarios from various individuals
may be more adaptable to evolving mobility-impaired individual gait patterns while accommodating
the predicted joint motion required for prosthetic walking. Our approach also outperformed model
fine-tuning in the low-data regime, showing an improvement of approximately ∼ 11% for task-shared
models and ∼ 13% for task-specific models, underlining the effectiveness of the proposed approach
over other model repurposing methods like transfer learning.

Visualization of the computed correction templates Xcorr and corresponding predictions from the
refurbish module (Fig. 5 right) shows that, despite the refurbish module being a simple three-layer
MLP (chosen for its lightweight and data-efficient properties), it can reconstruct the correction
templates with considerable accuracy. Interestingly, the correction templates computed by the
neighbor search and network inversion strategies were notably different, despite having the same
desired output. This discrepancy arises because neighbor search finds the closest match from available
data points, introducing variability based on the dataset, while network inversion uses gradient-based
optimization to iteratively minimize error, leading to different solutions. The same variability was
observed with target-based mapping, which directly optimizes towards the target output without
generating intermediate correction templates.

Limitations The desired motion variables for mobility-impaired individual subjects were derived
from able-bodied individuals with similar anthropometric features and walking speed as that of
the mobility-impaired individual subjects. While this approximation may effectively represent the
reference joint’s desired motion, its suitability for practical applications such as controlling powered
prostheses requires validation. Nevertheless, our approach possesses a generic capability to transform
inputs in a way that can generate any desired output from a pretrained model, provided there exists a
learnable relationship between the inputs and the desired outputs.

6 Conclusion and Broader Impact

In this study, we proposed ReMAP, a model repurposing strategy that leverages deep learning’s repro-
gramming property, incorporating network inversion principles and retrieval-augmented mapping.
Our approach adapts models originally designed for able-bodied individuals to forecast joint motion
in limb-impaired patients without altering model parameters. Our findings indicate that the proposed
input refurbishing strategy offers a sample-efficient mechanism for adapting pretrained models to
new scenarios. The proposed model reprogramming approach for adaptive motion forecasting has
the potential to significantly enhance the quality of life for individuals with mobility impairments.
By leveraging well-trained models from able-bodied data, this method can efficiently predict joint
motions for mobility-impaired individuals, aiding in the development of more responsive and accurate
assistive devices such as prostheses and orthoses. This approach minimizes the need for extensive
retraining, making it both cost-effective and accessible for personalized healthcare applications.
Furthermore, this technique is versatile and can be applied to other regression problems in domains
where data scarcity presents a challenge.
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A Appendix

A.1 Network inversion

Starting with a random input X(0) ∼ U(0, 1), the gradient of loss, L(g(X), ỹamp), of the foundation
module output is computed with respect to its input X . At each iteration t, the input is updated using
gradient descent,

X(t+1) = X(t) + η
∂L

∂X(t)
(11)

where η is the learning rate and L is mean-squared error loss function, until convergence condition,
L(g(X), ỹamp) < τ , is satisfied. We used η = 0.01, τ = 1e− 4, and λ = 1.

A.2 Theoretical basis

In line with [11], we define the population risk for the target task (mobility-impaired individual’s
motion prediction) via reprogramming a pretrained source network (able-bodied model) to be upper
bounded by the sum of two terms:

1. Source population risk: The risk associated with the source task, which is denoted as
Rs(f).

2. Representation alignment loss: The Wasserstein-1 distance between the distributions of
the source data (computed able-bodied template, Xs) and the reprogrammed target data
(h(Xt)).

Theorem Statement: Let h denote the learned additive input transformation for reprogramming and
f is the pretrained model. The population risk for the target task Rt(h) is upper bounded by:

Rt(h) ≤ Rs(f) +W1(X
s, h(Xt)) (12)

However, the second term in the risk function is a strict constraint and a slight deviation in the
representational alignment can lead to a large error in the output. The network-inversion based loss
function relaxes the constraint such that the reprogrammed target data no longer needs to be similar
to the source data. However, the constraint now changes to a representational similarity between
reprogrammed target data and network inversion inputs such that

Rt(h) ≤ Rs(f) +W1(f
−1(ys), h(Xt)). (13)

On the other hand, adding the target-based loss effectively relaxes this constraint by depending more
on the source population risk and less on the stricter constraint of representational similarity of
reprogrammed target data and source data. The target population risk becomes

Rt(h) ≤ βRs(f) + αW1(f
−1(ys), h(Xt)). (14)

with α + β = 1 and α < β. Since the source population risk depends on the performance of the
pretrained model f , the population risk of the hybrid approach can effectively approach a lower error
bound than 12 and 13.

A.3 Experimental details

Foundation module. The foundation module, g, consists of a shared core gs and lightweight task-
specific prediction heads gt. The shared core consists of two time convolution layers, with a kernel
size of 5 and dropout rate of 0.2. Each prediction head is a lightweight two-layer MLP with 200
and 100 units, with ReLU activation in hidden layers. The foundation module was trained using
able-bodied data from a publicly available dataset [35] with a batch size of 100 for 25 epochs with
stochastic gradient descent optimizer (learning rate of 1e-3 and momentum=0.9).

Refurbish module. Since we require the refurbish module to be data-efficient, a simple three-layer
MLP with 100 units each with ReLU activation was used. The model is trained for 100 epochs with a
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batch size of 100. A stochastic gradient descent optimizer with a learning rate of 1e-4 and momentum
of 0.9 was used.

Compute resources. All experiments were compatible on single GPU (Nvdia GTX3070, 8GB) with
12 CPU cores (Intel i7).

A.4 Extended results

Optimal Beta value We evaluated the performance of models for different beta values and found
that the best performance was obtained with β = 20 which was eventually selected. The performance
saturates at a β of 20 and diminishes for larger values of β.

β 1 5 10 20 30 40 50

R2 0.63±0.04 0.88±0.02 0.92±0.02 0.94±0.01 0.94±0.02 0.90±0.05 0.85±0.07

Correction-based mapping In the below table, we report the correction-based mapping results
for different training ratios. It can be observed that for small amount of training data, the correction-
based method does not work well. However, as the amount of training data, the correction-based
performance also increases (as the refurbish module becomes increasingly accurate). These results
show that the performance of the correction-based mapping depends strongly on the accuracy of
the refurbish module. By adding the target-based loss, this constraint is relaxed and the model now
depends more on the performance of the pretrained model.

Train size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Output R2 0.18±0.14 0.41±0.12 0.48±0.11 0.58±0.11 0.57±0.11 0.57±0.16 0.66±0.09 0.63±0.07 0.57±0.17
Refurbish model R2 0.20±0.06 0.38±0.05 0.42±0.06 0.46±0.05 0.45±0.05 0.48±0.06 0.48±0.09 0.48±0.06 0.45±0.09

A.5 User study

All the user studies presented here were approved by the Institutional Review Board (IRB) of the
University Medical Center Göttingen. The participants gave their written consent to the study. Below
you can find the snapshots of the general instructions given in the participant study, potential risks,
precautions, and details about compensation.
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General instructions’ snippets of relevant information given to 

participants during locomotion experiments (both English-

translated and German version below) 

 

 



 

 



 

 



 



 

 



 

 





 

 



 

 

 

 



 



 



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a data-efficient model re-purposing approach by which a model
trained for motion prediction in able-bodied subjects could be adapted for individuals with
limb loss. Through extensive comparisons, we show that our proposed approach outperforms
other baseline and state-of-the-art approaches, as shown in Fig. 5 and Tab. 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have included a Limitations section in the manuscript which discusses the
limitations of our study.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have detailed the approach in the Methods section with details on the
network used and the hyperparameters for the network and the proposed retrieval-based
template matching strategy.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The data is related to a consortium project and requires permission from all
involved parties.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the Methods and Appendix sections of the paper, we have provided the
details regarding the training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Although we did not perform a statistical significance analysis, we have
provided error bars in the results wherever it is applicable. In one of the figures (Fig. 4
right), we could not provide error bars due to the two-dimensional structure of this figure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details on the compute resources are provided in the appendix. We did not
compute the time requirements during our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully read the NeurIPS Code of Ethics and reviewed that our
work conforms with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have included a section on Broader Impact which discusses the positive
societal impact of our study. We do not expect any negative societal impacts of our study.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have used a publicly available dataset of able-bodied locomotion [35]
(License: CC BY 4.0) to train our foundational module. We have explicitly mentioned this
in the Datasets section and provided citation to the related paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We have provided the full text of instructions given to participants and screen-
shots and the details about compensation in the appendix.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We provided the snapshots of the participant information and potential risks.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

32

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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