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ABSTRACT

This study explores the challenges of integrating human visual cue-based dehazing
into object detection, given the selective nature of human perception. While hu-
man vision adapts dynamically to environmental conditions, computational dehaz-
ing does not always enhance detection uniformly. We propose a multi-stage frame-
work where a lightweight detector identifies regions of interest (RoIs), which are
then improved via spatial attention-based dehazing before final detection by a
heavier model. Though effective in foggy conditions, this approach unexpect-
edly degrades the performance on clear images. We analyze this phenomenon,
investigate possible causes, and offer insights for designing hybrid pipelines that
balance enhancement and detection. Our findings highlight the need for selective
preprocessing and challenge assumptions about universal benefits from cascading
transformations. The implementation of the framework is available here1.

1 INTRODUCTION

Low-visibility conditions, such as rain, snow, fog, smoke, and haze, pose significant challenges for
deep learning applications in autonomous vehicles, security and surveillance, maritime navigation,
and agricultural robotics. Object detection models struggle in these environments due to reduced
contrast and obscured features, often leading to performance degradation. While image enhance-
ment methods, including dehazing, improve visibility, they can also introduce artifacts or distortions
that negatively impact downstream tasks. Overprocessing may lead to false positives and increased
computational overhead, highlighting the need for more selective enhancement strategies. Motivated
by real-world challenges, such as disruptions in airport operations where poor visibility delays taxi-
ing and docking, this study proposes a vision-inspired deep learning framework tailored for adverse
conditions, particularly fog.

To address these challenges, we introduce Selective Region Enhancement, a method that focuses
on specific regions of interest rather than applying uniform dehazing. This approach reduces pro-
cessing overhead and prevents unintended degradations that may introduce false positives. Addi-
tionally, we propose Integration with Object Detection, bridging image enhancement with object
detection in a unified pipeline. This integration leverages the strengths of both techniques, overcom-
ing limitations of traditional independent processing models. Our approach draws inspiration from
human visual mechanisms, including selective attention, foveal and peripheral vision, adaptive eye
responses, bottom-up sensory cues, and top-down goal-driven processing (see Appendix B).

The paper is structured as follows: Section 2 reviews prior work on low-visibility object detection
and integration of human visual cues in deep learning applications. Section 3 presents our frame-
work, including its vision-inspired design, data set selection, and experimental setup, followed by
results and observed anomalies in Section 4.

∗Work done outside position at Amazon.
1https://github.com/ashu1069/perceptual-piercing
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2 RELATED WORK

Advancements in navigation and detection under low-visibility conditions have leveraged sensor fu-
sion, visual cue integration, and computational techniques. Aircraft landing studies have explored
sensor fusion of visible and virtual imagery (Liu et al., 2014) and visual-inertial navigation us-
ing runway features (Zhang et al., 2018). Multi-sensor fusion algorithms have improved odometry
in GPS-denied environments (Khattak et al., 2019), while research on depth visualization has en-
hanced navigation and obstacle avoidance (Lieby et al., 2011). Synthetic Vision Systems and full-
windshield Head-Up Displays aid drivers and pilots in low visibility (Kramer et al., 2014; Charissis
& Papanastasiou, 2010). Image enhancement techniques for low-light conditions (Atom et al., 2020)
and the fusion of visual cues with wireless communication improve road safety (Boban et al., 2012).
Studies have also emphasized the role of geometrical shapes and colors in driving perception via
Head-Up Displays (Zhan et al., 2023).

Despite these advances, challenges persist, including computational complexity (Zhang et al., 2018;
Atom et al., 2020; Tang et al., 2022), performance issues under extreme conditions (Khattak et al.,
2019; Boban et al., 2012), overfitting due to limited datasets (Zhang et al., 2018; Khattak et al.,
2019), and insufficient real-world validation (Liu et al., 2014; Boban et al., 2012; Tang et al., 2022).
Some works lack rigorous validation (Kramer et al., 2014; Zhan et al., 2023).

In visual recognition, research has explored human-like processing in computational models. Stud-
ies on brain mechanisms highlight hierarchical, feedforward object recognition (DiCarlo et al.,
2012), while comparisons with deep neural networks (DNNs) reveal human superiority in handling
distortions and attention mechanisms (Dodge & Karam, 2017; van Dyck et al., 2021). Eye-tracking
data has been used to guide DNN attention with limited success (van Dyck et al., 2022). Approaches
such as adversarial learning for feature discrimination (Yang et al., 2023a), biologically inspired
top-down and bottom-up models (Malowany & Guterman, 2020), and retina-mimicking models for
dehazing (Zhang et al., 2015) have been proposed. Foveal-peripheral dynamics have also been ex-
plored to balance computational efficiency and high-resolution perception (Lukanov et al., 2021).

Recent research has tackled low-visibility challenges like fog, low light, and sandstorms. The
YOLOv5s FMG algorithm improves small-target detection with enhanced modules (Zheng et al.,
2023), while novel MLP-based networks refine image clarity in hazy and sandstorm conditions
(Gao et al., 2023). The PKAL approach integrates adversarial learning and feature priors for ro-
bust recognition (Yang et al., 2023b). Deformable convolutions and attention mechanisms enhance
pedestrian and vehicle detection in poor visibility (Wu & Gao, 2023). Reviews highlight the limita-
tions of non-learning and meta-heuristic dehazing methods in real-time applications (V et al., 2023),
emphasizing the need for integrated low-level and high-level vision techniques (Yang et al., 2020).
Innovations such as spatiotemporal attention for video sequences (Zhai & Shah, 2006), the PDE
framework for simultaneous detection and enhancement (Li et al., 2022), spatial priors for saliency
detection (Jian et al., 2021), and early visual cues for object boundary detection (Mély et al., 2016)
further contribute to the field.

Despite advances, existing methods struggle with joint optimization of object detection and image
enhancement, detection of low-contrast objects, and adaptation to dynamic visibility changes. This
paper addresses these challenges by integrating human visual cues, such as attention mechanisms
and contextual understanding, into object detection, enhancing both robustness and efficiency. Tra-
ditional approaches process entire images uniformly, increasing computational load, and sometimes
degrading clear regions. Our method selectively enhances regions of interest, reducing unnecessary
computations and improving responsiveness under varying conditions.

3 METHODOLOGY

The proposed methodology, illustrated in Figure 1, presents a deep learning framework that en-
hances object detection in low-visibility conditions by leveraging the atmospheric scattering model
and human visual cortex principles. It integrates adaptive image enhancement with object detec-
tion, optimizing performance through different integration strategies. The pipeline starts with a
lightweight detection model to identify regions of interest, guiding spatial attention in the dehaz-
ing process. This targeted enhancement preserves critical features while reducing computational
overhead. A more robust detection model then refines and improves object recognition.
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Figure 1: Overall architecture of Perceptual Piercing: (a) Preliminary detection using lightweight
object detection model (b) Gaze-directed dehazing using spatial attention on region of interests (c)
Final detection using a large and robust model.

For dehazing, we train and evaluate state-of-the-art models, including AOD-Net(Li et al., 2017b),
UNet-Dehaze(Zhou et al., 2024), and DehazeNet(Cai et al., 2016), using the Foggy Cityscapes
dataset (Sakaridis et al., 2018) (see AppendixA). Table 2 presents a comparative analysis of their
dehazing performance, while Figure 3 illustrates their impact on object detection. Among these
methods, AOD-Net demonstrated the best dehazing performance, prompting further architectural
enhancements. This resulted in AOD-NetX, a spatial attention-enhanced version trained on the
Foggy Cityscapes dataset. Detailed modifications to AOD-NetX are provided in Appendix D.4 and
Figure 2. For object detection models, we have used pre-trained YOLOv5 and YOLOv8 (see Ap-
pendix E).

To ensure robust evaluation, we tested our pipeline on three datasets: Foggy Cityscapes, RESIDE-β,
and RESIDE-OTS (see Appendix A) (Li et al., 2019). This comprehensive assessment highlights
the adaptability and effectiveness of our approach across multiple low-visibility scenarios.

4 RESULTS AND OBSERVED ANOMALIES

For in-distribution performance on the Foggy Cityscapes dataset, see Appendix F.1, while OOD
evaluation on RESIDE-β (RTTS) and OTS datasets is detailed in Appendix F.2, demonstrating the
pipeline’s robustness across diverse hazy conditions. Evaluation metrics include SSIM and PSNR
for dehazing and mAP for object detection (Appendix G). Figure 4 illustrates visibility improvement
with AOD-Net, Figure 5 shows its impact on object detection after dehazing with AOD-NetX on
Foggy Cityscapes, and Figure 6 presents performance on the RESIDE dataset.

Table 1: Comparison of mean Average Precision (mAP) on clear and foggy conditions for different
architecture variants. The performance change column quantifies the relative drop (red) or gain
(green) in detection accuracy when transitioning from clear to foggy conditions.

Architecture Variants mAP (Clear) mAP (Foggy) Performance Change
YOLOv5x 0.5644 0.4850 -14.07%
AOD-Net+YOLOv5x 0.6813 0.5822 -14.53%
YOLOv5s+AOD-NetX+YOLOv5x 0.4896 0.6152 +25.68%
YOLOv8x 0.5243 0.4948 -5.63%
AOD-Net+YOLOv8x 0.6099 0.5900 -3.27%
YOLOv8n+AOD-NetX+YOLOv8x 0.5150 0.6114 +18.71%

An unexpected finding in our evaluation is the performance trend of models incorporating AOD-
NetX. The proposed pipeline performed superior on foggy images and while conventional mod-
els like YOLOv5x, YOLOv8x and also their integration with AOD-Net show a natural drop in
mAP when transitioning from clear to foggy conditions, architectures integrating AOD-NetX ex-
hibit an inverse trend—performing better under foggy conditions than in clear ones (see Table 1).
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Notably, YOLOv5s+AOD-NetX+YOLOv5x achieves a 25.68% relative mAP gain in foggy con-
ditions, while YOLOv8n+AOD-NetX+YOLOv8x shows an 18.71% relative gain, highlighting the
anomalies we found in our experiments.

5 DISCUSSIONS

The unexpected performance improvement of AOD-NetX-based models under foggy conditions
(Table 1) raises critical questions about feature adaptation in hybrid object detection pipelines. Typ-
ically, object detectors show a decrease in accuracy when transitioning from clear to foggy condi-
tions, as seen in conventional YOLOv5x and YOLOv8x models. However, our proposed AOD-NetX
integration leads to an inverse trend, where object detection improves under foggy conditions rel-
ative to that under clear conditions. This suggests that AOD-NetX introduces an implicit domain
adaptation effect, which makes the detection network more attuned to foggy environments at the
cost of generalization to clear images.

One possible explanation lies in bias and overprocessing in the data set. Since AOD-NetX is trained
primarily on foggy images, its learned feature space is optimized for haze removal, but lacks the
necessary constraints to preserve features in clear conditions. Consequently, when applied to clear
images, the model introduces distortions instead of enhancements, disrupting feature consistency
for the object detector. This emphasizes the need for context-aware enhancement, where image-
processing techniques are selectively applied based on scene conditions rather than indiscriminately.

Furthermore, the results challenge the assumption that cascading pipelines, where lightweight de-
tection informs region-specific enhancement before a final robust detection, always improve perfor-
mance. While effective in foggy settings, this multi-stage approach appears to introduce trade-offs,
potentially harming accuracy in clear conditions. Future designs must strike a balance between
specialization for adverse weather conditions and adaptability to diverse environments. Another
consideration is the real-time feasibility of this approach. RoI-specific dehazing adds computational
overhead, which could limit deployment in time-sensitive applications such as autonomous driving.
Optimizing processing efficiency while retaining performance gains remains an open challenge.

6 LIMITATIONS & FUTURE WORK

A fundamental limitation of integrating dehazing into object detection is the feature space misalign-
ment between foggy and clear images. Models trained primarily on foggy conditions lack the ability
to preserve the natural characteristics of clear images, leading to unintended alterations that degrade
detection performance. This highlights the importance of adaptive enhancement techniques that can
determine when dehazing is necessary, rather than applying it universally. A potential solution is
the integration of a haze-level estimation module, which could prevent unnecessary processing by
triggering dehazing only when haze exceeds a certain threshold (Mao & Phommasak, 2014).

Another challenge is pretraining for scene differentiation. Since the AOD-NetX-enhanced models
perform better in foggy conditions, their feature representations may be overfitting to haze-specific
characteristics. Introducing joint training on both foggy and clear images could help mitigate this
issue by aligning the feature space across different visibility conditions (Huang et al., 2024).

Additionally, unifying dehazing and object detection into a single model rather than having multi-
stage framework may yield mutual benefits. For instance, detection-aware dehazing—where de-
hazing prioritizes regions of interest—could help the model preserve essential features for object
detection, enhancing accuracy in both clear and foggy conditions (Fan et al., 2024).

Finally, computational efficiency remains a key concern for real-time applications. While the cur-
rent pipeline enhances detection performance in low-visibility conditions, its multi-stage nature in-
troduces latency. Future work should focus on optimizing inference speed, exploring lightweight
architectures, and developing efficient knowledge distillation techniques to maintain accuracy while
reducing processing overhead.

By implementing adaptive processing strategies, improved pretraining, and joint optimization,
future object detection pipelines can become more resilient across diverse visibility conditions, en-
suring robust performance without compromising clarity in optimal conditions.
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A DATASETS

A.1 FOGGY CITYSCAPES

The Foggy Cityscapes dataset (Sakaridis et al., 2018) was developed to tackle the challenge of
semantic foggy scene understanding (SFSU). While significant research has been conducted on im-
age dehazing and semantic scene understanding for clear-weather images, SFSU remains relatively
underexplored. Due to the challenges associated with collecting and annotating real-world foggy
images, synthetic fog is introduced into clear-weather outdoor scenes. This synthetic fog generation
process utilizes incomplete depth information to simulate realistic foggy conditions on images from
the Cityscapes dataset, resulting in a dataset comprising 20,550 images. The dataset is divided into
a training set of 2,975 images, a validation set of 500 images, and a test set of 1,525 images. Key
characteristics of the dataset include:

• Synthetic Fog Generation: Synthetic fog is added to real clear-weather images using a
dedicated pipeline that incorporates the transmission map.

• Data Utilization: The dataset supports both supervised and semi-supervised learning. A
synthetic foggy dataset was generated using the synthetic transmission map, followed by
supervised learning on the resulting foggy images.

A.2 RESIDE-β

The RESIDE-β Outdoor Training Set (OTS) is a comprehensive dataset curated to support research
in outdoor image dehazing. It addresses the degradation caused by haze in outdoor scenes, which
negatively impacts image quality and downstream tasks such as object detection and semantic seg-
mentation. The dataset contains approximately 72,135 outdoor images with varying haze intensities,
allowing for robust training of dehazing algorithms. For evaluation, we use the RESIDE-β (REalis-
tic Single Image DEhazing) dataset (Li et al., 2019). A subset of RESIDE-β , the Real-Time Testing
Set (RTTS), comprises 4,322 real-world hazy images with object detection annotations. The dataset
is split into a training set of 3,000 images, a validation set of 500 images, and a test set of 1,500
images.

B HUMAN VISUAL CUES

Selective Attention and Foveation: The human eye does not perceive all areas of the visual field
with equal clarity. Foveal vision, which corresponds to central vision, is highly detailed and is es-
sential for tasks such as reading and object recognition. In contrast, peripheral vision is less detailed
but more sensitive to motion. The visual system initially scans the entire scene using peripheral
vision, akin to the preliminary detection phase in our approach. This broad scanning process helps
identify regions requiring closer inspection, enabling a more detailed analysis through foveal vision.
Similarly, the proposed method does not process every detail uniformly but prioritizes key areas of
interest.

Adaptation to Environmental Conditions: The human visual system dynamically adjusts to vary-
ing lighting conditions and levels of visibility, such as adapting from bright sunlight to a dark room.
Similarly, the adaptive dehazing method modulates its processing intensity and focus based on de-
tection feedback and environmental context. This mechanism ensures optimal perception, mirroring
the way human vision adapts to maintain clarity under diverse conditions.

Eye Tracking and Gaze-Directed Processing: Eye-tracking technology monitors gaze direction
and identifies focal points of attention. This concept translates to strategically allocating resources
toward regions of interest in computational visual processing. The proposed method follows a sim-
ilar principle by directing dehazing and detailed object detection efforts to areas where objects are
likely to be present. Just as human vision selectively fixates on specific regions when searching for
an object, the system prioritizes certain parts of the image to enhance clarity and detection perfor-
mance.

Integration of Bottom-Up and Top-Down Processes: Human vision combines bottom-up process-
ing, driven by sensory input, with top-down processing, guided by prior knowledge, expectations,
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Figure 2: Architecture of AOD-NetX: The model takes the transmission map output, K(x), from
AOD-Net and applies a spatial attention layer to emphasize key regions of interest (bounding boxes)
in the input image. The refined transmission map, K ′(x), is then utilized to dehaze the image.

and goals. The proposed model adopts a similar dual approach: it first employs a bottom-up strat-
egy, where object detection algorithms identify potential areas of interest. This is followed by a
top-down refinement process, where dehazing efforts are concentrated on flagged areas, leveraging
previous learning. This interplay between data-driven signals and cognitive insights aligns with the
way human perception integrates sensory input with contextual understanding.

C METHODOLOGY

Preliminary Detection: A lightweight and fast object detection algorithm, such as YOLOv5s or
YOLOv8n, is employed to rapidly scan the image and identify potential regions of interest or active
regions. These models flag image patches with a high probability of containing objects. While the
smaller variants of YOLO models offer lower accuracy compared to their full-sized counterparts,
they are significantly faster, making them well-suited for this initial detection phase.

Region-Based Dehazing: Dehazing algorithms are selectively applied to the active regions identi-
fied during the preliminary detection phase. The approach dynamically adjusts based on the depth
or severity of haze within the detected regions, ensuring an adaptive and efficient dehazing process.

The proposed architecture, AOD-NetX, illustrated in Figure 2, builds upon the transmission map
generated by the standard AOD-Net (Li et al., 2017a). This transmission map is integrated into
a spatial attention map module, producing an attention-enhanced transmission map. The spatial
attention map is derived from the bounding boxes or Regions of Interest (ROIs) detected by the
lightweight object detection model (YOLOv5s/YOLOv8n) within the proposed framework. A sig-
moid layer is applied to map the output probabilities to a range between 0 and 1. Unlike softmax,
which normalizes outputs across multiple regions, sigmoid is preferred in this context since each
bounding box holds independent significance.

D DEHAZING MODELS

D.1 AOD-NET

AOD-Net (All-in-One Dehazing Network) is a convolutional neural network (CNN) designed for
haze removal by directly reconstructing the clean image in an end-to-end manner. Unlike traditional
approaches that separately estimate transmission maps and atmospheric light, AOD-Net is based
on a re-formulated atmospheric scattering model, allowing it to generate dehazed images without
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intermediate computations. This lightweight architecture delivers superior performance in terms of
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) while also enhancing
visual quality. Additionally, its modular design enables seamless integration into other deep learning
models, such as Faster R-CNN, thereby improving object detection performance in hazy conditions.

D.2 DEHAZE-UNET

The Dehaze-UNet model employs an encoder-decoder architecture with skip connections to effec-
tively restore dehazed images. The encoder reduces spatial dimensions through successive convolu-
tional layers, extracting essential features while maintaining structural integrity. Each convolutional
layer is followed by batch normalization and ReLU activation, enhancing feature representation.
The decoder then upscales these features, reintegrating spatial details from the encoder via skip con-
nections, which are critical for preserving fine-grained textures lost during downsampling. The final
stage consists of double convolution layers in the decoder for feature refinement, followed by Max
Pooling and Bilinear Interpolation to optimize feature representation and ensure smooth transitions
in the reconstructed image. This makes U-Net particularly effective for dehazing tasks.

D.3 DEHAZENET

DehazeNet follows a structured four-stage approach, as illustrated in Figure 5 (Zhang & Patel, 2018).
The first stage, feature extraction, employs 16 filters combined with four MaxOut layers, which use
max pooling to reduce data dimensionality. The second stage, multi-scale mapping, captures both
fine-grained and high-level features to ensure a comprehensive feature representation. The third
stage, local extremum, utilizes a specialized max pooling operation to enhance spatial invariance
while preserving image resolution. Finally, the non-linear regression stage incorporates Bilateral
ReLU as the activation function, which constrains the output within a defined range to prevent
oversaturation and maintain image clarity.

D.4 AOD-NETX

The proposed AOD-NetX architecture, depicted in Figure 2, extends AOD-Net by leveraging its
transmission map within a spatial attention map module to generate an attention-focused transmis-
sion map. This spatial attention map is derived from the bounding boxes or Regions of Interest
(ROIs) identified by the lightweight object detection model (YOLOv5s) within our framework. A
sigmoid activation layer is applied to map the output probabilities to a range between 0 and 1. Unlike
softmax, which normalizes outputs across multiple regions, sigmoid is preferred as each bounding
box holds independent significance.

E OBJECT DETECTION MODELS

The detection pipeline incorporates various YOLO models, each optimized for specific applications.
YOLOv5s is a lightweight variant designed for real-time detection with minimal computational over-
head, while YOLOv8n (Nano) is optimized for high-speed processing on resource-constrained de-
vices, such as mobile phones. In contrast, YOLOv5x, with its CSP backbone and advanced data aug-
mentation techniques, delivers enhanced performance for more complex scenes, whereas YOLOv8x
(Extra Large) achieves maximum accuracy when handling large-scale datasets.

The detection workflow begins by applying YOLOv5s or YOLOv8n to foggy images to generate
initial object annotations. These annotations, along with the original image, undergo dehazing using
AOD-NetX. The resulting dehazed image is then processed with YOLOv5x or YOLOv8x, ensuring
precise and refined detection outcomes.

F ADDITIONAL RESULTS

The dehazing modules are trained independently on the provided datasets, while the object detection
models (various YOLO versions) remain pre-trained on the MS-COCO dataset. This modular ap-
proach allows seamless integration of the dehazing module into existing detection pipelines without
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Table 2: Average Loss and SSIM scores of Dehazing techniques on Foggy Cityscapes dataset

Dehazing Model Average Loss SSIM
AOD-Net 0.0468 0.994
UNet-Dehaze 0.0323 0.992
DehazeNet 0.0572 0.991

Figure 3: Comparison of mean Average Precision (mAP) for different dehazing and object detection
module combinations.

requiring full retraining. However, fine-tuning the entire architecture on target datasets could yield
further performance improvements, making it a promising direction for future ablation studies.

Table 3 presents the comparative results, demonstrating that AOD-NetX generally outperforms the
standard AOD-Net in terms of SSIM and PSNR across most datasets. For Foggy Cityscapes and
RESIDE-β OTS, AOD-NetX achieves higher SSIM and PSNR values, indicating superior structural
similarity and signal fidelity. However, in the case of RESIDE-β RTTS, while AOD-NetX attains
a slightly higher PSNR, AOD-Net exhibits a significantly higher SSIM score, suggesting better
structural detail retention in this specific dataset. Overall, AOD-NetX proves more effective in most
scenarios, particularly under complex foggy conditions.

F.1 IN-DISTRIBUTION PERFORMANCE OF PERCEPTUAL PIERCING

The evaluation results of Perceptual Piercing variations, trained and tested on the Foggy Cityscapes
dataset, are presented in Table 4. The integration of dehazing modules, such as AOD-Net and
AOD-NetX (detailed in Appendix C), consistently enhances object detection in both clear and foggy
conditions.

Among the tested variants, the AOD-Net + YOLOv5x configuration achieved the highest mAP under
clear conditions (0.6813). In foggy conditions, YOLOv5s + AOD-NetX + YOLOv5x and YOLOv8n
+ AOD-NetX + YOLOv8x demonstrated the best performance, with mAP scores of 0.6152 and
0.6114, respectively. In contrast, baseline YOLO models (YOLOv5x and YOLOv8x) exhibited
lower detection accuracy, highlighting the effectiveness of advanced dehazing techniques in low-
visibility environments.

F.2 OUT-OF-DISTRIBUTION PERFORMANCE OF PERCEPTUAL PIERCING

The evaluation results in Table 5, where Perceptual Piercing variations were trained on Foggy
Cityscapes and tested on the RESIDE-β OTS and RTTS datasets, highlight key performance trends.
The YOLOv8x architecture achieved the highest mAP scores under foggy conditions, with 0.7125
on OTS and 0.6978 on RTTS. Among the YOLOv5 variants, the baseline YOLOv5x model per-
formed best, achieving 0.6944 on OTS and 0.6655 on RTTS.

The addition of AOD-Net generally enhanced performance for YOLOv8 but had a diminishing effect
on YOLOv5. Meanwhile, models incorporating AOD-NetX exhibited lower mAP values across

11



I Can’t Believe It’s Not Better Workshop @ ICLR 2025

Table 3: Performance of dehazing methods: AOD-Net and AOD-NetX

Dataset Dehazing Method Evaluation Metrics
SSIM PSNR

Foggy Cityscapes AOD-Net 0.994 26.74
AOD-NetX 0.998 27.22

RESIDE-β OTS AOD-Net 0.920 24.14
AOD-NetX 0.945 25.80

RESIDE-β RTTS AOD-Net 0.932 27.59
AOD-NetX 0.656 27.62

Table 4: Train- Foggy Cityscapes, Test- Foggy Cityscapes: Evaluation of various Perceptual Pierc-
ing variations based on mean Average Precision (mAP) under both clear and foggy conditions.

Architecture Variants Conditions Evaluation Metrics (mAP)

YOLOv5x Clear 0.5644
Foggy 0.485

AOD-Net+YOLOv5x Clear 0.6813
Foggy 0.5822

YOLOv5s+AOD-NetX+YOLOv5x Clear 0.4896
Foggy 0.6152

YOLOv8x Clear 0.5243
Foggy 0.4948

AOD-Net+YOLOv8x Clear 0.6099
Foggy 0.5900

YOLOv8n+AOD-NetX+YOLOv8x Clear 0.5150
Foggy 0.6114

both test datasets, suggesting that its integration may require further optimization. Overall, the
results indicate that YOLOv8x is more robust in handling foggy conditions compared to other model
variations.

(a) Foggy Cityscapes: Before Dehazing (b) Foggy Cityscapes: After Dehazing (using AOD-
NetX)

Figure 4: Dehazing performance on Foggy Cityscapes dataset.

G EVALUATION METRICS

G.1 STRUCTURAL SIMILARITY INDEX MEASURE (SSIM)

The performance of dehazing methods is evaluated using the Structural Similarity Index Measure
(SSIM), which quantifies the similarity between two images based on luminance, contrast, and struc-
tural components. It is defined as:
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Table 5: Train- Foggy Cityscapes, Test- RESIDE-β OTS and RTTS: Evaluation of various Percep-
tual Piercing variations based on mean Average Precision (mAP) under foggy conditions.

Architecture Variants Configuration Evaluation Metrics (mAP)

YOLOv5x Test: OTS 0.6944
Test: RTTS 0.6655

AOD-Net+YOLOv5x Test: OTS 0.6325
Test: RTTS 0.6156

YOLOv5s+AOD-NetX+YOLOv5x Test: OTS 0.5679
Test: RTTS 0.5297

YOLOv8x Test: OTS 0.7125
Test: RTTS 0.6978

AOD-Net+YOLOv8x Test: OTS 0.6458
Test: RTTS 0.6125

YOLOv8n+AOD-NetX+YOLOv8x Test: OTS 0.5779
Test: RTTS 0.5312

(a) Foggy Cityscapes: Before Dehazing (b) Foggy Cityscapes: After Dehazing (using AOD-
NetX)

Figure 5: Dehazing performance on Foggy Cityscapes dataset.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(1)

where:

• µx and µy are the mean intensities of images x and y, respectively.

• σ2
x and σ2

y denote the variances of x and y.
• σxy represents the covariance between x and y.

• c1 = (k1L)
2 and c2 = (k2L)

2 are stabilizing constants to prevent division by zero, where
L is the dynamic range of pixel values (e.g., 255 for 8-bit images), and default values are
k1 = 0.01 and k2 = 0.03.

G.2 PEAK SIGNAL-TO-NOISE RATIO (PSNR)

Peak Signal-to-Noise Ratio (PSNR) is a widely used metric to assess image reconstruction quality
by comparing the original and processed images. It is expressed in decibels (dB) and is calculated
as:

PSNR = 10 · log10
(

MAX2

MSE

)
, (2)

where MAX is the maximum possible pixel value (e.g., 255 for 8-bit images), and MSE is the Mean
Squared Error:

13



I Can’t Believe It’s Not Better Workshop @ ICLR 2025

(a) RESIDE-β: Before Dehazing (b) RESIDE-β: After Dehazing (using AOD-NetX)

Figure 6: Dehazing performance on RESIDE-β dataset.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(I(i, j)−K(i, j))
2
. (3)

Here, I(i, j) and K(i, j) represent pixel values at position (i, j) in the original and reconstructed
images, respectively. A higher PSNR value indicates better image quality, as it corresponds to lower
distortion. PSNR is extensively used in evaluating dehazing, denoising, and image compression
methods.

G.3 MEAN AVERAGE PRECISION (MAP)

For object detection performance, we use mean Average Precision (mAP), which evaluates the
precision-recall tradeoff. The Average Precision (AP) is computed as:

AP =

∑n
k=1(P (k)× rel(k))

number of relevant objects
(4)

where:

• P (k) is the precision at rank k.
• rel(k) is an indicator function, which is 1 if the object at rank k is relevant, and 0 otherwise.
• n is the total number of retrieved objects.

The mean Average Precision is computed as:

mAP =

∑Q
q=1 APq

Q
(5)

where APq is the Average Precision for the qth query, and Q is the total number of queries. Higher
mAP values indicate better object detection performance across different classes.
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